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Abstract

One of the promising platforms for creatingMajorana bound states is a hybrid nanostructure

consisting of a semiconducting nanowire covered by a superconductor.We analyze the previously

disregarded role of electrostatic interaction in these devices. Ourmain result is that Coulomb

interaction causes the chemical potential to respond to an appliedmagnetic field, while spin–orbit

interaction and screening by the superconducting lead suppress this response. Consequently, the

electrostatic environment influences two properties ofMajorana devices: the shape of the topological

phase boundary and the oscillations of theMajorana splitting energy.We demonstrate that both

properties show a non-universal behavior, and depend on the details of the electrostatic environment.

We show that when thewire only contains a single electronmode, the experimentally accessible

inverse self-capacitance of thismode fully captures the interplay between electrostatics andZeeman

field. This offers a way to compare theoretical predictionswith experiments.

1. Introduction

Majorana zeromodes are non-Abelian anyons that emerge in condensed-matter systems as zero-energy

excitations in superconductors [1–3]. They exhibit non-Abelian braiding statistics [4] and form a building block

for topological quantum computation [5]. Following theoretical proposals[6, 7], experiments in

semiconducting nanowires with proximitized superconductivity report appearance ofMajorana zeromodes

signatures [8–12]. These ‘Majorana devices’ are expected to switch from a trivial to a topological state when a

magnetic field closes the induced superconducting gap. A further increase of themagnetic field reopens the bulk

gap againwithMajorana zeromodes remaining at the edges of the topological phase.

Inducing superconductivity requires close proximity of the nanowire to a superconductor, which screens the

electric field created by gate voltages. Another source of screening is the charge in the nanowire itself that

counteracts the applied electric field. Therefore, a natural concern in device design is whether these screening

effects prevent effective gating of the device. Besides this, screening effects andwork function differences

between the superconductor and the nanowire affect the spatial distribution of the electron density in thewire.

Themagnitude of the induced superconducting gap reduces when charge localizes far away from the

superconductor. This restricts the parameter range for the observation ofMajoranamodes.

To quantitatively assess these phenomena, we study the influence of the electrostatic environment on the

properties ofMajorana devices.We investigate the effect of screening by the superconductor as a function of the

work function difference between the superconductor and the nanowire, andwe study screening effects due to

charge.We focus on the influence of screening on the behavior of the chemical potential. In particular, we

consider the response of the chemical potential to amagnetic field, because this directly impacts theMajorana

signatures.
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The zero-bias peak,measured experimentally in [8–12], is a non-specific signature ofMajoranas, since

similar features arise due toKondo physics or weak anti-localization [13, 14]. To help distinguishingMajorana

signatures from these alternatives, we focus on the parametric dependence of twoMajorana properties: the

shape of the topological phase boundary [15, 16] and the oscillations in the coupling energy of twoMajorana

modes [17–21].

Both phenomena depend on the response of the chemical potential to amagnetic field, and hence on

electrostatic effects.Majorana oscillations were analyzed theoretically in two extreme limits for the electrostatic

effects: constant chemical potential [19–21] and constant density [20] (see appendix A for a summary of these

two limits). In particular [20], found different behavior ofMajorana oscillations in these two extreme limits.We

show that the actual behavior of the nanowire is somewhere in between, and depends strongly on the

electrostatics.

2. Setup andmethods

2.1. The Schrödinger–Poisson problem

Wediscuss electrostatic effects in a device design as used byMourik et al [8], however ourmethods are

straightforward to adapt to similar layouts (see appendix B for a calculation using a different geometry). Sincewe

are interested in the bulk properties, we require that the potential and theHamiltonian terms are translationally

invariant along thewire axis andwe consider a 2D cross section, shown infigure 1. The device consists of a

nanowirewith a hexagonal cross section of diameter W 100 nm= on a dielectric layer with thickness

d 30 nmdielectric = . A superconductor with thickness d 187 nmSC = covers half of thewire. The nanowire has a

dielectric constant 17.7r = (InSb), the dielectric layer has a dielectric constant 8r = (Si3N4). The device has

two electrostatic boundary conditions: afixed gate potentialVG set by the gate electrode along the lower edge of

the dielectric layer and afixed potential VSC in the superconductor, whichwemodel as a groundedmetallic gate.

We set this potential to eitherV 0 VSC = , disregarding awork function difference between theNbTiN

superconductor and the nanowire, or we assume a small work function difference [22, 23] resulting

inV 0.2 VSC = .

Wemodel the electrostatics of this setup using the Schrödinger–Poisson equation.We split theHamiltonian

into transverse and longitudinal parts. The transverseHamiltonian T reads

m x y
e x y

E

2
,

2
, 1T

2 2

2

2

2

gap
⎛
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with x y, the transverse directions, m m0.014 e* = the effective electronmass in InSb (withme the electron

mass), e- the electron charge, andf the electrostatic potential.We assume that in the absence of electric field

the Fermi level EF in the nanowire is in themiddle of the semiconducting gap Egap, with E 0.2 eVgap = for InSb
(see figure 2(a).We choose the Fermi level EF as the reference energy such that E 0F º .

