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Abstract of the Dissertation

Effects of Thermochemical Nonequilibrium on

Hypersonic Boundary-Layer Instability in the

Presence of Surface Ablation or Isolated

Two-Dimensional Roughness

by

Clifton Holden Mortensen

Doctor of Philosophy in Aerospace Engineering

University of California, Los Angeles, 2015

Professor Xiaolin Zhong, Chair

The current understanding of the effects of thermochemical nonequilibrium on hy-

personic boundary-layer instability still contains uncertainties, and there has been

little research into the effects of surface ablation, or two-dimensional roughness, on

hypersonic boundary-layer instability. The objective of this work is to study the

effects of thermochemical nonequilibrium on hypersonic boundary-layer instabil-

ity. More specifically, two separate nonequilibrium flow configurations are studied:

1) flows with graphite surface ablation, and 2) flows with isolated two-dimensional

surface roughness. These two flow types are studied numerically and theoretically,

using direct numerical simulation and linear stability theory, respectively.

To study surface ablation, a new high-order shock-fitting method with ther-

mochemical nonequilibrium and finite-rate chemistry boundary conditions for

graphite ablation is developed and validated. The method is suitable for direct

numerical simulation of boundary-layer transition in a hypersonic real-gas flow

with graphite ablation. The new method is validated by comparison with three

computational data sets and one set of experimental data. Also, a thermochemical

nonequilibrium linear stability theory solver with a gas phase model that includes
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multiple carbon species, as well as a linearized surface graphite ablation model, is

developed and validated. It is validated with previously published linear stability

analysis and direct numerical simulation results. A high-order method for dis-

cretizing the linear stability equations is used which can easily include high-order

boundary conditions. The developed codes are then used to study hypersonic

boundary-layer instability for a 7 deg half angle blunt cone at Mach 15.99 and

the Reentry F experiment at 100 kft. Multiple simulations are run with the same

geometry and freestream conditions to help separate real gas, blowing, and car-

bon species effects on hypersonic boundary-layer instability. For the case at Mach

15.99, a directly simulated 525 kHz second-mode wave was found to be signifi-

cantly unstable for the real-gas simulation, while in the ideal-gas simulations, no

significant flow instability is seen. An N factor comparison also shows that real-gas

effects significantly destabilize the flow when compared to an ideal gas. Blowing

is destabilizing for the real gas simulation and has a negligible effect for the ideal

gas simulation due to the different locations of instability onset. Notably, carbon

species resulting from ablation are shown to slightly stabilize the flow for both

cases. For the Reentry F flow conditions, inclusion of the ablating nose cone was

shown to increase the region of second mode growth near the nose cone. Away

from the nose cone, the second mode was relatively unaffected.

Experimental and numerical results have shown that two-dimensional surface

roughness can stabilize a hypersonic boundary layer dominated by second-mode

instability. It is sought to understand how this physical phenomenon extends

from an airflow under a perfect gas assumption to that of a flow in thermochem-

ical nonequilibrium. To these ends, a new high-order shock-fitting method that

includes thermochemical nonequilibrium and a cut-cell method, to handle com-

plex geometries unsuitable for structured body-fitted grids, is presented. The

new method is designed specifically for direct numerical simulation of hypersonic

boundary-layer transition in a hypersonic real-gas flow with arbitrary shaped sur-
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face roughness. The new method is validated and shown to perform comparably

to a high-order method with a body-fitted grid. For a Mach 10 flow over a flat

plate, a two-dimensional roughness element was found to stabilize the second mode

when placed downstream of the synchronization location. This result is consistent

with previous results for perfect-gas flows. For a Mach 15 flow over a flat plate, a

two-dimensional surface roughness element stabilizes the second-mode instability

more effectively in a thermochemical nonequilibrium flow, than in a corresponding

perfect gas flow.
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CHAPTER 1

Introduction

The transition from laminar-to-turbulent flow in a bounded shear layer has

been an often perplexing problem for fluid dynamicists. Some of the pio-

neering research on the transition process in an incompressible viscous flow for a

bounded shear layer was performed by Tollmien [Tol29] and Schlichting [Sch33]. It

resulted in the discovery of the famous T-S, or Tollmien-Schlichting, waves. These

are instability waves of a viscous nature that propagate in the streamwise direction

while growing exponentially and often leading to the transition of a wall-bounded

flow from laminar to turbulent. This discovery has served as a basis for others

who extended the ideas to more complex flows. Since then, unstable wave-like

modes have been found for many other wall-bounded flows such as compressible

and hypersonic boundary layers.

While it is possible to find analytically whether a boundary layer is stable or

unstable, actually predicting the location of transition onset, as well as identify-

ing the exact physical mechanisms that lead to transition in complex flows, has

proven quite challenging. An instance of these complex flows is high-speed flows,

a subset of which is planetary entry. In [BC06] it is noted that “[r]esearch priori-

ties for planetary-entry gas dynamics address uncertainty reduction in prediction

of...laminar to turbulent transition criteria and turbulent heating levels on blunt

bodies, particularly under conditions of surface ablation.”

Boundary-layer transition has a strong effect on the estimation of heating

rates for vehicles in high-speed flows. A turbulent boundary layer has a much
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higher heating rate than a corresponding laminar boundary layer. In turn, the

heating rates impact the design of a vehicle’s thermal protection system which

has a strong impact on the overall weight and cost of the vehicle. Maintaining a

laminar boundary layer over a vehicle surface could lead to a tremendous reduction

in heat transferred to the vehicle’s surface, thereby decreasing the cost of the

vehicle. Clearly, the less expensive the aerospace vehicle the more attractive it is

assuming the performance is not degraded.

Figure 1.1 gives a schematic of boundary-layer transition paths based on the

environmental disturbance level. Path A details the transition path for hyper-

sonic boundary layers over flat plates and sharp cones in a low disturbance envi-

ronment. A low disturbance environment is similar to realistic flight conditions.

Receptivity is the process by which environmental disturbances are converted to

flow instabilities. Eigenmode growth for hypersonic boundary layers is growth of

small amplitude wave-like disturbances and is dominated by second mode growth.

In the second mode growth process, linear disturbances grow exponentially and

their growth is generally the slowest part of the transition process. Schubauer and

Skramstad [SS48] found the first experimental evidence of wave-like disturbances

occurring in a low-speed flat-plate boundary layer during the transition process.

Once instabilities have significantly amplified in the boundary layer, their inter-

actions are no longer negligible. This results in mode interactions and parametric

instabilities, which then leads to breakdown and finally turbulence. Path B is sim-

ilar to Path A, but it also includes transient growth. Transient growth is algebraic

growth of freestream disturbances which can lead to a larger initial amplitude for

disturbances when they reach eigenmode growth. Paths C, D, and E all skip the

eigenmode growth region. This can be for various reasons such as high amplitude

freestream disturbances, or roughness on the body. In this work, the focus will be

on modal instabilities that occur in the eigenmode growth process such as Mack’s

second mode.

2



Figure 1.1: Paths to boundary-layer transition as a function of increasing distur-

bance level. Figure reproduced from Reshotko (2008) [Res08].

Laminar-turbulent transition in hypersonic boundary layers is a complex phe-

nomena involving multiple factors such as freestream disturbances, receptivity,

linear eigenmode growth, and multiple paths to transition. In this research, the

physical phenomena associated with boundary-layer instability in thermochemical

nonequilibrium flows is investigated. Specifically, two flow types will be investi-

gated: 1) flows with surface ablation and 2) flows with isolated surface roughness.

When ablation is accounted for in hypersonic boundary-layer transition, there are

added difficulties such as shape change, ablation induced roughness, gas influx at

the surface, thermochemical nonequilibrium, introduction of new chemical species

from surface reactions, and the reactions of those species with the freestream gas.

Surface roughness adds complexities to a flow such as recirculation regions, flow

separation, and shock/boundary layer interaction. Also, there can be a signif-

icant increase in the complexity of the simulation when accounting for surface

roughness, especially distributed surface roughness.
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1.1 Linear Stability Theory

Numerical modeling of transition phenomena plays an important role in studying

hypersonic boundary-layer transition as it can be extremely difficult to replicate

exact flight conditions in wind tunnels. One method for modeling transition is

linear stability theory (LST) which is an analytical tool used to test the stability

of boundary layers to wave-like disturbances.

Significant research on the linear stability of compressible boundary layers

has been performed by Mack [Mac84]. Mack found that the major instability

waves for hypersonic boundary layers with a perfect gas assumption are the first

and second Mack modes. Following researchers have implemented numerical codes

using linear stability theory to compute the most unstable frequencies for a variety

of flow conditions and gas models. Malik [Mal90] implemented multiple numerical

methods for linear stability of perfect gas hypersonic boundary layer flows. Malik

dropped the α2 terms to compute the eigenvalue spectrum (global method) and

then retained the α2 term and used an iterative method to refine the eigenvalue

(local method).

Thermochemical nonequilibrium flows can also be analytically analyzed using

LST. Stuckert and Reed [SR94] used nonequilibrium LST to study the shock layer

of a sharp cone with a 10 deg half angle at Mach 25 where the base flow was com-

puted using the parabolized Navier-Stokes equations. They found that the second

Mack mode is shifted to lower frequencies compared to perfect gas calculations.

They attribute this to an increase in the size of the region of relative supersonic

flow. In Stuckert’s dissertation [Stu91], a formulation for the five-species chem-

ical nonequilibrium and thermal equilibrium linear stability equations is given.

Hudson [Hud96] outlined the linear stability equations for a five-species thermo-

chemical nonequilibrium flow. Thermal nonequilibrium is accounted for using a

two temperature model. The base flow for the stability calculations is computed
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from the Navier-Stokes equations using a modified Steger-Warming flux splitting

approach. It was found that for a Mach 10 and Mach 15 flow, the oblique first

mode was destabilized due to chemical nonequilibrium. For the second mode,

chemical nonequilibrium did not have a significant effect on spatial amplification

rates. The mean flow temperatures were not high enough for significant dissoci-

ating of chemical species, which could explain why insignificant nonequilibrium

effects were found.

Johnson et al. [JSC98] used nonequilibrium LST to study laminar-turbulent

transition in hypersonic boundary layers using a five-species air model, or a CO2

model. Their test cases were chosen to compare to experimental results and

to study the effects of freestream total enthalpy and chemical composition on

boundary-layer transition. They found that dissociation of air species is destabi-

lizing to the second mode and stabilizing to the first mode. Also, as freestream

total enthalpy increased, the transition onset location increased. The freestream

total enthalpies tested for air were in the range of 3.35–13.5 MJ/kg.

1.2 Linear Parabolized Stability Equations

The linear parabolized stability equations (LPSE) are similar to LST but with

fewer required assumptions for solution. One difference is the flow is not assumed

to be parallel, i.e., the flow can change in the downstream direction. The solution

procedure for the two methods is similar, but a shape function is required to

march the LPSE solution downstream.

Chang et al. [CVM97] used LPSE to study hypersonic boundary layers with

chemical nonequilibrium and thermal equilibrium. For a Mach 10 flat plate adia-

batic boundary layer, chemical reactions were found to have a destabilizing effect

on Mack’s second mode. Using an eN transition prediction method, they found

that the transition location for a Mach 20 flow over a 6 deg wedge was 14 ft.,
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24 ft., and 39 ft. for the equilibrium, nonequilibrium and perfect gas models, re-

spectively. This is a large difference in transition prediction based on the flow

assumptions which shows the need for the use of a nonequilibrium gas model for

certain hypersonic flows. Chang points out that it is “very important to account

for the chemistry effect in future transition prediction for hypersonic vehicles.”

In [Mal03], another study that utilized LPSE with chemistry effects was per-

formed. It analyzed two cases where laminar to turbulent transition was observed

in free flight. Chemistry effects were found to be destabilizing in both cases,

but the marked difference between chemical equilibrium and chemical nonequilib-

rium seen in [CVM97] was not seen in [Mal03]. Rather, the difference between

computed N factors at the transition location was small i.e. 9.8 for chemical equi-

librium and 9.5 for chemical nonequilibrium. Also, Malik notes that for the two

free flight cases analyzed, the transition Reynolds number based on streamwise

distance and the edge Mach numbers were significantly different but still resulted

in similar N factors at the measured transition location. This helps to verify that

the eN method of transition prediction is valid for hypersonic flows with chemical

nonequilibrium.

Johnson [Joh00, JC05] also used LPSE to study hypersonic boundary layers in

chemical nonequilibrium while also including thermal nonequilibrium. Thermal

nonequilibrium is accounted for using the Park two-temperature model. Johnson

noted that the presence of chemical reactions and translation-vibration energy

exchange in the boundary layer becomes increasingly important as the freestream

enthalpy is increased. Also, exothermic reactions were shown to have a destabiliz-

ing effect. Similar to previous researchers, Johnson found that the eN method gives

a consistent method to estimate boundary layer transition where linear modal dis-

turbances, such as the second mode, are dominant.
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1.3 Direct Numerical Simulation

A complementary approach to LST and LPSE for studying hypersonic boundary

layers in thermochemical nonequilibrium, is direct numerical simulation (DNS). In

DNS, flow disturbances are simulated from the full Navier-Stokes equations with-

out dropping any terms. Figure 1.2 is a schematic of a common DNS simulation.

First, a mean flow laminar profile is computed, and then a disturbance is imposed

in the freestream. This disturbance crosses the bow shock and excites three types

of waves: fast acoustic, slow acoustic, and entropy/vorticity. The interaction of

these waves and the flowfield is complex and can generate modal instability waves

in the boundary layer, such as Mack’s first and second modes. DNS mean flow

profiles can also be used by LST to compute boundary layer instability informa-

tion such as the most unstable frequency ranges and corresponding amplification

rates.

Figure 1.2: A schematic of the disturbance field for freestream waves over a hy-

personic body. Figure reproduced from Zhong [Zho98].
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Zhong [Zho98] developed a high-order finite-difference shock-fitting method for

direct numerical simulation of hypersonic boundary layers. The method includes

a set of upwind high-order finite-difference schemes with low dissipation so small

amplitude disturbances can be numerically simulated. Recall that small amplitude

disturbances are commonly seen in realistic flight conditions and are the starting

point for eigenmode growth. The shock is treated as a boundary condition using

Rankine-Hugoniot relations. Disturbances can then be imposed on the shock and

their behavior simulated as they cross the shock.

Ma and Zhong [MZ03a, MZ03c, MZ05] used DNS and LST to study the re-

ceptivity of a perfect gas Mach 4.5 flow over a flat plate. The boundary layer was

perturbed with freestream fast acoustic, slow acoustic and entropy waves. The

results show that the receptivity of the flat plate boundary layer to freestream

fast acoustic waves leads to the excitation of both Mack modes and a family of

stable modes. The receptivity of slow acoustic freestream waves is several times

stronger than that of fast acoustic freestream waves. Good agreement was ob-

tained between DNS and LST behind the shock for wave angles and amplitudes.

Ma and Zhong [MZ04] studied the receptivity of freestream disturbances of a

Mach 10 nonequilibrium oxygen flow over a flat plate. They found that in a Mach

10 oxygen flow, the unstable region for nonequilibrium flow is longer than for per-

fect gas. This leads to a significant real gas destabilizing effect on the second-mode

waves. However, they did not consider thermal nonequilibrium or any gas/surface

interaction. Prakash et al. [PPW11] studied receptivity of freestream distur-

bances with a thermochemical nonequilibrium shock-fitting method. Parsons et

al. [PZK10] studied the receptivity effects of thermochemical nonequilibrium on

blunt cones using a fifth-order DNS and a five-species air model. They found that

freestream fast acoustic waves had higher pressure perturbation amplitudes for a

flow with thermochemical nonequilibrium than a perfect gas. Also, they found

that the maximum perturbation amplitude moved nearer to the blunt nose.
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Stemmer [Ste06, Ste09] studied instabilities in high Mach number flows where

high temperature gas effects are present using DNS. He uses a hybrid ENO/finite

difference method with high-order accuracy and thermochemical nonequilibrium.

Boundary layer profiles for a Mach 20 case show that significant dissociation of

air species is present, as well as significant thermal nonequilibrium. Flow dis-

turbances are introduced at the wall in the form of pressure disturbances. The

nonequilibrium flow is compared to perfect gas flow and is found to have similar

amplitudes for the linear disturbances.

1.4 Carbon Ablation

Thermal protection systems are commonly used to protect hypersonic vehicles

from the harsh aerothermal environment they operate in [Ung67]. Often a TPS

is ablating, such as those made using graphite or phenolic impregnated carbon

ablator (PICA). Examples include ablative heat shields for hypersonic entry ve-

hicles, throat liners inside rocket engines, and nosetips or fins for thermal protec-

tion of hypersonic missiles such as the nose cone for the Reentry F flight vehi-

cle [CRH71, JSW72]. The design of these thermal protection systems is of major

concern to the vehicle designer who must ensure the structural integrity of the

vehicle throughout its flight envelope. For example, the Passive Nosetip Technol-

ogy (PANT) [Woo75] program was designed to evaluate carbon based nosetips for

entry vehicles. They highlighted some of the design difficulties encountered when

carbon nosetips are used for thermal protection which included laminar-turbulent

transition. Also, [Lin08] highlighted some design concerns for entry vehicles due

to uncertainty in hypersonic boundary-layer transition on a cone frustum which

include vehicle aerodynamics and impact dispersion.

The design of thermal protection systems is an iterative process requiring the

evaluation of many configurations in order to determine the optimal. Experimen-
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tal testing of the various designs can be done in the laboratory or by flight tests.

However, the laboratory simulation of all required hypersonic flow conditions may

not be possible. Likewise, flight tests are expensive and time consuming. Thus,

numerical simulations today are assuming an increasingly important role as a

cost-effective complement to laboratory and flight test research.

The flight of the Reentry F vehicle is important to the hypersonic transition

community as actual in-flight measurements of boundary-layer transition at high

Mach numbers were obtained and are available for analysis. Hypersonic free flight

transition measurements are not common and are highly valuable for understand-

ing actual in-flight transition. Some of the free flight transition data available for

cones have ablating nose cones such as the Reentry F and Sherman and Naka-

mura [SN70] cases. Therefore, to gain the most insight from these valuable mea-

surements, it is important to understand to what degree the ablating nose cone

affects the transition location.

1.4.1 Numerical Methods for Carbon Ablation Prediction

Practical methods for ablation prediction employ various levels of simplification,

ranging from empirical engineering correlation and approximate semi-empirical in-

tegral methods, to very detailed full Navier-Stokes simulation methods that model

the nonequilibrium chemically reacting fluid dynamics coupled to in-depth heat

conduction material models [Kee94, ZTW04, CM05a, CM05b, LSO94, Pot95].

Surface chemistry models are commonly used to couple the ablating material cal-

culations with gas phase Navier-Stokes simulations. They can give a numerical

estimate of mass addition rates from the ablative surface to the freestream, as well

as what chemical constituents the ablator injects into the freestream. For carbon

based ablators, they are frequently based on the most common surface reactions

such as sublimation, oxidation, and nitridation.
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Some common surface chemistry models for carbon ablators are that of Zh-

luktov and Abe [ZA99] and Park [Par05, Par76]. Zhluktov and Abe developed a

kinetic model for air-carbon surface interactions based on the Langmuir approach

to the kinetics of catalytic reactions. They take into account twelve coupled sur-

face reactions. Three of the surface reactions are sublimation of C, C2, and C3

and a nitridation reaction is not included. They tested their surface chemistry

model with the viscous shock layer equations which are obtained from reducing

the Navier-Stokes equations.

Over the years, Park has investigated in detail many surface reactions for

carbon based ablators. Park [Par76] determined the reaction probabilities for

oxidation due to atomic oxygen and diatomic oxygen which are still commonly

used. Park [Par05] combined various surface reactions into a model to calculate

the stagnation point heating rate for the Stardust entry vehicle using a 1D viscous

shock layer method with no material calculations within the carbon ablator.

Keenan [Kee94], and Keenan and Candler [KC93, KC94] coupled a finite vol-

ume thermochemical nonequilibrium computational fluid dynamics (CFD) code to

a 2D heat equation solver that computes the temperature distribution within the

ablator. Their research concentrated on steady graphite ablation without pyroly-

sis gas injection or surface recession. The solid/fluid computations were coupled

through a surface energy balance, a surface mass balance for each species and a

total mass balance.

