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Abstract: Ultrasonic inspection techniques and non-destructive tests are widely applied in evaluating
products and equipment in the oil, petrochemical, steel, naval, and energy industries. These methods
are well established and efficient for inspection procedures at room temperature. However, errors
can be observed in the positioning and sizing of the flaws when such techniques are used during
inspection procedures under high working temperatures. In such situations, the temperature gra-
dients generate acoustic anisotropy and consequently distortion of the ultrasonic beams. Failure to
consider such distortions in ultrasonic signals can result, in extreme situations, in mistaken decision
making by inspectors and professionals responsible for guaranteeing product quality or the integrity
of the evaluated equipment. In this scenario, this work presents a mathematical tool capable of
mitigating positioning errors through the correction of focal laws. For the development of the tool,
ray tracing concepts are used, as well as a model of heat propagation in solids and an experimentally
defined linear approximation of dependence between sound speed and temperature. Using the focal
law correction tool, the relative firing delays of the active elements are calculated considering the
temperature gradients along the sonic path, and the results demonstrate a reduction of more than
68% in the error of flaw positioning.

Keywords: ultrasonic NDT; phased array; high temperature; thermal gradients

1. Introduction

Non-Destructive Tests (NDT) are techniques used in evaluating materials and equip-
ment, without any alterations over the specimen, intending to identify faults or discontinu-
ities that may negatively affect their use. When applied during manufacturing, construction,
assembly, or maintenance stages, these techniques can increase the quality of products and
services, reduce costs, and preserve the environment and life [1].

There are many techniques for NDT inspections that are more or less applicable accord-
ing to the type of object or flaws to be inspected. For example, one can cite techniques based
on eddy current, acoustic emission, radiography, gammagraphy, tightness, penetrating
liquids, magnetic particles, ultrasound, thermography, and visual testing.

Considering all NDT techniques, those based on ultrasonic signals are among the most
used. Their extensive application is justified by easy assemble of the equipment, penetration,
and propagation characteristics of the ultrasonic signal, the capacity of acquiring, based
on received ultrasound signals, information related to location, size, and orientation of
flaws [2].

Although it is not difficult to configure and use an ultrasonic inspection system to
obtain information about failures and discontinuities, the correct interpretation of the
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obtained signals and their quantitative analysis is challenging to ascertain [3]. Furthermore,
the results obtained through ultrasonic inspection do not depend only on the performance
of the applied ultrasonic system [4]. Instead, they depend on a series of factors related to
the inspector (skill, experience, training, and qualification), to the object under evaluation
(access, geometry, surface conditions, and sample temperature), to existing flaws in the
object (type, shape, location, and position), and also on data analysis tools (signal processing,
visualization in multiple modes, cursors, sizing tools, and reporting tools) available to carry
out such inspection.

Periodic inspections and monitoring are required to detect flaws and guarantee the
integrity of equipment and industrial plants in the oil, gas, and energy sectors. Moreover,
it is profitable for companies that this equipment is inspected while in service, enabling
routine checks and minimizing financial losses related to downtime and the logistics of
shutting down and starting up the equipment or even the complete industrial plant [5].

Performing in-service ultrasonic NDT typically means inspecting materials or equip-
ment under high-temperature conditions. In these situations, proper inspection techniques
and specially developed equipment must be used, and signal processing methods that
consider temperature gradients along the ultrasound path must be applied [5].

Considering the operational and technological challenges, there are two main problems
linked to the application of ultrasonic systems in the inspection of specimens at high
temperatures: damage to the ultrasonic inspection system and distortion of ultrasound
signals [6–9].

Damage to the ultrasonic inspection system due to high-temperature exposure can
occur directly in piezoelectric or other encapsulated elements [10]. Therefore, the direct
application of a conventional ultrasonic probe in hot surfaces, that can cause the active
elements depolarization and thermal expansion of the internal components, must be
avoided [11]. Regarding probe damage, manufacturers of equipment for ultrasonic NDT
report the failure of conventional phased array probes when reaching 80 ◦C. Therefore, this
is the temperature threshold considered as being high temperature for ultrasonic NDT in
this paper. For safe use, it is advised that probe temperature does not exceed 60 ◦C and,
if it does, the exposure time must not be longer than a few seconds.

In this scenario, several papers have been presented aiming to develop transducers
applicable in high-temperature ultrasonic NDT. To this end, the selection of appropriate
piezoelectric elements has been made. In addition, specific production techniques and
the definition of structural materials with favorable characteristics to the application at
high temperatures have been studied [8,9,12]. Generally, difficulties related to thermal
expansion of the active elements, high production cost, and especially difficulties in pro-
ducing materials with stable piezoelectric and electrical properties under high-temperature
conditions are reported.

