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Abstract. The Mann–Kendall test associated with the Sen’s
slope is a very widely used non-parametric method for trend
analysis. It requires serially uncorrelated time series, yet
most of the atmospheric processes exhibit positive autocor-
relation. Several prewhitening methods have therefore been
designed to overcome the presence of lag-1 autocorrelation.
These include a prewhitening, a detrending and/or a cor-
rection of the detrended slope and the original variance of
the time series. The choice of which prewhitening method
and temporal segmentation to apply has consequences for
the statistical significance, the value of the slope and of the
confidence limits. Here, the effects of various prewhiten-
ing methods are analyzed for seven time series compris-
ing in situ aerosol measurements (scattering coefficient, ab-
sorption coefficient, number concentration and aerosol op-
tical depth), Raman lidar water vapor mixing ratio, as well
as tropopause and zero-degree temperature levels measured
by radio-sounding. These time series are characterized by a
broad variety of distributions, ranges and lag-1 autocorrela-
tion values and vary in length between 10 and 60 years. A
common way to work around the autocorrelation problem is
to decrease it by averaging the data over longer time inter-
vals than in the original time series. Thus, the second focus
of this study evaluates the effect of time granularity on long-
term trend analysis. Finally, a new algorithm involving three
prewhitening methods is proposed in order to maximize the
power of the test, to minimize the number of erroneous de-

tected trends in the absence of a real trend and to ensure the
best slope estimate for the considered length of the time se-
ries.

1 Introduction

To estimate climate changes and to validate climatic models,
long-term time series associated with statistically adapted
trend analysis tools are necessary. The basic requirements
needed to apply specific statistical tools are usually well
described, but end-users often do not systematically test
whether the properties of their time series fulfill these re-
quirements. An inappropriate usage of the statistical tools
may lead to misleading conclusions. It may also happen that
a time series does not meet the complete criteria of any of
the statistical tools. In that case, the statistical tool must be
adapted or different methods with complementary strengths
and weaknesses must be used.

The time series properties that can cause misuse of sta-
tistical tools for trend analysis primarily concern the statis-
tical distribution, the autocorrelation, missing data or peri-
ods without measurements, the presence of seasonality, ir-
regular sampling, the presence of negatives and the rules
applied in the case of data below-detection limits. A large
number of trend analysis tools such as the whole family of
least mean square and generalized least square methods are
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parametric methods and, consequently, require normally dis-
tributed residues. Unfortunately, many atmospheric measure-
ments, which strongly depart from the normal distribution,
do not meet this requirement, so that non-parametric methods
have to be used. Non-parametric techniques are commonly
based on rank and assume continuous monotonic increasing
or decreasing trends. The Mann–Kendall (MK) test associ-
ated with the Sen’s slope is the most widely applied non-
parametric trend analysis method in atmospheric and hydro-
logic research (Gilbert, 1987; Sirois, 1998). While it has no
requirement for data distribution, it must be applied to se-
rially independent and identically distributed variables. The
second condition of homogeneity of distribution is not met if
a seasonality is present, but it can be solved by using the sea-
sonal Mann–Kendall test developed by Hirsch et al. (1982).
The first condition of independence is not met if the data are
autocorrelated, which is often the case for atmospheric vari-
ables that are controlled by autocorrelated physical or chem-
ical processes. To correctly analyze autocorrelated and not
normally distributed errors, two different strategies are usu-
ally applied.

The first strategy tends to decrease the amount of autocor-
relation by aggregating time series into monthly, seasonal,
or yearly bins or even into longer periods. However, coarser
time granularities (e.g., due to longer averaging periods) do
not ensure that autocorrelation is removed. Moreover, the ag-
gregation implies a decrease in the information density in the
time series, such as the diurnal or seasonal cycles, the vari-
ance of the data and to some extent the data distribution. The
aggregation conditions (length of the time unit, making the
time unit consistent with the observed seasonality, starting
phase of the time series and the averaging method) may influ-
ence the trend results (de Jong and de Bruin, 2012; Maurya,
2013) in what is called the modifiable temporal unit problem
(MTUP).

The second strategy focuses on the development of al-
gorithms to reduce the impact of the autocorrelation arti-
facts on the statistical significance of the MK test and on
the Sen’s slope. Two kinds of algorithms are usually used:
(i) the prewhitening of the data to remove the autocorrelation
and (ii) inflation of the variance of the trend test statistic to
take into account the number of independent measurements
instead of the number of data points (the autocorrelation re-
duces the number of degrees of freedom in tests).

In this study, the effects of various prewhitening methods
on the MK statistical significance and on the slope are ana-
lyzed for time series of in situ aerosol properties, aerosol op-
tical depth, temperature levels (tropopause and zero-degree
temperature levels) and remote sensing water vapor mixing
ratios. This study also analyzes the effect of the time gran-
ularity on the MK statistical significance, on the strength of
the slope and on the confidence limits of various atmospheric
compounds for the atmospheric time series listed above. Ad-
ditionally, a new methodology combining three prewhitening
methods and called 3PW is proposed in order to handle cor-

rectly the autocorrelation without decreasing the power of the
test while still computing the correct slope value.

2 The Mann–Kendall methodology (prewhitening

methods)

The MK test for trends is a non-parametric method based on
rank. The calculated S statistic is normally distributed for a
number of observations N > 10 and the significance of the
trends is tested by comparing the standardized test statistic
Z = S/[var(S)]0.5 with the standard normal variate at the
desired significance level. For N ≤ 10, an exact S distribu-
tion has to be applied (see, e.g., Gilbert, 1987). Hirsch et
al. (1982) extend the Mann–Kendall test to take seasonality
in the data into account as well as the existence of multiple
observations for each season. A global or yearly trend can be
considered only if the seasonal trends are homogeneous at
the desired confidence level (Gilbert, 1987). Confidence lim-
its (CLs) are defined as the 100 × (1 − p) percentiles of the
standard normal distribution of all the pairwise slopes com-
puted during the Sen’s slope estimator, where p is the chosen
confidence limit.

2.1 The problem of the autocorrelation in the MK test

The MK test determines the validity of the null hypothesis
H0 of the absence of a trend against the alternative hypoth-
esis H1 of the existence of a monotonic continuous trend.
While no assumptions are needed about the data distribution
(i.e., the definition of a non-parametric test), the MK test does
require that the data are serially independent, namely the ab-
sence of autocorrelation in the time series. Statistical tests are
prone to two types of error. The first is an incorrect rejection
of the null hypothesis H0 (a “type 1 error”). This error is re-
lated to an erroneously high statistical significance leading to
false positive cases. The second is an incorrect acceptance of
the null hypothesis H0 (a “type 2 error”). This error can be
understood as the power of the test being too low, leading to
false negative cases.

The adverse effect of positive autocorrelation in time se-
ries on the number of type 1 errors was suggested by Tiao
et al. (1990) and Hamed and Rao (1998) and later simulated
(Kulkarni and von Storch, 1995; Zhang and Zwiers, 2004;
Blain, 2013; Wang et al., 2015a, b; Hardison et al., 2019).
All these studies clearly showed that positive autocorrelation
in time series significantly increases the number of type 1
errors, whereas prewhitening procedures increase the num-
ber of type 2 errors. Larger lag-1 autocorrelation (ak1) leads
to a higher percentage of type 1 errors and to a larger bias
in the Sen’s slope. Zwang and Zwiers (2004) also show that
the occurrence of both types of errors largely depends on the
length of the time series, with longer periods leading to a
strong reduction of errors and to a lower bias in the trend
slope estimation.
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A popular solution to get rid of the autocorrelation prob-
lem in the MK test is to aggregate the time series in order to
decrease ak1. While the use of coarse time granularity effec-
tively decreases the autocorrelation, the suppression of au-
tocorrelation is not guaranteed, even in monthly or yearly
aggregations. Moreover, aggregation greatly decreases the
number of observations N and can potentially affect the MK-
test errors, the slope biases and the CLs.