The longitudinalHamiltonian L reads

m z z
E

2
i , 2y zL

2 2

2 Z
*


 a s s= -

¶
¶

-
¶
¶

+ ( )

with z the direction along thewire axis,α the spin–orbit coupling strength, EZ the Zeeman energy and s the

Paulimatrices. The orientation of themagnetic field is along thewire in the zdirection. In this separation, we

have assumed that the spin–orbit length l mSO
2 * a= ( ) is larger or comparable to thewire diameter,

Figure 1. Schematic cross section of theMajorana device. It consists of a nanowire (red hexagon) lying on a dielectric layer (blue
rectangle)which covers a global back gate. A superconducting lead (yellow region) covers half of the nanowire.
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l WSO  [24, 25]. Furthermore, we neglect the explicit dependence of the spin–orbit strengthα on the electric

field.We ignore orbital effects of themagneticfield[26], since the effective area of the transverse wave functions
ismuch smaller than thewire cross section due to screening by the superconductor, as we show in section 3.

Since theHamiltonian is separable in the limit we are using, the charge density in the transverse direction

x y,r ( ) is:

x y e x y n E E, , , , , 3
i

i i
2

Zår y a= -( ) ∣ ( )∣ ( ) ( )

with iy the transverse wave function and Ei the subband energy of the ith electronmode defined by
Ei i iT y y= . Further, n E E, ,i Z a( ) is the 1D electron density, whichwe calculate in closed form from the Fermi

momenta of different bands in appendix C. The subband energies Ei depend on the electrostatic potential

x y,f ( ), and individual subbands are occupied by ‘lowering’ subbands below EF (shown schematically4 in

figure 2(b)).

The Poisson equation that determines the electrostatic potential x y,f ( ) has the general form:

x y
x y

,
,

, 42


f

r
 = -( )

( )
( )

with ò the dielectric permittivity. Since the charge density of equation (3) depends on the eigenstates of

equation (1), the Schrödinger and the Poisson equations have a nonlinear coupling.

We calculate the eigenstates and eigenenergies of theHamiltonian of equation (1) in tight-binding

approximation on a rectangular grid using theKwant package [27].We then discretize the geometry offigure 1

using afinite elementmesh, and solve equation (4)numerically using the FEniCS package [28].

Equations (1) and (3) together define a functional r f¯ [ ], yielding a charge density from a given electrostatic

potentialf. Additionally, equation (4) defines a functional f r¯ [ ], giving the electrostatic potential produced by a

charge density ρ. The Schrödinger–Poisson equation is self-consistent when

0. 5f r f f- =¯ [ ¯ [ ]] ( )

We solve equation (5) using an iterative nonlinear Andersonmixingmethod [29].Wefind that thismethod

prevents the iteration process fromoscillations and leads to a significant speedup in computation times

compared to other nonlinear solvermethods (see appendix E).We search for the root of equation (5) rather than

for the root of

0, 6r f r r- =¯ [ ¯ [ ]] ( )

sincewe found equation (5) to be better conditioned than equation (6). The scripts with the source code aswell

as resulting data are available online as ancillaryfiles for thismanuscript.

2.2.Majorana zeromodes in superconducting nanowires

Having solved the electrostatic problem for the normal system, i.e.taking into account only the electrostatic

effects of the superconductor, we then use the electrostatic potential x y,f ( ) in the superconducting problem.

To this end, we obtain the Bogoliubov-deGennesHamiltonian BdG by summing T and L and adding an

Figure 2.Band alignment and the Fermi level, shown schematically for V 0SC = . (a) In the absence of an electrostatic potential (gate
voltage V 0G = ) the Fermi level EF is assumed to be aligned to themiddle of the semiconducting gap (of size Egap, semiconductor
conduction band shown as dashed blue line). Confinement in the nanowire leads to discrete subbands (red solid lines). (b)Apositive
gate voltage gives rise to an electrostatic potential landscape lowering the energy of all subbands. Subbands below the Fermi level EF

are occupied. For these bands, we define effective chemical potentials im . (Note that the subband spacings depend on x y,f ( ) and are
typically different for different VG.) For simplicity, we set the spin–orbit interaction to zero in these dispersions. For nonzero spin–
orbit strength, the chemical potentials im are definedwith respect to the crossing point of the spin bands rather than at the band edge.

4
Note thatEi agrees with the subband bottomonly if 0a = and EZ= 0. See appendix C for details on the subband occupation in the

general case.
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induced superconducting pairing term:
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with t the Paulimatrices in electron–hole space andΔ the superconducting gap.

The three-dimensional BdG equation (7) is still separable and reduces for every subbandwith transverse

wave function iy to an effective one-dimensional BdGHamiltonian:

p
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where p zi= - ¶ ¶ andwe defined Ei im = - (see figure 2(b). Since the different subbands are independent,

im can be interpreted as the chemical potential determining the occupation of the ith subband.

While the Fermi level is kept constant by themetallic contacts, the chemical potential im of each subband

does depend on the systemparameters: V E,i i G Zm m= ( ).Most of themodelHamiltonians forMajorana

nanowires used in the literature are of the formof equation (8) (or a two-dimensional generalization) using one

chemical potentialμ. Tomake the connection to ourwork,μ should be identifiedwith im , and not be confused
with the constant Fermi level EF. For example, the constant chemical potential limit of [20] refers to the special

case that im is independent of EZ, and it is not related to EF being always constant
5.

Properties ofMajoranamodes formed in the ith subband only depend on the value of im (or equivalently Ei).