A CFD code with thermochemical nonequilibrium was used in [CM05a] and

[CM05b] to compare multiple surface chemistry models for graphite and carbon-

phenolic ablation. Four surface chemistry models were compared: Zhluktov and

Abe [ZA99], Park [Par83, Par05, Par93] with and without the nitridation reaction,

and chemical equilibrium. It was found for the graphite ablation case, that the

Park model with the nitridation reaction predicted the highest amount of mass

blowing at the surface, while the Zhluktov and Abe model predicted the lowest.
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Also, the chemical equilibrium model predicted the largest surface heat flux while

both Park models predicted the lowest surface heat flux.

1.4.2 Ablation Induced Roughness and Shape Change

During the process of ablation, surface material is removed to reduce the energy

transferred from the flow to the vehicle. Material removal from the surface is

not constant over the length of the surface due to varying surface temperatures

and pressures resulting in a changing surface shape. Shape change of an ablat-

ing nosetip can change the aerodynamic characteristics and flight stability of its

vehicle. Shape change of ablating materials has been studied in the PANT pro-

gram [Woo75]. The PANT program has shown that a major uncertainty in calcu-

lating the shape change of an ablative nosetip was associated with predicting the

transition location, as mass flux rates are much higher when the boundary layer

is turbulent. As the surface changes shape, the boundary layer profile will change

and the instability characteristics of the boundary layer will also likely change.

For the cases simulated in this work, cr ≫ Ṡmax where Ṡmax is the maximum

surface recession rate. Since the phase velocity of the second mode instability is

much larger than the surface recession rate, it is likely that the effect of surface

recession on modal instability for the tested cases is small.

Along with shape change, an ablating surface will also create distributed sur-

face roughness which is similar to a sandpaper type roughness. This is termed

ablation induced roughness. Roughness can also be incurred in flight by particles

impinging on the surface. This roughening may significantly alter the transition

process such as leading to bypass transition where eigenmode growth is completely

bypassed. Currently, there is substantial uncertainty concerning the effects of sur-

face roughness on hypersonic boundary-layer transition. In [Sch08], the effects of

roughness on hypersonic boundary-layer transition are reviewed where it is noted

that that the characterization of ablation induced surface roughness in flight has
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significant uncertainty. Also, it is noted that an understanding of the instabilities

that lead to transition for a smooth wall are needed to understand the experimen-

tal results of roughened surfaces which tend to move the location of transition

forward when compared to smooth surfaces.

With this in mind, this research will use a simplified pseudo-ablation approach

where surface recession and roughness are neglected to provide a more tractable

problem and hopefully increase the understanding of ablation on boundary-layer

instability.

1.5 Ablation Effects on Boundary-Layer Instability

The research to find how surface ablation affects flow instability has been mostly

experimental due to the significant challenges in correctly simulating an ablating

flow. Also, much of the numerical and theoretical research focuses on how blowing

affects instability in a hypersonic flow due to the relative ease of treatment when

compared to an ablating flow. Here, both experimental and numerical research of

hypersonic flow instability with surface ablation is reviewed.

1.5.1 Experimental Research

A review of experimental research to study ablation and blowing effects on hyper-

sonic boundary layer stability was performed by Schneider [Sch10]. Experimental

research has shown, in general, that blowing moves transition upstream and a

larger mass addition causes a larger effect. He pointed out that blowing near the

nosetip is thought to have a particularly significant effect on transition. This is

important for ablation because the maximum surface mass flux for a zero degree

angle-of-attack blunt vehicle occurs at the stagnation point or nose.

The PANT [Woo75] program performed a series of research tests on carbon

ablation. Of these tests some were performed to study nosetip shape change and
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transition for graphite ablation in a high enthalpy arcjet gas stream [SFP74].

Three carbon materials: ATJ-S graphite, a carbon/carbon material, and a carbon

phenolic material, were tested. Boundary layer transition locations were inferred

from overhead images taken of the graphite surface.

Kaattari [Kaa78] studied mass addition effects on boundary layer transition

and heat transfer for Mach 7.32 flows over blunt bodies. The blowing profiles are

different than blowing profiles obtained due to ablation. The blowing parameter—

ratio of freestream mass flux to surface mass flux—was varied from 0.0 to 0.5 and

the gas blown was air. For the hemispherical model at unit Reynolds number

2.3×106 /m when the blowing parameter was 0.01, transition began on the model.

As the blowing parameter increased, transition continued to move forward. This

shows that blowing can effect boundary layer transition even when the mass ad-

dition is only 1% of the freestream. For each of the cases simulated in this work,

the maximum surface mass flux is commonly around 1% of the freestream mass

flux.

1.5.2 Numerical Research

Currently there has been a limited amount of numerical research on how abla-

tion and surface chemistry models affect hypersonic boundary-layer transition.

Johnson et al. [JGC09] used linear stability analysis to analyze non-reacting and

reacting hypersonic boundary layers with blowing and suction. For a non-reacting

gas mixture of a Mach 4.5 flow over a flat plate, it was found that suction was sta-

bilizing to the second mode and blowing was destabilizing. This data was similar

to results first found by Malik [Mal89]. Johnson also found that, for a five-species

air reacting boundary layer, the transition location would move forward with in-

creasing total enthalpy assuming that transition occurred where the N-factor was

equal to 5.5.
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Ghaffari et al. [GMI10] performed a linear stability analysis of a hypersonic

perfect gas flat plate boundary layer with wall blowing. They found that, as

blowing increases, the maximum amplification rate of the disturbance instability

grows and moves to lower frequencies. Li et al. [LCC11] studied boundary layer

instability mechanisms for hypersonic perfect gas flows over slender cones and

blunt capsules at zero angle of attack and an angle of attack of 16 deg. They

found that for the slender cone, out-gassing is moderately stabilizing to the second

mode. For the blunt capsule, out-gassing is destabilizing to the first mode.

A deficiency of previous research is that blowing profiles have been rather

artificial, i.e., they are set from a similarity solution or at random. This can make

the tested blowing profiles quite different than realistic blowing profiles. Also,

other effects due to surface ablation such as injection of surface species into the

meanflow has been neglected. The current work seeks to remedy these deficiencies

by using a realistic blowing profile computed from a surface chemistry model and

by blowing a realistic gas composition computed from a surface chemistry model,

rather than simply blowing air.

1.6 Roughness Effects on Boundary-Layer Instability

Surface roughness has served primarily to promote early boundary-layer transition

in a hypersonic flow when compared to a smooth surface, or, to not adversely affect

transition significantly [Sch08]. However, recent direct numerical simulation re-

sults from [DWZ13, FWZ13, FWZ14, FWZ15] have shown that judiciously placed

two-dimensional roughness elements can actually stabilize a hypersonic boundary

layer and delay transition onset. Following these findings, experiments were per-

formed in [FWH15] which showed that, indeed, similar to the direct numerical

simulation results, two dimensional roughness elements can delay the onset of

transition in a physical air flow. The fact that the numerical and experimental
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evidence is consistent brings the idea that perhaps a passive control strategy may

be implemented in flight, using finite height roughness, to stabilize a hypersonic

boundary layer.

The potential delay of transition in a hypersonic boundary layer by two-

dimensional roughness elements, as shown in [DWZ13, FWZ13, FWZ14, FWZ15,

FWH15], comes from the second mode being the most dominant instability mode.

It was shown that a two-dimensional roughness element, that is less than the

boundary-layer thickness, when placed after the synchronization point of mode S

and mode F, can lead to a suppression, or stabilization, of the second mode. When

the same roughness element is placed upstream of the synchronization point, the

second mode is destabilized, i.e., the second-mode instability growth is higher.

Therefore, the location of the roughness element is critical to achieving a delay in

transition.

Before the numerical findings that judiciously placed roughness elements could

delay transition, there were experimental results that showed an unexplained delay

in the onset of turbulence. For example, a Mach 6.0 boundary layer on a flat plate

was experimentally tested in [HS64] with and without surface roughness. The

surface roughness tested was not two dimensional, rather, it was a row of spheres

that mimicked a two-dimensional roughness element. For the tested cases, when

the height of the surface roughness tested was less than the height of the boundary

layer, there was a delay in the onset of transition. Also, the required roughness

height to trip the boundary layer flow to turbulence was two times the height of the

boundary layer. Similarly, in [Fuj06] there was an experimentally measured delay

in transition for a hypersonic boundary layer. In this instance, the freestream

Mach was 7.1 and the geometry was a 5 deg half angle sharp cone. The roughness

was two dimensional in this case, but was a wavy wall roughness, rather than an

isolated hump. However, the two-dimensional wavy wall roughness still produced

a delay in transition onset when placed far upstream of the breakdown region.
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It is quite possible that the mechanism leading to the delay in transition seen

in these experimental results is similar to the mechanism explained in [FWZ14].

That is, the transition delay in these experimental cases is similar to an isolated

two-dimensional roughness damping the dominant second mode instabilities that

have their synchronization locations upstream of the location of the roughness

element.

Further experimental work was performed in [TZC15] to help confirm and

understand the damping effects of two-dimensional roughness. An experimental

test was run for a Mach 6 flat-plate boundary layer with two-dimensional surface

roughness. Multiple heights for roughness elements were experimentally tested

to find the effects on second-mode instability. The experimental findings showed

growth in the flow disturbance upstream of the roughness element and then damp-

ing of the second mode downstream of the roughness. Also, a taller roughness

was more effective at damping the second mode instability. These results are

consistent with the numerical findings.

Another passive control concept, designed to suppress second mode instability

through modification of an unperturbed surface, is the wavy wall concept. This

concept of a two-dimensional wavy wall damping second-mode instability was

tested experimentally and numerically in [BCM13]. It was found, similar to the

isolated roughness case, that a high frequency band in the second mode region

was damped, while a lower frequency band was slightly amplified. This idea

to suppress the second-mode instability, seems to be physically similar to the

distributed two-dimensional roughness concept in [FWZ15] in the limit of zero

spacing between roughness elements. However, the authors of [BCM13] link the

suppression of the second mode to a modification of the meanflow, rather than to

the relative location of the synchronization location and the roughness element,

as in [FWZ15].
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1.7 Motivation

For future ablative and nonablative hypersonic vehicles, it is key to accurately pre-

dict boundary-layer transition. As it is extremely difficult to replicate exact flight

conditions experimentally, numerical simulations and analytical modeling of dis-

turbance waves is used to better understand the physics of the transition process.

There has been much progress in the understanding of hypersonic boundary-layer

instability with a perfect gas assumption, however, understanding of hypersonic

boundary-layer instability with thermal and chemical nonequilibrium still con-

tains significant uncertainties. For realistic hypersonic flight conditions, real-gas

effects are significant and cannot be neglected for an accurate understanding of

the flow physics.

Two distinct issues that affect hypersonic boundary-layer instability in thermo-

chemical nonequilibrium flows will be addressed in this work: 1) surface ablation

and 2) surface roughness. The effects of surface ablation on hypersonic boundary-

layer instability is an open research problem. This open problem contains a few

more specific research problems: What are the effects of ablation induced rough-

ness? What are the effects of ablation induced outgassing? What are the effects of

surface chemistry? In this research, the specific problems addressed are how does

ablation induced outgassing and surface chemistry affect hypersonic boundary-

layer instability. In order to study these effects, it will be necessary to study

real-gas effects as the surface chemistry model necessitates that the flow react

with the surface, and thus, the flow cannot be modeled as a perfect gas.

It could be argued that, for a complete understanding of ablation effects on

boundary-layer transition, ablation induced roughness must be included as rough-

ness effects are thought to have a strong effect on boundary-layer transition. The

numerical treatment of roughness adds significant computational cost and com-

plexity to any DNS simulation. Also, the effects of roughness is an open research
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problem in itself. As a first step in studying ablation effects, the focus will be

placed on ablation induced outgassing and surface chemistry. While this may not

simulate graphite ablation exactly, it does yield a good starting point to under-

stand how ablation affects boundary-layer transition.

The study of the effects of surface roughness on hypersonic boundary-layer

instability will be confined to analyzing isolated roughness elements that are two-

dimensional. This is done to extend the previous research findings that showed

how isolated two-dimensional roughness elements in a hypersonic flow can effi-

ciently damp second-mode instability. These previous findings will be extended

from a perfect gas assumption to that of a gas in thermochemical nonequilibrium.

In order to study these research problems, two approaches are used: theo-

retical analysis using linear stability theory and numerical analysis using direct

numerical simulation. While LST and DNS have previously been used to study

thermochemical nonequilibrium flows, there is currently no research in the open

literature, that the author is aware of, that has coupled LST or DNS with a

surface chemistry model to study ablation effects on boundary-layer transition.

Also, there has been no research the author is aware of, using LST or DNS, to

study second-mode instability in a thermochemical nonequilibrium flow with two-

dimensional surface roughness.

It should be noted that, it would be possible to combine the methods used here

to treat surface ablation and roughness. The combination of these two methods

with a roughened surface, similar to that of ablation induced outgassing, could

potentially simulate surface ablation more realistically. However, the combina-

tion of these two methods would not be trivial—such as determining the in-flight

distributed roughness profile and using a grid with fine enough resolution to cap-

ture flow features from three-dimensional roughness that can be on the order of

hundreds of micrometers—and is beyond the scope of the current work.
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1.8 Objectives

The main research objectives are as follows:

1. Develop and validate a shock-fitting thermochemical nonequilibrium finite-

difference research code with a surface chemistry model for graphite ablation

suitable for direct numerical simulation of flowfield disturbances

2. Develop and validate an axisymmetric linear stability theory code with ther-

mochemical nonequilibrium and ablation boundary conditions

3. Develop and validate a cut-cell method included into the thermochemical

nonequilibrium shock-fitting research code

4. Study the effects of outgassing, which is induced by graphite ablation, on

hypersonic boundary-layer instability and transition in a real-gas flow using

developed direct numerical simulation and linear stability theory codes

(a) Study effects on a zero angle-of-attack blunt cone (Figure 1.3) where

transition is likely to be second-mode dominated

y

x

M > 1

ξ

η

Figure 1.3: Blunt cone with Cartesian and body-fitted coordinates for DNS and

LST, respectively. The shock is colored red.
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Figure 1.4: Pressure field near roughness with streamlines where h/δ = 20%

5. Study effects of isolated surface roughness elements (Fig. 1.4) on hypersonic

boundary-layer instability and transition in a real-gas flow over a flat plate

using developed direct numerical simulation and linear stability theory codes

With these research objectives, it is expected that a research contribution

would be one of the first laminar-turbulent DNSs of a high Mach number ablat-

ing flow. There have been many fluid simulations of surface ablation and some

fully turbulent DNSs of channel flow with ablation that are low Reynolds num-

ber [CN10]. However, as far as the author is aware, there have not been any high

Reynolds number laminar-turbulent DNSs with surface ablation. Along these

same lines, as far as the author is aware, there have not been any methods that

couple an ablating surface model with a method to analyze boundary layer insta-

bility such as LST. Also, one of the first laminar-turbulent DNSs of thermochem-

ical nonequilibrium flow over two-dimensional finite height surface roughness is

presented here.
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The thesis will start with an overview of the governing equations in Ch. 2,

which includes the thermochemical nonequilibrium model and the surface chem-

istry model used. Next, the numerical methods for DNS, LST, and cut-cell will

be given in Ch. 3. Chapters 4, 5, and 6 will show the validation cases for the

DNS, LST, and cut-cell numerical methods, respectively. The results, showing

the effects of ablation induced outgassing on transition, will be given in Chs. 7

and 8. The results, showing the effects of two-dimensional roughness on a ther-

mochemical nonequilibrium flow, will be given in Chs. 9 and 10. Following that,

the thesis will end with a summary of findings and some suggestions for future

work in Ch. 11.
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CHAPTER 2

Governing Equations and Models

The governing equations for thermochemical nonequilibrium are formulated for

a two-temperature model with the rotational energy mode assumed to be fully

excited and eleven non-ionizing species with finite-rate chemistry. Two tempera-

tures are used to represent translation-rotation energy and vibration energy. The

eleven species model (N2, O2, NO, C3, CO2, C2, CO, CN, N, O, C) is used to

simulate air, surface reactions, and reactions of air with ablation products. The

conservative three-dimensional Navier-Stokes equations consist of eleven species

mass conservation equations, three momentum conservation equations, the vibra-

tion energy conservation equation and the total energy conservation equation.

Written in vector form the governing equations are

∂U

∂t
+
∂Fj

∂xj
+
∂Gj

∂xj
= W (2.1)

where U is the state vector of conserved quantities and W is the source terms

defined by

U =
























ρ1
...

ρns

ρu1

ρu2

ρu3

ρe

ρev
























, W =
























ω1

...

ωns

0

0

0

0
nms∑

s=1

(QT−V,s + ωsev,s)
























.
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Fj and Gj are the inviscid and viscous fluxes respectively and are defined by

Fj =
























ρ1uj
...

ρnsuj

ρu1uj + pδ1j

ρu2uj + pδ2j

ρu3uj + pδ3j

(ρe+ p) uj

ρevuj
























, Gj =

























ρ1v1j
...

ρnsvnsj

τ1j

τ2j

τ3j

−uiτij − kT
∂T
∂xj

− kV
∂TV

∂xj
+

nms∑

s=1

ρshsvsj

−kV ∂TV

∂xj
+

nms∑

s=1

ρsev,svsj

























where vsj is the species diffusion velocity and τij = µ
(

∂ui

∂xj
+

∂uj

∂xi

)

− 2
3
µ∂uk

∂xk
δij is

the viscous stress. The total energy per unit volume, ρe, is defined by

ρe =
ns∑

s=1

ρscv,sT + ρev +
1

2
ρuiui +

ns∑

s=1

ρsh
o
s (2.2)

where hos is the heat of formation of species s, ev,s is the species specific vibration

energy, and cv,s is the species translation-rotation specific heat at constant volume

defined as

cv,s =

{
5
2

R
Ms
, s = 1, 2, . . . , nms

3
2

R
Ms
, s = nms+ 1, . . . , ns.

(2.3)

The vibration energy per unit volume, ρev, is defined as

ρev =
nms∑

s=1

ρsev,s =
nms∑

s=1

ρs

(
nmod∑

m=1

gs,mR

Ms

θv,s,m
exp (θv,s,m/TV )− 1

)

(2.4)

where nmod refers to the number of vibrational modes for each of the polyatomic

molecules, θv,s,m refers to the characteristic temperature of each vibrational mode,

and gs,m is the degeneracy of each vibrational mode. For the diatomic species there

is only one vibrational mode and the degeneracy is unity. For C3 and CO2 there

are three vibrational modes where two modes have a degeneracy of unity and

one has a degeneracy of two. The characteristic vibration temperatures and their
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degeneracies were taken from Park [Par90] for N2, O2 and NO, from Dolton et

al. [DMG68] for C3, and from McBride [MHE63] for CO2, C2, CO, and CN.

To model chemical nonequilibrium, eight dissociation reactions and sixteen

exchange reactions are used. The dissociation reactions take the form

Rc =
ns∑

s=1

(

−kf,c,s
ρr
Mr

ρs
Ms

+ kb,c,s
ρp1
Mp1

ρp2
Mp2

ρs
Ms

)

(2.5)

where c is the specific chemical reaction, r is the reactant, p1 and p2 are the

products, and s is the collision partner. Each reaction is governed by a forward

and backward reaction rate determined by Eqs. (2.7) and (2.8), respectively. Each

of the dissociation reactions are given in Table A.1, along with their corresponding

forward reaction rate constants in Arrhenius form. The exchange reactions take

the form

Rc =
ns∑

s=1

(

−kf,c
ρr1
Mr1

ρr2
Mr2

+ kb,c
ρp1
Mp1

ρp2
Mp2

)

(2.6)

where r1 and r2 are the reactants and p1 and p2 are the products. Each of the

exchange reactions, with corresponding forward reaction rate constants, are given

in Table A.2. All forward reaction rate constants are taken from [Par85, PHJ91,

BL92]. Ta is the defining temperature for the reaction and is defined as Ta =
√
TTV

for reactions 1–3 and as Ta = T for all other reactions. When computing the

backward reaction rate for all reactions, Ta = T .

kf = CfT
η
a exp (−θd/Ta) (2.7)

kb = kf/Keq (2.8)

The equilibrium coefficient, Keq, is computed in two different ways. A curve

fit from Park [Par90] is employed for reactions 1–3 and 9–10 as in Eq. (2.9). The

equilibrium coefficients for the remaining reactions are computed from the Gibbs

Free energy. Curve fits to the Gibbs Free energy are obtained from McBride et

al. [MHE63] as in Eqs. (2.10) and (2.11) respectively where ∆n is the stoichio-
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metric coefficients of the products minus the reactants.

