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Abstract

Wehave performed an exact numerical calculation of the linear growth

and phase velocity of Kelvin-Helmholtz unstable wave modeson a supersonic

Jet of cylindrical cross section. An expression for the maximally unstable

wavenumber of each wave mode is found. Provided a sharp velocity discontinuity

exists all wave modes are unstable. A com_Ination of rapid Jet expansion

and velocity shear across a Jet can effectively stabilize all wave modes.

The more likely case of slow jet expansion and of velocity shear at the Jet

surface allows wave modes with maximally unstable wavelength longer than or

on the order of the jet radius to grow. The relative energy in different wave

modes and effect on the jet is investigated. Energy input into a Jet resulting

from surface instability is discussed.
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I. Introductlon

It has been suggested that surface instabilities such as the Kelvin-

Helmholtz instability generate internal turbulence in Jets and radio sources

which can serve to reaccelerate particles (Pacholczyk and Scott 1976) and

Dobrowolny (1972) has shown that the Kelvin-Helmholtz instability generates

MHD waves in a collisionless plasma. Several authors have assumed the

existence of turbulence in the form of, small amplitude MHD waves and used

this to investigate particle acceleration. The wave spectrum was assumed

to be a power law (Lacombe 1977; Ferrari, Trussoni and Zaninetti 1979) or

related to the growth rate of surface instabilities (Eilek 1979). The MHD

waves were found to heat the fluid and accelerate partlcles but did not

lead to an appropriate particle energy distribution or emission spectrum

if radiative losses were included. These calculatlons also assumed a uniform

input of wave energy throughout a source but energy input at the surface

implies that wave energy is not uniformly dis_rlbuted. This last problem

has been addressed by Eilek (1982) who finds that energy input restricted

to a thin surface layer produces a turbulent edge in HHDwaves and strong

limb brightening can occur. However, observed radio Jets do not appear to

be strongly limb brightened. A partial resolution of these problems may be

found through investigation of the behavior of perturbations to a Jet

surface which is Kelvin-Helmholtz unstable.

Supersonic Jets in pressure balance wlth an external medi,-- are unstable

to surface perturbations analogous to the Kelvin-Helmholtz instability of

a vortex sheet (Perrari, Trussonl and Zaninetti 1978; llardee 1979; Ray 1981).

Growing perturbations of long maximally unstable wavelength are pinching

and helical wave modes and previous work has provided estimates of wave phase

veloclty and maximum rate cf growth (Ray 1981; Bardee 1982). In addition to
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these wave modes a cylindrical jet with sharp velocity discontinuity is

unstable to an infinite number of other wave modes with shorter maximally

unstable wavelength and more rapid rate of growth. These growing waves

convert directed flow energy into wave energy in the jet and external

medium. Because initial growth of surface perturbations is rapid several

authors have investigated ways of slowing the rate of growth and stabilizing

a jet. The maximum rate of growth is decreased as the amplitude of a

hellcal wave increases (Benford 1981) and growth of perturbations to the Jet

surface can be linear rather than exponential if a Jet expands'rapldly

enough (Hardee 1982), Short wavelength perturbations to a Jet surface can

be stabilized by the presence of a velocity shear between Jet and external

medium (Ray 1982). While it may be possible to completely stabilize a Jet

by a combination of jet expansion and velocity shear, true Jet condltlons

are not yet well known and it seems likely that some instability will be

present. For this reason we must consider the behavior of long and short

wavelength perturbations to a Jet and consider the effect of the resulting

growing wave modes on a Jet.

In this paper we will proceed by calculating exactly the wave phase

velocity, growth rate and maximally unstable wavelength of Kelvin-Helmholtz

unstable eigenmodes on a Jet of cylindrical cross section. Both Jet and

external medium are assumed to be isothermal (see Hardee 1982, hereafter H ll).

