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Abstract: In this work, a novel nonlocal model without energy dissipations is presented to investigate
the impacts of the nonlocal thermoelastic parameters in a nanoscale material by the eigenvalue
approach. The basic equations are applied under the Green and Naghdi model without energy
dissipations. To obtain this model, the theory of the non-local continuum suggested by Eringen
is applied. The Laplace transformation technique is used for the basic formulations to obtain the
analytical solutions of the thermal stress, the displacement, and the temperature during the nanoscale
thermo-electric medium. The inverse of the Laplace transformation is used with the numerical
technique to obtain the complete solutions of the studying fields in the time–space domains. The
main physical fields are displayed graphically and theoretically discussed under the influence of
nonlocal parameters.

Keywords: eigenvalue approach; nonlocal Green and Naghdi; Laplace transform; nanoscale mate-
rial model

1. Introduction

In recent years, the thermoelasticity theories, which assume finite velocity for thermal
signals, have received many attentions. These theories are called generalized thermoelas-
ticity theories. Lord and Shulman [1] established the generalized thermoelasticity theory
with one delay time while Green and Lindsay [2] established the generalized thermoe-
lasticity theory with two thermal delay times. Green and Naghdi [3–5] presented three
types of models (GN-III, GN-II, and GN-I). The constitutive formulations of G-N models
are linearized, GN-I is similar to classical coupled thermo-elastic theory, type II shows the
propagation of thermal signals with finite speed without energy dissipation, and type III
suggests the finite velocity of propagation with energy dissipation.

With the rapid development of nanomechanical electromechanical systems (NEMS)
technologies, high-performance nanostructures, i.e., nanotubes, nanofilms, and nanowires,
have been widely adopted as resonators, probes, sensors, transistors, actuators, etc. It is im-
portant to understand the exact characterizations of the thermal and mechanical properties
of such nanostructures, as suggested in [6]. The authors have paid considerable attention to
corresponding theories of nonlocal beams due to their impacts at the nanoscale. Classically,
the strain state defines the stress condition at the same point. However, non-local continu-
ation models consider the stress states at points as the functions of the strain states of all
points of the body. The nonlocal elasticity theory was first advocated by Eringen [7]. After
two years, the nonlocal thermoelastic theory was explored by Eringen [8]. He reviewed
the constitutive relations, the basic equations, the laws of equilibrium in continuum me-
chanics, and the displacement equations/temperature under the nonlocal elastic theory.
Eringen [9] studied nonlocal electromagnetic solids and superconductivity under the elastic
theory. Non-local theories of field elasticity have been explained in detail by Eringen [10]
with regard to continuum mechanics. Povstenko [11] recommended the non-local elastic
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theory to take into account the forces of actions between atoms. Marin et al. [12] have
discussed the effect of intrinsic rotation, microstructural expansions, and contraction in
initial and boundary values problems of thermo-elastic bodies. Abbas et al. [13] studied the
response of heat sources in transversely isotropic thermoelastic material without energy
dissipations with the two-temperatures model. Marin [14] has discussed the domain of
influences theory for a micro stretch elastic material. Sarkar et al. [15] have studied the
waves propagation in nonlocal thermo-elastic solids without energy dissipation. Zenkour
and Kutbi [16] have investigated the thermo-elastic interaction in a hollow cylinder caused
by continuous thermal sources without energy dissipations. Marin [17] presented a parti-
tion of energy in a micro-stretch thermo-elastic body. Lata and Kaur [18] investigated the
thermo-mechanical interaction in transversely isotropic magneto-thermo-elasticity solids
without energy dissipations under the two-temperatures model. Youssef [19] presented
the two-temperatures thermoelastic theory without energy dissipations. A model of the
nonlocal thermoelastic model without energy dissipation was investigated by Zenkour [20]
to consider the vibrations behaviors for nano-machined resonators. Mondal et al. [21]
discussed the propagations of time-harmonic plane waves in an infinite nonlocal DPL
thermoelastic material with voids. Sarkar and Tomar [22] investigated the plane waves in a
nonlocal thermoelasticity solid with voids. Sarkar [23] investigated the thermo-elastic re-
sponses of a non-local elastic rod due to nonlocal heat conduction. Ansari and Gholami [24]
studied the nonlocal free vibrations in the pre-and post-buckled states of electro-magneto-
thermoelastic rectangular nanoplates with different edge conditions. Mahinzare et al. [25]
investigated the size-dependent impacts on the critical flow speed of an SWCNT-conveying
viscous fluid based on a nonlocal strain gradient cylindrical shell model. Bachher and
Sarkar [26] studied the nonlocal model of thermo-elastic medium with voids and fractional
derivative heating transfer. Bayones et al. [27] have discussed the impacts of moving ther-
mal sources on a magneto-thermo-elastic rod under a nonlocal model and three-phase lag
with memory-dependent derivatives. Zhou and Li [28] studied the nonlocal dual-phase-lag
thermo-elastic damping in circular and rectangular micro/nanoplates resonators. Singh
and Bijarnia [29] investigated the nonlocal effect on the propagations of waves in a general-
ized thermoelastic solid half-space. Lata and Singh [30] studied the propagations of the
Stoneley waves in nonlocal isotropic magneto-thermoelastic solid under the multi-dual-
phase-lag model. Kaur et al. [31] presented the study of transversely isotropic nonlocal
thermo-elastic thin nano-beam resonators under a multi-dual-phase-lag model. Biswas [32]
studied the Rayleigh wave in the porous nonlocal orthotropic thermoelastic layer lying
over the porous nonlocal orthotropic thermoelastic half-space. Over the last few decades,
many problems have been solved by generalized thermoelasticity theories [33–39].