Keq = A0 exp

(
A1

Z
+ A2 + A3 ln (Z) + A4Z + A5Z

2

)

, Z =
10000

T
(2.9)

Go

RT
= a1 (1− lnT )− a2

2
T − a3

6
T 2 − a4

12
T 3 − a5

20
T 4 +

a6
T

− a7 (2.10)

Keq = exp

(

− Go

RT

)

(RuT )
−∆n (2.11)

With the forward and backward rates defined, the chemical production source

terms for each species may be found from

ωN2
=MN2

(R1 +R9 +R15 +R24) (2.12)

ωO2
=MO2

(R2 +R10 +R11 −R13 −R22 +R24) (2.13)

ωNO =MNO (R3 −R9 +R10 −R12 −R19 +R23 − 2R24) (2.14)

ωC3
=MC3

(R4 +R17 −R21) (2.15)

ωCO2
=MCO2

(R5 +R13 −R20 −R23) (2.16)

ωC2
=MC2

(−R4 +R6 −R14 −R16 − 2R17 +R21 −R22) (2.17)

ωCO =MCO (−R5 +R7 +R11 −R13 +R14 +R18

+R19 + 2R20 +R21 + 2R22 +R23) (2.18)

ωCN =MCN (R8 +R12 −R15 +R16 −R18) (2.19)

ωN =MN (−2R1 −R3 −R8 −R9 −R10 −R15 −R16 +R18 +R19 −R23)

(2.20)

ωO =MO (−2R2 −R3 −R5 −R7 +R9 +R10

+R11 +R12 +R13 −R14 −R18 −R21) (2.21)

ωC =MC (−R4 − 2R6 −R7 −R8 −R11 −R12

+R14 +R15 +R16 +R17 −R19 −R20) . (2.22)

To calculate the source term in the vibration energy equation which represents

the exchange of energy between the translation-rotation and vibration energies,
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the Landau-Teller expression is used

QT−V,s = ρs
ev,s (T )− ev,s (TV )

< τs > + τcs
(2.23)

where < τs > is the Landau-Teller vibration relaxation time given by Lee [Lee85]

defined as

< τs >=

ns∑

r=1

Xr

ns∑

r=1

Xr/τsr

(2.24)

and τsr is obtained from Millikan and White [MW63] using

τsr =
1

p
exp

[
Asr

(
T−1/3 − 0.015µ1/4

sr

)
− 18.42

]
, p in atm (2.25)

Asr = 1.16× 10−3µ1/2
sr θ

4/3
v,s (2.26)

µsr =
MsMr

Ms +Mr

· 1000. (2.27)

Here θv,s is the characteristic temperature corresponding to the energy level of the

first excited vibrational mode. τcs is from Park [Par90] to more accurately model

the relaxation time in areas of high temperatures occurring just downstream of

the bow shock.

τcs = 1/CsσvNs (2.28)

Cs =
√

8RT/πMs (2.29)

σv = 10−21 (50000/T )2 (2.30)

The viscosity of each species is computed using a Blottner curve fit shown in

Eq. (2.31). The coefficients are obtained from Blottner [BJE71], Gupta [GLS90],

and Candler [Can90] and are shown in Table A.3. The mixture viscosity is then

found using each species viscosity from a mixing rule obtained from Wilke [Wil50]

as shown in Eqs. (2.32)–(2.34).

µs = 0.1 exp [(Aµ
s ln (T ) + Bµ

s ) ln (T ) + Cµ
s ] (2.31)
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µ =
ns∑

s=1

Xsµs

φs

(2.32)

Xs =
cs
Ms

(2.33)

φs =

ns∑

r=1

Xr

[

1 +
(

Ms

Mr

)1/4
]2

[

8
(

1 + Ms

Mr

)]1/2
(2.34)

The translation-rotation and vibration heat conductivities for each species are

calculated from Eqs. (2.35) and (2.36) where cv,tr,s = 3
2

R
Ms

. cv,rot,s = R
Ms

and

cv,vib,s = ∂evs
∂TV

for molecules and are zero elsewise. The total heat conductivities

for each energy mode are combined similar to the viscosity using Eqs. (2.37)

and (2.38). The diffusion velocity is calculated using Fick’s law (Eq. (2.39)) and a

constant Schmidt number (Eq. (2.40)) which yields acceptable results for species

with similar molecular weights.

kT,s = µs

(
5

2
cv,tr,s + cv,rot,s

)

(2.35)

kV,s = µscv,vib,s (2.36)

kT =
ns∑

s=1

XskT,s
φs

(2.37)

kV =
ns∑

s=1

XskV,s
φs

(2.38)

ρsvsj = −ρDs
∂cs
∂xj

(2.39)

Sc =
µ

ρD
= 0.5 (2.40)

2.1 Surface Chemistry Model and Boundary Conditions

A surface chemistry model is required to couple the ablating graphitic surface

with the flow. The surface chemistry model accounts for reactions occurring at
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the graphite surface between the solid surface carbon and freestream gaseous

species. Six surface reactions are taken into account: the first two reactions allow

for surface removal of material through oxidation, the third reaction accounts for

surface recombination of atomic oxygen, and the last three are due to sublimation

of C, C2, and C3. C3 is commonly included in most graphite ablation models as

sublimation of graphite produces mostly C3 with smaller amounts of C, C2, and

heavier carbon species.

Nitridation is not included here as there is still significant uncertainty in the

nitridation coefficient. There has been recent experimental work to determine the

nitridation coefficient in [SFA08] and [PB06]. Likely the nitridation coefficient is

small leading to a minimal impact on the simulation when nitridation is excluded.

Recent results have also shown that the nitrogen atom recombination reaction

occurring at the surface of hot graphite is very fast [AAB13, DM11]. For the

tested cases, the nitrogen atom concentration at the surface is only significant near

the stagnation point which is away from the flow instability studied. However, it

would likely need to be included when studying instabilities when the meanflow

had a high concentration of atomic nitrogen near the surface.

The reactions and reaction probabilities for oxidation and recombination of

atomic oxygen are obtained from Park [Par76] yielding

(C) + O2 → CO+O (2.41)

(C) + O → CO (2.42)

(C) + O + O → (C) + O2. (2.43)

The oxidation rates are based on kinetic theory giving

km = αm

√

RTw
2πMs

(2.44)

where Tw is the wall temperature and αm is the reaction probability for each

reaction in Eqs. (2.41)–(2.43), respectively. The reaction probabilities are obtained
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experimentally yielding

α1 =
1.43× 10−3 + 0.01 exp (−1450/Tw)

1 + 2× 10−4 exp (13000/Tw)
(2.45)

α2 = 0.63 exp (−1160/Tw) (2.46)

α3 = 0.63 exp (−1160/Tw) . (2.47)

From which the associated surface species mass flux may be found from

ṁO2
= −ρO2

k1 + ρOk3 (2.48)

ṁCO =
MCO

MO2

ρO2
k1 +

MCO

MO

ρOk2 (2.49)

ṁO =
MO

MO2

ρO2
k1 − ρOk2 − ρOk3. (2.50)

There are three reactions for sublimation

(C) → C (2.51)

(C) → C2 (2.52)

(C) → C3 (2.53)

and for each reaction the mass flux is obtained from the Knudsen-Langmuir equa-

tion [Bak77]

ṁs = αs (pv,s − ps)

√

Ms

2πRTw
(2.54)

where αs is experimentally determined for each carbon species. The vapor pressure

of the three carbon species is given by

pv,s = exp

(
Ps

Tw
+Qs

)

p in atm (2.55)

where Table A.4 gives the reaction probabilities obtained from [PM68] and vapor

pressure coefficients obtained from [DMG68] for each sublimation reaction.

Boundary conditions are needed to couple the surface chemistry model with the

gas model, as well as set wall conditions for both temperatures and pressure. At

the surface, a surface energy balance is solved to find temperature, and a surface
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mass balance is solved to find the mass fraction of each species. A schematic of

the various types of energy transfer occurring at the ablator surface is given in

Fig. 2.1. This energy balance is applicable to a non-pyrolyzing ablator, such as

graphite, in a quasi-stationary state. It results in

qconv + qdiff + qrad in = qrad out + (ρv)w hw + qcond − ṁhsol. (2.56)

Notice that the term qcond requires knowledge of the temperature distribution

inside of the solid to be calculated precisely. A simplified surface energy balance,

similar to [ZA99], is used to avoid a complicated flow/solid coupling and allowing

the focus of the simulation to stay on boundary-layer instability. The conduction

of energy into the solid for quasi-stationary ablation can be roughly approximated

as qcond = ṁcpTw where cp is the specific heat of the graphite ablator. Recalling

that by definition hsol = cpTw, and neglecting radiation from the fluid to the wall,

the final energy balance yields

kT
∂T

∂n
+ kV

∂TV
∂n

+
ns∑

s=1

ρhsDs
∂cs
∂n

= σǫT 4 + ṁ

ns∑

s=1

cshs,o (2.57)

where

hs,o =

(

cv,s +
R

Ms

)

T + ev,s + hos +
1

2

(
u21 + u22 + u23

)
(2.58)

and all values and derivatives are taken at the wall. For the carbon surface, ǫ = 0.9

and σ is the Stefan-Boltzmann constant. Each derivative is taken normal to the

surface where n represents the direction normal to the surface. Derivatives of

5th-order Lagrange polynomials are used to compute the normal derivatives at

the surface.

The surface mass balance for each species is

ρsun − ρD
∂cs
∂n

= ṁs. (2.59)

where each value and derivative is taken at the wall. The total mass balance found

from summing Eq. (2.59) is

ρun = ṁ (2.60)
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(ρv)whwqrad inqrad outqdiffqconv

qcond ṁhsol

Figure 2.1: General energy transfer in surface control volume.

where the total mass flux is found from the sum of each species mass flux as

ṁ =
ns∑

s=1

ṁs. (2.61)

Lastly, a condition for pressure is required at the surface. It is common to as-

sume that ∂p
∂n

= 0 from the wall normal momentum equation for a wall with no slip.

A finite velocity is obtained normal to the surface due to surface chemical reac-

tions in ablation simulations making ∂p
∂n

= 0 invalid. Instead, the one-dimensional

subsonic inlet conditions may be used as in [Kee94]. It is also common to use

pressure extrapolation at the surface which is valid for a wall with no slip and a

surface with a non-zero surface normal velocity. In the present work, 5th-order

pressure extrapolation employing Lagrange polynomials is used instead of the

one-dimensional subsonic inlet approach as extrapolation allows the high-order

solution procedure for the interior points to set the wall pressure.

A Lagrange polynomial, which is used in this work for pressure extrapolation,

is defined as

f (x) =
N∑

i=1

Pifi (2.62)

where

Pi =
N∏

j=1
j 6=i

(x− xj)

(xi − xj)
. (2.63)

Only a single dimensional extrapolation is performed because the simulation grid

is assumed to be normal to the surface. Similarly, each of the derivatives in
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Eqs. (2.57) and (2.59) is found by taking the derivative of a Lagrange polynomial

which yields

∂f

∂x

∣
∣
∣
∣
xp

=
N∑

i=1

Aifi (2.64)

where

Ai =

N∑

j=1
j 6=i







N∏

k=1
k 6=i
k 6=j

(x− xk)







N∏

j=1
j 6=i

(xp − xj)

. (2.65)

2.2 Five-Species Gas Model

It should be noted that, in Chs. 9 and 10, a five-species gas model is used instead

of an eleven-species model. The five-species model (N2, O2, NO, N, and O) only

simulates air. This is done when there is no ablation because it is much more com-

putationally efficient to drop all the equations and terms resulting from ablation.

Specifically, anything with carbon is dropped, because carbon is only created at

the surface and is not present in the freestream for the simulated conditions. The

boundary conditions at the surface are different for the five-species model and are

given separately for each case. However, the remaining portion of the gas model

that relates to five-species air remains unchanged.
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CHAPTER 3

Numerical Methods

In this chapter, the high-order numerical methods will be covered for DNS, LST,

and the cut-cell method. One section will be devoted to each method.

3.1 DNS Numerical Method

A high-order shock-fitting method developed for perfect-gas flow by Zhong [Zho98]

has been extended for use on thermochemical nonequilibrium flows to compute

the flowfield between the shock and the body. For shock-fitting computations

the shock location is not known a priori so its position is solved along with the

flowfield. Since the shock position is not stationary the grid used to compute the

flowfield is a function of time. This leads to the coordinate transformation






ξ = ξ(x, y, z)

η = η(x, y, z, t)

ζ = ζ(x, y, z)

τ = t

⇐⇒







x = x(ξ, η, ζ, τ)

y = y(ξ, η, ζ, τ)

z = z(ξ, η, ζ, τ)

t = τ

(3.1)

where η is normal to the body, ξ is in the streamwise direction, ζ is in the transverse

direction, ζt = 0 and ξt = 0. The governing equation can then be transformed

into computational space as

1

J

∂U

∂τ
+
∂E ′

∂ξ
+
∂F ′

∂η
+
∂G′

∂ζ
+
∂E ′

v

∂ξ
+
∂F ′

v

∂η
+
∂G′

v

∂ζ
+ U

∂(1/J)

∂τ
=
W

J
(3.2)
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where J is the Jacobian of the coordinate transformation and

E ′ =
F1ξx + F2ξy + F3ξz

J
(3.3)

F ′ =
F1ηx + F2ηy + F3ηz

J
(3.4)

G′ =
F1ζx + F2ζy + F3ζz

J
(3.5)

E ′
v =

G1ξx +G2ξy +G3ξz
J

(3.6)

F ′
v =

G1ηx +G2ηy +G3ηz
J

(3.7)

G′
v =

G1ζx +G2ζy +G3ζz
J

. (3.8)

A Lax-Friedrichs flux splitting approach is used to split the inviscid flux terms

into positive and negative parts yielding

F ′ = F ′
+ + F ′

− (3.9)

where

F ′
+ =

1

2
(F ′ + λU) (3.10)

F ′
− =

1

2
(F ′ − λU) (3.11)

and where λ is a positive parameter chosen to be larger than the local maximum

eigenvalues of Fj. For example,

λ =
|∇η|
J

(√

(ǫc)2 + u′2 + c

)

(3.12)

where u′ is the transformed velocity in the η direction, ǫ = 0.05, and c is the speed

of sound.

A seven point stencil is then used to discretize the spatial derivatives

dfi
dx

=
1

hbi

3∑

k=−3

αi+kfi+k −
α

6!bi
h5
(
∂f 6

∂6x

)

(3.13)
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where

ai±3 =± 1 +
1

12
α, ai±2 =∓ 9− 1

2
α (3.14)

ai±1 =± 45 +
5

4
α, ai =− 5

3
α (3.15)

bi = 60 (3.16)

and where α < 0 is a fifth order upwind explicit scheme and α = 0 reduces to

a sixth order central scheme. The upwinded inviscid terms, such as
∂F ′

+

∂η
, use

α = −6 and the downwinded inviscid terms use α = 6. Choosing α = ±6 yields a

low dissipation fifth order upwinded difference. The viscous terms are discretized

using α = 0. Second order derivatives are computed by applying the first order

derivative operator twice.

Once the derivative operators are discretized, the method of lines approach is

used to advance the solution in time. This approach starts with

∂U

∂τ
= L (U, τ) (3.17)

where L (U, τ) is obtained from discretizing the derivatives in Eq. (3.2) and ap-

plying boundary conditions. Multiple time advancement schemes were used to

advance the solution in time. The time advancement scheme used for a particular

case was chosen based on the flow conditions.

The first and most basic scheme implemented here is Explicit Euler. This

scheme results in

Un+1 = Un +∆τL (Un) (3.18)

where Un is at time τ0 and Un+1 is at time τ0 + ∆τ . This scheme, at times,

resulted in excessively small time steps brought about by the stiffness from the

source terms. This was most evident directly downstream of the bow shock near

the nose of a blunt body where the energy modes and chemical reactions changed

rapidly. Away from the nose region, this scheme had adequate performance.
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The second scheme is an explicit third-order Runge-Kutta scheme described in

[Wil80]. This scheme is designed to minimize memory usage. It is mathematically

defined as

Un+1 = Un +
1

6
k1 +

3

10
k2 +

8

15
k3 (3.19)

where

k1 = ∆τL (Un, τ0) (3.20)

k2 = ∆τL

(

Un +
1

3
k1, τ0 +

1

3
∆τ

)

(3.21)

k3 = ∆τL

(

Un − 3

16
k1 +

15

16
k2, τ0 +

3

4
∆τ

)

. (3.22)

This scheme also had the same problems as explicit Euler when dealing with

the stiffness of the thermochemical nonequilibrium equations. However, it has

significantly less temporal error than explicit Euler.

The last scheme used is a semi-implicit scheme where the fluxes are treated

explicitly and the source term is treated implicitly. The equation to be solved is

rewritten as
∂U

∂τ
− L (U, τ)−W (U) = 0 (3.23)

which separates the source term so it may be treated separately. A first-order

forward discretization is used for ∂U
∂τ

and a trapezoidal method is used for the

source term resulting in

Un+1 − ∆τ

2
W
(
Un+1

)
− Un −∆τL (Un, τ0)−

∆τ

2
W (Un) = 0. (3.24)

This is a non-linear equation that must be solved iteratively. However, note that

the source terms are not coupled across grid points making this a point implicit

scheme. Therefore, the non-linear system to be solved is local to each grid point

making it trivially parallelizable on any multi-processor machine.

The nonlinear Newton’s method is used to solve the system of equations. The

starting point to apply the non-linear Newton method to this system of equations
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is to define

Q = Un+1 − ∆τ

2
W
(
Un+1

)
− Un −∆τL (Un)− ∆τ

2
W (Un) = 0 (3.25)

and note that a truncation of the Taylor series expansion gives

∂Q

∂Un+1
∆U = −Q (3.26)

where

∆U = Un+1 − Un. (3.27)

Taking the partial derivative ∂Q/∂Un+1 and substituting in for Q results in the

system of equations

(

I − ∆τ

2

∂W (Un+1)

∂Un+1

)

∆U = −Un+1 +
∆τ

2
W
(
Un+1

)
+Rn (3.28)

where I is the identity operator and

Rn = Un +∆τL (Un, τ0) +
∆τ

2
W (Un) . (3.29)

The steps of the nonlinear Newton’s method is then to solve Eq. (3.28) for ∆U ,

update Un+1 using Eq. (3.27), and repeat until some convergence criteria is met.

Commonly this solution procedure required two to four steps before converging

to machine epsilon on a 64 bit machine with double precision variables.

The semi-implicit method was implemented to deal with the stiffness intro-

duced by the source terms. Specifically, in the nose region of some blunt cones

tested there was difficulty in getting a smooth and converged solution at the first

few points downstream of the bow shock. This semi-implicit treatment did help

to alleviate the time restraint caused by the stiffness and smooth out the solution

in regions with large stiffness. However, in regions downstream of the nose where

the source terms introduced less stiffness, the extra computational costs of this

method were not justified by a substantial decrease in the time step.
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3.1.1 Shock-Fitting Formulation

In the current shock-fitting formulation, the shock is located at

η (x, y, z, t) = ηmax = constant (3.30)

and is treated as a computational boundary. The grid points at ηmax are assumed

to be immediately downstream of the shock. In the freestream, the flow is assumed

to be in thermal equilibrium and the chemical composition of the flow is fixed.

The shock is assumed to be infinitely thin resulting in no relaxation as the flow

crosses the shock. There is no relaxation because the relaxation rates are finite.

This leads to the chemical composition remaining constant across the shock, as

well as the vibration temperature. The relaxation zone is entirely downstream of

the shock since neither process has any time to relax across the shock.