The estimates made in H II forplnchlng and helical wave modes are confirmed

and the work is extended to the wave modes describing perturbations of

shorter wavelength. Stabilization of these wave modes is investigated. The

depth interior to the Jet surface affected by a wave mode is derived and

relative energy input into a Jet is estimated. The consequences for particle

acceleration models are discussed.
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II. Dispersion Relation and Eigenmodes

It was sho_m in HII that the wave modes which propagate along the

surface of a jet of cylindrical cross section are eigenmodes of the dis-

persion relation

Jn(k_n) H(1)n (kV_n)

Jn(kV_ n) H(l_(k_n )

_n 2 (C-Man)

_n = 7 n _2
(1)

In equation (i) J is the Bessel function and R "l'q_ is the Hankel function
n n

describing an outward propagating disturbance. The primes indicate derivatives

with respect to the arguments of the Bessel and Eankel functions and the meaning

of the symbols is

In _ _[(_ - Man )2 (1

and

2/c2 2u _)2 n u2/c 2 _)/_k]I/2

• --_k2 + 2i(i MMzn in

_n _ [$2 _ (1 + n2/k2 - 2i/k)v]l/2/vl/2

where

= _/kain Man = u/aln
= (1_u2/c2) -1/2

n m=

Pin+ Po/C 2

Pex + p /c2 v = a 2 /a 2o ex in

The subscript in or ex refers to quantities interior or exterior to the jet

respectively. This dispersion relation is valid for Jets of constant radius

or expanding jets of instantaneous radius R = r _ where r is the distance

from the origin and _ E sin O where 8 is ,one half the jet opening angle.

In this notation k_ = k R is the wavenumber normalized to the instantaneous
ex

Jet radius and k -2_/I is the wavenumber. Eigenmodes of the dispersion
ex

relation are wave modes with n = 0, I, 2 .... A wave mode propagates along

the Jet surface with form A - An exp [i(kexr + n_ - wt)].
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The n = 0 wave mode pinches a Jet and the n = 1 wave mode helically distorts a

Jet. In Hll it was shown that these two wave modes were maximally unstable at

• l/3, x(p 
wavelengths x(P)o%0"6(Minl_ jR and 1 1.6(Mi_InlI3)R. The wave mode charac-

terized by n = 2 distorts a Jet in an elliptical shape; the wave mode charac-

terized by n = 3 distorts a Jet in a triangular shape, etc.. For convenience we

will call all wave modes _th n > i, fluting wave modes. These waves will

not alter the Jet cross section appreciably like the n = 0 wave mode or move the

jet axis transversely like the n = I wave mode.

We expect fluting wave modes to be maximally unstable at some wavelength

%(P)just as we found for the n = 0 and n = i wave modes. To see that this
n

must be the case we take equation I and write it in the following form

(Appendix B of HII)

(¢_Min) 2 _n [_ -Jn+l (k_n) IJn(k_n) ]
T 2 n = __ n (2)

n

¢2 _n [- k_ n + H(1)n-I(k_V_n)/Hn(1)(k_n)]

When nlkV_n >> i and nlkV_ n >> i equation (2) is easily seen to become

2 (_-Min)2

y rl ¢2 _ -i (3)

This expression is just the usual expression for Kelvin-Helmholtz instability

of a vortex sheet:

2

Idq2n

yn I12
± I-- ]ku.

l+y2n
(4)
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We can see that the small wavenumber approximation used to obtain equation (4)

re_ins valid to larger wavenumbers as n is increased. Thus we expect equation

(4) to adequately describe the growth and propagation of waves vlth higher n

to larger wavenumber, and we expect faster 8rowth at shorter wavelength as

n is increased. We can show that a maximally unstable wavenumber must exist

by examining equation (I) in the limit n/k_n<<l,and n/k_n<< i. In this

limit equation (i) can be written (Appendix B of HII) in the followlng form

e2iXn ,_ [_2_n_y2n(_-Min)2_n+ik'_--[Y2n(¢-Min)2 + ¢21

n 2
[¢2_n-y2_(¢-Min)2_n-ik-_--[7 n (¢-Min)2 + ¢2]

(5)

(2n+l)_where _n _ k_n - _ .