In the followingwe thus determine the effect of the electrostatics on im beforewe finally turn toMajorana bound

states.

3. Screening effects on charge density and energy levels

Webegin by investigating the electrostatic effects in absence of Zeeman field and a spin–orbit strengthwith

l 233 nmSO = , negligible for the electrostatic effects.We solve the Schrödinger–Poisson equation for a

superconductor withV 0 VSC = and a superconductor withV 0.2 VSC = , and compare the solutions to two

benchmarks: a nanowirewithout a superconducting lead, and a nanowire inwhichwe ignore screening by

charge. Specifically, we compute the influence of screening by the superconductor and by charge on thefield

effect on the lowest energy levels and charge densities. To evaluate the role of screening by charges in thewire, we

compare the full solution of the Poisson equation (4) to its solutionwith the right-hand side set to zero. Our

results are summarized infigure 3 showing the dispersion of im andfigure 4 showing the charge density for the

same situations and the values ofVG marked infigure 3.

The approximate rotational symmetry of thewire leads to almost doubly degenerate bandswith opposite

angularmomenta when electricfield is negligible—a situation realized either in absence of the superconductor

(figure 3(a)) orwhenV VG SC= (figures 3(b)–(d)). However inmost cases, presence of the superconductor leads

to a largeVG required to induce afinite charge density in thewire, and the degeneracy is strongly lifted.

The lever armof the gate voltage on the energiesEi, reduces from the optimal value of 1 , atV 0G < by

approximately a factor of 4 due to charge screening alone (figure 3(a)). Screening by the superconductor leads to

an additional comparable suppression of the lever arm, however its effect is nonlinear inVG due to the transverse

wave functions being pulled closer to the gate at positiveVG. Comparing panels (b) and (c) offigure 3we see that

screening by the superconductor does not lead to a strong suppression of screening by chargewhenV 0SC = : the

field effect strongly reduces as soon as charge enters thewire whenwe take charge screening into account. This

lack of interplay between the screening by superconductor and by charge can be understood by looking at the

charge density distribution in the nanowire (figures 4(b) and (c). Since a positive gate voltage is required to

induce afinite charge density, the charges are pulled away from the superconductor, and the corresponding

mirror charges in the superconductor area are located at a distance comparable to twice thewire thickness. On

the contrary, a positiveVSC requires a compensating negativeVG to induce comparable charge density in the

wire, pushing the charges closer to the superconductor (figure 4(d)). In this case, the proximity of the electron

density to the superconductor leads to the largest suppression of the lever arm, and proximity of image charges

almost completely compensates the screening by charge.

TheVanHove singularity in the density of states leads to an observable kink in im each time an extra band

crosses the Fermi level (inset infigure 3(a)). However, we observe that the effect is weak on the scale of level

spacing and cannot guarantee strong pinning of the Fermi level to a band bottom.

5
Using the notion of a variable chemical potentialμ is natural when energies aremeasuredwith respect to a fixed band bottom, i.e. in a

single-band situation. In our case, different subbands react differently on changes in x y,f ( ) and it ismore practical to keep the Fermi level

EF fixed.

4
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Figure 3.The nine lowest subband energies im as a function of gate voltage. (a): wire without a superconducting lead, (b): wire with a
superconducting lead at V 0 VSC = , neglecting charge screening effects, (c): the same problem including charge screening effects, and
(d): a superconducting leadwith V 0.2 VSC = including charge screening. The Fermi level E 0F = is indicated as a solid horizontal
line. The red lines indicate the gate voltages used in the calculation of charge density and electric field of the corresponding panels in
figure 4. In all plots, we takeweak spin–orbit interaction (a spin–orbit length of 233 nm). The inset of the top panel shows a zoom,
revealing Fermi level pinning every time a newband crosses the Fermi level.

Figure 4.Charge density distribution and electric field in thewire cross section, at the gate voltage indicated by the red line in the
corresponding panel offigure 3. (a): self-consistent solutionwhen no superconducting lead is attached. (b): superconducting lead at
V 0 VSC = , neglecting screening by charge. (c): Same problem, but including screening by charge (self-consistent). (d): self-consistent
solution for a superconducting lead at V 0.2 VSC = . The total density is 5.5 10 cm5 1» ´ - for plots (a), (c), and (d). Plot (b) has a total
density of 1.6 10 cm6 1» ´ - .
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4. Electrostatic response to the Zeemanfield

4.1. Limit of large level spacing

The full self-consistent solution of the Schrödinger–Poisson equation is computationally expensive and also

hard to interpret due to a high dimensionality of the space of unknown variables.Wefind a simpler formof the

solution at afinite Zeeman field relying on the large level spacing∼10 meV in typical nanowires. It ensures that

the transverse wave functions stay approximately constant, i.e. E 0 1Zy yá ñ »∣ ( )∣ ( ) ∣ up tomagnetic fields of

7 T~ . In this limit wemay apply perturbation theory to compute corrections to the chemical potential for

varying EZ.