Furthermore, thermal insulation mechanisms, such as waveguides and wedges, have
been widely applied to protect the ultrasonic measurement equipment from heat damage.
These structures, built with a material of low thermal conductivity, guide the ultrasound
signals from the transducer to the object under inspection, and vice versa, in addition to
promoting the necessary thermal insulation for the preservation of the equipment [13–15].

The development of new non-destructive inspection methods and signal processing
techniques, able to cope with signal distortions, considering the dispersion and transmission
characteristics of ultrasonic signals on the guides, wedges, or other installed apparatus,
is as important as the thermal system protection [11,16,17]. However, in a state-of-the-art
review, it is noticed that few papers have been presented in this context.

The temperature dependence of sound speed is a fundamental problem to be consid-
ered when performing ultrasonic NTD under high temperature conditions [7]. So, aiming
to circumvent the signal distortions problems, the relationship between temperature and
sound speed has been the object of study since the 1970s. [18,19]. Later, through inves-
tigations of ultrasound propagation inside hot materials, the sound speed decrease, as
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well as the attenuation of the signal amplitude, have been correlated with the specimen
temperature increase [6,20].

The temperature gradients observed along the ultrasonic path modify the incidence
angle of sound waves and cause variation of the sound propagating speed, besides propaga-
tion angle changes [7]. Thereby, the ultrasonic systems where the setup inspection, the focal
laws in phased array systems, is defined considering homogeneous temperature along
the wave path, will be subject to more uncertainties, measurement errors ,and incorrect
characterization of the flaws [7,21]. This fact is evident in the experimental tests presented
by Huggett (2017) [22], in which the errors in terms of identifying the depth and diameter of
side-drilled holes are increasingly more significant with the increase in the temperature of
the body under evaluation. As a result, the correction of the focal laws is such a significant
action when performing high-temperature inspections [21].

The first step to correct the focal laws is knowing the ultrasonic path inside the
specimen in high temperature. In this direction, mathematical models, capable of predicting
the trajectory of ultrasonic beams when they propagate in anisotropic media, are presented
by Mineo, Lines, and Cerniglia (2021) [23] and Marvasti (2014) [21]. The model proposed
by Mineo, Lines, and Cerniglia (2021) [23] is used to exemplify a welding process in
which the region close to the weld joint is considered to have several layers at different
temperatures. The results obtained demonstrate the deflection of ultrasonic beams as a
function of temperature gradients in the metallic body. The model presented by Marvasti
(2014) [21], in turn, is used to develop a method for correcting the distortions suffered by
ultrasonic signals due to the presence of thermal gradients along the sonic path.

Although the effects of temperature gradients on NDT are reported in the bibliography,
there is a significant gap to be filled to compensate for such distortions suffered by ultrasonic
signals. Neither practical methods of focal laws correction or methods based on digital
post-processing of signals are sufficiently developed.

In this direction, this paper presents a method to correct the focal laws in high temper-
ature phased-array ultrasonic NDT. The implementation of the tool, which is based on ray
tracing concepts, required a practical study to define the influence of temperature on the
speed of sound propagation, as well as a mathematical model for transient heat propaga-
tion through an ultrasonic wedge, both presented in this paper. Finally, through tests in
simulation environments, the effects of different inspection configurations are presented
and discussed, in addition to the validation of concepts through the comparison between
inspection reconstructed images with and without the use of the proposed method.

2. The Temperature Dependence of the Sound Speed and Its Effects in Ultrasonic NDT

The modeling of the sound speed behavior as a function of the propagation media
temperature is the first step to derive a solution for ultrasound beam distortions due to tem-
perature gradients [7]. The determination of media temperature distribution profiles inside
the specimen, waveguides, or wedges, over the inspection time, is another necessary step.

Therefore, the next section brings out a study of the relationship between temperature
and sound speed, while Section 2.2 presents the modeling and simulation of heat transfer
in a polyetherimide wedge over time due to its contact with a metallic surface at high tem-
perature. In addition, in order to evaluate the effects related to the presence of temperature
gradients along the ultrasonic path, simulations of non-destructive tests are carried out and
discussed in Section 2.3.

2.1. Study of Temperature and Sound Speed Relationship

The temperature dependence of sound speed is a fundamental feature to be studied
to avoid the issues related to ultrasonic signals distortions by temperature gradients.
Then, looking for a valid smooth spatial temperature variation, an approximately linear
dependence is assumed for the temperature and acoustic speed relationship which can
be represented by Equation (1) [21]. The parameter α means the sound speed variation
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rate due to the temperature T variation, while V0 means the propagation speed in the
temperature of T = 0 ◦C.