If we take the natural logarithm of equation (5) then

2n+l _ i A(n)
_n _ [-"_] k_ 2k_ (6)

where A(n) is the logarithm of the right hand side of equation (5). If equa-

tion (6) is squared and we use _n_ [(_-Min)2-1_/2 and assume that _n)>> _n)

where ._n). and A_n)are the real and imaginary points of A (n), respectively, it

follows that

(2n+l)_ _n)
¢ _ (Mln-l) - i 8k2_2

(7)

We need to point out an error in equations (14) and (22) in Hll in which the

imaginary part needs to be multiplied by a factor of 2. For @R _ Min- i we
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that tOAd..) < 0 and all wave modes are unstable but with rapidly decreasingfind

growth rate as the wavenumber becomes larger. Thus a maximally unstable

wavenumber must exist. At a given wavenumber we see that the growth rate in

equation (7) becomes larger as n increases.

The maximally unstable wavenumber, maximum growth rate and wave phase

velocity of the different wave modes cannot be obtained analytically. We

have found exact solutions to equation {i) numerically. In figure i we

plot the growth rate _i R in em sec-l, where R is instantaneous Jet radius as

a function of the normalized wavenumber k_ = 2_R/_ for wave modes n equal 0

through 5 and 7 and 9. The calculations assume a Jet i0 times denser than

the surrounding medium, _ = 10,that the Jet velocity u = 9 x 108 an s-l,

that Min E u/ain - 9.9p and that the Jet is expanding with an opening angle

2% - 0.08 radian. We find that the maximally unstable wavenumber Is not

sensitive to Jet opening angle. These exactresults when combined with the

density and Mach number dependence of the maxi_nally unstable wavenumber from

HII which is valid when _ > 1 and Hin >> i show that

i.I ) (nl/3/Min)k(P)n _ _1"9(n+ n3/2 + 0.2 (s)

At large nsk(P)_ _ 1.9n(_i/3/Min ).
n

10% wh£n n=3.

The asymptotic expression is accurate to

The corresponding relationship for the wavelength is

Min/n I/3

A (p) % 3.3 [ a 1/(n3/2+0 2)JRn n+l .

(P)_ 0.6 (Min/nl/3)R, A_P)_ 1.7 (Min _1/3)RFor n less than 3 we have that A °

and _P) _ 1.4(MIn/_I/3)R. For larger values of nIA(P)_n 3"3n-l(Mln/nl/3)R is

(P) and l_ p) found here are inaccurate to better than 10%. The values of k o

excellent agreement with the estimates given in HII. '
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The phase velocity of the different wave modes normalized to the jet

velocity u as a function of tht normalized waven,-_ber is shown in figure 2.

At wavenumbers much less than the maximally unstable waven_nber the phase

velocity, Vph , approaches u or [_2n/(l+y2_]u. for the n = 0 and n > 0 wave modes,

respectively. At wavenumbers much larger than the maximally unstable wavenumber

the phase velocity approaches u - ain for all n__O. For the n = 0 wave mode

the minimum phase velocity occurs at wavenumber larger than the maximally

unstable wavenumber. The phase velocity at the maximally unstable wavenumber

is Vph _ u-ain. This is the result for a small amplitude wave driven by the

Bernoulli effect. Larger amplitudes will develop only for smaller wavenumbers

and higher phase velocities and any large scale Jet pinching should develop

with wavelength greater than _(P). For all other wave modes the'minim_n
O

phase velocity occurs near the maximally unstable waventmber. In general,

when n _ I we may assume that the dominant wavenumber and wavelength associated

with a particular wave mode is within i0% of the value given by equations

(8) and (9). We note that the reduction in phase velocity seen at the dominant

wavenumber implies more rapid spatial growth than if the phase velocity re-

mained between [_2_/(I+_2_] u and u-a. as assumed in HII. For n - 1 the
in

minimum phase velocity is about 10% less than the value predicted using equation

(4). This suggests that spatial growth of the helical wave is i0% faster than

was estimated in HII. For other wave modes as n becomes larger the maximum

growth rate approaches that predicted using equation (4) with k - kn(P) and

Vph is reduced significantly below that predicted using equation (4) with result that