Two kinds of statistical procedures were developed to cor-
rect the MK test for autocorrelation in the data. The vari-
ance correction approaches (Hamed and Rao, 1998; Yue and
Wang, 2004; Hamed, 2009; Blain, 2013) consider inflating
the variance of the S statistic so that the number of indepen-
dent observations instead of the total number of observations
is taken into account. These approaches appear to preserve
the pre-assigned significance level and the power of the MK
test in the absence of trend but not in the case of correlated
time series and in the presence of a trend (Yue et al., 2002;
Blain, 2013). The prewhitening approaches consider remov-
ing the lag-1 autoregressive (AR(1)) process in the time se-
ries prior to applying the MK test. Several algorithms with
various strengths and disadvantages have been published and
are described in the next section. Since negative autocorre-
lations are rare in atmospheric processes, only positive au-
tocorrelations are taken into account in this study. Several
studies have shown that the prewhitening methods are also
applicable in the case of negative serial correlations but with
dissimilar consequences (Rivard and Vigneault, 2009; Yue
and Wang, 2002; Bayazit et al., 2004; Wang et al., 2015b).

2.2 The prewhitening methods

This section describes all the prewhitening methods known
to the authors. The advantages and disadvantages of each
method are summarized in Table 1. It has to be noted that,
for all the methods proposed, the prewhitening can be ap-
plied only if ak1 is statistically significant (ss) following a
normal distribution at the two-sided 95 % confidence inter-
val. The first implemented prewhitening method (hereafter
called PW) simply removes the lag-1 autocorrelation akdata

1
from the original data X at the time t :

XPW
t = Xt − akdata

1 Xt−1. (1)

This PW method results in a low amount of type 1 errors, but
the existence of real trends, either positive or negative, can
lead to an overestimation/underestimation of akdata

1 , which
will reduce the power of the test. A further procedure called
trend-free prewhitening (TFPW) consists of removing the au-
tocorrelation on detrended data. Yue et al. (2002) published
the most commonly used method that consists of (i) estimat-
ing the Sen’s slope βdata on the original data; (ii) remov-
ing the trend to obtain a detrended time series Adetr (Eq. 2);
(iii) removing the lag-1 autocorrelation akdetr

1 on Adetr to gen-
erate a detrended prewhitened time series Adetr−prew (Eq. 3);
and (iv) adding the trend back in to generate the processed

time series to evaluate (i.e., XTFPW−Y
t ) (Eq. 4):

Adetr
t = Xt − βdatat, (2)

A
detr−prew
t = Adetr

t − akdetr
1 Adetr

t−1, (3)

XTFPW−Y
t = A

detr−prew
t + βdatat. (4)

This approach is called trend-free prewhitening (TFPW-Y)
and restores the power of the test, albeit at the expense of
an increase in type 1 errors. The original idea of Wang and
Swail’s (2001) was intended to implement the MK test on
the prewhitened series rather than on the prewhitened de-
trended series, as was given by Eq. (8). If the prewhitened
series are detrended, then trends will not be identified. Wang
and Swail (2001) propose an iterative TFPW method to miti-
gate the adverse effect of the trend on the accuracy of the lag-
1 autocorrelation estimate. This iterative procedure consists
of (i) removing akdata

1 from the original time series and cor-
recting the prewhitened data for the modified mean (Eq. 5);
(ii) estimating the Sen’s slope βprew on the prewhitened data
A

prew
cor, t ; (iii) removing the trend (βprew) estimated on the PW

data from the original data to obtain a prewhitened detrended
time series Adetr

cor, t (Eq. 6); and (iv) applying iteratively (i)–
(iii) until the ak1 and slope differences become smaller than
a proposed tiny threshold of 0.0001 (Eq. 7).

A
prew
cor, t = XPW−cor

t =

(

Xt − akdata
1 Xt−1

)

/
(

1 − akdata
1

)

, (5)

Adetr
cor, t =

(

Xt − βprewt
)

, (6)

A
detr−prew
cor, t

=

(

Adetr
cor, t − ak

detr−prew
1 Adetr

cor, t−1

)/(

1 − ak
detr−prew
1

)

,

(7)

XTFPW−WS
t = A

detr−prew
cor, t , (8)

after n iterations until ak
detr−prew, n−1
1 − ak

detr−prew, n

1 <

0.0001 and βprew, n−1 − βprew, n < 0.0001. Note that the use
of a higher threshold up to 0.05 does not significantly modify
the results obtained on the considered time series.

Wang and Swail’s (2001) TFPW method (TFPW-WS) re-
stores the low number of type 1 errors without decreasing
the power of the test (Zhang and Zwiers, 2004). The factor

(1 − ak
detr−prew
1 )−1 is needed to ensure that the prewhitened

time series possesses the same trend as the original time se-
ries. The preliminary step of the first iteration in the TFPW-
WS method (removing akdata

1 from the original time series
and correcting the prewhitened data for the modified mean
Eq. 5) corresponds to the standard PW method but with the
same correction factor, ensuring a similar trend between the
prewhitened and original time series. This method called
PW-cor is, to the knowledge of the authors, not referenced
in the literature but is a potential method tested in this study.

Finally, Wang et al. (2015a) proposed a further approach
in order to correct TFPW-Y for both the elevated variance
of slope estimators and for the decreased slope caused by
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Table 1. Advantages and disadvantages of the MK test and of the various prewhitening methods.

Method How it works Advantages/disadvantages

MK – Applied to the data without modification – High type I error
– High test power

– Slope increased by akdata
1

PW (Kulkarni and von Storch, 1995) – Remove the autocorrelation – Low type I error
– Low test power
– Smaller absolute slope

PW-cor – Remove the autocorrelation – Low type I error
– Preserve the slope – Low test power

– Similar slope as MK

TFPW-Y (Yue et al., 2002) – Remove the slope – High type I error
– Remove the autocorrelation – High test power
– Add the trend – Larger absolute slope

TFPW-WS (Wang and Swail, 2001) – Apply TFPW iteratively until ak
detr−prew
1 – Low type 1 error

and the slope stay constant: – High test power
1. Remove the autocorrelation – Similar slope as MK
2. Compute the slope
3. Remove the trend from the original data

– Remove the final ak
detr−prew
1

VCTFPW (Wang et al., 2015a) – Remove the trend – Middle type I error
– Remove the autocorrelation – Medium test power
– Correct the variance similar to initial variance – Unbiased slope estimate
– Add the trend with corrected slope

the prewhitening. Practically, the variance of Adetr−prew (i.e.,
σ 2

A) is restored to the variance of X (i.e., σ 2
X) to generate the

A
detr−prew
VC time series:

A
detr−prew
VC, t = A

detr−prew
t ·

σ 2
X

σ 2
A

. (9)

The slope estimator βdata is decreased in the case of posi-
tive autocorrelation by the square root of the variance infla-
tion factor (VIF) to obtain the corrected slope βdetr

VC (Eq. 11).
Matalas and Sankarasubramanian (2003) provided a simple
way to compute the limiting values of VIF for a sufficiently
large sample size and a first-order autocorrelation:

VIF ≈

(

1 + akdetr
1

)/(

1 − akdetr
1

)

, (10)

so that

βdetr
VC = βdata/

√

(

1 + akdetr
1

)/(

1 − akdetr
1

)

(11)

and

XVCTFPW
t = A

detr−prew
VC, t + βdetr

VC t. (12)

Statistical simulations by Wang et al. (2015a) showed
that this new variance-corrected prewhitening method
(VCTFPW) leads to more accurate slope estimators, tends
to mitigate the inflationary type 1 errors raised by autocorre-
lation and preserves to some extent the power of the test.