Wewrite the potential distribution for a given Ez in the form

x y E x y x y E, , , , , , 9
i

N

iZ b.c.
0

zåf f f= +
=

( ) ( ) ( ) ( )

where b.c.f is the potential obeying the boundary conditions set by the gate and the superconducting lead, and

solves the Laplace equation

x y, 0. 102
b.c.f =( ) ( )

The corrections if to this potential due to the charge contributed by the ithmode out of theNmodes

below the Fermi level then obeys a Poisson equationwithDirichlet boundary conditions (zero voltage on the

gates):

x y E
e

x y n E, , , , , 11i i i i
2

Z
2

Z


f y m dm a = - -( ) ∣ ( )∣ ( ) ( )

wherewewrite the chemical potential at a finite value of EZ as Ei i iZm m dm= +( ) where im is the chemical

potential in the absence of afield.

We nowdefine amagnetic field-independent reciprocal capacitance as

P x y
x y E

e n E
,

, ,

, ,
12i

i

i i

Z

Z

f
m dm a

=
- - -

( )
( )

( )
( )

which solves the Poisson equation

P x y x y,
1

, . 13i i
2 2


y = -( ) ∣ ( )∣ ( )

Having solved the Schrödinger–Poisson problemnumerically for E 0Z = , we define x y E, ,i i Zdf f= ( )

x y, , 0if- ( ) and n n E n, , , 0,i i iZd m dm a m a= - - - -( ) ( ). The correction Eid to the subband energyEi is

then given infirst order perturbation as

E e . 14i i

j

N

j i

0

åd y df y= - á ñ
=

∣ ∣ ( )

Using equations (12), (14) and Ei idm d= - we then arrive at:

e P n , 15i
j

N

ij j
2

0

ådm d= -
=

( )

with the elements of the reciprocal capacitancematrix P given by

P P . 16ij i j iy y= á ñ∣ ∣ ( )

Solving the equation (15) self-consistently, we compute corrections to the initial chemical potentials im . The
equation (15) has amuch lower dimensionality than equation (5) and ismuch cheaper to solve numerically.

Further, all the electrostatic phenomena enter equation (15) only through the reciprocal capacitancematrix

equation (16).

4.2. Single- andmultiband response to themagneticfield

We start by computing the electrostatic response to changes in themagneticfieldwhen the Fermi level is

close to the band bottom for a single band (N = 1, andwewrite the index 1m mº for brevity).We

study the influence of the electrostatic environment and assess whether the device is closer to a constant

charge density or constant chemical potential situation (using the nomenclature of[20] explained in

appendix A).

The top panel offigure 5 shows the chemical potential response to Zeemanfield.Without a superconducting

contact, the electron-electron interactions in the nanowire are screened the least, and theCoulomb effects are

6
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the strongest, counteracting density changes in thewire. In agreement with this observation, we find the change

in chemical potentialμ comparable to the change in EZ. Hence, in this case the system is close to a constant-

density regime.

A superconducting contact close to the nanowire screens the electron-electron interaction in thewire due to

image charges. The chemical potential is then less sensitive to changes inmagnetic field.Wefind that this effect is

most pronounced for a positive work function difference with the superconductorV 0.2 VSC = , whenmost of

the electrons are pulled close to the superconducting contact. Then, the image charges are close to the electrons

and strongly reduce theCoulomb interactions. In this case the system is close to a constant chemical potential

regime. ForV 0 VSC = screening from the superconducting contact is less effective, since electric charges are

further away from the interface with the superconductor. Therefore in this case, wefind a behavior intermediate

between constant density and constant chemical potential.

Besides the dependence on the electrostatic surrounding, themagnetic field response of the chemical

potential depends on the spin–orbit strength. Specifically, the chemical potential stays constant over a longer

field rangewhen the spin–orbit interaction is stronger6. The bottompanel offigure 5 explains this: when the

spin–orbit energy E ESO Z , the lower band has aW-shape (bottom left). Amagnetic-field increase initially

transforms the lower band back from aW-shape to a parabolic band, as indicated by the dashed red lines.

During this transition, the Fermiwavelength is almost constant. Since the electron density is proportional to the

Fermiwavelength, thismeans that both the density and the chemical potential change very little in this regime.

We thus identify the spin–orbit interaction as another phenomenon driving the system closer to the constant

chemical potential regime, similar to the screening of theCoulomb interaction by the superconductor.

At large Zeeman energies E EZ SO , the spin-down band becomes parabolic (bottom right offigure 5). This

results in the slope of EZm ( ) becoming independent of the spin–orbit coupling strength, as seen in the top panel

offigure 5 at large values of EZ.

Close to the band bottom andwhen spin–orbit interaction is negligible, we study the asymptotic behavior of

μ and n by combining the appropriate density expression equation (C.6)with the corrections in the chemical

potential equation (15). In that case, the chemical potential becomes

e P
m E2 . 17

2

Z*


m
p

m= - +( ) ( )

Figure 5.Top andmiddle panel: variation in chemical potential (top panel) and in electron density (middle panel) as a function of
magnetic field. The green solid line corresponds to the casewithout a superconductor. Other solid lines correspond to V 0 VSC = ,
dashed lines to V 0.2 VSC = . Black, red and blue indicate spin–orbit lengths of 233, 100, and 60 nm respectively. Bottompanel:
dispersion relationE(k) for E ESO Z (left) and E ESO Z (right). Dashed lines indicate the evolution of the dispersion for the
increasingmagneticfield.