V = V0 + α · T (1)

Sound speed is unique for each material and depends on physical parameters such as
density and elasticity, both temperature-dependent [24]. So, for each material tested, it is
crucial to define the parameters V0 and α in Equation (1).

To accurately estimate these parameters, it is necessary to minimize the temperature
changes in the specimen while testing. Therefore, the conception of an experiment with
uniform temperature on test bodies comes as a requisite. The experimental apparatus used
in tests is presented in Figure 1 and consists of a thermostatic bath, able to perform external
flow of fluid in controlled temperature, and a container, in which the thermal exchange
between the specimen and the circulating liquid happens.

Figure 1. Experimental apparatus used in the tests to determine the temperature dependence of the
sound speed. The setup consists of a thermostatic bath, capable of promoting the external flow of
temperature-controlled fluid, and a container where the thermal exchange happens.

The experimental procedure consists of exposing the specimen to a controlled temper-
ature liquid for a period long enough to provide a homogeneous temperature over all the
in-test material. A period of 60 min, counted from the temperature stabilization instant,
was adopted. Then, using the Ominiscan MX2 console, data are acquired and saved for
offline processing. Next, the ultrasonic test setup is configured to measure the specimen
thickness that, related to ultrasonic waves transit time, defines the mean acoustic speed
through the material.

Two specific materials are tested: super duplex steel and polyetherimide. Super
duplex steel was chosen because it is commonly used in the oil industry to build equipment
that operates at high working temperatures, such as pressure vessels and multiphase
separators. Polyetherimide was chosen because it is specially developed to manufacture
high-temperature ultrasonic wedges due to its low thermal conductivity.

Both materials are assayed in temperatures between 10 ◦C and 80 ◦C, with successive
increments of 10 ◦C. This temperature range, defined for the study of the relationship
between temperature and sound speed, is wide enough for the results obtained to be used
in defining the parameters of Equation (1). It stands out that the thermal expansion of the
specimens is adequately measured and compensated.
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The standard ASME20 block, presented in Figure 2a, is used for the super duplex steel
tests, while the polyetherimide ones are performed using the SA32C-ULT-0L-IHC wedge
from Olympus, shown in Figure 2b.

(a) (b)

Figure 2. Specimens used in the tests to determine the thermal dependence of the sound speed:
(a) Super duplex steel block and (b) Olympus SA32C-ULT-0L-IHC wedge in polyetherimide.

The analysis of the dataset is carried out with the Olympus NDT TomoView software.
The necessary transit time of the ultrasonic signal to reach the opposite face of the specimen
is acquired and combined with the specimen thickness, measured by a digital micrometer,
resulting in sound speed values for the two materials under study. Table 1 presents the
sound speed in super duplex steel and polyetherimide to each assayed temperature.

Table 1. Super duplex steel and polyetherimide sound speeds under different temperatures.

Temperature Super Duplex Stell Sound Speed (m/s) Polyetherimide Sound Speed (m/s)
(◦C) Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

10 6018.7 6009.7 6036.6 2470.4 2470.4 2469.1
20 5972.7 5965.6 6024.0 2448.6 2447.4 2447.4
30 5935.9 5935.8 5936.0 2433.1 2431.9 2431.9
40 5923.1 5923.2 5923.1 2417.8 2419.0 2419.0
50 5880.4 5884.6 5923.7 2401.5 2403.8 2405.0
60 5846.9 5872.7 5920.4 2391.2 2393.5 2394.6
70 5852.2 5864.9 5805.5 2383.2 2384.4 2387.8
80 5852.5 5848.3 5865.2 2354.0 2357.4 2355.3

From the speed values computed at each assayed temperature, the parameters V0 and
α, given in Equation (1), are defined for both super duplex steel and polyetherimide by
linear regression. The results are presented in Table 2.

Table 2. Parameters V0 and α defined, to super duplex steel and polyetherimide, by linear regression.

Material V0 (m/s) α (m/s/◦C)

Super Duplex Steel 6030 −2.491
Polyetherimide 2480 −1.484

As the relationship between the temperature and the sound speed for the materials is
known, the next step is to draw the temperature profile along the ultrasonic signal path
over the inspection time. So, in the next section, a transient heat transfer model in an
ultrasonic inspection wedge is presented.