2.3 A new algorithm (3PW) involving three

prewhitening methods

As described in Sect. 2.2 and Table 1, each of the pre-
sented prewhitening methods has a specific advantage: the
low sensitivity to type 1 errors for PW, the high-test power
for TFPW-Y, and the unbiased slope estimate for VCTFPW.
TFPW-WS has both a low type 1 error and a high test power
but requires more computing time due to the iteration pro-
cess. Here, we propose a new algorithm (3PW), described in
Fig. 1, which combines the advantages of each prewhitening
method:

- The akdata
1 of the original time series is calculated. If it is

not ss, the MK test is applied to the original time series.
If akdata

1 is ss, PW, TFPW-Y and VCTFPW are applied
in order to obtain three prewhitened time series that are
thereafter named after the specific prewhitening method
for purposes of clarity.

- The MK test that defines the statistical significance is
applied to the PW and TFPW-Y data. If both tests are
ss or not ss, the trend is considered ss or not ss, respec-
tively. If TFPW-Y is ss but not PW, the trend is consid-
ered a TFPW-Y false positive (due to the higher sensi-
tivity to type 1 errors of TFPW-Y) and the trend has to
be considered not ss. If PW is ss but TFPW-Y is not,
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then the trend is considered a PW false positive and the
trend has to be considered not ss. The probability P for
the statistical significance is given by the higher proba-
bility between PW and TFPW-Y.

- The Sen’s slope is then computed on the VCTFPW data
in order to have an unbiased slope estimate.

3 Experimental

In order to have a broader view of the effects of the vari-
ous PW methods, several very different time series (Table 2)
were used: three surface in situ aerosol properties (absorp-
tion coefficient, scattering coefficient and number concentra-
tion) measured at Bondville (BND), a remote, rural station in
Illinois, USA; the aerosol optical depth (AOD) measured at
Payerne (PAY) on the Swiss plateau; the tropopause and the
zero-degree temperature levels measured by radio-sounding
launched at PAY; and the water vapor mixing ratio at 1015 m
measured by remote sensing at PAY. The shortest time series
(AOD and water vapor mixing ratio) cover only 10 years of
measurements, while the longest time series cover 60 years.
The three in situ aerosol properties are Johnson-distributed
and diverge strongly from a normal distribution. The other
time series exhibit distributions that also diverge from a nor-
mal distribution but to a lower extent, such that some of them
have residuals of a least mean square fit, which are normally
distributed. The values of some of the time series span over
several orders of magnitude and the scattering and absorption
coefficients time series contains negative values due to detec-
tion limit issues in very clean conditions. The time series of
the zero-degree temperature level also includes negative alti-
tudes, since it is interpolated to altitudes lower than sea level
in the case of negative ground temperature at PAY (Bader
et al., 2019). All the data have high akdata

1 at the daily time
granularity and exhibit clear seasonal cycles with maxima in
summer.

Trend analyses were applied to several periods. For all
the data sets, the last 10-year period (e.g., 2009–2018 for
the BND aerosol scattering coefficient) is considered first
and then further possible multi-decadal periods (e.g. the last
20 years, 1999–2018; 30 years, 1989–2018) up to 60 years
for the radio-sounding time series. For the in situ aerosol
properties, tests with 4- to 9-year periods are also computed
in order to illustrate the problems of trend analysis on very
short time series. The number of data points in the time se-
ries (N ) depends on the length of the period and on the time
granularity. The choice of temporal segmentation to address
seasonality for the seasonal MK tests can also affect N and
was evaluated by segmenting the time series into months and
meteorological seasons (December–February, March–May,
June–August, September–December) for time granularities
up to 1 month. The MK test was also applied to the complete
time series without considering seasonality (no temporal seg-

mentation) for comparison purposes, even though, properly,
seasonal MK tests must be used when seasonal cycles are
present.

To assess the statistical significance, the two-tailed p val-
ues are computed. For a more comprehensive presentation of
the results, the statistical significance is presented here as 1
minus p value so that the ss at a 95 % confidence level is ef-
fectively given by ss = 0.95. If not further specified, the ss of
the trend and of akdata

1 is given at the 95 % confidence level,
whereas CLs and Xhomo are given at the 90 % confidence
level. The slopes (in percent) are normalized by the median
of the data. Periods of at least 10 years and trends on these
periods are further called decadal periods and decadal trends.

4 Results and discussion

As explained in the methodology section (Sect. 2), the trend
results (e.g., the ss, the slopes and the CLs) depend on a num-
ber of factors, the most important ones being the prewhiten-
ing method, the number of data points in the time series and
the presence of autocorrelation. The choice of the prewhiten-
ing method clearly affects the ss, the slope and the CLs. Anal-
ysis choices such as the time granularity, the length of the an-
alyzed period and the temporal segmentation to address sea-
sonality affect akdata

1 , N and the variance of the time series.
There is a pronounced interdependency among these vari-
ables involving critical choices in the presentation of the re-
sults. Some general plots are first presented to provide in-
sights into the primary results for some of the time series.
They are followed by a more detailed analysis of the effects
of the prewhitening method, the time granularity, the tempo-
ral segmentation, the length of the data series and the number
of data points in the time series.

MK trend results (Fig. 2) of the aerosol number concentra-
tion, the aerosol scattering coefficient, the tropopause level
and the AOD are plotted as a function of the time granu-
larity for the MK test and for all the prewhitening methods.
The discrepancy between the results computed with no tem-
poral segmentation and for two different temporal segmen-
tations to address seasonality (four meteorological seasons
and 12 months) can be estimated from the inserted boxplots.
The three aerosol properties exhibit decreasing trends, while
the results of the tropopause level time series indicate a pos-
itive trend. The negative aerosol slopes are related to the de-
creasing aerosol load in western Europe and North America
(Collaud Coen et al., 2020; Yoon et al., 2016). The increasing
tropopause level trend is related to global warming (Xian and
Homeyer, 2019). The results of the trends will not be further
described and discussed, since this study is only focused on
the methodology of the trend analysis.

The common features for all the time series considered
here are the following.

- The MK, TFPW-Y, TFPW-WS and PW-cor methods re-
sult in similar slopes.

https://doi.org/10.5194/amt-13-6945-2020 Atmos. Meas. Tech., 13, 6945–6964, 2020
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Figure 1. Scheme of the new 3PW algorithm. αMK is the desired confidence limit for the MK test and αhomo the desired confidence limit
for the homogeneity test between temporal segments. The values applied for this study are αMK = 0.95 and αhomo = 0.90.
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Table 2. Description of the time series: time series with units, monitoring station, period, instrument type, original granularity, ranges (1 and
99 percentiles (1%ile and 99%ile)), mean, median and standard deviation (SD), lag-1 autocorrelation of the observations (akdata

1 ) and number
of ss partial autocorrelations for the 10-year period (order), number of daily data in the 10-year period (N ) and reference.

Time series Station Period Instrument Granularity 1%ile Mean akdata
1 N Reference

99%ile Median order
SD

Aerosol BND 1995–2018 TSI nephelometer 1 h 6.57 43.51 0.60 3485 Sherman et
scattering 167.80 33.04 2 al. (2015)
coef. (Mm−1) 33.85

Aerosol BND 1995–2018 PSAP and CLAP 1 h 0.51 3.40 0.53 3431 Andrews et
absorption 11.06 2.85 2 al. (2019)
coef. (Mm−1) 2.30

Aerosol number BND 1995–2018 CPC 1 h 283 4139 0.58 2979 Laj et
concentration 11 636 3674 2 al. (2020)
(cm−3) 2517

Aerosol PAY 2006–2015 PFR 1 h 0.025 0.126 0.72 641 Nyeki et
optical 0.285 0.113 2 al. (2019)
depth 0.064

Tropopause PAY 1958–2018 Radiosonde 12 h 7540 11 178 0.70 3636 Brocard et
level (m) 14 660 11 280 2 al. (2013)

1425

Zero-degree PAY 1958–2018 Radiosonde 12 h −859 2333 0.89 3640 Brocard et
level (m) 4437 2457 3 al. (2013)

1208

Water vapor PAY 2009–2018 Ralmo lidar 0.5 h 1.41 5.90 0.88 2868 Hicks-Jalali et
mixing ratio 11.88 5.57 3 al. (2019)
(g kg−1) 2.63

PSAP: particle soot absorption photometer; CLAP: continuous light absorption photometer; CPC: condensation particle counter, PFR: precision filter radiometer.

