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Abstract In this work, we analyze the effects of thermal

fluctuations on the thermodynamics of a modified Hayward

black hole. These thermal fluctuations will produce cor-

rection terms for various thermodynamical quantities like

entropy, pressure, internal energy, and specific heats. We also

investigate the effect of these correction terms on the first law

of thermodynamics. Finally, we study the phase transition for

the modified Hayward black hole. It is demonstrated that the

modified Hayward black hole is stable even after the ther-

mal fluctuations are taken into account, as long as the event

horizon is larger than a certain critical value.

1 Introduction

The black hole entropy is obtained by the famous formula

S = A/4, where A denotes the area of the event horizon

[1]. This is the maximum entropy contained by any object

of the same volume [2,3]. It may be noted that a maximum

entropy has to be associated with the black holes to prevent

the violation of the second law of thermodynamics [4,5]. The

reason is that, if a black hole did not have any entropy, then the

entropy of the universe would spontaneous reduce when any

object crosses the horizon. The observation that the entropy

of a black hole scales with its area has led to the development

of the holographic principle [6,7]. This principle equates the

degrees of freedom in a region of space with the degrees of

freedom on the boundary of that region.

Even though the holographic principle is expected to hold

for large regions of space, it is expected to get violated near

the Planck scale [8,9]. This violation of the holographic prin-

ciple occurs due to the quantum fluctuations in the geometry
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of space-time. As these quantum fluctuations are expected to

dominate the geometry of space-time near the Planck scale,

it is expected that the holographic principle will be violated

near the Planck scale. Thus, the relation between the area

and entropy of a black hole is also expected to get modified

near the Planck scale. In fact, the quantum fluctuations in the

geometry of the black hole will lead to the thermal fluctu-

ations in the black hole thermodynamics [10,11]. It will be

possible to neglect these thermal fluctuations for the large

black holes. However, as the black holes are reduced in size

due to the radiation of the Hawking radiation, the quantum

fluctuations in the geometry of the black hole will increase.

Thus, the thermal fluctuations will start to modify the thermo-

dynamics of the black holes as the black holes are reduced in

size. It is possible to calculate the correction terms generated

from such thermal fluctuations. The correction terms gen-

erated from these thermal fluctuations are logarithmic func-

tions of the original thermodynamical quantities.

The corrections to the black hole thermodynamics have

been obtained using the density of microstates for asymp-

totically flat black holes [12]. This was done by using a for-

malism called non-perturbative quantum general relativity.

In this formalism, the density of states for a black hole was

associated with the conformal blocks of a well-defined con-

formal field theory. It was demonstrated that even though

the leading order relation between the entropy and area of a

black hole is the standard Bekenstein entropy–area relation,

this formalism also generated logarithmic corrections terms

to the standard Bekenstein entropy–area relation. It has also

been demonstrated using the Cardy formula that the logarith-

mic correction terms are generated for all black holes whose

microscopic degrees of freedom are described by a confor-

mal field theory [13]. Matter fields have been studied in the

presence of a black hole, and this analysis has also generated

logarithmic correction terms for the Bekenstein entropy–area

formula [14–16]. The logarithmic correction terms are also
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generated from string theoretical effects [17–20]. The cor-

rections term for the entropy of a dilatonic black holes has

been calculated [21]. It was found that this correction term is

again a logarithmic functions of the original thermodynamic

quantities. Such correction terms have also been generated

using a Rademacher expansion of the partition function [22].

Therefore, it seems that such logarithmic corrections terms

occur almost universally.

The singularity at the center of black holes indicates a

breakdown of general theory of relativity, as it cannot be

gauged away by coordinate transformations. However, it is

possible to construct black holes which are regular and do

not contain a singularity at the center. The Hayward black

hole is an example of such a regular black hole as it does

not contain a singularity at the center [23,24]. These black

holes have been analyzed using various modifications of the

Chaplygin gas formalism [25–31]. The motion of a particle

in the background of a Hayward black hole also has been

discussed [32]. The massive scalar quasinormal modes of the

Hayward black hole have been studied [33]. In fact, the one-

loop quantum corrections to the Newton potential for these

regular black holes has been calculated in [34]. Recently, the

accretion of fluid flow around the modified Hayward black

hole have been analyzed [35]. The acceleration of particles

in presence of a rotating modified Hayward black hole has

also been investigated [36]. In this paper, we will analyze

the effects of thermal fluctuations on thermodynamics of a

modified Hayward black hole.