2.2. Heat Transfer in Ultrasonic Inspection Wedge

During a high-temperature ultrasonic inspection, heat transfer occurs, by conduction
and convection, from the hot metal surface to the inspection system. In order to investigate
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the transient temperature distribution profile in the ultrasonic wedge during the inspection
procedure, that is, from the moment the wedge is placed in contact with a heated metal
surface, a heat transfer simulation model is designed in COMSOL software.

The SA32C-ULT-60L-IHC polyetherimide wedge is associated with a super duplex
steel plate, and the entire setup is involved in an air volume for simulated modeling.
The wedge and the steel plate are set at initials temperatures of 25 ◦C and 120 ◦C, re-
spectively. The air volume is set to an initial temperature of 25 ◦C and moves at a speed
of 0.05 m/s. The wedge temperature is defined as the ambient temperature, while the
metallic surface temperature is defined with reference to the operating temperature of
oil dehydrator tanks that are usually installed in oil exploration platforms. The model
solution is based on the toolboxes heat transfer in solids and fluids and laminar flow in a
three-dimensional mode. The other physical and thermal proprieties of super duplex steel
and polyetherimide, necessary to the simulation model, are presented in Table 3.

Table 3. Physical and thermal proprieties of super duplex steel and polyetherimide used in the
transient heat transfer model in COMSOL.

Material Density (kg/m3)
Thermal

Conductivity
(W/m/K)

Thermal Capacity
(J/kg/K)

Super Duplex Stell 7820 17 450
Polyetherimide 1270 0.036 1890

Figure 3 shows the finite element mesh obtained with COMSOL software, and a
temperature distribution frame during simulation. In Figure 3b we can see the air flux
going from right to left in the image and the aspect of heat convection generated by the
heated steel plate. In Figure 4, the temperature distribution in the outer faces of the wedge
for different simulation times is shown, while Figure 5 presents the temperature gradients
reached in a longitudinal section, taken in the center of the wedge, for the same simulation
times. This central section is highlighted as it is taken as the plane through which the
ultrasonic beams propagate.

From Figure 5, it is possible to observe that heat transfers predominantly by conduc-
tion, from the hot metallic body to the lower face of the wedge and towards its upper face.
However, the heat transfer by convection is still observed, characterized by the heated fluid
air close to the side faces of the wedge. This effect is more evident on the smallest side face
of the wedge than on the bigger one due to the wind direction.

The temperature distribution in the wedge is simulated during time windows of
60 min. The generated data is used, combined with the results from the experimental tests
presented in Section 2.1, as input to a phased-array-based ultrasonic NDT simulated study,
presented in the next Section 2.3.

Figure 3. Heat transfer model in COMSOL: (a) Finite element mesh created for model solution;
(b) Frame of the temperature distribution taken in the simulation time of 2.5 min.



Sensors 2022, 22, 2799 7 of 16

Figure 4. Simulated frames showing the temperature distribution in the outer faces of the wedge for
three specific times. The heat propagation to the upper regions of the wedge can be observed.

Figure 5. Simulated frames showing the temperature distribution in a longitudinal section taken in
the center of the wedge for three specific times. They will be used as temperature distribution maps
in the high-temperature ultrasonic NDT simulation presented in Section 2.3.
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2.3. Simulation of NDT Procedures Subjects to Temperature Gradients

In order to evaluate the effects related to the presence of temperature gradients along
the ultrasonic path, that is, to verify how speed changes and sonic beam distortion impact
on NDT, if not adequately treated, simulations of non-destructive tests were carried out in
the software CIVA.

As there is no possibility, at the present moment, to simulate at CIVA temperature
gradients inside the wedge, the functionality Variable Temperature or/and Speed (VTS) in
liquid medium was used in the wedge representation. This tool allows the simulation of
mediums with changes in temperature, sonic speed, or both. In this paper, the variable
temperature option is used.

The use of the VTS tool has, as a basic requirement, the definition of the specimen
geometry. It is possible to choose several pre-established formats such as planar, cylindrical,
conical, spherical, or a 2D or 3D model of the test body. In the present paper, a 2D model of
an extended test body, composed by the wedge and the metal block, is used as a prototype.
Figure 6a shows the prototype layout, its dimensions, and each segment. The chosen
dimensions, as in the heat transfer model, are those of the Olympus SA32-ULT-N60L-IHC
wedge. Once validated, the 2D model is extruded, resulting in wedge/metal block set,
shown in Figure 6b.

(a) (b)

Figure 6. Extended test body, formed by the wedge and the metal block, configured in software CIVA
to make it possible to simulate ultrasonic NDT subjects to temperature gradients. (a) 2D CAD and
(b) test body resulting from the extrusion of the 2D model.