- As described in Wang et al. (2015a), the absolute value
of the VCTFPW slopes lies between the TFPW and the
PW slope values. The absolute value of the PW slopes
is always smaller than the TFPW slope values.

- Large time aggregations usually lead to not ss akdata
1

and, consequently, prewhitening methods do not need
to be applied to those cases. The akdata

1 of all prewhiten-
ing methods is not ss for 3-month aggregations of the
tropopause level and AOD data sets and for 1-year ag-
gregation of the aerosol scattering coefficient and AOD.
The akdata

1 of the aerosol number concentration remains
ss until the 1-year aggregation.

- CLs are smaller for finer time granularities in the pres-
ence of ss akdata

1 .

- CLs of MK, PW and TFPW-Y, which remove the lag-
1 autocorrelation without compensation for the mean
values and the variances of the original time series,
are smaller than for VCTFPW, PW-cor and TFPW-WS.
PW-cor and TFPW-WS have the highest CLs.

- The ss often decreases for coarser time granularities,
occasionally leading to not ss trends for some of the
prewhitening methods. PW, TFPW-WS and VCTFPW
methods become not ss at finer time granularities than
TFPW-Y and MK due to their lower number of false
positives.

- The slope discrepancies between prewhitening methods
are larger than the discrepancies that occur when differ-
ent temporal segmentations (months or meteorological
seasons) are applied for a defined prewhitening method.

Apart from these general observations, there are features that
depend on the time series, such as the effects of the applied
temporal segmentation to address seasonality, the similarity
of MK slopes to TFPW slopes, and the time granularity lead-
ing to not ss akdata

1 . For example, the very low number of
data points in the AOD time series (about 65 per year) corre-
sponds to an average of 1 datum per 5 d; there is consequently
a very high number of missing values for time granulari-
ties finer than this measurement frequency, and this induces
higher CLs for time granularities of 1–3 d than granularity of
10 d.
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Figure 2. Slope and confidence limits computed without temporal segmentation as a function of the time granularity for MK and the
five prewhitening methods (indicated by colors) for (a) the aerosol number concentration for the 24-year period, (b) the aerosol scattering
coefficient for the 10-year period, (c) the tropopause level altitude for the 50-year period, and (d) the AOD for the 10-year period. Larger
symbols indicate ss trends. Inserted boxplots indicate the median, the quartiles and the whiskers of the ratio between the slopes computed
with no temporal segmentation (year) and with the temporal segmentation of 12 months (month) over the slopes computed with the temporal
segmentation of four meteorological seasons.

4.1 Effects of the prewhitening methods

As predicted theoretically, the ss depends on the prewhiten-
ing method, with higher ss for the MK and TFPW-Y methods
that are related to higher type 1 errors (false positives), while
PW and VCTFPW have a lower ss and a lower test power.
This is verified on the individual time series, e.g., for the
aerosol number concentration results presented in Fig. 3a.
The yearly trend was computed for all periods (from 5 to
24 years) at all considered time granularities (1 d to 1 month
for the meteorological season temporal segmentation), lead-
ing to 40 trends. The results show the following.

- The MK test ss without prewhitening has a median of 1,
with the ss for the upper quartile and upper whisker also
equal to 1 and thus within the 95 % confidence level, so
that only 5 trends out of 40 evaluated (i.e., 12.5 %) are
not ss.

- The TFPW-Y ss has a median slightly lower than 1 and
only three trends (7.5 %) outside the 95 % confidence
level.

- The TFPW-WS ss has a median of 0.996, which is lower
than MK and TFPW-Y. The lower quartile for TFPW-
WS is 0.89, which is outside the 95 % confidence level
and indicates that 32.5 % of the trends are not ss.

- The results of both PW and PW-cor are similar to the
TFPW-WS, with a median ss of 0.995, a lower quartile
of 0.84 %, and 32.5 % of the trends are not ss.

- The VCTFPW ss has the lowest median (0.98), first
quartile (0.83) and lower whisker (0.63), leading to
37.5 % of trends being not ss.

Similar results are found for all time series but with less
difference amongst the methods when the trends are obvi-
ously present or absent and more differences for weak trends.

According to Monte Carlo simulations presented in the lit-
erature (e.g., Yue et al., 2002; Wang et al., 2015a; Hardison
et al., 2019), TFPW-Y leads to a high number of false posi-
tives. Since this study deals with measured data, the rate of
false positives is defined as trends that are ss with TFPW-Y
but not ss with PW, since the latter is the method with the
lowest rate of type 1 error. Figure 3b shows that the num-
ber of false positives depends, as expected, on the strength of
the slope and on akdata

1 . Weaker trends (smaller slopes in per-
cent) are usually associated with lower ss and consequently
lead to a larger number of false positives. The impact of the
PW and TFPW-Y depends largely on akdata

1 absolute values;
i.e., higher akdata

1 leads to stronger modification of the orig-
inal time series with lower means (e.g., the mean of XPW

t is
less than the mean of Xt ) and reduced variances for posi-
tive akdata

1 . The highest akdata
1 values (between 0.85 and 0.9)

found in the time series studied lead to 60 % to 100 % false
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Figure 3. (a) Statistical significance of trends as a function of the prewhitening methods for the aerosol number concentration for the yearly
trends computed from four meteorological seasons’ time segmentation, for all periods (5 to 24 years) and all time granularities (1 d to
1 month). This represents 40 trends. The median is represented by the red line, the boxes are the 25 % and 75 % percentiles, the whiskers the
0.7 and 99.3 percentiles and the red plus signs the outliers. Some outliers are not in the figure for purposes of clarity. (b) Number of TFPW-Y
false positives as a function of akdata

1 and slope categories for all the computed trends of all time series for all decadal periods. Categories
with fewer than three points are not plotted.

positives, while akdata
1 values between 0.8 and 0.85 lead to at

least 40 % false positives.
To obtain a better view of the weakness of each MK test,

the percentage of false positives taking each of the prewhiten-
ing methods as a reference is reported in Table 3 for all the
data sets. PW-cor has by definition the same ss as PW, so
that their performances are given in the same column. PW
has to be used as the best reference for false positives be-
cause it is the prewhitening method with the lowest sensitiv-
ity to type 1 errors (Zhang and Zwiers, 2004; Yue et al., 2002;
Blain, 2013; Wang et al., 2015a), whereas the consideration
of the other prewhitening methods as references allows for
the evaluation of the discrepancy in ss among the methods.
For the decadal trends, MK, TFPW-Y and VCTFPW have
32 %–47 % of false positives taking PW as a reference. This
suggests that about two-thirds and half of the trends deter-
mined using TFPW-Y and VCTFPW, respectively, are false
positives. TFPW-WS has less than 2 % of false positives, so
that it can be considered to have equivalent performance to
PW. For the trends on short periods, the lower amounts of
false positive for MK and TFPW-Y are due to the overesti-
mation of the slopes with these tests (see Sect. 4.4), leading to
trends that are more robust and enhanced ss. The unbiased es-
timate of the VCTFPW slope produces similar amounts of er-
rors for the short-term trends to those for the decadal trends.
The percentage of false positives is similar if TFPW-WS is
considered the reference. If MK or TFPW-Y is taken as a ref-
erence, PW and TFPW-WS have a very low number of false
positives independent of the length of the period, leading to
the conclusion that few cases remain uncertain. Note that