Under these assumptions, the Rankine-Hugoniot jump conditions are

ps = p∞

[

1 +
2γ

γ + 1

(
M2

n,∞ − 1
)
]

(3.31)

ρs = ρ∞

[

1 +
(γ + 1)M2

n,∞

(γ − 1)M2
n,∞ + 2

]

(3.32)

un,s = vn +
ρ∞
ρs

(un,∞ − vn) (3.33)

ut,s = ut,∞ = u∞ − un,∞n (3.34)

us = ut,∞ + un,sn = u∞ + (un,s − un,∞)n (3.35)

cs = c∞ (3.36)

TV,s = TV,∞ (3.37)

where the subscripts ∞ and s denote the freestream and the region immediately

downstream of the shock, respectively. Here, Mn,∞ is the normal component of

the freestream Mach number relative to the shock, u is the velocity vector, un is

the normal velocity component, and ut are the tangential velocity components.

To use the Rankine-Hugoniot jump conditions, the grid velocity (vn) is required.
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The definition of the grid velocity may be obtained from the normal vector to the

shock front which is

n =
ηx î+ ηy ĵ + ηz k̂

|∇η| . (3.38)

From this, the velocity of the shock front along n is found to be

vn =
−ηt
|∇η| . (3.39)

To determine the grid velocity, information from inside the flow domain is

required. To obtain this information, the Rankine-Hugoniot relations may be

rewritten as

F ′
s = F ′

∞ (3.40)

where the inviscid flux term F ′ is defined as

F ′ =
F1ηx + F2ηy + F3ηz + Uηt

J
. (3.41)

Substituting the definition of F ′ into Eq. (3.40) and moving all terms to the left-

hand-side it is found that

(Fs − F∞) · a+ (Us − U∞) b = 0 (3.42)

where

a =
(ηx
J

)

s
î+
(ηy
J

)

s
ĵ +

(ηz
J

)

s
k̂ (3.43)

b =
(ηt
J

)

s
. (3.44)

To put Eq. (3.42) in a form that is suitable for time integration, a temporal

derivative must be taken which results in

∂Fs

∂τ
· a+

∂Us

∂τ
b

︸ ︷︷ ︸

unsteadiness
downstream of shock

−
(
∂F∞

∂τ
· a+

∂U∞

∂τ
b

)

︸ ︷︷ ︸

freestsream
unsteadiness

+ (Fs − F∞) · ∂a
∂τ

+ (Us − U∞)
∂b

∂τ
︸ ︷︷ ︸

shock movement

= 0

(3.45)
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where terms arise that account for unsteadiness in flow variables upstream and

downstream of the shock, as well as shock movement during the simulation. Note

that for a steady meanflow simulation the terms that account for freestream

unsteadiness are set to zero. However, when introducing perturbations in the

freestream for an unsteady DNS, these terms are non-zero.

Now the partials of the inviscid flux vector need to be put in terms of the

conserved variables. This may be done through the chain rule yielding

− (Us − U∞)
∂b

∂τ
= B′

s

∂Us

∂τ
− B′

∞

∂U∞

∂τ
+ (Fs − F∞) · ∂a

∂τ
(3.46)

where

B′
s =

∂F ′

∂U
. (3.47)

The Jacobian matrix, B′
s, has the eigenvalues

|∇η|
J

(un − vn)s , . . . ,
|∇η|
J

(un − vn)s ,
|∇η|
J

(un − vn − c)s ,
|∇η|
J

(un − vn + c)s

(3.48)

where c is the speed of sound. The eigenvalue corresponding to the characteristic

field that approaches the shock from downstream is |∇η|
J

(un − vn + c)s. The left

eigenvector associated with this eigenvalue is

l =
1

c2

















(γ − 1)
(
1
2
u · u− h0r − cv,rT

)
− cun +RT/Mr

cnx − (γ − 1) u

cny − (γ − 1) v

cnz − (γ − 1)w

γ − 1

− (γ − 1)

















s

. (3.49)

The left eigenvector behind the shock satisfies the relation

l · B′
s =

|∇η|
J

(un − vn + c)s l. (3.50)
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Multiplying both sides of Eq. (3.46) by the left eigenvector and then using

Eq. (3.50), the final relation for the shock velocity is obtained where

∂b

∂τ
=

−1

l · (Us − U∞)
[ |∇η|
J

(un − vn + c)s l ·
∂Us

∂τ
− (l · B′

∞)
∂U∞

∂τ
+ l · (Fs − F∞) · ∂a

∂τ

]

. (3.51)

Notice that this equation depends on ∂a/∂τ . Therefore, two equations need to be

integrated in time to obtain the grid velocity: ∂a/∂τ and ∂b/∂τ . These equations

are integrated along with the flow solution in the computational domain with

the procedures described in Sec. 3.1 to solve for the grid velocity. Once the grid

velocity is known, the Rankine-Hugoniot jump conditions may be used to set the

solution at ηmax.

3.1.2 Surface Chemistry Model Iterative Solution Method

The set of equations that defines the surface chemistry model described in Sec. 2.1

is nonlinear, and requires an iterative solution at every wall grid point. Also, there

are surface-normal derivatives in the equations that can couple the boundary

points together. Fortunately, the physical grid used here is always in the surface-

normal direction, so there is no coupling of the solution between grid points. In

other words, an iterative method is required to solve the surface chemistry equa-

tions at each surface grid point, and this solution is independent of the solution

at other surface grid points.

The iterative method used for solution of the equations is the nonlinear New-

ton’s method. For the solution procedure, it is convenient to express the equations

of the surface chemistry model as

Fi (x) = 0, i = 1, 2, . . . , ns+ 1 (3.52)

for

x = (ρ1, ρ2, . . . , ρns, T ) (3.53)
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where

Fi (x) = ciṁ− ρDi
∂ci
∂n

− ṁi, i = 1, 2, . . . , ns− 1 (3.54)

Fns (x) = p−
ns∑

s=1

ρs
R

Ms

T (3.55)

Fns+1 (x) = k
∂T

∂n
+ kV

∂TV
∂n

+ ρ

ns∑

s=1

hsDs
∂cs
∂n

− σǫT 4 − ṁ

ns∑

s=1

cshs,o. (3.56)

Notice that only ns − 1 species mass balance equations are required to reach a

solution. It doesn’t matter which of the equations are dropped. Dropping any of

the species mass balance equations (Eq. (2.59)) will give the same result.

A first-order truncation and rearrangment of the Taylor series of Fi gives

− Fi (x) =
∂Fi

∂xj
δxj (3.57)

where the individual elements of the Jacobian (∂Fi

∂xj
) are given in Appendix A and

δxj = xn+1
j − xnj . (3.58)

The steps to solution are then to use the old values to solve Eq. (3.57) for δxj.

Then, xn+1
j is computed and the procedure is repeated, after setting xnj = xn+1

j .

The iteration is stopped when δxj/xj ≤ 1×10−10. This method generally required

two iterations to converge and reliably converged, assuming a good initial guess

was known.

3.2 High-Order LST Numerical Method

Once meanflow solutions have been obtained from a suitable meanflow solver,

such as the one given in [MZ14], it is possible to analyze flow instability using

linear stability analysis. For the linear stability analysis, a body-fitted orthogonal

curvilinear coordinate system is used for axisymmetric bodies where x is in the

streamwise direction, y is in the wall-normal direction, z is in the transverse direc-

tion, and the origin is located on the body surface. Curvature in the streamwise
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and transverse directions is included similar to [MS91]. Elemental lengths are

defined as h1 dx, dy, and h3 dz where

h1 = 1 + κy (3.59)

h3 = rb + y cos (θ) (3.60)

and where κ is the streamwise curvature, rb is the local radius of the body, and

θ is the local half angle of the body. The coordinate system for a flat plate is

recovered by setting h1 and h3 to unity. For a straight cone, only h3 is required

and h1 is set to unity.

The derivation of the thermochemical nonequilibrium LST equations follows

the work of [Hud96] excepting the species velocity terms which are substituted

into the governing equations before linearization similar to [KUT12]. The LST

equations are derived from the non-conservative form of the governing equations

where the instantaneous flow is comprised of a mean and fluctuating compo-

nent q = q̄ + q′. Here, q represents any flow variable such as velocity, density,

temperature, etc. The instantaneous flow is then substituted into the governing

equations where the steady flow is assumed to satisfy the governing equations and

is subtracted out. The meanflow is assumed to be a function of the wall-normal

coordinate y only, i.e., q̄(x, y, z) ≈ q̄(y) and the flow disturbances are assumed to

be small, i.e., linear. The perturbations are then assumed to be in the form of a

normal mode described by

q′ (x, y, z) = q̂ (y) exp [i (αx+ βz − ωt)] (3.61)

where ω is the circular frequency of the mode and α and β are the wave numbers.

Commonly, ω and β are assumed to be real and the wave number α is assumed

to be complex which means the modes grow in space rather than time. If ω is

complex and α and β are real then the modes grow in time rather than space. A

negative imaginary part of the wave number α results in disturbance growth while

a positive value results in disturbance decay. If αi = 0 then there is no growth or
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decay of the disturbance which is termed a neutral disturbance. For comparison

to DNS, the spatial stability approach is used, i.e., α is complex which results in

the dispersion relation α = Ω(ω, β).

Substituting in the normal mode form for the perturbations reduces the prob-

lem to a coupled set of ns+5 ordinary differential equations

(

A
d2

dy2
+B

d

dy
+C

)

~φ = ~0 (3.62)

where ~φ = {ρ̂1, ρ̂2, ..., ρ̂ns, û, v̂, ŵ, T̂ , T̂V }T and A, B, and C are complex square

matrices of size ns+5. This is now a boundary value problem where the derivative

operators can be discretized and the equations solved numerically.

For hypersonic compressible boundary layers, it is important to have high grid

resolution near the generalized inflection point [Mac84]. Two different grid types

were used. The first grid is used to cluster grid points around the inflection point

only and has been used by previous researchers [HCC97]. It is defined so that

y =
aη

b− η
(3.63)

where

a =
ymaxyi

(ymax − 2yi)
(3.64)

b =1 +
a

ymax

(3.65)

and ymax is the outer domain boundary near the shock, yi is the location of the

generalized inflection point, and η runs from zero to one. For hypersonic boundary

layers, the generalized inflection point moves toward the boundary layer edge so

yi may be placed near the boundary layer edge. If grid metrics are required, they

can be computed directly from Eq. (3.63).

The second grid uses two different functions to cluster points around the in-

flection point and near the wall. It will be called the cosine-exponential grid.

For some boundary layers analyzed in this research, there was a sharp increase
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in the eigenfunctions near the wall for the temperatures and densities that was

not captured correctly with the grid that only clustered points near the inflection

point. The cosine-exponential grid was much more effective for boundary layers

with strong changes in the eigenfunctions near the wall. The cosine-exponential

grid is defined so that

y = yi (1− cos (πη)) /2, 0 ≤ y ≤ yi (3.66)

y = yi +
aη

b− η
, y > yi (3.67)

where

a =(ymax − yi) s (3.68)

b =
1 + a

ymax − yi
(3.69)

and s is a stretching parameter that stretches towards yi for s < 1 and away for

s > 1. Here, s = 0.5 was used. Similar to the previous grid, ymax is the outer

domain boundary near the shock, yi is the location of the generalized inflection

point, and η runs from zero to one.

With the grid defined, it is now possible to discretize the derivative operators.

In [Mal90] there is an excellent overview of numerical methods suitable for stability

calculations of hypersonic flows which include finite difference, compact difference,

and spectral formulations. A fourth order central difference scheme has been

used by previous researchers [Hud96, Cha04] to good effect. Here, a different

approach than what has previously been used for hypersonic stability calculations

is taken. The first and second derivative operators in the wall-normal direction

are discretized by taking derivatives of Lagrange polynomials in physical space.

If xp is the grid point where a first derivative is required then

∂f

∂x

∣
∣
∣
∣
xp

=
N∑

i=1

Aifi (3.70)
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where

Ai =

N∑

j=1
j 6=i

N∏

k=1
k 6=i
k 6=j

(xp − xk)

N∏

m=1
m 6=i

(xi − xm)

(3.71)

andN is the total number of points in the stencil. Similarly, for a second derivative

at xp

∂2f

∂x2

∣
∣
∣
∣
xp

=
N∑

i=1

Bifi (3.72)

where

Bi =

N∑

ℓ=1
ℓ6=i

N∑

j=1
j 6=i
j 6=ℓ

N∏

k=1
k 6=i
k 6=j
k 6=ℓ

(xp − xk)

N∏

m=1
m 6=i

(xi − xm)

. (3.73)

For the interior points, a centered stencil is used thus requiring an odd number of

points. An even number of points may be used which would require an offset sten-

cil. For grid points near the boundary, an offset stencil is used where the number

of points in the stencil is maintained. It should be noted that the largest source

of numerical error from approximating the derivatives in this fashion will come

from the second derivative approximation. To decrease this error, more points

may be used in the second derivative stencil than the first derivative stencil, but

here an equal number of points are used for each derivative approximation. These

derivative operators are applied in physical space rather than computational space

to avoid Runge’s phenomena where spurious oscillations can occur for a one-sided

stencil with a high order of approximation. Also, in areas of low grid density, this

method is susceptible to odd-even decoupling of the solution. If the derivative

operators of Eqs. (3.70) and (3.72) are applied to a centered stencil in compu-

tational space, the standard central finite difference coefficients are obtained. In

other words, the fourth order method used by previous researchers for interior
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points can be obtained from the current method using a five point stencil in com-

putational space.

There are a couple advantages to approximating the derivatives in this fashion.

Once the subroutines for computing the coefficients are set up, it is trivial to

change the number of points used to approximate the derivatives. This makes it

easy to switch from low to high order or vice versa without making any changes to

the code as the order of the method is dependent upon the number of points chosen

for the derivative stencils. Since the derivatives are taken in physical space rather

than computational space, grid metrics are not required. Although it is not used

here, this allows an arbitrary placement of grid points within the computational

domain. Also, the formulation for derivatives at the boundary can use the same

derivative approximations which easily integrates high-order boundary conditions

into the code. As one of the main focal points in the current work for developing

a thermochemical nonequilibrium LST code is to include gas/surface interactions,

wall-normal derivatives are quite important making this technique a good fit.

After discretization, nonlinearities exist in α, so the global method suggested

in [Mal90] is used to compute the eigenvalue spectrum with α2 = 0. This method

computes the eigenvalues from a generalized eigenvalue problem Ã~φ = αB̃~φ where

the LAPACK [ABB99] subroutine ZGGEV is used to obtain a solution. It is pos-

sible to avoid the computationally intensive global method and obtain an initial

guess for α from a nearby streamwise location, similar frequency, or a DNS simu-

lation assuming the unsteady DNS results are available.

Once an initial guess for α is obtained, the local method is used where α2 is

no longer dropped. This results in

Āφ = B̄ (3.74)

where Ā is obtained from discretizing Eq. (3.62). Notice that for the conditions

given, B̄ = 0. To avoid a trivially zero solution, B̄ should ideally be non-zero.
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This can be done by replacing one of the boundary conditions by a free parameter

and iterating α until this free parameter approaches zero. When it nears zero, the

solution of Eq. (3.74) approaches the solution of the homogeneous problem, and

the correct φ and α have been computed.

Newton’s method is used to iterate α, and drive the free parameter to zero.

For Newton’s method, the update step is

αn+1 = αn − u(0)
∂u(0)
∂α

(3.75)

where u(0) is the free parameter used in place of the boundary condition for the

wall-tangent velocity. By taking a derivative of Eq. (3.74) with respect to α and

rearranging, it is found that

Ā
∂φ

∂α
= −∂Ā

∂α
φ (3.76)

where the solution will yield ∂u(0)
∂α

which is required to update α. One might think

the addition of solving another linear system of the same size would add significant

computational cost, making the secant method an attractive alternative. However,

the solution of Eqs. (3.74) and (3.76) have the same LU decomposition of the

matrix Ā, assuming that LU factorization is used to solve the system of equations.

This dramatically decreases the computational cost. For the cases tested here,

it was found that the slight increase in computation for Newton’s method was

outweighed by the faster convergence and more reliable convergence of Newton’s

method over the secant method. For solution of the system of equations using LU

factorization, the LAPACK subroutine ZGESV is used.

3.2.1 LST Boundary Conditions

Boundary conditions are required in the freestream and at the wall for LST. In

the freestream, all perturbations are zero except the wall-normal velocity pertur-

bation which is found from the mass conservation equation similar to [Stu91]. The

freestream boundary conditions are set near 0.98Hs where Hs is the height of the
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shock measured from the wall. It is possible to linearize the Rankine-Hugoniot

jump conditions at the shock which would be required for a mode with an eigen-

function that oscillates in the freestream such as the unstable supersonic modes

shown in [CVM97]. However, the unstable second mode studied here has a decay-

ing eigenfunction in the freestream where the current boundary conditions used

are suitable.

The boundary conditions at the wall are slightly more complicated. There

are ns + 5 independent variables in the stability calculations, therefore ns + 5

conditions are required at the wall. The approach taken here is to linearize all of

the equations used to set the wall boundary conditions in the mean flow simulation.

The linearization procedure is consistent with the linearization of the interior

flow. Of these ns + 5 conditions, the simplest are the no slip in the wall tangent

directions resulting in û1 = û3 = 0. The surface energy balance in Eq. (2.57) can

be linearized resulting in
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(3.77)

where the perturbation of the diffusion coefficients and the species mass flux terms

are dependent on the specific gas model and surface chemistry model used. They

can be found from a first order Taylor series expansion. Note that the overbars

have been dropped from the steady terms for simplicity and y denotes the wall-

normal coordinate. As there are ns + 5 independent variables, it is required to

put Eq. (3.77) in terms of these independent variables. Then the normal mode

form for the perturbations may be substituted for the equation to be suitable as a

boundary condition. For the gas model and surface chemistry model given here,
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this results in
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where all values and derivatives are defined at the wall. To this point the derivation

of the linearized surface energy balance has made no assumptions about parallel

flow, so it is still applicable to non-parallel methods. Recall from Eq. (2.60) that

ṁ = ρun which requires any terms containing ṁ to be set to zero to enforce the

parallel flow assumption. Also, note that this equation is in essence imposing an

upper bound on the temperature perturbation at the wall. Mack [Mac84] notes

that “for almost any frequency, it is not possible for the wall to do other than to

remain at its mean temperature” which would require that T̂ = 0. For ablative

flows, the exact boundary between wall and fluid is a little less sharp. There

may be melting of the surface material and/or pyrolosis gas injection that are

not present for a standard non-porous, wall-bounded flow. Taking these physical

mechanisms into account, it is quite possible for T̂ 6= 0. In reality, T̂ at the surface

may lie between these two extremes so it is useful to see how each boundary

condition influences instabilities. Both of these cases are tested in Sec. 7.3. For

either case of temperature perturbation, the wall is assumed to be in thermal

equilibrium resulting in T̂V = T̂ .

Conditions on each species density perturbation are required at the wall.

Eq. (2.59) gives the condition on the species density at the wall for the mean-
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flow simulation. A linearization of this equation yields
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where once again the overbars denoting steady conditions have been dropped for

simplicity and ṁ′
s is the species mass flux perturbation related to the specific

gas/surface interaction model. Substituting in the normal mode for each indepen-

dent perturbation gives ns wall conditions in the form
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Once again note that the parallel flow assumption has not been made yet. To

make the parallel flow assumption simply drop the terms with ṁ. Note that the

equation can be further simplified if T̂ = 0 by dropping all T̂ terms.

With the species surface mass balance linearized, recall that a total mass

balance was used to set the wall-normal velocity (Eq. (2.60)) in the meanflow

simulation. Further recall that this condition is found from a linear combination

for each species surface mass balance. Therefore, a linearization of this equation

will result in no new information at the boundary. For the boundary to be ad-

equately constrained another equation is required. In the meanflow simulation,

pressure extrapolation is used to account for the incoming characteristic at the

wall. Linearizing the pressure extrapolation condition and substituting in the

normal modes results in
(
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(3.81)

where the subscript 1 denotes the grid point at the wall, N is the number of

points used, and γj are the weights for extrapolation. This accounts for the last

required boundary condition and is used in place of a v̂ equation. It is also
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possible to linearize the total mass flux equation and substitute the linearized

pressure extrapolation condition for one of the linearized surface mass balance

equations. Both methods were tested and the differences between the two were

negligible.

3.3 Cut-Cell Numerical Method

The cut-cell method follows that of [DWZ10] and the finite-difference stencils used

in the cut-cell method follow that of [Gre14]. A schematic of the cut-cell grid is

shown in Fig. 3.1. The curvilinear grid is only body-fitted to the body which

causes the roughness element at the surface of the body to intersect the grid.