2 Modified Hayward black hole

The most general spherically symmetric, static line element

describing modified Hayward black hole can be written as

[34,35]

ds2 = − f (r)B(r)dt2 +
dr2

B(r)
+ r2d�2, (1)

where

d�2 = dθ2 + sin2 θdφ2, (2)

with

B(r) = 1 −
2Mr2

r3 + 2Ml2
,

f (r) = 1 −
αβM

αr3 + βM
, (3)

where M is the black hole mass, l is the Hubble length, which

is related to the cosmological constant, α is a positive con-

stant, and β is related with the cosmological constant [37].

In Ref. [35] it is found that α > 1. We will find lower bounds

for both α and β using the thermodynamics description.

The radius of the horizon of the black hole can be found by

the real positive root of the following equation:

r3
+ − 2Mr2

+ + 2Ml2 = 0. (4)

So, one can obtain the black hole mass in terms of the horizon

radius as follows:

M =
r3
+

2(r2
+ − l2)

, (5)

which implies that r2
+ > l2. For simplicity we set l = 1.

Then Eq. (4) has a solution as follows:

r+ =
X

3
+

4M2

3X
+

2

3
M, (6)

where

X ≡
(

8M3 − 27M + 3
√

81M2 − 48M4
)

1
3
, (7)

which gives an upper bound for the black hole mass,

M ≤
3
√

3

4
. (8)

For the special case of M = 3
√

3
4

, where X = 2M , the event

radius of the horizon reduces to r+ = 2M = 3
√

3
2

.

An important thermodynamical quantity is the entropy

which is related to the black hole horizon area,

S0 = πr2
+ (9)

Also, volume of the black hole is given by

V =
4

3
πr3

+. (10)

The temperature of modified Hayward black hole can be writ-

ten

T =
[

1

4π

√

−gt t grr
d

dr
gt t

]

r=r+

=
1

4π

r3
+ − 4M

2Mr3
+

√

1 −
αβM

αr3
+ + βM

, (11)

where the black hole mass M is given by Eq. (5) and black

hole radius of the horizon is given by Eq. (6). Therefore, we

can investigate the thermodynamics of a black hole in terms

of either the black hole mass or the radius associated with the

event horizon. Now, the temperature of the black hole can be

simplified to another form:

T =
r2
+ − 3

4πr3
+

√

2αr2
+ − αβ − 2α + β

2αr2
+ − 2α + β

. (12)

There are two conditions to have a real positive temperature,

r2
+ ≥ 3,

r2
+ ≥

αβ + 2α − β

2α
. (13)
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The two conditions are satisfied simultaneously if we have

β

(

1 −
1

α

)

≥ 4. (14)

It shows that α > 1 is necessary to have positive β, as illus-

trated by Ref. [35]. If we assume integer values for α and β,

quickly we find β ≥ 8. Therefore, α = 2 and β = 8 cor-

respond to the zero-temperature limit, and both conditions

of (13) are the same. The case of β = 0 yields the ordinary

Hayward black hole [23], with the temperature given by

T =
r2
+ − 3

4πr3
+

, (15)

which reduces to T = 1/4πr+ for large values of the horizon

radius (asymptotic behavior). The pressure can be obtained

by

P =
T

2r+
. (16)

It is interesting to investigate the first law of thermodynamics

[38,39],

dM = T dS + V dP + . . . ; (17)

other terms correspond to the black hole rotation and charge

which are absent in our model. It is easy to check that Eq.

(17) is violated. In order for the thermodynamic quantities to

satisfy the above relation, we have two solutions: the first is

to add a rotation or a charge to the black hole, the second is

consideration of a logarithmic correction.

3 Logarithmic correction

It is possible to calculate the effect of thermal fluctuations on

the thermodynamics of a modified Hayward black hole. One

can write the partition function of the system

Z =
∫

DgD Ae−I , (18)

where I → −i I is the Euclidean action for this system [40].

It is possible to relate it to the partition function in statistical

mechanical terms by

Z =
∫ ∞

0

dE ρ(E)e−βκ E , (19)

where βκ is the inverse of the temperature. The partition

function can be used to calculate the density of states,

ρ(E) =
1

2π i

∫ β0κ+i∞

β0κ−i∞
dβκ eS(βκ ), (20)

where

S = βκ E + ln Z . (21)

The entropy around the equilibrium temperature β0κ can be

obtained by neglecting all the thermal fluctuations. However,

if thermal fluctuations are taken into account, then S(βκ ) can

be written as

S = S0 +
1

2
(βκ − β0κ)2

(

∂2S(βκ )

∂β2
κ

)

βκ=β0κ

. (22)

So, the density of states can be written as

ρ(E) =
eS0

2π i

∫ β0κ+i∞

β0κ−i∞
dβκ exp

(

1

2
(βκ − β0κ)2

×
(

∂2S(βκ )

∂β2
0κ

)

βκ=β0κ

)

. (23)