6
Althoughwe decrease the spin–orbit length to l 60 nmSO = , which is smaller than thewire diameter of 100 nm,we assume separable wave

functions. Screening by the superconductor strongly localizes thewave functions, such that the confinement is still smaller than the spin–
orbit length.
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Weassociate an energy scale EPwith the reciprocal capacitance P, given by

E
m e P2

18P

4 2

2 2

*

p
= ( )

and study the two limits E EP Z and E EP Z . In the strong screening limit E EP Z wefind the asymptotic

behavior EZm » - , corresponding to a constant-density regime. The opposite limit E EP Z yields

E EP Zm » - , close to a constant chemical potential regime.We computed EP explicitly for the chemical

potential variations as shown in the top panel offigure 5. For a nanowire without a superconducting lead, we

find an energy E E42 meVP Z»  , indicating a constant-density regime.Using the classical approximation of

ametallic cylinder above ametallic plate, we find an energy of the same order ofmagnitude. For a nanowirewith

an attached superconducting lead atV 0 VSC = , we get E E7 meVP Z» ~ , intermediate between constant

density and constant chemical potential. Finally, a superconducting lead atV 0.2 VSC = yields

E E0.5 meVP Z»  , indicating a system close to the constant chemical potential regime.

Since integrating over density-of-statesmeasurements yields n0d , the inverse self-capacitance e P0 0 0y y- á ñ∣ ∣

can be inferred from experimental data byfitting the density variation curves to the theoretical dependence

EZm ( ). This allows to experimentallymeasure the effect of the electrostatic environment, when knowing the

remainingHamiltonian parameters.

We compare the response to Zeeman field in themulti-band case forN= 3 andN= 10 to the single band

behavior infigure 6.We observe that presence of extra charges further reduces the sensitivity of the chemical

potential to themagnetic field.We interpret the non-monotonous behavior of the chemical potential (most

pronounced forN = 10 in figure 6, but in principle present for allN) as being due to a combination of theVan

Hove singularities in the density of states and screening by charges. For afixed chemical potential, the upper

band,moving up in energy due to themagneticfield, losesmore states than the lower band acquires, since it

approaches theVanHove singularity in its density of states. To keep the overall density fixed, the chemical

potential increases. Once the density in the lower band equals the initial density, the upper band is empty and the

chemical potential starts dropping again. In the limit of constant density and a singlemode themagnetic field

dependence of the chemical potential can be solved analytically, reproducing the non-monotonicity and kinks

(see appendixD).

Relating the variation in im to densitymeasurements is experimentally inaccessible for N 1> , since

corrections to im depend on the density changes of each individualmode, as expressed in equation (15).

0

–1

–2

0 2 4 6

N=1

N=3

N=10
µ

 [
m
e
V
]

µ
 [
m
e
V
]

µ
 [
m
e
V
]

EZ [meV]

0

–1

–2

0

–1

–2

Figure 6.Response of Nm as a function ofmagnetic field forN=1, 3, and 10, all close to the band bottom. The solid green line
corresponds to the case of no screening by a superconductor. Other solid lines correspond to V 0 VSC = , dashed lines to V 0.2 VSC = .
Black, red and blue indicate spin–orbit lengths of 233, 100, and 60 nm, respectively.
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5. Impact of electrostatics onMajorana properties

5.1. Shape of theMajorana phase boundary

The nanowire enters the topological phase when the bulk energy gap closes at a Zeeman energy of

EZ
2 2m= + D . The electrostatic effects affect the shape of the topological phase boundary through the

dependence ofμ on EZ. Tofind the topological phase boundary as a function of both experimentally

controllable parametersVG and EZ, we perform a full self-consistent simulation at E 0Z = .We then compute

corrections to the resulting chemical potential at arbitrary EZ using equation (15), and find topological phase

boundary EZ
2 2m= + D by recursive bisection.

Figure 7 shows the resulting phase boundary corresponding to 0.5 meVD = . The phase boundary has a

non-universal shape due to the interplay between electrostatics andmagnetic field. In agreement with our

previous conclusions, the electrostatic effects are the strongest with absent work function difference V 0 VSC =
(top panel offigure 7)when the nanowire is intermediate between constant density and constant chemical

potential7. Close to the band bottom, the charge screening reduces changes in density, and thus lowers the

chemical potential by an amount that is similar to EZ. Hence, the lower phase boundary (at smallerVG) has a

weaker slope than the upper phase boundary (at largerVG). Note that in the limit of constant density, the lower

phase boundary would be a constant independent of EZ (see appendixD).

For awork function differenceV 0.2 VSC = , the system is closer to the constant chemical potential regime.

In this regime,μ changes linearly withVG, yielding a hyperbolic phase boundarywith symmetric upper and

lower arms and its vertex at EZ = D.When spin–orbit interaction is strong, a transition in the lower armof the

phase boundary from constant chemical potential (hyperbolic phase boundary) to constant density (more

horizontal lower arm) occurs, resulting in a ‘wiggle’which ismost pronounced forV 0 VSC = and l 60 nmSO = .

This feature is less pronounced forV 0.2 VSC = due to the screening by the superconductor suppressing the

Coulomb interactions.