The definition of an interface segment bisects the test body into two distinct pieces,
to which it is possible to configure materials with different physical properties. In this paper,
it is considered that the contact with the wedge will not significantly impact the temperature
of the metallic test body, as this test body has much bigger dimensions compared with the
wedge ones. So, the temperature of the steel block is set as homogeneous and constant.

The wedge, in turn, is chosen as a fluid with variable temperature. For this, it is
necessary to specify the temperature distribution map throughout it. The temperature maps
used in the NDT simulations are obtained through the heat propagation model presented
in Section 2.2, and the maps are imported into CIVA after being formatted according to the
pattern specified in the software user manual. Still, regarding the wedge representation in
CIVA, it is necessary to choose the parameters that relate to the sound propagation speed
and the temperature of the propagation medium. To this end, the parameters defined in
the experimental tests presented in Section 2.1 are chosen.
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The Olympus 5L64-A32, a 64-element Phased Array (PA) transducer, is selected to
perform the simulations, as well as a linear sweep (electronic sweep) mode. The use of
16 active elements in each sequence was defined, with one element stepping between
subsequent sequences, resulting in a total of 49 sequences. That is, elements 1 to 16 are
used for the first sequence, elements 2 to 17 are used for the second sequence, and so on
until sequence 49, for which elements 49 to 64 are used.

The refraction angle is set as θr = 40◦. The flaw to be analyzed is a side-drilled hole
(SDH) centered in the coordinates x = 8 mm and z = 75 mm. The coordinates system origin
is placed in the center of the PA transducer and the z coordinate is defined as perpendicular
to the face of the probe. Figure 7 presents the final simulation setup, with the probe and
flaw representation as well as the temperature distribution map throughout the wedge.

In Figure 7, the paths performed by ultrasonic beams emitted in three different posi-
tions, beginning, center, and end of the PA transducer, are highlighted. It is worthwhile to
note that the incidence angles are different for all beams as each beam is subject to different
temperature gradients. In the realized tests, it is also noteworthy that beams originating
from the same position but at different times also have different incidence angles due to
the variation of the sonic paths as a function of the temperature time variation.

Figure 7. A side view of the extended test body, with temperature gradients throughout the wedge
and the definition of an SDH-type flaw. Emphasis on the beams incidence angles for the ultrasonic
emission from different positions in the PA transducer.

After simulations, the data is processed, and several images are derived to evaluate
the effects of different temperature gradients on image reconstruction. A total of four
scenarios have been simulated. The first is used as a reference to establish location and
positioning errors; it also represents the initial moment of inspection, corresponding to
a situation for which there are no temperature gradients in the wedge, and this can be
taken as a homogeneous body. The result of the reconstruction, in an E-Scan mode, can be
seen in Figure 8. The cursors were positioned in the pixel of greater intensity and the flaw
positioning indication, x = 7.78 mm and z = 74.63 mm, corresponds to the SDH edge.
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Figure 8. Ultrasonic E-Scan image of the side-drilled hole for the case with no temperature gradients
throughout the wedge. It is taken in the initial instant of the inspection procedure and is used as a
reference to establish location and positioning errors due to high-temperature effects.

Figure 9 shows the E-Scan images for the inspections simulated with the temperature
gradients shown in Figure 5, which represents the temperature distribution profiles for 20,
40, and 60 min elapsed from start of inspection, respectively.

Note that the position of the flaw becomes more distant with the temperature growth.
This effect is consistent with the decrease in sound propagation speed as a function of
temperature increase, a fact that is described in the literature and verified experimentally
in the tests presented in Section 2.1.

A second effect can be observed by comparing the sequence of images shown in
Figure 9. It is the change in the slope of the flaw representation. This effect is associated
with the deflection due to the ultrasound beam behavior as a function of the temperature
anisotropy of the medium.

Figure 9. Ultrasonic E-Scan images of the side-drilled hole for the case with temperature gradients
throughout the wedge. The results were obtained for the exposure of the ultrasonic system to high
temperatures for (a) 20 min, (b) 40 min, and (c) 60 min.
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In order to verify the total flaw positioning error, the pixels of greater intensity have
been identified in the reconstructed images for the simulations without temperature gradi-
ents and with gradients resulting from 60-minute exposure. Comparison of the results of
Figures 8 and 9c shows a vertical displacement of 2.55 mm and a horizontal displacement
of 0.46 mm, resulting in a total displacement of 2.59 mm.

The results presented in this section show the need to consider temperature gradients
along the sonic path to minimize errors resulting from distortions suffered by the ultrasonic
beam in high temperatures NDT. Therefore, Section 3 presenteds a technique, based in ray
tracing, to correct the focal laws and compensate the effects of thermal gradients throughout
the ultrasonic wedge.