spatial growth is somewhat more rapid than would be predicted using equation (4).

XIX-19



While this result depends on Min and _ we find no large change as Min

and _ are varied. As a consequence when n is sufficiently large, we expect

initial wave mode growth at small wave amplitude to be approximated by equation

(4) until non-linear effects at larger amplitude become important. Of course,

if jet expansion is rapid enough the wave remains in the small amplitude limit

and spatial growth is linear as the maximally unstable wavelength increases

proportional to R = rV (see HII).

III. Jet Application

Jet expansioncan serve to stabilize the wave modes which are maximally

unstable at longer wavelength. To see that this cannot be the case for wave

modes that are maximally unstable at shorter wavelength recall that Vph _

[y2nl(l+ y2n)]u and _I _ [Y_(I+y2_)] 2_u/l_ p) for all wave. modes-with n _ I.

-1

We define a spatial growth length as £e = VphTe where Te = _I " If we use

equation (4) exactly to obtain Vph and _I and mse %(P)n _ 3.3 n-l(Min/nl/3)R

-i 1/6then £ _0.52 n M.R. This value of the spatial growth length is suffi-
e in

ciently accurate for our purposes and exact calculation shows the numerical factor

is only a weak function of n. Wave amplitude grows as A = A e (r/£e)_here r
O

is distance along the jet surface. For an expanding jet R = r_ and (r/£ e)

1.9 n/(_i/6MinV). While the growth rate and phase velocity of growing pertur-

bations will change as wave amplitude increases it is certain that a large

value of (r/£ e) implies that large wave amplitudes can occur. For our par-

ticular choice of parameters (_I/6Min_) % 0.85 and (r/£ e) _ 2.2 n. It is

clear that the helical wave mode (n = i) can be restricted to only a few

e-folding lengths but this is not the case for n > I. While somewhat more

rapid Jet expansion is of some help we point out that Min _ < i for a Jet in
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pressure balance wlth the external medium. A Jet in free expansion wlth

Min _ _ 1 is stabilized by virtue of Its expansion at the sound speed which

restricts surface instability to a chln surface region.

If a Jet is in pressure balance with an external medium the only way

to stabilize the jet surface to wave modes with shorter wavelengths is by

velocity and density shear. For a linear velocity shear layer Ray (1982)

finds that waves with wavenumber k > 1.28 h-I where h is the scale height
m

of the shear layer are stabilized. To apply this result to a cylindrical

Jet we need to determine the true wavelength of a wave mode at maximum growth.

The true wavelength is always less than the wavelength _ at constant angle

¢ (eyllndrlcal or spherical geometry). Figure 3 illustrates the propagation

geometry of wave modes on a cyllndrlcal Jet of constant cross section. The

2 112
true wavelength between wave fronts is given by An = {[2_R In]l[(2_Zln)2 + Xn] }Xn.

The true maximally growing wavelength for a wave mode and therefore the true

characteristic wavelength of a wave mode is

x(p)2] 1/2A (p) = { [2_R/n]/[ (2_R/n) 2 + }X (p) '. (lO)
n n n

This relation is modified only slightly by Jet expansion (see figure 1 in HII)

and may be used wlth confidence with R being the instantaneous Jet radius.