5 %–10 % of cases have different ss at the 95 % confidence
level if MK or TFPW-Y is used as a reference, indicating
that estimation of the ss using these two methods can have
a slight impact on the results. Finally, all the prewhitening
methods have a higher number of false positives if VCTFPW
is considered the reference because the added slope at the
end of the VCTFPW procedure is smaller than the initial
slope and leads to less detectable trends. Note also that the
percentage of false positives of PW and TFPW-WS remains
low (≤ 4 %) for all the chosen references. For the time se-
ries considered in this study, the following conclusions can
be made: (1) PW (and PW-cor) performs very well with a
small (≤ 3.5 %) number of false positives if other prewhiten-
ing methods are considered the reference; (2) TFPW-WS has
a very low number of false positives (< 2 % if PW is taken
as the reference); (3) VCTFPW exhibits a high rate of type 1
errors and should consequently not be used to determine the
ss; and (4) the difference in ss between MK and TFPW-Y is
related to only 5 %–10 % of the trends.

The effects of the prewhitening method on the slope
(Figs. 2 and 4) also follow the theoretically deduced assump-
tions.

- The slope estimated on the original data is always en-
hanced by the positive akdata

1 , which adds a multiple of
the t − 1 value to the t value (e.g., Eqs. 1 and 3). By
removing the autocorrelation, PW leads to a strong de-
crease in the absolute value of the slope that becomes
smaller than the MK slope. The CLPW are also some-
what decreased (Fig. 5) due to the decreased mean and
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Table 3. Percent of false positives for all data sets relative to a reference test for the MK tests and prewhitening methods for periods of at
least 10 years (decadal trends) or smaller than 8 years. N is the number of considered trends. PW should be considered the best reference
so that the results are given in bold. MK, TFPW-Y and VCTFPW have a higher number of type 1 errors and should not be considered a
reference so that these results are given in italic.

Period MK TFPW-Y TFPW-WS PW/PW-cor VCTFPW

≥ 10 years, N = 2219 32.5 37.1 1.7 reference 47.0

31.8 36.1 reference 0.7 46.4
reference 9.4 0.2 0.3 26.4

5.0 reference 0.2 0.2 24.8

15.7 18.4 4.0 3.5 reference

< 8 years, N = 1067 16.0 14.1 0.7 reference 36.6

15.9 13.9 reference 0.5 36.7
reference 3.0 0.1 0.0 28.1

5.0 reference 0 0.0 29.7

8.4 8.1 1.3 1.1 reference

variance of the prewhitened time series, relative to the
original data set.

- Due to the detrending procedure, the absolute values
of the TFPW-Y slope are larger than the PW slopes
and similar to the MK slope values (Fig. 2), even if
a tendency to have larger TFPW-Y than MK slopes is
observed (Fig. 4b). The CLTFPW−Y are similar to the
CLPW because the variance and mean are similar for
both the PW and TFPW-Y prewhitened time series.

- Due to the corrected slope and variance, the absolute
values of the VCTFPW slopes are much smaller than
the TFPW-Y slopes but larger than the PW slopes.

These theoretical assumptions are validated in all cases
with the ss trends analyzed in this study. The water vapor
mixing ratio and the zero-degree level both have a very high
autocorrelation (about 0.9 at 1 d time granularity). In such
cases, the removal of the autocorrelation can lead to

Not ss trends and the absolute values of the VCTFPW
slope are not always larger than PW slope values.

The slope difference among the methods depends directly
on akdata

1 . A more nuanced estimate of the slope depen-
dence is shown in Fig. 4, where the differences among the
prewhitening methods are plotted. As already mentioned, the
VCTFPW method largely mitigates the slope overestimate
of the TFPW-Y method at large akdata

1 so that the increase in
the slope absolute value for increasing akdata

1 does not ex-
ceed a factor of 2 (100 % difference in Fig. 4a). The dif-
ference between VCTFPW and TFPW-Y slopes can reach
200 %–1000 % for the largest akdata

1 . The overestimation of
the slope by TFPW-Y is much larger than the underestima-
tion by PW if VCTFPW is taken as a reference for slope
estimation. TFPW-Y slopes tend to be larger than MK slopes
(Fig. 4b), with larger differences at high akdata

1 . Finally, the
slope difference between MK and both TFPW-WS and PW-
cor does not depend on akdata

1 , and the TFPW-WS and PW-

cor slopes are usually nearly identical, as suggested by their
similar relationship to the MK slope (Fig. 4c, d).

The effects of the prewhitening method on CLs (Fig. 5)
are explained by their modification of the mean and the
variance of the data. Removing the lag-1 autocorrelation
leads to prewhitened data with a larger variance but lower
mean than the original time series. The correcting factor of
(1 − ak1)

−1 used in the TFPW-WS and PW-cor methods re-
stores the mean (Eq. 5), whereas the VCPWTF method re-
stores the initial variance (Eq. 9). All increases in the vari-
ance make the CL interval wider, whereas the decrease in the
mean decreases the CL interval. CLTFPW−Y and CLPW are
the narrowest due to lower mean and variance values, while
CLTFPW−WS and CLPW−cor are the widest due to larger vari-
ance induced by the prewhitening and a mean identical to
the original data. CLVCTFPW are intermediate with a variance
similar to the original data but a lower mean.

4.2 Effects of the time granularity

Averaging is often used to decrease akdata
1 in the time series.

To investigate this, the akdata
1 values are plotted as a func-

tion of the time granularity for the last 10 years of all the
time series (Fig. 6a). The decrease in akdata

1 with aggregation
does not have a large impact until granularity is coarser than
1 month. For 1-month time granularity and less, aggregation
leads to an akdata

1 difference smaller than 0.2 in five of the
time series. Three-month and 1-year aggregations involve a
sharper reduction of akdata

1 . Additionally akdata
1 for 1-year ag-

gregation is, for most of the time series, no longer ss and,
sometimes, even negative. The decrease in akdata

1 is not con-
tinuous with time granularity, with akdata

1 often larger for 10 d
or 1 month than for 3 d aggregation. These local minima can
be explained by a competitive effect between the akdata

1 de-
crease and a reduction of the measurement variance. For the
10-year period represented in Fig. 6, none of the akdata

1 values
are ss for a 1-year time granularity. However, there are cases
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Figure 4. Slope differences as a function of akdata
1 from the original data for all data sets, granularities and periods and for meteorological

season time segmentation: (a) PW minus VCTFPW slope (filled dots) and TFPW-Y minus VCTFPW slope (open squares) normalized by
the VCTFPW slope, (b) MK slope minus TFPW-Y slopes, (c) MK minus TFPW-WS slopes and (d) MK minus PW-cor slopes. The slope
differences in (b, c, d) are normalized by MK slope. Not ss trends (PW taken as reference) are not plotted since the slopes cannot be
distinguished from the zero trend. Note the different y axis ranges in these plots.

Figure 5. Distribution of the confidence limit intervals of the slope
for the trend in aerosol number concentration for all periods (5–
24 years) and time granularities (1 d–1 month) as a function of the
method for the meteorological season temporal segmentation. Box–
whisker plotting as described for Fig. 3a.

like the 24-year time series of the aerosol number concentra-
tion where akdata

1 is still ss for the 1-year time granularity. In
these cases, prewhitening methods have to be applied, which
leads to the spread of the slopes for the various prewhitening
methods visible in Fig. 2a.