The curvilinear grid, along with the roughness element, is then transformed from

physical space into computational space using the coordinate transform given in

Eq. (3.1). Note that the top of both domains is bounded by the shock and the

bottom by the body.

(a) (b)

Figure 3.1: Cut-cell grid in (a) the physical domain and (b) the computational

domain from [DWZ10].
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The first step in the cut-cell method is to locate the intersection of the irregular

surface with the computational grid lines. Once this intersection is found, it is

trivial to locate the same intersection in physical coordinates. The edge of the

irregular surface may be defined as Γ (x, y, z) = γ (ξ, η, ζ) = 0. This could be

either some spline function used to fit a collection of points, or in the case of

surface roughness, an elliptic or hyperbolic-tangent profile. Usually, the function

Γ is known and it needs to be changed, through some mapping from physical to

computational space, to a function of the computational coordinates.

Once in computational space, the function γ may intersect either the ξ, η, or

ζ grid lines. For two-dimensional roughness, only the ξ and η grid lines need be

considered. If the roughness function γ crosses an η grid line, then ξ is known and

η must be found. Newton’s method is used to solve for η and η is updated using

ηn+1 = ηn − γ (ξ, ηn)

dγ (ξ, ηn) /dη
(3.82)

where the superscript n corresponds to the working step in Newton’s method.

The same method was used if the roughness intersected a ξ grid line. It was

found that Newton’s method was sensitive to the initial guess and could jump

to nearby solutions if the initial guess was not close enough. To rectify this, the

midpoint method was used to get the initial guess close enough that Newton’s

method could reliably converge on the proper solution. Since the physical grid is

a function of time (see Eq. (3.1)), the intersection of the irregular surface and the

computational grid changes with time. Therefore, the points where the irregular

surface crosses the computational grid need to be found at every iteration.

Once the intersection of the irregular surface and the grid have been found,

a point classification scheme is required to determine how a given point will be

treated. Four different types of grid points are used: regular points, dropped

points, irregular points, and boundary points. Figure 3.2 shows a schematic of

point classification in the eta direction. Each of the four point types are shown
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along with the location of the body overlapping the stencil. Regular points are

points in the computational domain where the standard finite difference stencil,

given in Eq. (3.13), is used. That is, there is no infringement of the roughness

element onto any of the points used in the standard stencil. The standard stencil

here is a centered seven point stencil so three points that are not boundary points

are needed to either side of the point for it to be regular. This is shown in Fig. 3.2

where η5 is the first point away from the body that meets this requirement.

σ ∆η

η2 η3 η4 η5 η6 η7 η8η1
η

Figure 3.2: Point classification of η grid line for; regular points , irregular

points , boundary points , dropped points in all directions , and dropped

points in the η direction only . The body is denoted by .

There are two types of dropped points. The first type of dropped points

are points contained inside of the roughness element. They are denoted by in

Fig. 3.2. They are not used for any numerical calculations. The second type is

points that are deemed too close to boundary points. Locating these dropped

points is done in each direction by determining σ which is the distance from the

point to the body in computational space along a grid line. If σ is less than some

predefined value, then the point is too close to the body and it is dropped, in that

direction, from the finite-difference stencil. Note that, a point may be a dropped

point in one grid direction and not in another. A reason for dropping points with

a small σ is the time step requirement for stability can be severely limited if σ is

excessively small. Here, σ = 0.5 is used in each grid direction and was found to

perform satisfactorily. This choice of σ is made with the implicit assumption that

the distance between two points in computational space in any grid direction is

unity.
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Boundary points are defined as any intersection of a grid line with the rough-

ness element. They are not a part of the original Cartesian grid. At these points,

extrapolation of interior flow variables, or their derivatives in the wall-normal di-

rection, may be required as boundary conditions. A second-degree least-squares

polynomial is used for extrapolation and to compute wall-normal derivatives. The

polynomial is

f(x, y) = c1 + c2∆x+ c3∆y + c4∆x
2 + c5∆x∆y + c6∆y

2 (3.83)

where

∆x = x− xbp, ∆y = y − ybp (3.84)

and where f is the interpolated variable, the coefficients c1, c2, . . . , c6 are found

using a least-squares approximation, and the subscript bp refers to the physical

location of the boundary point. The closest twenty one points by index were used

to determine the coefficients. This same method was used in [Gre14] where it was

found that a least-squares polynomial was more stable than a two-dimensional

polynomial interpolation without a least-squares approximation.

Irregular points are points near the roughness element where the standard

finite difference grid stencil cannot be used due to an overlap of the stencil with

the body. These are points η2, η3, and η4 in Fig. 3.2. Offset stencils, computed

from derivatives of Lagrange polynomials, with a non-uniform spacing are used

for the irregular points. Here, third-order and fourth-order offset stencils are used

for inviscid terms while fourth-order and fifth-order offset stencils are used for the

viscous terms. Following the schematic of Fig. 3.2, a derivative of the upwind flux

for the jth irregular point in computational space is

∂F ′+
j

∂η
=

1

∆η

6∑

k=1

a+j,kF
′+
j,k. (3.85)

The coefficients a+j,k for the inviscid flux terms are given in Table D.1 along with

the corresponding downwind coefficients. These coefficients are upwind biased.
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Similarly to Eq. (3.85), the viscous flux may be found and the corresponding

coefficients are given in Table D.2. It was shown in [Gre14] that a solution proce-

dure using the coefficients in Tables D.1 and D.2 along with a fifth-order interior

scheme resulted in a fourth-order method.
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CHAPTER 4

DNS Validation

Three validation cases are computed with the shock-fitting code using the eleven

species gas model and the surface chemistry model. Two cases are compared to

simulations in [Kee94] and one case is compared to a simulation from [CM05a] that

has corresponding experimental data. Recall that [Kee94] has served as a starting

point for the gas model and surface chemistry model. It should be noted that

[Kee94] and [CM05a] use shock-capturing methods where a shock-fitting method

is used in this work.

4.1 Comparison to the M∞ = 15.99 Simulation of PANT

Case 1

The first test case freestream conditions come from experimental tests on graphite

from the Passive Nosetip Technology (PANT) program [Woo75] and is called

PANT Case 1. The experimental facility used to conduct these tests is the Arnold

Engineering Development Center Aeroballistic Range G. The freestream condi-

tions are given in Table 4.1. The geometry is a sphere cylinder with a nose radius

of 0.635 cm. The grid shown in Figure 4.1, was chosen similar to [Kee94] using

32 points on the surface and 91 points in the surface normal direction. However,

the shock-fitting method uses a two sided stretching in the wall normal direction

to accurately capture relaxation processes just downstream of the shock whereas

[Kee94] uses a one sided boundary layer stretching. In the shock-fitting code there
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is no computation of the temperature within the graphite ablative material but

[Kee94] does compute the temperature within the ablator. For a more reasonable

comparison, a curve fit of [Kee94]’s simulated surface temperature was used to set

the two surface temperatures rather than using the surface energy balance. Only

the sphere region has been computed for comparison as this is the region where

ablation effects are the most pronounced.

Table 4.1: Freestream conditions

for PANT case 1.

Parameter Value

M∞ 15.99

ρ∞ [kg/m3] 2.4093× 10−2

P∞ [N/m2] 2026.0

CN2
0.7635

CO2
0.2365

Figure 4.1: Computational grid for PANT case 1.
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Figure 4.2 shows computed contours for PANT case 1. The two temperatures

are clearly not in equilibrium for this case. The maximum value of translation-

rotation temperature is reached directly downstream of the normal shock at y = 0.

The vibration temperature is assumed frozen across the shock so the maximum

is not reached behind the shock. The maximum vibration temperature is reached

as it tries to equilibrate with the translation-rotation temperature as flow moves

downstream.

Pressure attains a maximum at the stagnation point and then decreases down-

stream. For a blunt body at zero angle-of-attack pressure reaches a maximum on

the body at the stagnation point. For this case there is a velocity normal to the

wall attributable to ablation induced outgassing. This moves the stagnation point

away from the body and thus pressure reaches a maximum slightly away from the

body. For this case the Mach numbers downstream of the shock are subsonic to

supersonic. Mack’s first mode is generally more unstable for edge Mach numbers

below 4.5 so for this blunt body flow transition would be first mode dominated.

Contours of oxygen (O2) and atomic oxygen (O) are given to show the reacting

behavior of the flow. Near the shock the mass fraction of oxygen is 0.22 and due to

the high temperatures it dissociates into 2O and reacts with other air molecules as

the flow moves downstream. Near the wall oxygen is almost completely dissociated

but there is not a large amount of atomic oxygen. This is because the oxygen is

reacting with the graphite surface to form CO.

Figure 4.3 gives a comparison of the stagnation line translation-rotation tem-

perature and vibration temperature where n = 0 corresponds to the sphere stag-

nation point. In this and each following figure n represents the direction normal to

the surface. In each figure of this section the solid lines represent the shock-fitting

computation and the dashed lines represent validation data. A large discrep-

ancy in the computed temperatures can be seen near the shock at approximately

n = 0.054 cm. This is most likely due to the different computational methods
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(a) Translation-rotation temperature (b) Vibration temperature

(c) Pressure (d) Mach number

(e) Oxygen mass fraction (f) Atomic oxygen mass fraction

Figure 4.2: Contours of selected values for PANT case 1.
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Figure 4.3: Translation-rotation temperature and vibration temperature compari-

son on the stagnation line. Dashed lines from [Kee94] and solid lines from current

simulation.

used and the different grid stretching in the wall normal direction. The shock-

fitting method used in this paper uses Rankine-Hugoniot relations to compute the

temperature behind the shock whereas shock-capturing methods capture the shock

and are commonly more diffusive near the shock. Similar results from Prakash et

al. [PPW11, PPW10] also show a discrepancy in computed temperatures behind

a shock for thermochemical nonequilibrium flow between a shock-fitting method

and a shock-capturing method.

The shock standoff distance on the stagnation line for the shock-fitting method

is 0.0515 cm. It is difficult to tell exactly where the shock lies for the shock cap-

turing method. The shock is located at 0.050 cm for the shock capturing method

assuming the shock lies at the maximum of translation-rotation temperature. This

yields a 3% relative difference between the two methods which is adequate. There

is a discrepancy in the temperature equilibration location for the shock-fitting

62



method (n ≈ 0.045 cm) and the shock capturing method (n ≈ 0.035 cm). For the

shock-fitting method, the distance between the shock and the equilibration point

is less. For the shock-fitting method, there is a much larger difference between the

translation-rotation temperature and the vibration temperature behind the shock.

This makes the vibration temperature increase quicker than the shock capturing

method thus moving the equilibration point nearer to the shock. Physically the

shock thickness will be thin when the continuum approximation is valid as it is

here. The equilibration point of the shock-fitting method may be physically more

accurate as the shock is approximated as a line for a 2D calculation and the shock

capturing method smears the shock over multiple grid points. This means that

for the shock-fitting method the vibration temperature is exactly its freestream

value after the shock because it has not had time to relax whereas for the shock

capturing method the vibration temperature rises across the shock due to shock

smearing.

A comparison of contour lines for the entire computational domain of vibration

temperature and 1 − TV /T is given in Fig. 4.4. Only the lines that were clearly

distinguishable from [Kee94] are used for comparison. The discrepancy between

the two methods is the most pronounced near the shock similar to the discrepancy

in stagnation line temperatures. Near the body there is a good agreement between

the two methods. The simulated T in the computational domain will be in good

agreement with [Kee94] as TV and 1− TV /T are in good agreement.

A comparison of the stagnation line mass fractions and the mass fractions at

the sphere exit are given in Fig. 4.5 to ensure the gas phase reactions are imple-

mented correctly. For both subfigures, the comparison between the mass fractions

shows only small discrepancies towards the surface (n ≈ 0) where the computed

temperatures between the two methods are similar. N2 dissociates faster near the

shock for the shock-fitting method due to higher simulated temperatures result-

ing in a slight discrepancy. As the flow moves toward the body the temperature
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(a)

(b)

Figure 4.4: Comparison of (a) TV contours and (b) 1 − T/TV contours where

the dashed red lines are from [Kee94] and the black lines are from the current

simulation.
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(a)

(b)

Figure 4.5: Comparison of (a) mass fractions on the stagnation line, and (b) mass

fractions at the sphere exit. Dashed lines from [Kee94] and solid lines from current

simulation.
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(a) Surface mass flux (b) Surface mass fractions

Figure 4.6: Comparison of surface values to [Kee94] where s is measured on the

surface streamline and s = 0 corresponds to the stagnation point. Dashed lines

from [Kee94] and solid lines from current simulation.

discrepancy is smaller and the mass fraction of N2 compares well. Near the shock

there are discrepancies in the mass fractions of O2, O, and NO due to a higher

temperature computed by the shock-fitting method. This causes higher reaction

rates and faster dissociation of O2.

A comparison of the surface chemistry model was obtained by comparing the

total surface mass flux, ṁ′, and the surface mass fraction of each species shown in

Fig. 4.6. The surface streamline is s and is measured starting from the stagnation

point. It should be noted that [Kee94]’s data was digitized from a plot where

the scale was small leading to the jumpiness in the data of Fig. 4.6(a) which was

not in the original plot. Good agreement is obtained for the surface mass flux.

There is a 3% relative difference at the stagnation point in surface mass flux and

the profiles of the two computations are similar. s ≈ 1 cm corresponds to the

sphere exit and at this point the mass flux is close to zero so for this case most

of the ablation occurs near the nose as expected. In Fig. 4.6(b) the surface mass

fractions are compared. The comparison between each species is adequate.
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4.2 Comparison to the M∞ = 15.99 Simulation of PANT

Case 2

A second case was compared with [Kee94] and is called PANT case 2. These

flow conditions also come from the PANT program. Similar to PANT case 1, the

geometry is a sphere and the grid has 32 points along the surface and 91 points

in the surface-normal direction. A curve fit to the temperature profile obtain

in [Kee94] is used for a more reasonable comparison of results. The freestream

conditions for this case are given in Table 4.2.

Table 4.2: Freestream conditions

for PANT case 2.

Parameter Value

M∞ 15.99

ρ∞ [kg/m3] 2.4093× 10−1

P∞ [N/m2] 20260.0

CN2
0.7635

CO2
0.2365

Similar to PANT case 1, a comparison of contour lines for the entire computa-

tional domain of TV and 1− TV /T are given in Fig. 4.7. Only the lines that were

clearly distinguishable from [Kee94] are used for comparison. Assuming TV and

1− TV /T compare well, T will also compare well. For this case, the two methods

agree well throughout the entire domain. The discrepancies in temperature di-

rectly downstream of the shock are not as pronounced here as they are in PANT

case 1. This is most likely due to the larger freestream density leading to a quicker

equilibration of the two temperatures.
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(a) (b)

Figure 4.7: Comparison of (a) TV contours and (b) 1 − T/TV contours where

the dashed red lines are from [Kee94] and the black lines are from the current

simulation.

The mass fractions at the sphere exit plane are compared in Fig. 4.8. Similar to

PANT case 1, there is a good agreement near the wall and there is some difference

near the shock due to a higher computed translation-rotation temperature for the

shock-fitting method. In Fig. 4.8(b), a close up of the mass fractions at the

sphere exit is given. Similar to PANT case 1, there is adequate agreement in all

the species.

Figure 4.9 compares the surface mass flux. s is the surface streamline and is

measured from the stagnation point. At the stagnation point there is a 7% relative

difference between the two computations and the maximum relative difference is

17% at s = 0.142 cm. In [Kee94] it is noted that the maximum mass flux should

occur at the stagnation point so the increase in mass flux after the stagnation

point is not physical. Also, it is noted that the modified Steger-Warming scheme

that is used in the shock-capturing method has some numerical issues near the
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(a) (b)

Figure 4.8: Comparison of (a) mass fractions at the sphere exit and (b) a close

up of the mass fractions at the sphere exit. Dashed lines from [Kee94] and solid

lines from current simulation.

Figure 4.9: Comparison of surface mass flux where s is measured on the surface

streamline and s = 0 corresponds to the stagnation point. Dashed line from

[Kee94] and solid line from current simulation.
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stagnation point. Taking these points into account, the decreasing mass flux with

a maximum at the stagnation point seen in the shock-fitting method is physically

more accurate.

Overall, the comparison between the results from the shock-fitting method and

those in [Kee94] for PANT case 1 and 2 is good. The mass fractions for each of the

gas species compares well throughout the domain and at the surface. This suggests

that the gas phase reactions, as well as the surface boundary conditions, have been

implemented correctly. Both the translation-rotation and vibration temperatures

compare accurately for PANT case 2 while there is some discrepancy near the

shock for PANT case 1. The discrepancies seen in PANT case 1 are suggestive of

the different numerical methods used and different grid types used, rather than

incorrect implementation.

4.3 Comparison to M∞ = 5.84 Graphite Ablation Case

A third case was simulated to compare the gas model and surface chemistry model

to simulations performed by Chen and Milos [CM05a] of a sphere cone geometry

with graphite ablation. This test case was chosen to compare with computa-

tions as well as an experiment performed at the Interactive Heating Facilities at

NASA Ames Research Center. A surface temperature was measured during this

experiment so instead of computing the surface temperature from a surface energy

balance a curve fit to the experimental data is used. In [CM05a], a different gas

chemistry model than the model in the shock-fitting method is used and several

surface chemistry models were tested. None of the surface chemistry models tested

in [CM05a] matched the model presented here. The nose radius is r = 1.905 cm

and the cone half angle is 10 deg. The grid has 42 points on the surface and 101

points in the surface normal direction. The freestream conditions are given in

Table 4.3.
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Table 4.3: Freestream conditions

for M∞ = 5.84 case.

Parameter Value

M∞ 5.84

ρ∞ [kg/m3] 3.00× 10−3

P∞ [N/m2] 1671.36

CN2
0.6169

CNO 0.0046

CN 0.1212

CO 0.2573

Figure 4.10 shows the comparison of the sphere surface mass blowing rates

and the sphere surface pressure. The dashed lines represent digitized data from

[CM05a], the symbols represent the experiment, and the solid line represents cur-

rent computations. Four different types of surface chemistry models are used in

[CM05a] for one set of freestream conditions. Park (Nitridation) represents a

surface chemistry model from Park [Par83, Par05, Par93] containing oxidation,

nitridation, and sublimation of C3. Park (No Nitridation) represents the same

model with the surface nitridation reaction turned off. A chemical equilibrium

boundary condition represents that the gas phase and ablation boundary condi-

tions are in equilibrium and the remaining surface chemistry model is a finite rate

model proposed by Zhluktov and Abe [ZA99] which includes oxidation, sublima-

tion, and recombination but no nitridation.

The ablation boundary conditions used in the shock-fitting code represent the

two experimental data points the best out of all the models. In Fig. 4.10(a) near

the stagnation point the current computations are almost identical to the experi-

ment. This was not obtained by changing model parameters but rather the model
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(a)

(b)

Figure 4.10: Comparison of (a) sphere surface mass blowing rates and (b) sphere

surface pressure. Dashed lines from [CM05a] and solid lines from current simula-

tion.
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just happens to represent this particular data set quite accurately. The shock-

fitting surface chemistry model is closest to the assumption of chemical equilibrium

at the surface. The mass flux is less than the Park model with nitridation. The

current surface chemistry model does not include nitridation but does include re-

combination of atomic oxygen and sublimation of C, and C2 which is not included

in Park with nitridation. Since sublimation of C and C2 is small, the difference

between the two models is mainly due to the added nitridation reaction as well

as slight variations in the reaction probabilities. When the nitridation reaction

is turned off the current surface chemistry model has a greater mass flux than

Park. A comparison to the complex model of Zhluktov and Abe is not as straight

forward. Zhluktov and Abe account for many more reactions and also account for

active sites where chemical processes can take place. Near the stagnation point

at the first available data point there is a 33% relative difference between Zhluk-

tov and Abe and the current computations. The absolute difference between the

models decreases along the surface streamline but the relative difference increases

to 81% at s = 2.66 cm.

Figure 4.10(b) shows the sphere surface pressure profiles from the shock-fitting

method and [CM05a] using the Park model with nitridation. The exact surface

pressure boundary condition used in [CM05a] was not available while the pres-

sure condition used in the shock-fitting code for this case is the 1D characteristic

boundary condition for a subsonic inlet. The pressure obtained by the two meth-

ods shows a good agreement considering that the gas phase chemistry models are

different as well as the surface chemistry model.