3. Ray Tracing Based Focal Laws Correction

A challenge in the development of models for ultrasonic phased array NDT concerns
the propagation of the ultrasonic wave in heated media. The temperature gradients present
in an inspected object cause variation in sound speed, which in turn cause deviations in the
ultrasound trajectory along the material [5]. This phenomenon affects image reconstruction
and may cause errors in the flaw positioning and characterization.

This can be mitigated if the image reconstruction algorithm takes into account trajec-
tory deviations or if such distortions are compensated in the calculation of the focal laws.
In both cases, it is necessary that the algorithms are previously supplied with information
about the transit times or perform some kind of trajectory simulation themselves.

The estimation of transit time considering temperature gradients is essentially based
on simulations, for which there are three predominant methods: finite elements, finite
differences, and ray tracing [21].

Applying the concept of ray tracing, in media whose acoustic speed varies smoothly,
the propagation of ultrasonic waves is described by a first-order ordinary differential
equations (ODEs) system. By tracking a single point on a wavefront, the wavefront moves
with a local speed V(x, z) in the direction determined by the angle φ with respect to the
axis x. Thus, for each local sound speed, the longitudinal and perpendicular displacements
is written as Equations (2) and (3) [21].

dz
dt

= V(x, z) · sin(φ) (2)

dx
dt

= V(x, z) · cos(φ) (3)

with a variation of direction given by:

dφ

dt
= î · ~∇V(x, z) · sin(φ)− k̂ · ~∇V(x, z) · cos(φ) (4)

where ~∇ is the gradient operator, and î and k̂ are the unit vectors in the direction of the axis
x and z, respectively.

By solving the Equations (2)–(4), it is possible to determine not only the path taken
by the ultrasonic wavefront, but also the transit time values needed to specify the relative
firing delays for each PA active element, enabling the definition of focal laws so that the
effects of temperature gradients are mitigated.

In this work, the ODEs system is solved with the software MATLAB and the results are
used to calculate focal laws for situations where inspection is made at high temperatures.
In such cases, the propagation media are subject to thermal gradients and, consequently,
propagation speed variations and distortions of the ultrasonic beans are observed and must
be corrected.

The Figure 10 presents two sequences of the focal law calculated through the proposed
focal law correction tool, for a refracted angle of 40◦, compared to the same sequences of
the focal law obtained by conventional tool, which disregard the presence of temperature



Sensors 2022, 22, 2799 12 of 16

gradients. The relative firing time delays of the first sequence (elements 1 to 16) and the last
sequence (elements 49 to 64) of the linear scan are illustrated. The curve in black represent
the relative firing time delays for conventional focal law calculator tool, and the curve
in red represents the relative firing time delays obtained through the tool that considers
the temperature gradients along the sonic path when performing the calculation of the
focal law.

Notably, in Figure 10 the delay times are expressed in relation to the last of the
16 elements used to form the plane wave. This is because it takes longer for the wave
emitted by the last element of the aperture to travel from the transducer to the plane
wavefront selected for calculation. Therefore, this element must be fired first, at a time
defined as t = 0 s. Thus, all other elements are then triggered at their respective relative
delay times with respect to this reference element.

(a)

(b)

Figure 10. Focal Laws defined for generating a plane wave with an angle of refraction 40◦ in
inspection procedures with and without temperature gradients along the sonic path. Wavefront
formed (a) using the first 16 active elements of the PA transducer and (b) using the last 16 active
elements of the PA transducer.

Other refraction angles were assayed and, for all of them, it is observed that the use of
the last 16 elements of the phased array transducer implies the need for a minor correction
of the Focal Laws. It is also noted that the choice of smaller refraction angles also implies a
smaller need for correction, as summarized in Table 4.
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Table 4. Comparison of the maximum correction times of the Focal Laws when using the first 16
(1–16) and the last 16 (49–64) active elements of the phased array transducer for different refraction
angles θr.

Refraction Angle Active Elements Maximum Correction Time
(ns)

60◦ 1–16 58.8
49–64 13.3

50◦ 1–16 58.0
49–64 12.7

40◦ 1–16 56.5
49–64 10.5

30◦ 1–16 54.7
49–64 6.1

From the application of the proposed method, the focal laws could be imported into
the CIVA and, in order to evaluate the ability to correct positioning errors related to the
presence of temperature gradients along the sonic trajectory, new simulations could be
carried out.

Figure 11 presents a comparison between the reconstructed E-scan inspection image for
the case where temperature gradients along the sonic path are not considered (Figure 11a)
and the reconstructed inspection image after proper treatment of the thermal gradients
through application of the corrections proposed in this work (Figure 11b).