5.2.Oscillations ofMajorana coupling energy

Thewave functions of the twoMajoranamodes at the endpoints of afinite-length nanowire have afinite overlap

that results in afinite nonzero energy splitting ED of the lowestHamiltonian eigenstates [17–21]. This splitting

oscillates as a function of the effective Fermiwave vector kF,eff as k Lcos F,eff( ) [20].We investigate the

Figure 7.Majorana transition boundary for a superconductor at V 0 VSC = (upper panel) or a superconductor at V 0.2 VSC = (lower
panel). The superconducting gap 0.5 meVD = . The boundaries are obtained for the single-band case. The solid black, red, and blue
lines correspond to a spin–orbit length of 233, 100, and 60 nm respectively. The black, red and blue horizontal lines in the upper plot
indicate the gate voltages at whichwe compute the correspondingly coloredMajorana coupling oscillations in the inset of figure 8.

7
The presence of a superconductor is essential forMajorana fermions, but inevitably leads to screening. For the geometries of our

calculationswe thus do not have a situation close to constant density.
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dependency of the oscillation frequency, or the oscillation peak spacing onmagnetic field and the electrostatic

environment.

A peak in theMajorana splitting energy occurs whenMajoranawave functions constructively interfere, or

when the Fermimomentum equals q Lp , with q the peak number and L the nanowire length. Themomentum

difference between twopeaks is

k E k E
L

, 19q qF,eff Z, 1 F,eff Z,
p

- =+( ) ( ) ( )

where E qZ, is the Zeeman energy corresponding to the qth oscillation peak. In the limit of small peak spacing, we
expand k E k Eq qF,eff Z, 1 F,eff Z,-+( ) ( ) tofirst order in EZ:

k

E
E

L

d

d
, 20F

Z
Z
p

D = ( )

yielding the peak spacing

E
L

k

E

d

d
. 21Z,peak

F

Z

1⎛

⎝
⎜

⎞

⎠
⎟

p
D =

-

( )

Since k k E E,F,eff F,eff Z Zm= ( ( )), we substitute

k

E

k

E

k

E

d

d

d

d
. 22F

Z

F

Z

F

Zm
m

=
¶
¶

+
¶
¶

( )

Weobtain the values of k EF Z¶ ¶ and kF m¶ ¶ from the analytic expression for kF, presented in appendix C. The

value Ed d Zm results from the dependence EZm ( ) shown infigure 5.

Figure 8 shows the peak spacing as a function of EZ for a nanowire of length L 2 mm= . Stronger screening

reduces the peak spacing (i.e. increases the oscillation frequency) by reducing the sensitivity of the chemical

potential to themagnetic field, as discussed in section 4. In addition, spin–orbit strength has a strong influence

on the peak spacing, since for E EZ SO the density, and thus kF,eff , stays constant. This results in a lower

oscillation frequency and hence a larger peak spacing. Correspondingly, we find that the peak spacingmay

increase, decrease, or roughly stay constant as a function of themagnetic field.

Similarly to the shape of theMajorana transition boundary,figure 8 shows that the peak spacing does not

follow a universal law, in contrast to earlier predictions [21]. In particular, ourfindingsmay explain the zero-bias

oscillationsmeasured in [11], exhibiting a roughly constant peak spacing.
Figure 9 showsMajorana energy oscillations as a function of both gate voltage andmagnetic field strength

forV 0.2 VSC = , with L 1000 nm= to increase theMajorana coupling. The diagonal ridges are lines of constant

chemical potential. The difference in slope between the ridges of both plots indicates a difference in the

equilibrium situation: closer to constant density for weak spin–orbit coupling, closer to constant chemical

potential for strong spin–orbit coupling. The bending of the constant chemical potential lines in the lower panel

indicates a transition from the lattermechanism to the formermechanism, due to the increase ofmagnetic field,

as explained in section 4.

Figure 8.Peak spacing of theMajorana energy oscillations in amagnetic field for a nanowire of length L 2 mm= . Solid lines
correspond to V 0 VSC = , dashed lines to V 0.2 VSC = . Black, red and blue indicate spin–orbit lengths of 233, 100, and 60 nm
respectively. Inset: splitting energy oscillations for V 0 VSC = . The three horizontal lines in the upper panel offigure 7 indicate the
corresponding gate potential. The energy splittings are found by solving for the lowest energy of theHamiltonian of equation (8),
using the chemical potentials obtained from the perturbation scheme as described in section 4.
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6. Summary

Wehave studied the effects of the electrostatic environment on the field control ofMajorana devices and their

properties. Screening by charge and by the superconductor strongly reduce the field effect of the gates.

Furthermore, screening by the superconductor localizes the charge and induces a large internal electric field.

Whenwe assume the superconductor to have a zerowork function difference with the nanowire, charge

localizes at the bottomof thewire, which reduces the induced superconducting gap.

Coulomb interaction causes the chemical potential to respond to an appliedmagnetic field, while screening

by the superconductor and spin–orbit interaction suppress this effect. If a superconductor is attached, the

equilibrium regime is no longer close to constant density, but either intermediate between constant density and

constant chemical potential for a superconductor with zerowork function difference, or close to constant

chemical potential for a superconductor with a positive work function difference.

Due to this transition in equilibrium regime for increasing screening and spin–orbit interaction, the shape of

theMajorana phase boundary and the oscillations ofMajorana splitting energy depend on device parameters

rather than following a universal law.

We have shownhow to relate themeasurement of density variations to the chemical potential response.