The stability criterion can be written A _ 4.91h. If, for example, the depth

of a shear layer were R/4 then A _ 1.2 R would be stabilized. It is informative

to rewrite the stability condition in terms of _ and we find that wavelengths

> Amin =2_n -1 [(l.28R/nh) 2 .i]'I/2 R
n n

are unstable and shorter wavelengths are stabilized. Immediatel_ we see that

wave modes with n > 1.28 R/h must be completely stabilized. Thls occurs

because no matter the wavelength _ for these wave modes, the true wavelength
n

A is less than the minimum unstable wavelength • Since the maxlm_n
n . '
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depth of the shear layer is h = R for a cylindrical jet it would not appear

possible to stabilize the n = 1 helical wave mode by velocity shear. However,

it is likely that only wave modes w_th small n, say n < lO, will be unstable.

For example, using the parameters q = i0, Min = 9.9 and h = R/4 we find

X P) % 7.8R > _min 3.1R, through % p) _ 3.8R > A4 - 3.OR but I P)%-1

3.OR < _min
-5 = 8.1R. The maximum rate of growth of the wave mode n = 5 is

reduced to about that of the n = 2 wave mode (see figure i) and will actually

be reduced to less than this if full effects of a shear layer are included

(see Ray 1982). Wave modes with n > 5 would be absolutely stable. We conclude

that only a few wave modes will be unstable on an expanding Jet with signi-

ficant velocity shear.

The observational consequences of the n - i helical wave mode have

already been discussed in detail in Hll. It is now necessary to consider

the effect of the remaining unstable wave modes on the Jet material. _ne

effect of shorter wavelength wave modes on the jet material will be

limited by the portion of a jet affected by a surface wave. For a Jet of

cylindrical cross section the displacement amplitude of jet material interior

to the jet surface is given by (HII equation AI8)

, 2

= _I [ #in2 t'Pinain÷ Po/c2)]gi _ cos8q(8) r _in

J'n(BnIn _)

Jn(Binn _)

In equation 12 6in E ken and spherical geometry is assumed. At the Jetn

surface 8 - O and _ = _. To obtain the amplitude as a function of Jet radius

we form the ratio

nCe)/nCO)= cos e
• cos 0

, -sin
Jn ( n 4)

' nin_Jn (_ )

"Bin @)/Jn(_ n _). Equation (13) can be used towhere Pin(O)/Oin(O) = Jn ( n

obtain an estimate of the depth affected by each wave mode n.
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Provided n 2 2 the characteristic wavenumber for each wave mode

can be approximated by k(P)Y _ 1.9n (_ll3/Hin) with acceptable accuracyn *

The arguments of the Bessel functions in equation 13 are proportional to n

and we may use the following approximation for the Bessel function;

14--_z2)1/4 (n213x)lnl13
J (nz) _ ( Ai

n

where Ai is the Airy function and

l+41.z 2

2 X3/2

or

2
C-x)312= 4z-_-1 -arc cos Cllz)

(14)

so X is real when z is positive (Abramo_Itz and Stegun 1964). in equation

(14) z = 1.9 (_l/3/M£n)(_/Y) _n" If we use equation (4) for @ =_ at k (p)
kain n

and the fact that Min>> i for a supersonic Jet it follows that

_n _ _ Min _ << i

L£Hin/nl/2 _ >> 1

As a result we find

1.9 n1/3 (_IY)Z

1.9 t n-l/6C¢/V)

rl<< 1

rl>>l

2 213 (n213xand in general I,l<l. _en IzI is _aU x _ (- _'_n_/z)-l) , _ )

1 -112(n213x)-l/4 2 312]_ exp[- _ nx and 4xl(l-z 2) _ 4X(l+z 2) can be used with

result that

1 n
J (nz) _ (ez)
n _ 2 (15)
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Because J '(nz) =
n

_1Jn(nZ)-Jn+l(nz)_Jn(nZ)/Z it follows that
Z

' (el2) n n-i
J (nz) _ z

The approximate form of the derivative of the Bessel function inserted

in equation (13) results in the following relation between the displacement

amplitude at the jet surface and inside the Jet:

n-i
cos ,h

nCe)/n (0) _ ' (_-_-,)
COS 0

(16)

(17)

Equation (17) implies that the wave amplitude interior to the jet surface is

A _ AR (b/R) n-I
n n

(18)

where AR is the surface amplitude and 0 < b < R where b is the radial distance
n _

inside the jet. The lack. of radial dependence of the n = 1 helical wave mode

results because the entire jet is displaced.