(a) (b)

Figure 11. Ultrasonic E-Scan images of the side-drilled hole for the case where the temperature
gradients along the sonic path are (a) disregarded and (b) appropriately treated by applying the
proposed focal law correction methodology.

The positioning errors observed after applying the focal law correction method in the
x and z directions are 0.33 mm and 0.75 mm, respectively, resulting in a total positioning
error of 0.82 mm. In this way, the application of the proposed focal law correction method,
implemented and tested through simulation, brings an improvement in the positioning of
the discontinuity, resulting in an approximate decrease of 68% of the error associated with
temperature gradients along the sonic path.
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When looking at Figure 11b, it is possible to notice a certain distortion in the failure
representation. This is due to the fact that the correction is performed beam by beam and
that the correction capacity is directly impacted by the origin of each sound wave and by
the gradients to which it is submitted. Thus, the correction for certain beams does not
present the same efficiency as for the others, resulting in distortions in the reconstructed
image. To minimize this effect, the calculation routines are being refined in order to define
the optimal parameters in terms of the integration step.

4. Conclusions

The deflection caused in ultrasonic beams due to temperature gradients along the
sonic path is one of the problems associated with applying ultrasonic techniques for non-
destructive tests at high temperatures. In order to mitigate this effect, it is necessary to know
the temperature distribution in the ultrasonic wedge during the inspection procedure.

Therefore, a model of heat propagation throughout the polyetherimide wedge was
developed. In order to contemplate the heat transfer by conduction and convection, the heat
transfer in solids and fluids and laminar flow COMSOL toolboxes were applied. The heat
propagation was simulated for a total of 60 min, and the resulting heat distributions were
used to simulate NDT subject to temperature gradients.

Knowing the temperature distributions throughout the wedge, it is also necessary
to define the relationship between the propagation speed of the ultrasonic wave and the
temperature of the medium in which it propagates. This relationship was experimentally
evaluated for the polyetherimide wedge and super duplex steel. The sound speed, in both
media, was tested for a range between 10 ◦C and 80 ◦C. The results obtained were used in
a linear regression process to define the linear relationship between propagation speed and
temperature for the materials tested. The experimental results showed a sound–propagation
speed decrease due to an increase in medium temperature at rates consistent with those
presented in the literature.

The relationship between propagation speed and wedge temperature and the modeled
temperature distribution were then used to simulate NDT subjects to temperature gradients
in the CIVA. The obtained simulation results have shown an increase in the positioning error
with the increase in the wedge exposure to heat from the metallic body under inspection.
After 60 min of inspection, a positioning error of 2.59 mm was observed comparing the
results obtained with and without temperature gradients. Furthermore, due to ultrasonic
beam deflection, a change in the slope of the flaw representation was also observed.

Using the focal law correction tool, which is based on ray tracing concepts, the relative
excitation delays of the active elements were calculated considering the temperature gra-
dients along the sonic path and, in this way, mitigating the distortion effects of the sonic
beam as a function of the thermal anisotropy of the material.

The corrected focal laws were then formatted and imported into the CIVA software so
that, through simulated tests, the effectiveness of the technique could be verified. The re-
sults demonstrate a reduction of more than 68% in the error of flaw positioning compared
to the situation in which the temperature gradients are disregarded. The method, however,
by promoting beam-to-beam correction, causes some distortion in the reconstructed image.

In general, the results presented in this work show the need to consider temperature
gradients along the sonic path to minimize errors resulting from distortions suffered by the
ultrasonic beam in high-temperature NDT.

The methodology presented in this paper can be used to solve similar cases by using
the following steps:

1. Implement the heat propagation model in dedicated software, defining the wedge’s
geometry as well as its physical and thermal properties. Boundary conditions and
solution parameters of the thermal model must also be defined. At the end of the
simulation, it is recommended to use the longitudinal section taken at the center of
the wedge as the plane through which the ultrasonic beams propagate;
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2. Experimentally define the relationship between the speed of sound propagation and
the temperature of the medium under study. To do this, ensure homogeneous temper-
ature along the test body and measure the propagation velocity with an appropriate
ultrasonic device. Consider the thermal expansion of the test body in order to obtain
more accurate results;

3. Apply ray tracing concepts for the definition of the sonic paths and the transit times
necessary for the generation of a plane wave and, thus, proceed the definition of the
appropriate focal laws. The implementation might be easier by starting the solution
from points sampled on a straight line inside the test body, with slope defined by the
desired angle of refraction;

4. Simulate cases of phased array ultrasonic inspection at homogeneous temperature
and at high temperatures (using the modeled temperature profiles) in a tool that
allows the import of the corrected focal laws.