A comparison of the the species mass fraction along the stagnation line is given

in Fig. 4.11. The solid lines represent the shock-fitting code and the symbols

represent [CM05a] with the Park nitridation surface chemistry model. There is

a good comparison for the standard air species. Near the wall, the mass fraction

of O2 increases significantly for the shock-fitting method while it decreases for
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Figure 4.11: Comparison of species mass fraction along the stagnation line to

[CM05a]. Dashed lines from [CM05a] and solid lines from current simulation.

[CM05a]. This is because the Park nitridation model does not include surface

recombination of atomic oxygen while it is included in the shock-fitting surface

chemistry model. The mass fraction for CN is higher at the wall for the Park

nitridation model because nitridation is included while it is not in the shock-fitting

model. There exists a significant difference in the mass fraction of C3. In the

shock-fitting code the mass fraction of C3 decreases quickly along the stagnation

streamline and reaches 10−5 at approximately 0.1 mm from the surface. For

[CM05a], C3 decreases but not as quickly and reaches 10−5 at approximately 1 mm

from the surface. While part of this may be attributable to diffusion—[CM05a]

uses Le = 1 while shock-fitting uses Sc = 0.5—most would be attributed to

differences in the gas model. [CM05a] only includes dissociation of C3 while the

shock-fitting gas model includes dissociation of C3 and two exchange reactions

(reactions 17 and 21) involving C3. These exchange reactions give two more

pathways for C3 to react and change chemical composition most likely leading to

the difference between the two simulations.
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For this case, the gas and surface models implemented in the shock-fitting

method compare well with other gas and surface models implemented in validated

research codes. This suggests that the models are consistent with other validated

models. The surface mass flux for the shock-fitting method compares well with

the limited experimental data, suggesting that the current model is adequately

simulating graphite ablation for the experimentally tested conditions.
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CHAPTER 5

LST Validation

To validate the LST code with the full linearized surface model boundary condi-

tions, first, a comparison to established results is given for a 5 species (N2, O2,

NO, N, and O) real-gas flow. Then, a comparison is given of the results from the

LST code and results from a DNS simulation [MZ14].

5.1 5 Species Flat Plate Comparison for Mach 10 Flow

A comparison to [Hud96] of linear stability results for a real-gas flow with five

chemical species over a Mach 10 flat plate was performed. The freestream con-

ditions are given in Table 5.1. The meanflow conditions at the wall are no-slip,

non-catalytic for each species, and adiabatic for both of the temperatures. The

meanflow solution was computed with a different meanflow solver than [Hud96].

The governing equations used to obtain both results are the same, however, there

are some minor differences in the gas model. One reaction has been added in

the current simulation and the forward reaction rates and equilibrium coefficients

differ.

A comparison of the amplification rate for the second mode is given in Fig. 5.1.

The comparison is made 0.05 m downstream of the flat plate leading edge. The

maximum amplification rate and the frequency of the maximum amplification

rate for the second mode compare well. There is some difference between the two

results between 575 and 650 kHz. However, this difference is minimal. Considering
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Table 5.1: Freestream conditions

for M∞ = 10 flat plate case.

Parameter Value

M∞ 10.0

ρ∞ [kg/m3] 5.68× 10−2

p∞ [N/m2] 4560

cN2,∞ 0.78

cO2,∞ 0.22

f (kHz)

−
α
i
(1
/m

)

Figure 5.1: Comparison of the amplification rate with [Hud96]. • were extracted

from [Hud96] and is from current simulation.
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the differences in the gas model and that different mean flow solvers were used to

compute the meanflow, the comparison is quite good.

5.2 Grid Convergence Study

Before a code comparison can be performed to DNS results, a grid convergence

study must be done to determine the required number of grid points for the LST

grid. Three different grid densities were used with 100, 200, and 300 points re-

spectively. A comparison for the amplification rate at multiple frequencies as well

as the temperature perturbation amplitude for a 525 kHz second-mode wave is

given in Figure 5.2. For the 200 grid point solution the percent relative error for

the amplification rate is less than one percent for the majority of the unstable

frequency range. The error increases near the edges of the frequency range be-

cause the amplification rate is near zero. There are only slight changes in the

temperature perturbation amplitude between all three solutions. Two hundred

grid points yields a grid converged solution for this streamwise location.

(a) (b) |T̂ |/|T̂ |max

Figure 5.2: Comparison of (a) amplification rate and (b) temperature perturbation

amplitude for three different grid densities.
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5.3 LST Comparison to DNS

In the DNS simulation, fast acoustic waves in the freestream are imposed on

the bow shock and then their behavior is simulated as they pass through the

entire domain. This approach does not simulate the behavior of a single mode

like LST but rather multiple modes can be present for each frequency. For the

most consistent comparison, a streamwise location was selected where DNS results

showed a clean exponential disturbance growth, i.e., no modulation. This was

done because exponential growth is indicative of modal growth, and therefore

a dominant boundary layer mode, rather than multiple competing modes. The

streamwise location selected is s=0.564 m measured along the cone surface from

the stagnation point.

Figure 5.3 shows the steady boundary layer profile computed by DNS. Here u

and v represent the velocity components parallel to the wall and normal to the

wall respectively. Significant thermal nonequilibrium is present in the boundary

layer even though the wall boundary conditions for the simulation puts the two

temperatures into thermal equilibrium. The no-slip condition is present for the

u velocity component and wall-normal blowing is less than 1 m/s. The only

significant carbon species in the boundary layer is CO which has a mass fraction of

0.123 at the wall and decreases quickly away from the wall. The temperatures are

high enough for dissociation of oxygen to occur but not high enough for nitrogen

to dissociate significantly.

Figure 5.4 gives a comparison of the perturbation amplitude and phase for a

second-mode wave (β = 0) of translation-rotation temperature, vibration tem-

perature, streamwise velocity, and densities of N2, O2, and CO. The LST eigen-

functions were computed using a fourth order stencil. For both temperatures,

the comparison is quite good. Both the temperature and its gradient and phase

near the wall compare well. The linearized surface energy equation which is used
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(a) (b)

Figure 5.3: Boundary layer profiles at s=0.564 m for (a) velocity and temperature,

and (b) species density.

in conjunction with the other boundary conditions to set the translation-rotation

temperature at the wall accurately compares with the DNS results. Similarly, each

density perturbation and its near wall gradient and phase compares well with the

DNS results near the wall showing that the linearized surface mass balances are

implemented correctly.

At this streamwise location in the DNS simulation, there is a wave that has

crossed the bow shock due to the fast acoustic forcing in the freestream. This

wave experiences some resonant interactions near the nose before it propagates

downstream. The effects of this wave are seen near the edge of the boundary layer

(y = 3.15× 10−3 m). This wave is not modal and is likely comprised of multiple

waves in the continuous spectra. This causes some oscillatory behavior near the

boundary layer edge that is seen in the DNS simulation but is not due to the

second mode. Therefore, differences between the two simulation methods in the

amplitude and phase near the boundary layer edge are most likely caused from

this incoming wave.
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(a) |T̂ |/T (b) |T̂V |/T (c) |û|/
(
u2 + v2 + w2

)1/2

(d) |ρ̂N2|/ρ (e) |ρ̂O2|/ρ (f) |ρ̂CO|/ρ

(g) φT (deg) (h) φTV (deg) (i) φu (deg)

(j) φN2 (deg) (k) φO2 (deg) (l) φCO (deg)

Figure 5.4: Eigenfunction amplitude and phase comparison for a 525 kHz second-

mode wave between DNS and LST at s=0.564 m for select variables.
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It is also possible to compare the growth rate and wave number, i.e., the

real and imaginary parts of alpha, obtained from LST to a DNS simulation. It

is difficult to make a comparison at a single location, so multiple streamwise

locations are used. Figure 5.5(a) shows the wave number comparison for a 525

kHz second-mode wave where s is the streamwise distance measured from the

stagnation point. The oscillations seen in the DNS results are due to multiple

wave modes present simultaneously in the boundary layer. The wave number

computed from LST compares well with the DNS simulation. Upstream near

s = 0.2 m, the 525 kHz is just becoming unstable in the DNS simulation so the

second mode is not dominant yet. Moving downstream, the second mode starts to

become dominant as witnessed by the lessening fluctuations and the comparison

between the two is much better. A similar trend is seen in Figure 5.5(b) where

a comparison of the growth rate is given. Upstream there are large fluctuations

in growth rate that damp downstream. The LST predicted growth rate for the

second mode lies near the center of the oscillations.

(a) (b)

Figure 5.5: LST comparison to DNS for the (a) wave number and (b) growth rate

of a 525 kHz second-mode wave.
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Overall, the comparison between these two significantly different methods is

good. The eigenfunction obtained from LST accurately compares to DNS for the

amplitude and phase of the individual flow variables. The comparison inside the

boundary layer, where the second mode is dominant, is good. Also, when travers-

ing the cone from downstream to upstream, the wave number and growth of the

second mode compares well with DNS simulations. As direct numerical simula-

tion and linear stability theory are two dramatically different methods to analyze

linear instabilities in a boundary layer, the good agreement obtained between the

methods shows that they have been implemented correctly.

5.4 Order of Error Estimate

As the derivative operators used to solve Eq. (3.62) are implemented in a non-

standard fashion, an order of error estimate is given to show the approximate

order of the error incurred. Three different schemes were tested. Scheme 1 and 2

use the approach described in Sec. 3.2 with a three point and five point stencil,

respectively. In the previous research of [MZ13], a fourth order central approx-

imation was used for interior derivatives, a second order central approximation

was used one point away from the boundary, and a first order approximation was

used at the boundaries. Each of these was taken using the standard centered finite

difference stencil in computational space similar to [Hud96]. This will be called

scheme 3.

Fig. 5.6 shows a plot of the error in the growth rate for the three schemes. The

dashed lines represent ideal second and fourth order convergence rates useful for

comparison. Scheme 1 has a convergence rate of 1.87 which is to be expected for

a consistently three point stencil. Scheme 2 has a convergence rate of 3.98 which

is also expected for a consistently five point stencil. Scheme 3 has a convergence

rate of 2.39 which is lower than fourth order due to the lower order stencils used
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Figure 5.6: Rate of convergence for scheme 1 , scheme 2 , and scheme 3 .

Ideal second and fourth order convergence rates are plotted for comparison.

near the boundary. Of the schemes tested, the scheme that uses a consistently

five point stencil, rather than switching to first order on the boundaries, gives the

method with the rate of convergence nearest to four. The high-order numerical

method proposed in Sec. 3.2 has rates of convergence consistent with the number

of points used in the derivative stencil.
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CHAPTER 6

Cut-Cell Method Validation

To validate the cut-cell method described in Sec. 3.3, two simulations with the

same shock-fitting DNS code were run for a flat plate with a single roughness

element. The freestream parameters for the case are given in Table 5.1. Both

simulations were run with the same flow parameters and the same roughness

element. One simulation used the previously validated curvilinear DNS code with

a grid that was body-fitted to the flat plate as well as the roughness. The other

simulation used the exact same code except that the grid is only fitted to the flat

plate and the roughness element is treated using the cut-cell method. Using these

two different simulation techniques makes it so that the main difference between

the two simulations is the treatment of the roughness element, thus, testing the

implemented cut-cell code.

A hyperbolic tangent is used for the roughness shape. This shape was chosen

because a body-fitted grid may be used and there is a simple analytic form to

model the roughness height. Also, the derivatives of the roughness height are

continuous which are then used to directly compute the grid metrics for the body-

fitted solution. The equation for the roughness height is

h (x) =
k

2
[tanh (Sr (x− xc) + Lr)− tanh (Sr (x− xc)− Lr)] (6.1)

where k is the roughness height at the center line, xc is the center of the roughness,

Sr is a shape parameter, and Lr affects the roughness width. For this test case: k =

5×10−4 m, xc = 0.39 m, Sr = 3210, and Lr = 1926. These parameters were found

to have a negligible effect on the stability of the shock-fitting numerical method
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when a body-fitted grid was used. This resulted in a more precise comparison

between the body-fitted and cut-cell simulations.

The two separate grids for the body-fitted and cut-cell cases are shown in

Fig. 6.1. Only half of the wall-normal points are shown for clarity. Note that the

grid for the body-fitted method is more dense near the roughness element when

compared to the cut-cell grid. This is due to the wall-normal stretching function

that starts at the edge of the roughness element for the body-fitted grid and starts

at the flat plate for the cut-cell grid. For this shape, the body-fitted grid is more

efficient, but not all roughness shapes can be treated using a body-fitted grid such

as an elliptical roughness element which is simulated in ch. 9.

(a) (b)

Figure 6.1: Comparison of (a) body-fitted and (b) cut-cell grids near the roughness

element. Half of the wall-normal points are shown.

Both methods were run to solution convergence and then a comparison was

performed. A wall-normal velocity contour comparison along with a pressure

comparison is given in Figure 6.2. The solid lines are from the body-fitted solution

and the dashed lines are from the cut-cell solution. The roughness height is

approximately 7.5% of the velocity boundary-layer thickness with no roughness

at x = 0.39 m. The roughness height was chosen so that there would be no shocks
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(a) (b)

Figure 6.2: Comparison between the body-fitted and cut-cell solution (a) wall-

normal velocity and (b) pressure contours. Body Fitted and Cut Cell .

inside the domain as the current implementation of the high-order DNS code only

handles shock waves as a boundary of the computational domain. There is little to

no visible difference between the two methods near the roughness element. There

is some difference in pressure near y = 0.002 m which is most likely due to the

different grid spacing at this location. Overall, the comparison between the two

methods is quite good.

Along with contour plots, wall-normal slices were also compared. Fig. 6.3

shows wall-tangent velocity and temperature profiles at three different streamwise

locations. The profiles are located at the center of the roughness (x = 0.39 m),

the upstream curved portion of the roughness (x = 0.389 m), and the downstream

curved portion of the roughness (x = 0.391 m). The cut-cell solution was inter-

polated to the body-fitted grid for the comparison. The solutions between the

two methods show no visible differences for each of the profiles. The integrated

velocity profiles over the boundary layer showed a 0.25%, 0.16%, and 0.16% dif-

ference between the two methods. A percent difference between the two solutions
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(a) x = 0.389 m (b) x = 0.390 m

(c) x = 0.391 m (d) x = 0.389 m

(e) x = 0.390 m (f) x = 0.391 m

Figure 6.3: Body-fitted and cut-cell solution comparison for (a-c) wall-tangent ve-

locity profiles and (d-f) temperature profiles at select streamwise locations. Body

Fitted , Cut Cell , and Percent Difference +.
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is given for temperature in Figs. 6.3(d)–6.3(f). The largest percent difference is

located near the edge of the boundary layer and is less than 1%. These results

coincide with [Gre14] where solutions between body-fitted and cut-cell methods

for a hyperbolic tangent roughness also showed no visible differences.

Overall, the comparison between the body-fitted and the cut-cell solutions

is quite good. There is little noticeable difference in wall-normal velocity and

pressure contours. The percent difference in temperature profiles at three locations

on the roughness is less than 1% for each profile. The cut-cell method accurately

compares to the body-fitted method. This information shows that the cut-cell

method has been implemented correctly.
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CHAPTER 7

DNS and LST Analysis of

M∞ = 15.99 Blunt Cone

After validating the numerical and theoretical tools used to analyze hypersonic

boundary-layer instability in the presence of graphite ablation, direct numerical

simulations and linear stability analysis are performed using the new high-order

methods to study hypersonic boundary-layer receptivity and instability with real-

gas effects and graphite ablation effects over a blunt cone.

A DNS is composed of two distinct simulation results: 1) the simulation of

the steady laminar base flow, and 2) the simulation of freestream disturbances

imposed on the steady base flow. Figure 7.1 shows the simulated domain for this

case, where the shock is colored black and the wall and the outlet are blue. The

steady base flow is laminar, with no turbulence model, and must be extremely

numerically convergent or small amplitude waves will be overcome by numerical

noise. Once the base flow is converged within predefined tolerances, linear (i.e.,

small amplitude) non-interacting freestream fast-acoustic waves are imposed on

the steady laminar base flow in the freestream. As the freestream waves cross the

shock and enter the boundary layer, the receptivity process has begun. Recep-

tivity links the linear freestream waves with the initial conditions of disturbance

amplitude, frequency, phase, etc., for the breakdown of laminar flow. Boundary-

layer receptivity to freestream disturbances has been reviewed in [SRK02] and

more recently covered in [Fed11] as part of the hypersonic boundary-layer transi-

tion process. After receptivity in a low disturbance environment, modal growth
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Figure 7.1: Simulation domain for 7 deg half-angle blunt cone. The shock is black,

and the wall and outlet are blue.

occurs where the second mode is commonly the dominant mode for flat plates and

sharp cones at a zero angle of attack. The second mode originates after the syn-

chronization location from either mode S or mode F, which are termed for their

similar phase speeds to slow and fast-acoustic waves, respectively, as they separate

from the continuous spectrum. Eigenmode growth provides initial conditions to

nonlinear breakdown, making it essential to understand eigenmode growth as well

as receptivity to accurately predict transition.

The receptivity and eigenmode growth process in a low freestream disturbance

environment for flat plates and cones has been studied extensively for perfect

gas flows, but there is a limited amount of information and some uncertainty

as to how a real gas affects these processes. In [ZW12] there is a review of the

current progress of DNS on hypersonic boundary-layer receptivity, instability, and

transition. It is noted that there is a small amount of DNS research into real-gas

flows and there is a need for progress in this area. The purpose of these simulations

is to further understand real-gas effects and ablative effects on the second mode.

7.1 Steady-State Solutions of M∞ = 15.99 Blunt Cone

In this research, one of the goals is to assess real-gas and ablation effects, which

are in the form of surface chemistry, on hypersonic boundary-layer receptivity and
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instability. To do this, five distinct steady simulations were run. Each of these

steady simulations has the same geometry and the same freestream conditions.

The geometry is a sphere cone with a nose radius of 0.00635 m and a cone half

angle of 7 deg. The freestream conditions are the same as the the first DNS

validation case, named PANT case 1, and are listed in Table 4.1. The cone axis

is aligned with the freestream flow, yielding an angle of attack equal to zero.

The laminar flow over a cone at zero angle of attack is axisymmetric. Thus,

only a two dimensional axisymmetric flowfield is simulated where the transverse

direction is treated by Fourier collocation. The freestream unit Reynolds number

and stagnation enthalpy are Reu = 7.3 × 106 /m and ho,∞ = 15.3 MJ/kg,

respectively. This is a high enthalpy case where thermochemical nonequilibrium

effects are significant and still present well downstream of the nose.

Each of the five meanflow cases are listed in Table 7.1. Case 1a and 1b have the

same meanflow profile which is computed by the eleven species thermochemical

nonequilibrium model with ablation boundary conditions. The surface tempera-

ture profile computed from case 1 is used to set the wall temperature for cases

2–5. Case 2 is a 5-species air thermochemical nonequilibrium simulation with

surface blowing. The 5-species air gas model is the exact same as the N2, O2,

NO, N, O components in the eleven species model. The imposed surface blowing

has the same mass flux as case 1, but standard freestream air is blown instead of

carbon products. Case 3 is the same as case 2 except there is no blowing at the

surface. Also, the surface recombination of atomic oxygen (Eq. (2.43)) is retained

for both cases 2 and 3. Cases 4 and 5 are both ideal-gas cases which use the same

nonequilibrium code with the source terms turned off, the vibration energy held

constant, and the mass fractions held to their freestream values. This is done

so the viscosity, thermal conductivity, etc. are calculated the exact same way for

each of the five meanflow cases. Case 4 has the same mass flux profile as case 1

and case 2, while case 5 has no blowing.
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Table 7.1: Types of steady simulations.