If conditions are such that (r/£) >> 1 for a wave mode then it is
e

reasonable to assume that the wave amplitude at the jet surface has grown

to its maximum. While maximum amplitudes and associated fluid motions need

to be determined by numerical simulation, ordered displacement of the Jet

surface is limited to motion of the fluid at the sound speed transverse to

the flow velocity. Wave modes with n _ 1 appear as sinusoidal displacement

of the _et surface n(r) = ARn sin(2_r/l(_ )) at fixed angle¢. The maximum

amplitude of such a sinusoidal oscillation is AR % _ x(P)[u ain ] where

n 27 n - Vph(p )

u - Vph is the fluid velocity in the wave frame. Because Vph at _ n is

A R -ionly a weak function of n, = n The energy in each wave mode is
n

proportional to _I(Au) 2 where _ is the Jet material participating in motion

at velocity _u. If we continue to assume that Au % ain at the Jet surface

then Au = (b/R) n - 1 independent of %(P). To the extent that wave modes are
n
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independent and all of the Jet material is involved, the energy in a wave

mode interior to the Jet surface is E _ (b/R)2(n - l). The total wave
n

energy interior to the Jet surface is of the form

E _ E° _ _n(b/R)2(n - 1) (19)
n

A fundamental scale size of _ (p) exists for each term in the summation and
n

a is a weak function of _ (p). An uppe_ limit to the summation is set by
n n

the depth of the shear layer and a lower limit may be set by Jet expansion.

Near the upper and lower limits a must decrease rapidly. Near the upper
n

limit wave growth is slowed because the fundamental scale size is shifted

to longer wavelength and at the lower limit wave growth is slowed and

maximum wave amplitude is not reached.
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IV. Discussion

Each unstable wave mode can be regarded as driving the Jet surface at

a length scale A(P)n and a frequency Vph/A(P)n = (u - Vph)/_(P)n" If A (p)n

is less than the jet diameter it is likely that eddies of size A (p) can
n

be created in the Jet fluid. Dissipation in the Jet fluid leads to a

cascade to eddies of smaller size with a Kolmogorov energy spectrum W k = k-5/3

and with the smallest eddy size governed by dissipation processes in the

fluid (Landau and Lifschitz 1959) Wave modes with A (p) larger than the
" n

jet diameter cannot generate eddies in the Jet and must affect the flow in

t

a more global sense. If we consider n = i0 and Min 9.9 we find that

A(_ ) = 4.9 R, A_ p) = 2.8 R and A (p) = 5.8 n-iR. In this case the helical• n_3

and elliptical wave modes cannot produce eddies in the Jet material without

disrupting the flow. These wave modes must dissipate Jet energy in the

external medium and Jet by heating of the fluid (Benford 1981). However,

each unstable wave mode with n )_ 3 can produc_ eddies in the Jet material.

Other values of _ and Min can reduce A(P]) and A(_) tO less than a Jet diameter.

To the extent that each wave mode is independent, each drives a fundamental

eddy size with total energy associated with each wave mode given by the

appropriate term in equation (19). Wave modes which produce eddies in the

Jet dissipate energy at a rate _ (Au)3/A (p) (Landau and Llfschitz 1959). The
n

dissipation rate increases as the fundamental scale size decreases.