In the present article, a theoretical technique is used when the nonlocal thermoelastic
model without energy dissipation is applied during interactions process for the nanoscale
medium. The analytical solutions of the basic fields are obtained when the Laplace trans-
forms domain is used. Without any assumed restrictions on the actual physical quantities,
the eigenvalue approach gives new analytical solutions in the Laplace domain. Finally, the
numerical computations of the main physical fields distribution are displayed graphically
with changes in nonlocal parameters with discussions.

2. Basic Equations

Following Eringen [40] and Green and Naghdi [5,41], the basic formulations for
nonlocal thermo-elastic material in the absence of heat source and body forces are taken as:

ρ
(

1− seα2∇2
)∂2ui

∂t2 = µui,jj + (λ + µ)uj,ij − γtT,i, (1)

ρce

(
1− stα

2∇2
)∂2T

∂t2 = K∗∇2T − γtTo

(
1− stα

2∇2
)∂2ui,i

∂t2 , (2)(
1− seα2∇2

)
σij = (λuk,k − γtT)δij + µ

(
ui,j + uj,i

)
, (3)
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where σij are the stress components, K∗ is the material constant, α is the non-local parameter,
To is the reference temperature, T = T∗ − To, T∗ are the temperature variations, λ, µ are
the Lame’s constants, ce is the specific heating at constant strain, ρ is the density of the
material, ui is the displacements, t is the time, γt = (3λ + 2µ)αt, αt is the linear thermal
expansion coefficient. Now, we consider a half-space (x ≥ 0) with the x-axis pointing into
the mediums. To simplify the analysis, the one-dimensional problem is considered. The
components of displacement for one-dimension medium and the relations between the
components of displacement and the component of strain are defined by:

ux = u(x, t), uy = 0, uz = 0, exx =
∂u
∂x

. (4)

From Equation (4) in Equations (1)–(3), the governing equations can be expressed by

ρ

(
1− seα2 ∂2

∂x2

)
∂2u
∂t2 = (λ + 2µ)

∂2u
∂x2 − γt

∂T
∂x

, (5)

ρce

(
1− stα

2 ∂2

∂x2

)
∂2T
∂t2 = K∗

∂2T
∂x2 − γtTo

(
1− stα

2 ∂2

∂x2

)
∂3u

∂t2∂x
, (6)(

1− seα2 ∂2

∂x2

)
σxx = σ = (λ + 2µ)

∂u
∂x
− γtT. (7)

3. Initial and Boundary Conditions

The problem homogeneous initial conditions i.e.,

T(x, 0) = 0,
∂T(x, 0)

∂t
= 0, u(x, 0) = 0,

∂u(x, 0)
∂t

= 0. (8)

While the mechanical and thermal boundary conditions can be supposed by

u = 0. (9)

The surface x = 0 is caused by heat flux with the exponentially decaying pulse [42].