Thus, we obtain

ρ(E) =
eS0

√
2π

[

(

∂2S(βκ )

∂β2
κ

)

βκ=β0κ

]1/2

. (24)

So, we can write

S = S0 −
1

2
ln

[

(

∂2S(βκ )

∂β2
κ

)

βκ=β0κ

]1/2

. (25)

This expression can be simplified using the relation between

the microscopic degrees of freedom of a black hole and con-

formal field theory. This is because, using this relation, the

entropy can be assumed to have the form S = a1β
m
κ +a2β

−n
κ ,

where a1, a2, m, n are positive constants [13]. This has an

extremum at β0κ = (na2/ma1)
1/m+n = T −1 and so we can

expand the entropy around this extremum,

S(βκ) =
[

(n/m)m/(m+n) + (m/n)n/(m+n)
]

(an
1 am

2 )1/(m+n)

+
1

2

[

(m + n)m(n+2)/(m+n)n(m−2)/(m+n)
]

×(an+2
1 am−2

2 )1/(m+n) × (βκ − β0κ)2. (26)

Now we can write

S0 = (n/m)m/(m+n) + (m/n)n/(m+n)(an
1 am

2 )1/(m+n),
(

∂2S(βκ)

∂β2
κ

)

βκ=β0κ

= (m + n)m(n+2)/(m+n)n(m−2)/(m+n)

×
(

an+2
1 am−2

2

)1/(m+n)

. (27)

It is possible to solve for a1, a2 and express the entropy as

(

∂2S(βκ )

∂β2
κ

)

βκ=β0κ

= YS0T 2 , (28)

where

Y =
[(

(m + n)m(n+2)/(m+n)n(m−2)/(m+n)

(n/m)m/(m+n) + (m/n)n/(m+n)

)

×
( n

m

)2/(m+n)
]

. (29)
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However, the factor Y can be absorbed using a redefinition,

as it does not depend on the black hole parameters [10,11].

Thus, we can write
(

∂2S(βκ)

∂β2
κ

)

βκ=β0κ

= S0β
−2
0κ . (30)

So, the corrected value of the entropy can be written as

S = S0 −
1

2
ln S0T 2. (31)

We can write a general expression for the entropy as

S = S0 −
b

2
ln S0T 2, (32)

where we introduced a parameter b by hand to track the cor-

rected terms, so in the limit b → 0, the original results can

be recovered and b = 1 yields the usual corrections [11]. By

using the temperature and entropy given by Eqs. (11) and (9),

respectively, we can obtain the following corrected entropy:

S = πr2
+ −

b

2
ln

[

(r2
+−3)2(2αr2

+−αβ−2α+β)

16πr4
+(2αr2

+ − 2α + β)

]

. (33)

It is clear that the logarithmic correction reduces the entropy

of the black hole. We can obtain the entropy at zero-

temperature using the appropriate choice of α and β (α = 2

and β = 8),

S(T = 0) = πr2
+ −

b

2
ln

√

(r2
+ − 3)3

16πr4
+(r2

+ + 1)
. (34)

As we mentioned already, both zero-temperature conditions

(13) are the same for α = 2 and β = 8. So, r+ =
√

3 is the

zero-temperature condition where the entropy (34) becomes

infinite. The fact is that at the zero-temperature limit, thermal

fluctuations vanish and we should set b = 0. It is clear from

Eq. (32); at the zero-temperature limit we have S(T = 0) =
3π .

We can calculate the pressure using Eqs. (9), (10), (11),

and the following relation:

P = T

(

∂S

∂V

)

V

. (35)

In Fig. 1, we analyze the behavior of the pressure for various

values of parameters. Comparing the dashed line and the dot-

ted line, we can find that the logarithmic correction decreases

the pressure. Using the higher values for the black hole mass

from Eq. (8), we find a zero pressure around the black hole

horizon. Higher values of the mass yield a negative pressure.

For all cases with M < 3
√

3
4

, we can see a positive pressure,

which yields zero as M → 0; it is clearly expected that a

vanishing black hole has no thermodynamical pressure.

Then, using the well-known relation

E =
∫

T dS, (36)

Fig. 1 Pressure versus radius of the horizon with α = 2. b = 1, β = 10

(dashed line); b = 1, β = 0 (solid line); b = 0, β = 10 (dotted line);

b = 1, β = 8 (dash dotted line)

we can obtain the internal energy, which decreased dramati-

cally due to the logarithmic corrections. It may be noted that

T and S can be used to obtain the specific heat at constant

volume,

Cv =
(

T
∂S

∂T

)

V

. (37)

Calculation of P and E helps us to obtain the specific heat

at constant pressure,

C p =
(

∂(E + PV )

∂T

)

P

. (38)

So, we can investigate γ = C p/Cv numerically. By Fig. 2

it is illustrated that, for a large horizon radius, γ → 0.5.