Future works on high-temperature ultrasonic inspection techniques point to the vali-
dation, in practical tests, using certified specimens, of the results presented in this paper
and, also, to develop a complementary procedure aiming the minimization of distortions
that can appear in the reconstructed images.

Author Contributions: Conceptualization, J.S.S. and F.N.J.; Formal analysis, D.R.P., L.V.A. and F.N.J.;
Funding acquisition, J.E.R.; Methodology, J.S.S.; Project administration, F.N.J.; Software, J.S.S. and
J.G.; Supervision, J.E.R.; Validation, J.S.S., J.G. and T.A.R.P.; Visualization, J.G., T.A.R.P., D.R.P., L.V.A.
and F.N.J.; Writing—original draft, J.S.S.; and Writing—review and editing, D.R.P., L.V.A. and F.N.J.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by PETROBRÁS-5850.0105441.17.9-CRAS 3793.12483-4 grant
through the PETROBRAS Human Resources Training Program and through the Agência Nacional
do Petróleo, Gás Natural e Biocombustíveis (ANP) Human Resources Program for the Oil and Gas
Sector—PRH-ANP.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors thank the National Counsel of Technological and Scientific Devel-
opment of Brazil - CNPq (grants 316234/2021-4, 306232/2018-9, 309634/2021-0), Coordination for the
Improvement of Higher Level People (CAPES) and the Brazilian Ministry of Science, Technology,
Innovation and Communication (MCTIC). The authors would like to immensely thank the researchers
of the CRAS project (Climbing Robot for Autonomous InSpection) who contributed to the realization
of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hellier, C.; Shakinovsky, M. Handbook of Nondestructive Evaluation; Mcgraw-Hill: New York, NY, USA, 2001; Volume 10.
2. Thompson, R.B.; Thompson, D.O. Ultrasonics in nondestructive evaluation. Proc. IEEE 1985, 73, 1716–1755. [CrossRef]
3. Schmerr, L.W. Fundamentals of Ultrasonic Nondestructive Evaluation—A Modeling Approach; Springer: Berlin/Heidelberg,

Germany, 2016.
4. Moles, M. Advances in Phased Array Ultrasonic Technology Applications; Technical Report; Olympus: Waltham, MA, USA, 2007.
5. Marvasti, M.H.; Sinclair, A.N. Phased array inspection at elevated temperatures. In Proceedings of the 2014 IEEE International

Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014; pp. 854–857.
6. Offterdinger, K.; Waschkies, E. Temperature dependence of the ultrasonic transmission through electrical resistance heated

imperfect metal–metal interfaces. NDT E Int. 2004, 37, 361–371. [CrossRef]
7. Kelly, S.; Atkinson, I.; Gregory, C.; Kirk, K. 10D-1 On-Line Ultrasonic Inspection at Elevated Temperatures. In Proceedings of the

Ultrasonics Symposium, New York, NY, USA, 28–31 October 2007; pp. 904–908.
8. Shih, J.L.; Kobayashi, M.; Jen, C.K. Flexible metallic ultrasonic transducers for structural health monitoring of pipes at high

temperatures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 2103–2110. [CrossRef] [PubMed]
9. Dhutti, A.; Tumin, S.; Mohimi, A.; Kostan, M.; Gan, T.; Balachandran, W.; Selcuk, C. Development of low frequency high

temperature ultrasonic transducers for in-service monitoring of pipework in power plants. Procedia Eng. 2016, 168, 983–986.
[CrossRef]

http://doi.org/10.1109/PROC.1985.13367
http://dx.doi.org/10.1016/j.ndteint.2003.11.001
http://dx.doi.org/10.1109/TUFFC.2010.1659
http://www.ncbi.nlm.nih.gov/pubmed/20876000
http://dx.doi.org/10.1016/j.proeng.2016.11.321


Sensors 2022, 22, 2799 16 of 16

10. Atkinson, I.; Gregory, C.; Kelly, S.P.; Kirk, K.J. Ultrasmart: Developments in ultrasonic flaw detection and monitoring for high
temperature plant applications. In Proceedings of the ASME 2007 Pressure Vessels and Piping Conference. American Society of
Mechanical Engineers, San Antonio, TX, USA, 22–26 July 2007; pp. 573–585.

11. Cegla, F.B.; Cawley, P.; Allin, J.; Davies, J. High-temperature (>500 C) wall thickness monitoring using dry-coupled ultrasonic
waveguide transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 156–167. [CrossRef] [PubMed]
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