− K∗
∂T(x, t)

∂x

∣∣∣∣
x=0

= qo
t2e
− t

tp

16t2
p

, (10)

where tp is the characteristic pulse time of heat flux and qo is a constant. To obtain the main
fields in non-dimensional form, the following the non-dimensional variables are given by

(
x′, u′, α′

)
= ηc(x, u, α), T′ =

γtT
ρc2 ,

(
t′, t′p

)
= ηc2(t, tp

)
, σ′ =

σ

ρc2 , (11)

where c2 = λ+2µ
ρ , η = ρce

K and k is the heat conductivity. By using the non-dimension
variables (11), the governing equations with the ignoring of the dashes can be written by:(

1− seα2 ∂2

∂x2

)
∂2u
∂t2 =

∂2u
∂x2 −

∂T
∂x

, (12)

β1

(
1− stα

2 ∂2

∂x2

)
∂2T
∂t2 =

∂2T
∂x2 − β2

(
1− stα

2 ∂2

∂x2

)
∂3u

∂t2∂x
, (13)

σ =
∂u
∂x
− T, (14)

∂T(x, 0)
∂t

= 0, u(x, 0) = 0,
∂u(x, 0)

∂t
= 0, (15)
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u = 0,
∂T
∂x

= −qo
t2e
− t

tp

16t2
p

on x = 0, (16)

where β1 = ρcec2

K∗ and β2 = γtγtTo
ρK∗ .

4. Laplace Transforms

The definition of Laplace transforms is given by

f (x, p) = L[ f (x, t)] =
∞∫

0

f (x, t)e−ptdt. (17)

Now, the basic Equations (12)–(16) by applying the Laplace transforms can be written
by

d2u
dx2 −

dT
dx

=

(
1− seα2 d2

dx2

)
p2u, (18)

d2T
dx2 = β1 p2

(
1− stα

2 d2

dx2

)
T +

(
1− stα

2 d2

dx2

)
p2β2

du
dx

, (19)

σ =
du
dx
− T, (20)

u = 0,
dT
dx

=
−qotp

8
(

ptp + 1
)3 . (21)

Equations (18) and (19) can be taken the form

d2u
dx2 = b31u + b34

dT
dx

, (22)

d2T
dx2 = b42T + b43

du
dx

, (23)

where b31 = p2

(1+seα2 p2)
, b34 = 1

(1+seα2 p2)
, b42 = β1 p2

(1+β1 p2stα2+stα2 p2β2b34)
,

b43 =
(p2β2−stα

2 p2β2b31)
(1+β1 p2stα2+stα2 p2β2b34)

.
Now, it is possible to obtain the solution of coupled differential Equations (22) and (23)

by using the eigenvalue method [43–45]:

dV
dx

= BV, (24)

where V =
[

u T du
dx

dT
dx

]T
and B =


0 0 1 0
0 0 0 1

b31 0 0 b34
0 b42 b43 0

.

Thus, the characteristic relation of the matrix A is taken as

ω4 −ω2(b34b43 + b31 + b42) + b42b31 = 0. (25)

The eigenvalue of matrix B is the four roots of Equation (24) which are named here as
±ω1 and ±ω2. Thus, the corresponding eigenvectors are determined by:

X =


b34ω

ω2 − b31
b34ω2(

ω2 − b31
)
ω

. (26)
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So, the analytical solution of Equation (24) is written by:

V(x, p) = ∑4
i=1 AiXieωix. (27)

Due to the regularity conditions of the solution, the increasing exponential nature in
the spatial variable x is set aside to infinity, so the general solution of Equation (27) can be
given as