Since theMajorana signatures directly depend on this response, our work offers a way to compare direct

experimental observations of both signatures with theoretical predictions, and to remove the uncertainty caused

by the electrostatic environment.

Our Schrödinger-Poison solver, available in the supplementary files for thismanuscript, can be used to

compute lever arms and capacities for different device dimensions and geometries, providing practical help for

the design and control of experimental devices.
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AppendixA.Nomenclature—constant density and constant chemical potential

In [20]Das Sarma et al consideredMajorana oscillations as a function ofmagnetic field. The authors considered

there two extreme electrostatic situations that they refer to as constant chemical potential and constant density.

In particular, [20] considers a one-dimensional nanowire BdGHamiltonian as in equation (8), with 1m being

denoted asμ. In thismodel, the subband energy Eb isfixed and set to 0. The electron density is changed by

adjustingμ (shown for the E 0Z = case infigure 10(a).

Figure 9.Majorana energy oscillations as a function of gate voltage andmagnetic field for a superconductor at V 0.2 VSC = withweak
spin–orbit interaction, l 233 nmSO = (upper panel), and strong spin–orbit interaction, l 60 nmSO = (lower panel).
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For fixedμ in equation (8) electron density will change upon changing EZ. For example, if E E,Z som ,

electron density will increasemonotonically as EZ is increased (see figure 10(b)). This constant chemical

potential situation is realized in the limit of vanishingCoulomb interaction, as then density changes do not

influence the electrostatic potential. The same assumption is used in [19, 21].
Reference[20] also considered the opposite case of infinitely strongCoulomb interaction. In this case the

electron density is fixed, and consequentlyμmust change as EZ changes. This constant density situation is

schematically shown infigure 10(c).

Appendix B. Lever arms in an InAs-Al nanowire

Another promising set of devices for the creation ofMajorana zeromodes is an epitaxial InAs-Al

semiconductorsuperconductor nanowire. These systems exhibit a hard superconducting gap and a high

interface quality due to the epitaxial growth of theAl superconductor shell [30].

Figure 11 shows a cross section of the device. The 14.6r = nanowire (InAs) lies on an 4r = dielectric layer

(SiO2) of thickness d 200 nmdielectric = and is connected on one side to anAl superconducting shell. The device

has two gates: a global back-gate with a gate potentialVBG, and a side gate with a potentialVSG, separated by a

vacuumgap ofwidth dgap.Wemodel the superconductor again as ametal with afixed potentialVSC. These three
potentials form the boundary conditions of the system.

We estimate the dependence of the lever armof the side date E Vd d SG on dgap using the self-consistent
Schrödinger–Poisson simulations.We set the back gate toV 3.5 VBG = - , and choose thework function

difference of the Al shell equal to 0.26 eV, such that one electronmode is present at a side gate voltage of

V 2 VSG = - , with d 145 nmgap = , as was observed in experiments [31].We use the band gap 0.36 eV for InAs.

Figure 10. Schematic explanation of constant chemical potential and constant density limits discussed in [20]: (a) in the absence of a
magnetic field, a band isfilled up to the chemical potentialμ.μ ismeasuredwith respect to the band edge Eb that serves as a reference
energy. For afinite Zeeman splitting EZ the two spin-bands split by EZ with respect to Eb. In this case there can be two extreme
situations: (b) constant chemical potential—μ stays unchanged (and hence the total electron density changes). (c) constant density—
the total electron density stays constant leading to a new chemical potential m¢ (for simplicity, all plots are shown for 0a = ).

Figure 11. Schematic picture of the cross section of an InAs-Al device. It consists of a nanowirewith a square cross section on a
dielectric layer which covers a global back gate. A superconducting lead covers one side of thewire. A vacuumgap separates thewire
from a second gate.
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Our results are shown infigure 12, and allow to translate the gate voltages into the nanowire chemical

potential. Thework for the InAs-Al device shows that our numerical algorithm is easily adjusted to different

device geometries, as long as the nanowire stays translationally invariant.

AppendixC. Electron density in a nanowire

Integration over the 1Ddensity of states yields the electron density n E E, ,Z a( ), related to the charge density by

equation (3). To derive the density of states, we start from the nanowireHamiltonian, consisting of the

transverseHamiltonian of equation (1) and the longitudinalHamiltonian of equation (2):

m
e x y

z
E

2
, i . C.1y z

2
2

0 Z

⎛

⎝
⎜

⎞

⎠
⎟

*


 f s a s s= -  - -

¶
¶

+( ) ( )

Assuming that thewave function has the formof a planewave e kziµ in the longitudinal direction, and quantized

transversemodes iy with corresponding energies Ei in the transverse direction (where idenotes the transverse

mode number), the energies of theHamiltonian are

E k E
k

m
E k

2
, C.2i

2 2

Z
2 2 2

*


a= +  +( ) ( )

yielding the dispersions of the upper and the lower spin band. Converting equation (C.2) tomomentum as a

function of energy yields

k E E E E E E E E, , ,
1

2
2 4 4 , C.3i i iZ

2 4 2
Z
2a a a a= + -  + - +( ) ( ) ( ) ( )

whereα, E, EZ, and Ei are in units of m22 * . The relation between the density of statesD(E) and k is

D E
k

E

1 d

d
. C.4

p
=( ) ( )