Case Number Gas Type ns Blowing LST BCs

1a Real Gas 11 Ablation full linearized ablation

1b Real Gas 11 Ablation T̂w = 0

2 Real Gas 5 Yes T̂w = 0

3 Real Gas 5 No T̂w = 0

4 Ideal Gas 2 Yes T̂w = 0

5 Ideal Gas 2 No T̂w = 0

A grid convergence study was performed for case 1a to ensure that the com-

putational grid was sufficient to capture the meanflow as well as the unsteady

flowfield disturbances. The grid density in the streamwise direction was chosen to

adequately resolve the highest imposed perturbation frequency (525 kHz). There

are 3155 grid points in the streamwise direction. The grid in the wall-normal

direction was tested with 240, 480, and 720 points. The meanflow solution was

computed for each case, and then unsteady simulations were run. Figure 7.2

shows the surface pressure perturbation for the highest imposed frequency using

the three different grid densities. The maximum relative error between the 480

and 720 simulations is 2.3% at s = 0.75 m. Other variables at different locations

were checked as well and showed similar relative errors. For lower frequencies,

the relative error is less than the highest imposed frequency. The 480 wall-normal

grid point solution is grid converged.

A steady-state contour plot of the translation-rotation temperature and the

vibration temperature for case 1 is given in Fig. 7.3. It is difficult to clearly

visualize the entire computational domain because of its shape, so only the nose

region and start of the cone frustum are displayed for the sake of clarity. The

translation-rotation temperature reaches its maximum value of 14,783 K directly
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Figure 7.2: Grid convergence study with three different grid densities in the wall-

normal direction for the 525 kHz surface pressure perturbation.

(a) Translation-rotation temperature

(b) Vibration temperature

Figure 7.3: Contour plots of T and TV .
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behind the normal shock at the stagnation line but then cools as the flow moves

downstream. The vibration temperature reaches its maximum value of 8, 198

K at approximately x = −0.68 cm along the stagnation line. The shock angle

decreases as the flow moves downstream resulting in lower temperatures directly

downstream of the shock. On the cone frustum, the vibration temperature is

higher than the translation-rotation temperature near the boundary-layer edge,

indicating thermal nonequilibrium. In this region, the vibration temperature is

relaxing towards the lower translation-rotation temperature.

Unlike many simulations of hypersonic boundary-layer receptivity, neither is

the wall temperature constant nor the adiabatic condition (∂T
∂n

= 0) enforced. In-

stead, for a flow where ablative effects are considered, a surface energy balance

(Eq. (2.57)) may be solved which yields a varying temperature profile. The tem-

perature profile for this flow is shown in Fig. 7.4(a). Recall that the surface is

assumed to be in thermal equilibrium, meaning TV = T at the surface. The tem-

perature has a maximum at the stagnation point and then drops rapidly as the

flow expands. Surface temperature in hypersonic flows with ablation is important,

as the wall temperature directly determines the reaction rate and probability for

oxidation. It also plays a role in sublimation. In this case, as the wall temper-

ature drops, the wall mass flux should drop as well. Note that the temperature

of the wall is decreasing, which corresponds to wall cooling, which is stabilizing

to first mode waves and destabilizing to second mode waves. Also note that, for

0.2 m≥s≥0.8 m, 0.14≥Tw/T0 ≥0.13, where T0 is the stagnation temperature.

As temperature determines, to a large degree, surface mass loss due to ablation,

the surface blowing profile should be similar to the surface temperature profile.

To help visualize the blowing profile caused by chemical reactions at the surface,

Fig. 7.4(b) shows the wall mass flux per area nondimensionalized by the freestream

mass flux per area. This nondimensionalization is chosen because it is common in

stability literature with wall blowing. As expected, the largest mass flux is at the
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(a) (b)

Figure 7.4: Surface (a) temperature and (b) nondimensional mass flux. The

surface is in thermal equilibrium.

stagnation point (approximately 1% of the freestream mass flux), corresponding

to a maximum in wall temperature where the oxidation reactions as well as the

sublimation reactions are all significant. Notice the surface mass flux drops nearly

two orders of magnitude across the cone nose and remains roughly the same order

of magnitude along the cone frustum, indicating that outgassing effects would

likely be most significant upstream in the nose region. This rapid drop of wall

mass flux also corresponds to a rapid decrease in sublimation, which is shown in

Fig. 7.5. The fact that there is still wall blowing in the cone frustum is due to

the oxidation reactions. The wiggle near the nose of the cone is located directly

downstream of the beginning of the cone frustum. The discontinuity in the surface

curvature is likely the cause for the wiggle, and the appearance of the wiggle is

exaggerated by use of a logarithmic scale.

The surface mass flux is created by interaction of the graphite ablator and

the surrounding flow. To help understand the chemical processes at the surface,

Fig. 7.5 shows the mass fraction for each species at the surface. The species with
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(a) (b)

Figure 7.5: Surface mass fraction for (a) carbon-containing species, and (b) air

species.

the largest mass fraction at the surface is N2, but it does not react with the surface.

The next largest mass fraction is CO. Recall from Eqs. (2.41) and (2.42) that the

carbon surface can react with O and O2 to form CO. These two reactions are the

dominate reactions for the entire length of the surface, i.e., they are responsible for

the most mass loss due to ablation at the surface. Sublimation of C3 (Eq. (2.51)) is

an order of magnitude less than CO at the stagnation point. In the sphere region,

it is the dominate sublimation product. There is a significant mass fraction of

CN at the surface, even though a nitridation reaction is not taken into account

in the surface chemistry model. CN at the surface is due to reactions of ablation

products with N2 and NO. For the entire length of the cone frustum, CO contains

the most mass of the carbon containing species. This shows that CO is the species

most likely to have the largest effect on boundary-layer receptivity and instability

over the blunt cone.

To visualize the species mass concentrations in the surface-normal direction,

a surface-normal plot is given in Fig. 7.6, which shows species mass fractions at
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Figure 7.6: Species mass fraction in surface-normal direction for s=0.6 m.

s=0.6 m. Only flowfield species with a mass fraction above 10−4 are shown. The

total enthalpy boundary-layer edge is at yn = 2.74 × 10−3 m for this streamwise

location. Outside of the boundary layer, the flowfield is mainly composed of

N2 and O2. Inside the boundary layer, the temperature increases and chemical

reactions become significant. Notice that, similar to Fig. 7.5(a), CO and CO2

have the largest mass concentration of the carbon-containing species. At the

boundary-layer edge, the mass concentration of CO is on the order of 10−2 and

for CO2 it is on the order of 10−4. The critical layer for a hypersonic boundary

layer approaches the boundary-layer edge for high-Mach-number flows such as the

M∞=15.99 flow simulated here. Large disturbance amplitudes for species densities

are expected at the critical layer for second-mode instabilities. Since the largest

carbon-containing species has less than 1% of the flow mass at the boundary-layer

edge, it is likely that the effects of the carbon containing species are small, as they

are mainly constrained to the near-surface region and not significantly present

near the critical layer.

The mass concentration of CO and CO2 for case 1 at multiple streamwise

locations is shown in Fig. 7.7. They are shown because most of the mass from
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Figure 7.7: Mass concentration of (a) CO and (b) CO2 at multiple streamwise

locations for case 1.

ablation is contained in CO which is being transferred to CO2 as the flow moves

downstream and cools. Likely, if carbon species are to have an effect on flow in-

stability it will be through CO and CO2. Recall from Eqs. (2.41) and (2.42) that

CO is created at the surface through surface reactions and then can react with

the freestream flow. However, CO2 is formed solely through gas phase reactions.

The largest mass concentration for CO is found at the surface and decreases in the

downstream direction. As the flow moves downstream, some CO2 is recombining

which increases the mass concentration of CO2 and decreases the mass concentra-

tion of CO. There is a peak in the mass fraction of CO2 near y = 0.003 m which

is near the boundary-layer edge. This peak is due to lower temperatures near the

boundary-layer edge.

Figure 7.8 shows the height of the boundary layer for a portion of the cone

frustum. The height of the boundary layer is the location where the total enthalpy

is 99.5% of the total enthalpy immediately downstream of the bow shock in the

wall-normal direction. Notice that, for a portion of the cone frustum, the boundary

layer is decreasing in the downstream direction rather than increasing. At first
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(a)

Figure 7.8: Meanflow (a) wall temperature and (b) total enthalpy boundary-layer

thickness.

this may seem counterintuitive, as generally the boundary layer is continually

increasing in the downstream direction. In this case, a favorable pressure gradient

combined with a strong decrease in wall temperature that cools the boundary

layer and contracts the flow, decreases the height of the boundary layer. Along

with the boundary layer, a supersonic blunted cone will produce an entropy layer.

At the end of the domain (s = 0.8 m), the entropy layer has almost been fully

swallowed by the boundary layer.

It has been shown in previous experimental research that the height of the

boundary layer is approximately half the wavelength of the dominant second

mode [STD84]. The phase velocity of the dominant second mode can be roughly

approximated as the boundary-layer edge velocity, leading to cr ≈ const. ≈
ω/αr ≈ 2fh. This shows that as h decreases, f will increase, to maintain a

constant cr. With this piece of information, it is expected that perhaps some
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lower frequencies will become unstable for cases 1–3 before higher frequencies

near s = 0.2 m due to the decrease in boundary-layer height.

Before moving on to an unsteady analysis, a comparison of all five meanflow

profiles is given for a single streamwise location (s = 0.564 m) in Fig. 7.9. There

is only a small difference in the streamwise velocity profiles. The height of the

velocity boundary layer is larger for cases 4 and 5, which is to be expected, as cases

4 and 5 are perfect gas. Similarly, the height of the temperature boundary layer is

larger for the perfect gas cases. Since cases 4 and 5 have a greater boundary-layer

height, it is expected that their unstable frequency range will be lower than cases

1–3. It is also possible to compare the species densities between all five cases

noting that for perfect gas ρO2 = cO2,∞ρ. At the wall, case 1 has less oxygen than

the other cases. In case 1, ablation has introduced carbon products into the flow,

and this far downstream most of the carbon is in the form of CO. This means

that for each carbon atom in CO, an oxygen atom is needed, which will reduce

the density of oxygen and atomic oxygen for case 1 when compared to the other

cases. This behavior is not seen in case 2 or 3 as there are no carbon containing

species. Near y = 0.002 m, case 1, 2, and 3 begin to have the same density of

oxygen as CO has not diffused significantly beyond this wall-normal distance.

7.2 Boundary-Layer Receptivity for M∞ = 15.99

Blunt Cone

After simulating the steady base flows, unsteady simulations were performed for

cases 1a, 4, and 5. It was assumed a priori that the dominant instability mode for

the freestream conditions and geometry would be the second mode. The second

mode is most unstable when its phase velocity is aligned with the freestream flow.

Therefore, an unsteady two-dimensional axisymmetric simulation was performed

to minimize the required computing resources.
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(a) (b)

(c)

Figure 7.9: Meanflow profile comparison at s=0.564 m.
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Freestream disturbances were imposed on the steady base flow to find how the

boundary layer behaved in the presence of graphite ablation and thermochemical

nonequilibrium. The freestream disturbances imposed were weak planar fast-

acoustic waves in the freestream before reaching the shock at a zero incidence

angle The freestream variables can be written as a summation of the meanflow

and an oscillating perturbation as
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where the disturbance amplitudes for fast-acoustic waves are defined by

ǫ =
∆p∞
γ∞p∞

=
∆ρ∞
ρ∞

=
∆u1,∞
c∞

. (7.2)

Here, γ∞ is the ratio of specific heats in the freestream, c∞ is the speed of sound

in the freestream, and ǫ = 5× 10−4. Seven frequencies are imposed, starting with

a base frequency of 75 kHz, where each frequency is a multiple of this base and

the last frequency is 525 kHz. All frequencies are imposed simultaneously, and

their phases are set randomly.

For each of the three unsteady cases, the simulation was run until the solu-

tion became periodic in time. After which, the simulation was run for one more

full period in time and data were output for a temporal Fourier analysis. The

Fourier analysis decomposed the flowfield disturbances back to the original seven

imposed freestream frequencies, giving the amplitudes and phase angles of all

saved variables for each frequency in the following form:

φ′ (x, y, t) = ∆φ(x, y) exp [i (ψ (x, y)− 2πft)] , (7.3)

where φ′ is the perturbation of some variable, ∆φ is the amplitude of that vari-

able, ψ is the corresponding phase angle, and f represents a single dimensional
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frequency. An instantaneous snapshot of the flowfield can be obtained from the

real part of φ′ when t is specified.

In a DNS, many boundary-layer modes are present in the boundary layer simul-

taneously. As one mode becomes dominant for a given frequency, it is possible to

derive equations for the growth rate, wave number, and phase speed of this mode

from Eq. (7.3), which yields

−αi =
1

∆φ(f)

d

ds
∆φ(f) (7.4)

αr =
d

ds
ψ(f) (7.5)

cr =
2πf

αr

(7.6)

where s is the streamwise coordinate, ∆φ(f) represents a variable amplitude at

a given frequency, ψ(f) represents the corresponding phase angle at the given

frequency, and αi < 0 indicates instability. It is possible to compute αi, αr, and

cr using variables that peak at the critical layer for second mode disturbances. If

this is done, interpolation may be required to trace the critical layer downstream.

In this work, surface pressure is used as a second-mode pressure disturbance, has

a maximum amplitude at the surface, and no interpolation is required. Previous

researchers [MZ03b] have used surface pressure perturbations to compute αi, αr,

and cr from a DNS, which compared well with theoretical results.

An accurate comparison of growth rate, wave number, and phase velocity of

an individual instability mode may be obtained between DNS and linear stabil-

ity theory (LST) results when the particular boundary-layer instability mode is

dominant, i.e., its magnitude is larger than magnitudes of other instability modes

simultaneously present in the boundary layer. This is the case in many hypersonic

boundary layers where the second mode grows exponentially and dominates other

instability modes. If a dominant instability mode is not present, then wave mod-

ulation occurs due to multiple instability modes of similar magnitudes. In this

work, an 11-species real-gas LST code with ablative boundary conditions that
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accounts for transverse curvature is used for comparison to, and analysis of, DNS

results. Also, ideal-gas LST results are used, which are obtained from a derivative

of the real gas code, i.e., source terms are turned off and the vibration energy

equation is neglected. Note that, second mode-growth is a maximum for β = 0,

which represents a two-dimensional axisymmetric instability.

Before moving further, the unsteady DNS boundary conditions for each sim-

ulation need to be addressed. For each of the three cases, different unsteady wall

boundary conditions are imposed. Each case uses pressure extrapolation to set

the disturbance wall pressure. For case 1a, the surface mass balance as well as

the surface energy balance are used as boundary conditions. This means that the

wall-normal velocity will fluctuate as well as the wall temperature. For case 5,

the no-slip condition is enforced on the disturbances and T ′
w = 0. For case 4, the

mass flux is forced to remain constant and T ′
w = 0. When enforcing the mass flux

to remain constant, the wall-normal velocity must fluctuate because density will

fluctuate at the surface [recall Eq. (2.60)].

An unstable frequency range for the second mode at s = 0.60 m was computed

using LST and is shown in Fig. 7.10. A positive growth rate −αi indicates an

unstable second mode, whereas a negative growth rate indicates a stable second

mode. LST predicts for case 1a at this streamwise location that the second mode

will be unstable between 430 and 547 kHz. The growth rates for the 450 and

525 kHz second modes are 12.4 and 8.6, respectively. The DNS shows that the

525 kHz second mode would be unstable and the 450 kHz second mode would be

unstable as well, indicating an agreement between the two methods. A similar

agreement was obtained upstream near s = 0.30 m for case 1a where the 525

kHz disturbance is unstable in the DNS and is predicted to be unstable by LST.

Figure 7.10(b) shows the unstable frequency range predicted by LST for case 4.

The unstable range is similar for both cases 4 and 5, so only one case is shown.

LST predicts that, at this streamwise location, the second mode will be unstable
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Figure 7.10: Unstable frequency range at s = 0.60 m obtained from LST.

between 434 and 513 kHz. Therefore, it is expected that, at s = 0.60 m, the

imposed 525 kHz disturbance will be stable in both cases 4 and 5 and the 450 kHz

disturbance will show some disturbance growth. Note that the LST results were

not available at the time the DNS freestream forcing frequencies were chosen, so

the forcing frequencies are not tailored to the LST predictions.

For a second-mode wave, it is well known that the maximum pressure pertur-

bation occurs at the surface and the growth of the second mode is exponential.

Figure 7.11 shows a plot of the real part of the 525 kHz pressure perturbation

at the wall for case 1a and case 4. The real part of the pressure perturbation

mimics the instantaneous flow. Case 5 is not shown, but its behavior is similar

to case 4. For the pressure perturbation of case 1a, exponential growth is clearly

visible, indicating a dominant second mode. There is no exponential growth for

case 4; there is just modulation around a relatively constant amplitude. This

modulation, or pumping, indicates that no dominant mode is present, but rather

multiple competing modes are present. It is possible to separate multiple com-

peting modes through multimode decomposition, as in [Tum03]. This is beyond

the scope of the present work, as the focus here is on second-mode instability.
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(a) Real Gas (b) Ideal Gas Blowing

Figure 7.11: Instantaneous surface pressure for 525 kHz disturbance.

If there is a dominant boundary-layer mode in the DNS, it is possible to

compare the growth rate, wave number, and phase speed to LST predictions of

the dominant mode. A comparison of the growth rate for the 525 kHz disturbance

is given in Fig. 7.12. Case 5 is not shown, but its behavior is similar to case 4.

The oscillations in the DNS growth rates comes from multiple competing modes

that are all present in the boundary layer simultaneously during the simulation

where the LST growth rate is smooth because it is predicting only the second

mode. For all three cases, growth can be seen near s = 0, which represents

the stagnation location. This growth is most likely due to resonant interactions

of the freestream fast-acoustic forcing waves with mode F. The real-gas DNS

simulation shows second-mode growth starting near s = 0.2 m. The second mode

amplitude grows exponentially, starting from s = 0.2 m, whereas other boundary-

layer modes may be stable or decay exponentially. As the second mode grows

exponentially, it becomes the dominant mode. This behavior can be seen as the

oscillations in the DNS growth rate gradually dampen downstream of s = 0.2 m.

Recall from Eq. (7.4) that the growth rate is computed from the DNS surface

pressure perturbation amplitude. As the second-mode amplitude becomes much
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(a) Real Gas DNS and LST (b) Ideal Gas Blowing DNS

Figure 7.12: Growth rate comparison for the 525 kHz disturbance.

larger than other modes in the boundary layer, the simulated growth rate from the

DNS should be similar to LST predictions for the second mode. Similar growth

rates between DNS and LST indicate that the modal growth from the DNS is

indeed the second mode and that the second mode has become the dominant

instability mode. For this complex DNS flowfield, the current comparison to

LST is quite good. The two methods begin to diverge downstream (s > 0.7 m),

where the DNS disturbance amplitudes are large enough that nonlinear behavior

cannot be neglected. As LST assumes that disturbances are linear, some difference

is to be expected. It should be noted that, with significant wall cooling and

surface blowing, third and higher modes could possibly become unstable. For the

simulated domain, no higher modes were found for the 525 kHz frequency although

it is possible they may appear further downstream. Decreasing oscillations are

not seen in case 4 because there is no dominant instability mode. For case 4, it

is difficult to say if there is any growth because the growth rate is so strongly

oscillatory.

The wave number and phase speed for the 525 kHz disturbance is shown for

all three cases in Fig. 7.13. An LST comparison is given for case 1a, and the phase
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(a) (b)

Figure 7.13: Comparison of (a) wave number, and (b) phase velocity nondimen-

sionalized by the freestream velocity for the 525 kHz disturbance.

speed is nondimensionalized by the freestream velocity. An LST comparison to

cases 4 and 5 is not given, as there is no well-defined boundary-layer instability

mode and the focus of this research is on real-gas effects. Once again, oscilla-

tions are seen in the DNS simulation that die out for case 1a as the flow moves

downstream (0.2 ≥ s ≥ 0.7 m), indicating a dominating boundary-layer mode.

For both the wave number and the phase speed, the LST and DNS results com-

pare well, which increases the reliability of the results for both methods. Mode

F and mode S are expected to be present simultaneously in the DNS. The phase

speeds for mode F and mode S as they separate from the continuous spectrum are

cr/ue = 1 ± 1/Me, respectively, where the subscript e represents boundary-layer

edge conditions. Me can be approximated as M∞ for a flat plate with a weak

shock. For a blunt body, such as the blunt cone simulated here, the edge condi-

tions are not well defined due to a varying shock shape. Therefore, the flat plate

conditions for the phase speeds of mode F and mode S (i.e., cr/ue ≈ 1 ± 1/M∞)

may be used as a guide rather than a precise measurement. Tracing the phase

velocity downstream from s=0 to s ≈ 0.2 m for cases 4 and 5 shows the phase
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velocity drop from 1.3 to below 0.9 as it likely approaches a synchronization point

with mode S. After this synchronization point, the phase velocity then increases

back to the fast-acoustic phase velocity. For case 1a, the phase velocity drops

slightly below 0.9 and remains there for the length of the domain.