V(x, p) = ∑2
i=1 AiXieωix, (28)

where A1 and A2 are constants that are computed by using the boundary conditions of the
problem. From Equations (28) and (24), the general solutions of the field variables with
respect to x and p can be expressed by:

u(x, p) = ∑2
i=1 Aiuieωix, (29)

T(x, p) = ∑2
i=1 AiTieωix, (30)

σ(x, p) = ∑2
i=1 Ai(ωiui − Ti)eωix, (31)

where ui and Ti are the corresponding eigenvectors for displacement and temperature
respectively. Now, a numerical scheme for the inverse of Laplace transforms is adopted to
obtain the final solutions of the temperature, the displacement, and the stress distributions.
The Stehfest approach [46] is used as a numerical inversion method to obtain the general
solutions of the temperature, the displacement, and the stress distributions as

V(x, t) =
ln2

t ∑M
j=1 HjV

(
x, j

ln2
t

)
, (32)

where

Hj = (−1)
M
2 +1 ∑min(i, M

2 )

k= i+1
2

k
M
2 +1(2k)!(

M
2 − k

)
!k!(i− k)!(2k− 1)!

, (33)

Thus, in the physical space–time domain, the solutions of variables can be expressed
by

u(x, t) =
ln2

t ∑M
j=1 Hju

(
x, j

ln2
t

)
, (34)

T(x, t) =
ln2

t ∑M
j=1 HjT

(
x, j

ln2
t

)
, (35)

σ(x, t) =
ln2

t ∑M
j=1 Hjσ

(
x, j

ln2
t

)
. (36)

5. Results and Discussions

The physical quantities distribution in an elastic material is investigated. For numerical
calculation, the thermoelastic properties values for the material characteristics of the copper
materials whose physical dataset are provided below [27].

αt = 1.78× 10−5(k−1), λ = 7.76× 1010(N)(m−2), ce = 383.1 (m2)(k−1),

µ = 3.86× 1010(N)(m−2), ρ = 8954(kg)(m−3), To = 293(k),

tp = 0.3, K = 386(N)(k−1)(s−1), t = 0.3, α = 0.3.

Based on the above parameters, Figures 1–6 show that the variations of physical
quantities are calculated numerically along the distance x. Numerical calculations are
carried out for the temperature, the displacement, and the stress variations along the x-
axis under nonlocal thermoelastic model. Figures 1–3 show the four curves predicted by
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different values of the nonlocal parameter considering the time (t = 0.3), while Figures 4–6
represent the three curves predicted by different values of the characteristic pulse time of
heat flux.
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Figures 1 and 4 suggest that the temperature starts by its maximum values at x = 0
and gradually reduces with the rising of the distance x until vanishing, which obeys the
wavefront for the thermoelastic theory. The variation of displacement versus the distance
x is displayed in Figures 2 and 5. It is observed that the displacement starts from zero
at the surface x = 0 that satisfies the problem boundary condition; after that, they attain
maximum values and then continuously reduce to zero values. Figures 3 and 6 show
the variations of stress with respect to the distance x. Curves start from the negative
value, increasing in the domain x > 0 until vanishing. As expected, it can be found
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that the characteristic pulse time of heat flux has a great impact on the values of all the
studied fields.

Finally, the following results are concluded in light of the figures. With the increase
in the non-local parameter, the temperature, the displacement, and the stress magnitudes
increased. With the increase in the characteristic time pulse heat flux, the temperature, the
displacement, and the stress magnitudes decreased.

6. Conclusions

This present work explored non-local thermoelastic interactions in a nanoscale material
caused by heat flow with the exponentially decaying pulse. The basic equations are applied
under the model of Green and Naghdi without energy dissipation. It obtained the analytical
expressions concerning the displacement, the temperature, and the stress in the material.
We can conclude that the non-local thermoelasticity theory (non-local thermal conduction
and elasticity) has an important effect on the variations of physical quantities.

Author Contributions: Investigation, T.S.; Methodology, I.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz
University, Jeddah, under grant no. (G: 361-130-1441). The authors, therefore, acknowledge with
thanks DSR for technical and financial support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.
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