Weobtain the density n E E, ,i Z a( ) by integrating the density of states up to the Fermi level E 0F º . The Zeeman

field opens a gap of size E2 Z between the upper and the lower spin band. Due to theW-shape of the lower spin

band, induced by the spin–orbit interaction, we distinguish three energy regions in integrating up to EF. If

E Ei Z- > , both spin bands are occupied and the integration yields

n E E k E E E k E E E, ,
1

, , , , , , . C.5i i iZ F Z F Za
p

a a= ++ -( ) ( ( ) ( )) ( )

If E E EiZ Z- < - < , only the lower band is occupied, and the dispersion has two crossings with the Fermi level,

yielding a density

Figure 12.Top panel: six lowest energy levels with afixed gate potential V V 0 VBG SG= = . Bottompanel: lever arm in the InAs-Al
device as a function of gate spacingwith V 0 VBG = .
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n E E k E E E, ,
1

, , , . C.6i iZ F Za
p

a= +( ) ( ) ( )

For a nonzero spin–orbit strength, we have four crossings of the lower spin bandwith EF if E Ei Z- < - (see

figure 5, bottompanel). Since only the interval k k k - + contributes to the density, integration of the

density of states yields

n E E k E E E k E E E, ,
1

, , , , , , . C.7i i iZ F Z F Za
p

a a= -+ -( ) ( ( ) ( )) ( )

Equations (C.5), (C.6), and (C.7) provide analytic expressions for the electron density.We use these

equations to calculate the charge density of equation (3).

AppendixD. Response to the Zeemanfield in the constant density limit and for small
spin–orbit

The limit of small spin–orbit interaction and constant electron density in the nanowire independent of Zeeman

field allows for an analytic solution themagnetic field dependence of the chemical potential, EZm m= ( ). In

particular, we have from equations (C.5) and (C.7) for E 0 0Z 0m m= = >( ) :

m m
E E E

2 2 2
, D.10 Z Z Z

* *

 p
m

p
m q m m= + + - -( ( ) ) ( )

where θ is theHeaviside step function. This is readily solved as

E E

E E

4 for 2 ,

4 for 2 .
D.20 Z

2
0 Z 0

0 Z Z 0

⎧
⎨
⎩

m
m m m
m m

=
+ <

- >
( )

( )

Hence, the chemical potentialfirst increases with increasing EZ until the upper spin-band is completely

depopulated. Then the chemical potential decreases linearly with EZ. At the cross-over point the dependence of

the chemical potential is not smooth but exhibits a kink, also seen for example in the numerical results of

figure 6.

In the constant density limit we can also compute the asymptotes of the topological phase inμ-EZ-space. For

EZ D , the topological phase coincides with the chemical potential rangewhere only one spin subband is

occupied. From equation (D.2)wefind the two asymptotes thus as 0m = and E 2Zm = . Hence, in the constant

density limit, the phase boundary that corresponds to depleting thewire becomesmagnetic field independent.

Appendix E. Benchmark of nonlinear optimizationmethods

Weapply the Andersonmixing scheme to solve the coupled nonlinear Schrödinger–Poisson equation:

x y x y E

x y x y E x y

, , ,

, , ,
. E.1

i i

i i i

2⎧
⎨
⎩



f r y
f y y

 = -
=

( ) ( ( ) )

[ ( )] ( ) ( )
( )

Optimizationmethods find the root of the functional formof equation (E.1), as given in equation (5). As

opposed to othermethods, theAndersonmethod uses the output of the lastM rounds as an input to the next

iteration step instead of only the output of the last round[29]. Thememory of the Andersonmethod prevents

the iteration scheme fromoscillations and causes a significant speedup in computation times in comparison to

othermethods, and in particular the simple under-relaxationmethod often used in nanowire

simulations[32, 33].
As a test system, we take a global back gate device, consisting of a hexagonal InSb nanowire on an 4r =

dielectric layer (SiO2) of thickness 285 nm,without a superconducting lead. Due to the thick dielectric layer in

comparison to theMajorana device, this device ismore sensitive for charge oscillations (a different number of

electronmodes in the systembetween two adjacent iteration steps). Thismakes the device well-suited for a

performance benchmark.We compare the Andersonmethod to three other nonlinear optimizationmethods:

Broyden’sfirst and secondmethod [34] and amethod implementing aNewton–Krylov solver (BiCG-stab) [35].

Figure 13 shows the results. In this plot, we show the cumulativeminimumof the error. Plateaus in the plot

correspond to regions of error oscillations. Thefigure shows that the Andersonmethod generally converges

quickly and is not affected by error oscillations. However, the three othermethods showoscillatory behavior of

the error over a large range of iterations. Both Broyden’smethods performworse than the Andersonmethod,

but generally convergewithin 103~ iterations. TheNewton-Krylovmethod performs theworst, having a large

region of oscillations up to∼103–104 iterations. Due to its robustness against error oscillations, theAnderson

method is themost suited optimizationmethod for the Schrödinger–Poisson problem. For amuch thinner
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dielectric layer, such as the 30 nm layer in theMajorana device, the iteration number is typically 101~ for all four

tested optimizationmethods.

In our approach, we choose not to use a predictor-corrector approach[36, 37] that can also be used together
with amore advanced nonlinear solver such as theAndersonmethod[38]. The advantage of the direct approach

used here is its simplicity, without a significant compromise in stability and efficiency.
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