TFPW-Y and TFPW-WS remove the autocorrelation com-
puted from the detrended data. Figure 6b and c show the dif-
ference in ak1 between the original and the detrended time
series as a function of the time granularity. The akdetr

1 con-

tinuously increases with aggregation, whereas akdetr−prew,n

1
sometimes decreases (e.g., for 1- or 3-month aggregations
for scattering coefficient and number concentration, respec-
tively). While the differences in ak1 from the original time
series are larger for TFPW-WS than for TFPW-Y, they re-
main relatively small and exceed 0.05 only in a few cases.

Figure 7 presents the effect of the time granularity on ss
of the trends for the zero-degree temperature level for differ-
ent periods (identified by colors) and various prewhitening
methods (identified by symbols). MK and PW-cor are not in-
cluded since their ss values are nearly identical to the TFPW-
Y and PW ss values, respectively. As expected, TFPW-Y ex-
hibits the highest ss, followed by TFPW-WS, while PW and
VCTFPW exhibit the lowest ss. The ss always decreases at
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Figure 6. (a) Lag-1 autocorrelation (akdata
1 ) of the original data as a function of the time granularity for the 10-year time series of all

parameters; bigger symbols correspond to ss akdata
1 , (b) ak1 difference between the original data and the TFPW-Y data, and (c) ak1 difference

between the original data and the TFPW-WS data. For (b, c) only ss cases are plotted because prewhitening methods are not applied when
ak1 is not ss.

coarser time granularities for all prewhitening methods until
akdata

1 becomes not ss, usually at an average of 3 months. This
decrease in ss is larger for the PW, TFPW-WS and VCTFPW
than for TFPW-Y. For robust trends analyzed (e.g., the period
of 40 years in Fig. 7), the trend is ss at the 95 % or 90 % con-
fidence level for the finest time granularity (3 d for PW and
TFPW-WS and 1 month for TFPW-Y ), but this is often not
the case for weak trends.

When akdata
1 is not ss at high time granularity, the

prewhitening methods can no longer be applied and the ss
is similar for all methods. Without prewhitening, the ss is in-
versely proportional to the variance reduction caused by the
aggregation. For TFPW-Y, the removal of the prewhitening
due to not ss akdata

1 at 3-month aggregation corresponds how-

ever to a decrease in the ss of the trend. The ak
detr−prew, n

1 of
the 40-year period is ss for the 1-year time granularity, as can
be seen by the TFPW-WS ss that is different than the ss of
the other prewhitening methods (Fig. 7), leading to lower ss
than without prewhitening. The increase in the ss with the
period length is also obvious, with smaller differences be-
tween TFPW-Y and PW for longer periods. The longest pe-
riod (40 years) and the finest time granularities (1–3 d) lead

to no false positives for TFPW-Y, which is not the case for
shorter periods or coarser time granularities.

The effect of the time granularity on the slope strongly cor-
relates with the ak1 time granularity dependence. A decrease
in the autocorrelation with aggregation induces a reduction of
the prewhitening effects on the slopes, leading to a decrease
in the differences between slopes (see Figs. 2 and 4).

The loss of ss with coarser time granularities is even more
pronounced when evaluated for each month or meteorologi-
cal season (Fig. 8). This is due to the lower N per season (1/4
for meteorological season and 1/12 for months). Similarly,
the decrease in the difference in slopes due to aggregation
and the reduction of the prewhitening effects are both more
pronounced when temporal segmentation is applied due to
the reduction of the number of data points in each temporal
segment.

Figure 8 clearly shows that the coarsest time granularities
enhance the variability for the different temporal segmenta-
tion choices. For example, the interval between the minimum
and maximum slopes is 2.3 times larger for the monthly av-
erage than for the daily average for the scattering coefficient
temporally segmented into 12 months (Fig. 8a) and 3.7 times
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Figure 7. Statistical significance of the trends as a function of the
time granularity and prewhitening methods for the zero-degree level
time series for 10-, 20- and 40-year periods without temporal seg-
mentation to address seasonality. The horizontal red and black lines
correspond to the threshold of 95 % and 90 % confidence levels, re-
spectively.

larger for the absorption coefficient with meteorological sea-
sons (Fig. 8b), respectively. In some cases, the sign of the
slope changes with the time granularity when the trends are
not ss. As already observed in Fig. 2, the CLs also increase
with time granularity due to the decrease in N . The effects
of the time granularity on the ss, the slope and the CLs are
more pronounced for a monthly than for meteorological sea-
son temporal segmentation due to N being 3 times lower for
the months than it is for the seasons.

4.3 Effects of temporal segmentation to address

seasonality

The division of the year into temporal segments is a neces-
sary condition of the MK test if the data exhibit a clear sea-
sonality. Statistically, it is important to have equivalent seg-
ments with similar lengths to obtain similar N per segment.
The time series presented in this study are all dependent on
phenomena related to the temperature (e.g., atmospheric cir-
culation, boundary layer height, source changes) and thus
change with the meteorological seasons. The seasonality of
time series primarily affected by other meteorological phe-
nomena (e.g., the Asian monsoon, which is better character-
ized by dry and humid seasons, rather than the standard four
meteorological seasons) has to be carefully studied in order
to choose both the appropriate temporal segmentation and the
appropriate time granularity. For example, a time granularity
that does not respect the seasonal variation of a time series
can lead to erratic results (de Jong and de Bruin, 2012).

The effects of the chosen temporal segmentation to ad-
dress seasonality are presented here for the VCTFPW slope

and CLs, but they are similar for the other methods as well.
The effect of including temporal segmentation on the ss of
the yearly trend is rather small, with a difference of only
2 %–3 % in the number of ss trends (not shown). The division
into four meteorological seasons always results in the largest
number of ss trends, while the division into 12 months is less
powerful for short periods due to the low number of points
for each month (N ≤ 10) for a 10-year period. The applica-
tion of no temporal segmentation, which does not meet the
MK-test requirements in the presence of a seasonality, is less
powerful for decadal trends. No systematic effects due to the
choice of temporal segmentation on the slope were found.
Different temporal segmentation choices lead, most of the
time, to comparable slopes. The effect of the prewhitening
method is always much more pronounced than the effect of
the choice of temporal segmentation.

Figure 9 presents the CL intervals normalized by the trend
slope as a function of the time granularity for the aerosol
scattering coefficient without temporal segmentation (blue)
or divided into monthly (green) or meteorological seasons
(red) for several periods between 5 and 24 years. Due to the
decrease in N , finer temporal segments induce an increase in
the CLs. In the case presented in Fig. 9, monthly segments
have CL intervals 4 times larger than when seasonality is not
considered and 2 times larger than meteorological seasons
for the longest periods. It should be recalled, however, that
not considering seasonality for time granularity finer than
1 year is not allowed due to the observed seasonal variation
in the aerosol scattering coefficient time series.

In the case of a seasonal MK test, yearly trend results can
be considered only if the trends are homogeneous among
the temporal segments (see Sect. 2.1). The division of the
time series into four meteorological seasons leads to more
homogeneous trends (3 times and 25 times for decadal and
short periods, respectively) at the 90 % confidence level than
the division into 12 months (Table 4). Thus, if meteorolog-
ical seasons correspond to the observed temporal cycle of
the studied time series, then those seasons should be the pre-
ferred temporal division to consider rather than monthly divi-
sions. Monthly segmentation could be considered when the
observed variability of time series is shorter or longer than
the 3-month length of a meteorological season.

4.4 Effects of length of the time series

As already stipulated under Sect. 2.1, a special statistic that
deviates from the normal statistic has to be applied to com-
pute the statistical significance for N ≤ 10. Shorter periods
involve smaller N , and N is further affected by the choice of
granularity. The special statistic has to be applied for trends
computed on 1-year averages and periods < 11 years (i.e.,
N ≤ 10). Note: the effect of the natural variability of a data
set on trends computed on short periods will not be directly
discussed here, but only the statistical effect on the trends
determined for the various time series studied here.
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Figure 8. VCTFPW slope (dots) and CL (vertical lines) as a function of the time granularity for the division of the time series into
(a) 12 months for the 10-year aerosol scattering coefficient and (b) into four meteorological seasons for the 10-year aerosol absorption
coefficient. Larger symbols indicate statistically significant slopes computed from 3PW.