We find that the value of γ increases due to the logarithmic

corrected entropy.

Now, in order to investigate the first law of thermodynam-

ics we rewrite Eq. (17) as follows:

X = Y, (39)

where X ≡ dM −T dS and Y ≡ V dP . Then we give plots of

X and Y in terms of the radius of a black hole horizon in Fig.

3. We draw three curves corresponding to each of X (α, β)

and Y (α, β). We see that, at least, there are two points where

the first law of thermodynamics is satisfied. For cross points

of the red (solid) and blue (dashed) curves X = Y , which

means validity of the relation (17). Therefore, we can say

that the first law of thermodynamics may also be valid for

the modified Hayward black hole. There are some special
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Fig. 2 γ in terms of the radius of the horizon with α = 2. b = 1,

β = 10 (dashed line); b = 1, β = 0 (solid line); b = 0, β = 10 (dotted

line); b = 1, β = 8 (dash dotted line)

Fig. 3 X (solid red) and Y (dashed blue) in terms of r+ with b = 1

for various values of α = 2, 3, 4 and β = 8, 10, 20

cases with a suitable radius of the horizon where the first law

of thermodynamics is satisfied.

4 Phase transition

One of the best ways to find an instability of a black hole is to

study the sign of the specific heat given by Eq. (37). The black

Fig. 4 Specific heat at constant volume in terms of the radius of the

horizon with α = 2. b = 1, β = 10 (dashed line); b = 1, β = 0 (solid

line); b = 0, β = 10 (dotted line); b = 1, β = 8 (dash dotted line)

hole is stable for Cv > 0, while it is unstable for Cv < 0.

Therefore, Cv = 0 shows the point of the phase transition.

It is easy to write the specific heat at constant volume as

follows:

Cv =
A1r8

+ + A2r6
+ + A3r4

+ + A4r2
+ + A5

A6r6
+ + A7r4

+ + A8r2
+ + A9

, (40)

where

A1 = 8πα2,

A2 = 4πα(2β − 10α − αβ),

A3 = 16πβα2 − 2παβ2 − 2bβα2

+56πα2 − 32παβ + 2πβ2 − 24bα2,

A4 = 6παβ2 − 12πβα2 + 18bβα2 − 24πα2

+24παβ − 6πβ2 + 48bα2 − 24bαβ,

A5 = 6bαβ2 − 12bβα2 − 24bα2 + 24bαβ − 6bβ2,

A6 = −4α2,

A7 = 4α(αβ + 11α − β),

A8 = αβ2 − 26βα2 − 76α2 + 40αβ − β2,

A9 = 18βα2 − 9αβ2 + 36α2 − 36αβ + 9β2. (41)

We give a graphical analysis of the specific heat as illus-

trated in Fig. 4. We can demonstrate that the various cases

of the black hole may be stable for the case of r+ ≥
√

3. It

is clear that the modified Hayward black hole with the log-

arithmic correction of the entropy is stable for r+ ≥ 1.9.

Therefore, we can say that the modified Hayward black hole

is stable for r+ ≥ rc, where rc is critical value (minimum
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value) for the radius of the event horizon. It may be related

to the minimum mass required for the formation of the Hay-

ward black hole [41]. At the zero-temperature limit, where

the logarithmic correction vanishes we have r+ = rc =
√

3.

5 Conclusions

In this work, we have studied the spherically symmetric,

static modified Hayward black hole. The entropy, temper-

ature, and pressure have been calculated and we found some

restrictions on the parameters α and β. Next, we have ana-

lyzed the effects of the thermal fluctuations on the thermody-

namics of a Hayward black hole. Using the zero-temperature

limit of the black hole, we have obtained the bounds α ≥ 2

and β ≥ 8. Here, the equality holds only in the zero-

temperature limit. We have also analyzed the logarithmic

correction to the entropy and obtained the behaviors of the

pressure and specific heats numerically. We found that the

value of the pressure and internal energy were reduced due to

these logarithmic corrections. We also studied the phase tran-

sition for the modified Hayward black hole, and we obtained

the critical point for such a phase transition. We also demon-

strated that the first law of thermodynamics is satisfied for the

modified Hayward black hole, even in the presence of ther-

mal fluctuations. It may be noted that the thermodynamics

of black holes also gets modified because of the generalized

uncertainty principle [42,43]. Such correction terms are non-

trivial, and they may lead to interesting consequences, like

the existence of black hole remnants. It would be interesting

to analyze the corrections to the thermodynamics of a reg-

ular Hayward black hole from the generalized uncertainty

principle.
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