If we continue to assume that Au _ ain at the Jet surface independent of

A (p), then energy input into the jet is of the form
n

D @

C _ c _ B (b/R)3(n - i) - (20)
o n

n

where B _ n a .
n n

XIX-26



In
equation (20) a lower limit to n is set when A _pJ is greater than the Jet

n

diameter as dissipation is no longer through fluid turbulence driven at scale

size _ (P). Modifications to this simple relation will occur if wave modes
n

strongly interact and if fluid turbulence generated at shorter A (p)
n propagates

into the jet faster than perturbations at longer A (p) grow to large amplitude.
n

The effect of Kelvin-gelmholtz unstable surface waves on the jet interior

and external medium is of fundamental importance to an understanding of

observed Jets. Ne have found that the presence of velocity shear may stabilize

all but one or two of the long wavelength wave modes and that these long

wavelength wave modes can be resticted to only a few e-folding lengths and

small amplitude by Jet expansion. If these conditions are met then we might

expect that little of the flow energy would be dissipated in the external

medium or internally in the jet because turbulence would be unlikely to

develop. However, if the jet edge is relatively sharp then we expect a

number of wave modes with A(P)n less than the jet diameter and (rl_e) >> i.

The likely case would be one in which some wave modes with say 2 < n _ i0

grow rapidly and those of larger n are surpressed by velocity shear.

It is clear that restrictions on wave mode stability are likely to result

in fundamental eddy sizes on the order of the Jet radius or suppress the

development of short wavelength wave modes and Jet turbulence entirely. If

wave amplitude is limited by motion of the Jet surface at the sound speed

2 2
then wave energy is proportional to (Au)2 _ u /Min and can be a large or

small fraction of the Jet flow energy. Interestingly, if Min >> I, velocity

fluctuation in the Jet material at the sound speed is a small fraction of

the flow speed and the flow can appear well ordered in the observer frame.

Even so, the flow would be characterized as strongly turbulent if i0% of

the flow energy were converted to eddies in the Jet frame.
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Our present results suggest that surface instability can affect more

than a thin surface layer and probably produces a Kolmogorov energy spectrum

in fluld turbulence in a _et_, Some of the wave energy converted into

turbulence will simply heat the fluid through dissipation but the presence

of magnetic field implies the generation of MILD waves (Kato 1968;

Dobrowolny 1972). If the fluid is driven turbulent at a single wavenumber

or only a narrow range of wavenumbers tfieMHDwaves produced will have an

I

energy spectrum Wk = k-3/2 (Kraichnan 1965; DeYoung 1980). A Kolmogorov

energy spectrum in fluid turbulence allows direct drive to MHD waves at

many wavenumbers. The resultingMHD wave energy spectrum is not well

determined but is probably as steep or steeper than Kolmogorov (Kato 1968;

Henriksen and Eilek 1982). Whatever the exact spectrum, the HRDwaves

produced in th_s fashion no longer are confined to a thin surface Legion

(see Eilek 1982) but can exist in a significant fraction of the Jet volume

with MHD wave energy proportional to the wave energy in fluid turbulence
L

(see equation 19). This MHD turbulence can supply energy to an existing

population of relativistic electrons and mny produce the observed Jet

emission (Eilek and Henrlksen 1981). Since MHD waves of the appropriate

wavelengths for particle acceleration are strongly damped and do not

travel far (Eilek 1982) the Jet emissivity may be of the same form as

equation (20). Such a jet emissivity should result in Jets with intensity

profiles flatter than if the emissivity were not a function of the Jet radius.
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Figure I: Wave mode growth rate _i R in cm sec -I as a function of wavenumber

normalized to the Jet radius on a jet i0 times denser than the surrounding

medium, Mach number of 9.9 and opening angle 20 = 0.08 radlan.
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Figure 3. Propagation geometry of wave fronts (dashed lines) of wavemode_

n = 2 and 3 around a cyllndr_cal jet of circumference 2_R at equal propaga-

tion angle with respect to the flow veloclty.
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