Figure 9. Confidence limits of VCTFPW as a function of the time granularity for various periods of the aerosol scattering coefficient time
series. Blue represents no consideration of seasonalities; red represents time segmentation into four meteorological seasons and green into
12 months. The color shading corresponds to the length of the period from 5 years (lightest) to 24 years (darkest).

Figure 10 shows the effect of the reduction of the period
length on the slope, the CL and the ss for the aerosol ab-
sorption coefficient data set. The first obvious effect is that
the absolute values of the slope are larger for shorter peri-
ods and that there are large differences for both the individ-
ual months and meteorological seasons. Further, these large
slopes for short time periods are associated with high CLs
and low ss. They are due to the cumulative effects of the pre-
dominant importance of the first and last years for short pe-
riods and to the low N in the time series. For the shortest
period considered here (4 years), the division of a daily time

series into four meteorological seasons involves trends com-
puted with N = 360 (= 4 years ×3 months ×30 d), whereas
monthly trends for the same time series are computed with
N = 120 (= 4 years ×1 month ×30 d). The reduction of N

by a factor of 3 explains the larger and more variable slope
values, the higher CLs and the lower ss of the monthly trends
compared to the meteorological season’s trends. The effects
due to the reduction of N are minimized by the use of daily
time granularity, but they are maximized by the use of larger
aggregations leading for example to N = 12 and 4, respec-
tively, for monthly aggregation (hence the tendency for in-
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Table 4. Percentage of yearly trends with homogeneous temporal
segments as a function of the type of segment (month or season), of
the prewhitening method and of the length of the periods based on
all seven time series considered in this study.

Period Method Months Meteorological
seasons

≥ 10 years, N = 115
VCTFPW 26.1 % 80.0 %
TFPW_Y 25.2 % 86.1 %

< 8 years, N = 55
VCTFPW 5.5 % 74.5 %
TFPW_Y 5.5 % 80 %

creases in CLs with larger aggregation in Fig. 9). It should be
noted that the influence of the length of the time series is usu-
ally more important than the choice of time granularity. For
short time series, the yearly slopes can differ depending on
the chosen temporal segmentation (see, e.g., the yearly slopes
of 5, 6 and 7 years in Fig. 10). These results, then, support
the standard recommendation of only computing long-term
trends on time series of at least 10 years.

4.5 Effects of the number of data points

The number of data points N in the time series is a key vari-
able underlying the effects of the time granularity, the tem-
poral segmentation to address seasonality and the period dis-
cussed in the previous sections. Because a long-term trend
analysis is statistically sound only for time series of at least
a decade in length, only decadal and multi-decadal trends
are considered in this section. Figure 11 is computed using
3PW (e.g., Fig. 1) for all decadal trends for all time series,
temporal segmentation choices and time granularities and
represents the percentage of ss trend as a function of slope
and N categories. Figure 11a shows that time series with ro-
bust trends, identified by high normalized slopes, need fewer
data points to reach the 95 % confidence level significance
than time series with less robust trends. In contrast, weaker
trends, identified by low normalized slopes, need at least sev-
eral hundreds or even thousands of data points to become ss.
In consequence, the smallest slopes need longer periods and
finer time granularities to be identified as statistically signif-
icant.

Figure 11 also clearly shows that small N leads statisti-
cally to larger normalized slopes and thus demonstrates that
trends computed on short periods and with a long averaging
time are usually greatly overestimated. The use of prewhiten-
ing methods with a large type 1 error will, in addition, falsely
indicate ss trends (see Sect. 4.1 and Table 3). The use of MK
or TFPW-Y tests on short, highly autocorrelated, and highly
aggregated time series will definitely produce false positive
trends with high absolute slopes.

The effects of the temporal segmentation to address sea-
sonality and the time granularity on the confidence limits are
primarily caused by the modification of N . The direct impact

of N on CLs as a function of slope robustness is plotted in
Fig. 11b. As expected, weaker slopes and lower N lead to the
largest CL, with values of thousands of percent of the slope
for the worst cases. These high CLs are not obviously related
to a low ss if a prewhitening method with high type 1 error
was used.

5 Discussion

The main effects of the various prewhitening methods on ak1,
the slope, the ss, and the CL can be summarized as follows.

- ak1 depends mostly on the intrinsic characteristics of
the time series and on the choice of time granularity.

- The CL intervals depend primarily on the number of
data points and, thus, the length of the time series,
choice of time granularity, and temporal segmentation
to address seasonality.

- The ss depends mostly on the robustness of the slope,
on the number of data points, and on the prewhitening
method.

- The slope depends mostly on the prewhitening method,
with PW leading to too low slopes and MK, TFPW-Y,
TFPW-WS and PW-cor resulting in absolute values of
the slope that are too high, considering VCTFPW to be
an unbiased slope estimate.

The prewhitening methods presented here consider only
the lag-1 autocorrelation. Atmospheric processes can, some-
times, be better represented by a higher order of autoregres-
sive models with ss partial correlations at lags > 1 (Table 2).
These higher-order lag correlations could be considered by
prewhitening with the appropriate number of lags, but this
was not tested during this study. Klaus et al. (2014) applied
higher-order autoregressive prewhitening to stable oxygen
and hydrogen isotopes measured in precipitation and con-
cluded that the ss is mostly decreased by higher-order lags
correlations, whereas the slope is less affected. The effect
of AR(2) (auto-regressive process of order 2) autocorrelation
with ak2 = 0.2 on the type 1 and 2 errors of MK and TFPW-
Y was found to be similar to strong AR(1) autocorrelation
(Hardison et al., 2019) in Monte Carlo simulations for slopes
and residual variances derived from 124 ecosystem time se-
ries.

Time series with a pronounced seasonality can also ex-
hibit an ak1 seasonality. Tests were performed in order to
compute ak1 for the various choices of the temporal segmen-
tation instead of the entire time series. This variant was not
further pursued due to the difficulty in applying seasonal ak1,
which were not always ss, leading to the application of the
prewhitening method to only some of the temporal segments.
These differences in the treatment of each segment yielded
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Figure 10. VCTFPW slopes (dots) and CLs (vertical lines) as a function of various periods ending in 2018 for the daily aerosol absorption
coefficient for the division of the time series into (a) 12 months and (b) four meteorological seasons. Colors represent time period lengths
and bigger symbols represent ss trends with the 3PW method.

Figure 11. (a) The percentage of 3PW ss trends (Sect. 2.3) and (b) mean confidence limits normalized by the slope as a function of slope
normalized by the median and N categories for all time series, granularities and time segmentations and all periods of at least a decade. The
slopes are binned regularly (bin size = 0.5 %), but N categories are irregular. Cells with fewer than three results were discarded in panel (a).

erratic results that could not be considered homogeneous for
a yearly trend.

The slopes computed from the various prewhitening meth-
ods for the real atmospheric data sets considered here exhibit
a large spread, and only studies with simulated time series
are able to provide insight into the slope bias of the meth-
ods. Yue et al. (2002) show that TFPW-Y leads to a better
estimate of the slope than PW, which systematically under-
estimated the real slope. Zhang and Zwiers (2004) compared
the MK, PW, and TFPW-WS methods for various slope and
ak1 strengths as well as for various periods (30–200 years).
They show that PW underestimates the slope for all slope

strengths and periods for positive ak1, with the biases be-
ing larger for higher autocorrelation. They also note that the
biases did not decrease with the length of the time series.
In contrast, they find that MK and TFPW-WS overestimate
the slope for periods < 200 years and high ak1. In this case
they showed that, while the biases are also larger for higher
autocorrelation, they are significantly lower for long periods
(200 years), allowing calculations of almost unbiased slope
estimates. These Monte Carlo simulations used yearly time
granularity, so that their N corresponds to the length of the
period. Their evaluation of the importance of N is not as nu-
anced as presented in our study, in which N could be larger
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than the number of years in the time series for time granular-
ities < 1 year.

The results of our study should be compared to the short-
est periods (30 years) of the Zhang and Zwiers (2004) re-
sults, where they found an underestimation of the slope by
PW and an overestimation by MK and TFPW-WS. Wang
et al. (2015a) showed that the VCTFPW method leads to
root mean square errors (RMSEs) of the slope lower than the
RMSE for TFPW-Y slopes for all slopes and ak1 values for
a time series period of 30 years. A longer period of 60 years
results in lower VCTFPW RMSE only for small slopes. Fi-
nally, a recent study (Hardison et al., 2019) shows that both
the generalized least squares model and the Sen’s slope of
MK tests (MK and TFPW-Y) consistently overestimate the
trend slope with strong ak1 and short periods (up to 80 % for
10 years and 21 % for 20 years). The spread of the estimated
slopes increases with ak1 and is mediated by the length of
the period. This suggests that the choice of the VCTFPW
method as an unbiased estimator for time series shorter than
100 years is probably a better choice than TFPW-Y but has to
be considered in the context of the CL size in order to obtain
a better estimate of the real long-term trend.

All the simulation studies described above report slope per
year based on yearly aggregated time series. Their number of
data points corresponds then to the time series length. In con-
trast, N as defined in this study could be much larger for an
equivalent time series length as we considered data aggrega-
tions between 1 d and 1 year. The shortest simulated periods
were 10 years (Hardison et al., 2019; Yue and Wang, 2004;
Hamed, 2009), 20 years (Yue et al., 2002), 25 years (Bayazit
and Önöz, 2007) and 30 years (Zhang and Zwiers, 2004;
Wang et al., 2015a). All the recommendations of these au-
thors about erratic results for “short periods” always concern
decadal or even multi decadal trends and are, consequently,
even more relevant for trend results for periods shorter than
10 years.

Based on the results presented in this study as well as the
findings from the literature referenced above, the following
recommendations can be made.

- A prewhitening method must be used on time series
when akdata

1 is ss.

- The seasonal MK test must be used on time series with a
clear seasonal cycle. The chosen temporal segmentation
to address seasonality for the MK test has to be compat-
ible with the observed seasonality of the time series.

- Finer time granularities should be used in order to max-
imize the number of data points and will yield smaller
confidence limits and larger ss. The choice of the time
granularity must also be compatible with the observed
seasonality of the time series.

- Periods shorter than 10 years must be handled with great
caution and periods shorter than 8 years should not be
used for long-term trend analysis.

- When describing trend results, the sign of the slope
should not be mentioned if it is not ss, because not ss
trends cannot, by definition, be distinguished from zero
trends. Moreover, not ss trends have a larger depen-
dency on how the trends are computed (time granularity,
period, prewhitening method, temporal segmentation to
address seasonality, etc.).

- In the presence of ss lag-1 autocorrelation, either 3PW
(using both PW and TFPW-Y) or TFPW-WS should
be used to assess statistical significance. MK, TFPW-
Y alone and VCTFPW lead to a high number of false
positives.

- The slope should be corrected in order to take into ac-
count the effect of the prewhitening on the mean and
the variance of the time series. We recommend the
VCTFPW method to eliminate slope biases, at least for
time series shorter than 30 years.

- In the presence of ss trends, the confidence limits must
also be considered in order to assess the uncertainty in
the slope.

6 Conclusion

Several prewhitening methods, including solely prewhiten-
ing, the trend-free prewhitening from Yue et al. (2002)
and from Wang and Swail (2001), as well as the variance-
corrected trend-free prewhitening method of Wang et
al. (2015a), were tested on seven time series of various in situ
and remote sensing atmospheric measurements. Consistent
with the literature, the use of MK, TFPW-Y and VCTFPW
results in a large amount of false positive results, while
TFPW-WS results in less than 2 % of false positives if PW
is considered the reference. The power of the test is good for
all the applied MK tests for the time series considered here.

The effect of choosing time granularities ranging from 1 d
to 1 year was also evaluated since a common way to over-
come the autocorrelation problem is to average time series
to a coarser time granularity. It was found that the akdata

1
could remain ss up to at least monthly granularity and was
sometimes still ss for yearly averages. Finer time granular-
ities exhibit higher akdata

1 , leading to a larger difference of
the estimated slope by the various prewhitening methods.
MK, TFPW-Y, TFPW-WS and PW-cor result in the largest
absolute values of the slope and PW the smallest. VCTFPW
slopes are found between these two extremes. The confidence
limits are much broader for coarser time granularities and the
ss is lower, so that ss at the 95 % confidence level is rarely
achieved. The main impact of keeping a fine time granularity
is that it allows computation of the trends on a high num-
ber of data points, which improves the power of the test and
decreases the uncertainties in the slope.
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Since all the time series studied exhibited clear seasonal
cycles, two temporal segmentations (12 months and four me-
teorological seasons) were tested for the seasonal MK test.
The segmentation into four meteorological seasons resulted
in more homogeneous trends among the segments, a neces-
sary condition to compute yearly trends. The division into
meteorological seasons also resulted in a higher number of
data points available in each temporal segment relative to di-
vision into monthly segments. No systematic effect of the
choice of temporal segment on the slope was observed, and
the difference between temporal segment choices was always
much lower than the differences among the prewhitening
methods.

Finally, a new 3PW algorithm was proposed combining
several prewhitening methods to obtain a better estimate of
trend and statistical significance than would be achieved with
any individual prewhitening method. PW and TFPW-Y were
used to compute the statistical significance of the trend and
VCTFPW was applied to estimate the slope. This approach
takes advantage of the low sensitivity of type 1 errors of PW,
the high test power of TFPW-Y, and the less biased slope
estimated by VCTFPW.

Code availability. We provide, in dedicated GitHub repos-
itories hosted within the “mannkendall” organization
(https://github.com/mannkendall, last access: 30 Novem-
ber 2020), a Matlab (Collaud Coen and Vogt, 2020,
https://doi.org/10.5281/zenodo.4134619; access to the
latest version: https://doi.org/10.5281/zenodo.4134618,
https://github.com/mannkendall/Matlab, last ac-
cess: 30 November 2020), Python (Vogt, 2020,
https://doi.org/https://doi.org/10.5281/zenodo.4134636; access
to the latest version: https://doi.org/10.5281/zenodo.4134435,
https://github.com/mannkendall/Python, last access:
30 November 2020), and R (Bigi and Vogt, 2020,
https://doi.org/10.5281/zenodo.4134633; access to the
latest version: https://doi.org/10.5281/zenodo.4134632,
https://github.com/mannkendall/R, last access: 30 November
2020) implementation of the algorithm presented in Sect. 2. In
particular, these open-source codes, distributed under the BSD
3-Clause License, allow the user to compute the MK test and
Sen’s slope with various prewhitening methods (3PW (default),
PW, TFPW-Y, TFPW-WS and VCTFPW). The time granularity,
period and temporal segmentation are chosen by the users during
the preparation of the data sets. The level of the confidence limits
for the MK test, the lag-1 autocorrelation, and the homogeneity
between the temporal aggregation can also be defined by the user.
The probabilities for the statistical significance, the statistical
significance at the desired confidence level, the Sen’s slope and its
confidence limits are returned as results. A set of common tests
is used to ensure that both the Python and R implementations are
consistent with the (original) Matlab implementation of the code.
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