It is interesting to note that the boundary-layer wave for case 1a has a nondi-

mensional phase speed near unity at the domain entrance, which is indicative of an

entropy/vorticity wave where, for cases 4 and 5, the phase speed is around 1.1, in-

dicating a fast-acoustic wave. Recall that freestream fast-acoustic waves were used

in the freestream to perturb the steady base flow. Logically, it would seem that

with fast-acoustic freestream forcing the incoming wave would be predominantly

fast acoustic as well, but it is possible that real-gas effects or surface chemistry

effects are exciting the entropy/vorticity wave stronger than the perfect-gas cases.

An instantaneous snapshot of the translation-rotation temperature and vibra-

tion temperature in the real-gas perturbed flowfield for the 525 kHz frequency

disturbance is shown in Fig. 7.14. The instantaneous snapshot is obtained by

setting t = 0 in Eq. (7.3) and taking the real part of the perturbed quantity. The

525 kHz frequency is shown because it is the most unstable frequency in the real

gas simulation and second-mode behavior can clearly be seen. The top of the

domain is the shock, and the bottom of the domain is the cone surface. Note

that the scales for the subfigures are not the same due to exponential disturbance

growth, so colors cannot be compared exactly between subfigures.

For the translation-rotation temperature contour plots, the second-mode wave

can be seen in the oscillating colors near the wall and at the boundary-layer edge.

This is due to a large perturbation near the boundary-layer edge and a large per-

turbation near the wall. The magnitude of the second-mode wave in Fig. 7.14(a)

decreases slightly, indicating that the boundary-layer flow is stabilizing for this

frequency component. For Figs. 7.14(b) and 7.14(c), the second-mode wave in-

creases in magnitude in the downstream direction as it becomes dominant. The
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(a) Translation-rotation temperature (0.12 m ≤ x ≤ 0.18 m)

(b) Translation-rotation temperature (0.23 m ≤ x ≤ 0.29 m)

(c) Translation-rotation temperature (0.39 m ≤ x ≤ 0.45 m)

(d) Vibration temperature (0.23 m ≤ x ≤ 0.29 m)

Figure 7.14: Instantaneous perturbation contour plots for the 525 kHz frequency

disturbance.
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increase in magnitude should be exponential as second-mode growth is exponen-

tial. Exponential growth is visible by comparing Figs. 7.14(b) and 7.14(c). Red

and blue in Fig. 7.14(b) is on the order of 10−4, whereas red and blue in Fig. 7.14(c)

is on the order of 10−3, indicating exponential growth of the second-mode wave.

Above the second-mode wave are waves due to freestream forcing waves as they

cross the shock in the nose region and then propagate downstream. These waves

propagate downstream and toward the boundary layer with a relatively constant

amplitude. Eventually, they move into the boundary layer and are dominated by

the second mode. Just below the shock, waves can be seen that are a direct result

of fast-acoustic freestream forcing waves propagating through the shock. There

are also Mach waves that can be seen just outside of the boundary layer as the

flow adjusts to disturbances.

Similar to the translation-rotation temperature, the second-mode wave can be

seen in the vibration temperature contour plot with an increasing magnitude in

the streamwise direction. The peak near the boundary-layer edge is much larger

than the peak near the wall for vibration temperature. The perturbation just

outside of the boundary layer is due to freestream forcing waves entering near the

cone nose similar to translation-rotation temperature. For both temperatures, the

maximum perturbation amplitude is the same order of magnitude.

The wave structure for oxygen and atomic oxygen is shown in an instanta-

neous snapshot for the 525 kHz disturbances given in Fig. 7.15. The second-mode

wave is seen near the boundary-layer edge and is only slightly visible near the

wall for oxygen. The amplitude of the second-mode wave increases in the down-

stream direction as the second mode becomes more dominant. For oxygen, the

amplitude near the boundary-layer edge is larger than the amplitude near the

wall. Freestream forcing waves are seen near the shock along with Mach waves.

In the atomic oxygen contour plot, the temperature outside of the boundary layer

is not large enough for any significant amount of atomic oxygen to exist, so there
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(a) Oxygen

(b) Atomic oxygen

Figure 7.15: Instantaneous perturbation contour plots for the 525 kHz frequency

disturbance.

are no freestream waves visible. The second-mode wave is clearly distinguishable

for atomic oxygen. The magnitude of the second-mode wave is decreasing down-

stream for atomic oxygen because atomic oxygen is recombining to form oxygen,

thus decreasing the density of atomic oxygen and its perturbation.

Since the unsteady flow is decomposed using a temporal Fourier transform, it

is possible to plot the perturbation amplitudes to determine the growth or decay

of each frequency component. Figure 7.16 gives a comparison of the wall-pressure

perturbation amplitude of each frequency component for cases 1a, 4, and 5. For

all three cases, initial disturbance growth can be seen near s = 0 as a result of

resonant interactions between the forcing fast-acoustic waves and the fast-acoustic
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(a) Real Gas

(b) Ideal Gas (c) Ideal Gas with Blowing

Figure 7.16: Pressure perturbation amplitude at the wall computed by DNS.
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mode in the boundary layer. For case 1a, the most unstable frequency is 525 kHz

and its exponential growth starts around x=0.2 m and is unstable almost to the

end of the domain. This is a large unstable region of approximately 0.6 m. This

growth is unstable second-mode growth. The 450 kHz disturbance becomes un-

stable near the end of the domain, but by this time, the disturbance flowfield has

become nonlinear. It should be noted that the end of the domain (approximately

x=0.7 m to x=0.8 m) for the real-gas simulation has surface pressure perturba-

tion amplitudes above 1% of the freestream values. Meanflow distortion, or the

zero frequency component obtained from the temporal Fourier transform, shows

that velocity and pressure perturbation amplitudes at the surface near 10% of the

steady base flow values at the domain exit. Also, temperature and density at the

critical layer approach 1% of the freestream values at the domain exit. This signif-

icant mean flow distortion indicates that the flowfield has become nonlinear. It is

possible to check for higher harmonics, which indicate flowfield nonlinearity, but

the current grid is not well enough resolved to accurately capture those frequency

components. As the flow becomes nonlinear, breakdown to turbulence follows,

which requires a three-dimensional simulation to continue beyond s ≈ 0.8 m.

Contrary to case 1a with a strong second-mode growth, cases 4 and 5 show

only minor instability. For cases 4 and 5, the 525 and 450 kHz disturbances

exhibit no visible exponential growth downstream of s = 0.2 m where exponential

growth was seen for the real-gas simulation. There is only some slight instability

shown for the 300 and 225 kHz disturbances downstream of x = 0.4 m, but

the growth is much smaller than the second-mode growth seen in the real-gas

simulation. It is conjectured that second-mode exponential growth will start for

300 and 225 kHz further downstream, as the unstable frequency range should

decrease in the streamwise direction.

As this simulation (unlike previous DNSs of hypersonic boundary-layer insta-

bility in the open literature) accounts for graphite surface ablation, an indication
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Figure 7.17: Perturbation of species density for each carbon species at 525 kHz.

Perturbed quantities taken at the wall and obtained from DNS.

of which carbon-containing species plays the largest role in second-mode instabil-

ity is sought. The perturbation amplitudes for each carbon species at the wall

are shown in Fig. 7.17. As none of the carbon species significantly diffuse away

from the surface (see Fig. 7.6), it is difficult to visualize their perturbations except

to plot them along the surface. The two most significant species amplitudes are

CO and CO2. This follows the fact that CO and CO2 are the two carbon species

that have the most mass at the wall in the steady solution, as seen in Fig. 7.5.

It is interesting to note that the initial growth due to resonant interactions of

freestream fast acoustic waves and fast acoustic modes seen for ∆p at 525 kHz

is only seen slightly in the species densities of CO and CO2 and is not seen in

the other species. This could simply be due to the fact that the mass in these

species is already decreasing so quickly at the wall (Fig. 7.5) that the resonant

interactions have little effect.

In the second-mode growth region for the 525 kHz second mode (0.2 m≤
s ≤0.7 m), the maximum amplitudes at a single streamwise location for these

two species occur at the wall, where only a slight peak is seen away from the
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wall. This is unlike N2 and O2 , where there is a high amplitude near the wall

and a high amplitude near the boundary-layer edge as well. This is due to the

fact that CO and CO2 are not diffusing far from the wall and have no signifi-

cant mass at the boundary-layer edge. As the development of the second mode

strongly depends on steady flow properties near the critical layer, which moves

toward the boundary-layer edge for hypersonic flows, it is possible that, in slender

geometries with surface ablation where the second mode is the dominant instabil-

ity mode, when blowing is small (as it is here), the effects of surface ablation on

second-mode development are minimal. Note that this does not include possible

ablation-induced surface roughness effects on second-mode development. Further

simulations with and without surface ablation would be required to validate this

argument.

7.3 Linear Stability Analysis of M∞ = 15.99 Blunt Cone

LST is able to predict instability waves and their corresponding growth rates

from steady boundary-layer profiles. The characteristics of an instability wave

are strongly tied to the meanflow boundary-layer profile which is taken as an

input for the linear stability analysis. It is possible to use a single meanflow

boundary layer profile computed using one gas model and then change gas models

in an LST code to predict how the characteristics of only instability waves will

behave with changing models. This has been done to good effect by previous

researchers [JSC98]. Since instability waves are tied so strongly to the meanflow

profiles, to predict how different gas types, i.e. ideal gas and real gas, effect the

entire process of hypersonic boundary layer transition, the meanflow as well as the

computation of instability waves needs to be performed with each of the separate

models. Similarly, both a meanflow and instability waves need to be computed to

assess the overall effect of surface chemistry such as wall catalycity and surface
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ablation on hypersonic boundary layer instability. By computing a meanflow

and the corresponding instability waves with the different models, an accurate

comparison of the gas effects on flow instability, rather than simply the instability

waves, can be given.

LST gives information about what disturbance frequencies are unstable and

the corresponding growth rates of those frequencies, but there is no information on

the amplitude of the incoming disturbance. To estimate boundary-layer transition

using LST, the eN transition criterion is used which is defined as

eN =
A

A0

= exp



−
s∫

s0

αidx



 . (7.7)

Here, A is the integrated disturbance amplitude, A0 is the initial amplitude, s0 is

the location where the disturbance first becomes unstable, and αi is the spatial

amplification rate. The integration is performed for a constant frequency ω. Note

that a negative imaginary part of the wave number α results in disturbance growth

while a positive value results in disturbance decay. The N factor is specifically

the exponent of eN . In-flight transition N factors are commonly understood to

be around 10. [Mal03] showed that 9.5 and 11.2 correlated with transition onset

for two high Mach number flight tests. In ground test facilities the transition N

factor is usually lower.

Before moving further, the LST wall boundary conditions for each of the mean-

flow cases needs to be covered briefly. The difference between cases 1a and 1b is

the boundary conditions used in the stability computations. In case 1a, the full

linearized surface model for graphite pseudo-ablation is used while in case 1b the

linearized surface energy balance (Eq. (3.78)) is replaced with T̂w = 0. For cases

2–5, T̂w = 0 as the wall meanflow temperature is set from case 1. For cases 2 and

3, the corresponding surface mass balances are linearized to provide conditions for

species perturbations at the wall. Note that this is the same as described previ-

ously in Sec. 3.2.1 but the mass flux terms where carbon species are produced are
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dropped. For cases 4 and 5 the fluctuation of the composition is forced to zero,

i.e., c′s = 0.

Note that the same fourth order LST code was used for each of the cases.

For cases 2 and 3, only changes to the boundary conditions were required. For

cases 4 and 5, all species and their perturbations except N2 and O2 were forced to

zero, the meanflow as well as the perturbation vibration temperature was forced

to zero, source terms and their derivatives were forced to zero, and kV and Ds

with their derivatives were forced to zero. Also, the boundary conditions for cases

4 and 5 were changed.

Before creating an N factor plot, it is required to locate the second mode before

tracing it either downstream or upstream. To aid in locating the second mode

for various frequencies, a plot of the fast and slow modes, mode F and mode S

respectively, is obtained at a single streamwise location (s = 0.65 m). Figure 7.18

shows the phase velocities, and growth rates, for the fast and slow modes for cases

1b, 2, and 4. Case 1a is similar to 1b, case 3 to 2, and case 5 to 4, which is why

they are not shown. The fast mode appears near cr = 1+ 1/M∞ = 1.063 and the

slow mode appears near cr = 1−1/M∞ = 0.937. The slow mode is the mode that

turns into the second mode as the frequency increases for each case. This can be

seen as −αi becomes positive for the slow mode indicating exponential growth.

Qualitatively, there is little difference between the three cases shown. The main

qualitative difference is that the third mode, represented by the bump in growth

rate near 1100 kHz for each case, follows the second mode for both cases 1b and 4.

However, the third mode comes from the fast acoustic spectrum for case 4. Also,

the third mode, while not unstable for any of the cases, is much more pronounced

for the real gas cases, i.e., cases 1–3. The third mode is visible for case 4, but it

is noticeably smaller.

After locating the second mode, it is possible to trace it upstream and down-

stream using LST to find the second-mode N factor. Figure 7.19 shows the N
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(a) case 1b (b) case 1b

(c) case 2 (d) case 2

(e) case 4 (f) case 4

Figure 7.18: Fast and slow mode plot of (a) phase velocity and (b) growth rate.
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(a) case 1a (b) case 1b

(c) case 2 (d) case 3

(e) case 4 (f) case 5

Figure 7.19: N factor comparison.
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factor plots for each of the six cases. The case with the largest N factor is case 1a

where the N factor is 5.97 at the exit of the domain. This means that from the

neutral point the disturbance has grown 391 times. The corresponding frequency

for this maximum N factor of case 1a is 500 kHz. The second largest N factor

is found from case 1b where N=4.37 and the corresponding frequency is 487.5

kHz. Recall that the only difference between cases 1a and 1b is the temperature

perturbation boundary condition which is T̂w = 0 for case 1b. Comparing the N

factors shows that the most amplified frequency for case 1a is nearly five times

larger than the most amplified frequency for case 1b. Also, the frequency of the

maximum second-mode N factor is shifted to a slightly lower frequency for case

1b. Hence, a change in only the temperature perturbation boundary condition

can have a significant effect on a hypersonic boundary layer’s second mode.

From Figs. 7.19(b) and 7.19(c) it is possible to note the differences that result

due to changing the wall blowing from ablation to blowing air at the freestream

mass concentration. Essentially this would be measuring the effect of carbon

species due to ablation in the boundary layer as opposed to only 5-species air in

the boundary layer. Recall from Fig. 7.9 that the difference in streamwise velocity

and both temperatures for Case 1 and 2 is negligible, but there is some difference

in the chemistry. For case 1b, the largest N factor is 4.37 at 487.5 kHz. For case

2, the maximum N factor is 4.46 at a frequency of 487.5 kHz. The difference

between these two cases is small with case 2 slightly more unstable than case

1. The frequency for the most amplified disturbance is the same for both cases.

Therefore, for this test case, the carbon species in the boundary layer slightly damp

the second-mode instability. These results are consistent with [AH97], where it

was found experimentally that a high enthalpy CO2 flow transitioned later than

corresponding N2 or air flows at the same enthalpy.

To investigate these effects further, similar to [JSC98], the sign of the heat of

formation was changed for CO2 and CO in the instability calculations for case 1b,
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(a) (b)

Figure 7.20: N factor and growth rate comparison for varying CO2 and CO heat

of formation of the 487.5 kHz second mode.

while the meanflow remained the same. This effectively extracts heat from the

flow, as compared to the nominal case, when CO2 is produced, rather than adding

heat. The results from this numerical experiment are shown in Fig. 7.20 for the

frequency with the highest N factor in case 1b (487.5 kHz). Note that by switching

the sign for the heat of formation, an increased N factor, or growth rate, means

the effects are stabilizing when the sign of the heat of formation is not switched.

Also note that, the only significant reaction including carbon species over the

range shown is the recombination of CO2 denoted by CO +O+M → CO2 +M.

When only the sign of CO2 is switched, the N factor is increased due to an

increased growth rate. The increase in growth rate is slight and remains around

1% to 3% over the length of the unstable second-mode range. When the sign

of the heat of formation is switched for both CO2 and CO, the N factor is still

higher when compared to the nominal case. However, CO has the opposite effect

of CO2. It is slightly decreasing the growth rate when compared to the case that

only switches the sign of CO2. To summarize these findings, switching the sign
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for the heat of formation of CO2 measures the effect that production of CO2, from

CO and O, has on the flow instability. When the sign for the heat of formation

of CO2 is switched, it destabilizes the second mode. Therefore, when the sign is

not switched, CO2 stabilizes the second mode. This stabilizing effect is, however,

quite slight for the given case which likely explains the slight decrease in N factor

from case 1b to case 2.

It should be noted that it has been shown that the rate of CO+O recombination

is slow and atomic oxygen recombination can be much faster [SCM00]. If this is

the case, the flow may be composed of O2 and CO which can exist stably under

these conditions. This could possibly change the stabilizing effect shown here

which is likely due to the recombination of CO and O. Further simulations with

different reactions and reaction rates would be needed to further elucidate this

issue. However, for the reactions and reaction rates used here, it is likely that as

blowing increases, there will be more mass from carbon species in the boundary

layer. Assuming that the same trend is followed, this will more strongly stabilize

the boundary layer. Also, if the estimated ablation rates are low, it would be

possible to predict transition in a second mode dominated graphite ablative flow

by assuming the surface blowing to be composed of air rather than various carbon

products.

It is also possible to isolate the effects of blowing on boundary-layer instability

in a hypersonic real gas. Figures 7.19(c) and 7.19(d) show cases 2 and 3 where case

2 has blowing and case 3 does not. The largest N factor for case 2 is 4.46 at 487.5

kHz. The largest N factor for case 3 is 4.12 at 500 kHz which results in a decrease

of the most amplified disturbance by 40%. Therefore, the boundary layer with

blowing is destabilized compared to the boundary layer with no blowing. Note

that the blowing profile is large upstream near the nose but small downstream

of the nose. So it is conjectured that the strong blowing upstream has a larger

effect than the near zero blowing downstream. Also, recall from Fig. 7.8 that
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the boundary-layer thickness is slightly less for case 3 as compared to case 4. It

is likely that the slight shift in frequency between these two cases is due to the

slight difference in the thickness of the boundary-layer. The fact that the blowing

is found to destabilize the second mode is consistent with previous research in

[JGC09] for a reacting boundary layer.

Similarly, blowing effects on a hypersonic boundary layer with an ideal gas

assumption can be seen by comparing Figs. 7.19(e) and 7.19(f). The maximum N

factor for case 4 is 1.88 at a frequency of 462.5 kHz and the maximum N factor for

case 5 is 1.81 at a frequency of 475 kHz. The difference between these two cases

is minute showing that for the ideal gas boundary layer blowing has a negligible

effect on boundary layer stability in this particular case.

Finally it is possible to isolate real gas effects by comparing case 2 with case

4 and case 3 with case 5 (Figs. 7.19(c) and 7.19(e) and Figs. 7.19(d) and 7.19(f),

respectively). The difference in maximum N factor between cases 2 and 4 is 2.58

which results in a disturbance that is thirteen times larger for case 2. This is a

significant difference. Here, the real gas causes the largest disturbance to grow

an order of magnitude more than the ideal gas case. Note also that the neutral

points for unstable frequencies have moved downstream for the ideal gas case

when compared to the real gas case. This is to be expected as the height of the

boundary layer is larger for the ideal gas case (recall Fig. 7.8). Similar results are

seen by comparing cases 3 and 5. The difference in maximum N factor is 2.31

which gives a most amplified disturbance that is ten times larger for case 3. Also,

the start of the unstable frequency range for each frequency has again shifted

downstream. Therefore, in this particular case, real gas effects are destabilizing

to the hypersonic boundary layer. Real gas effects in both comparisons result in

a maximum disturbance at the domain exit that is one order of magnitude larger

than the corresponding ideal gas case. Also, the neutral points shift downstream

for the ideal gas cases.
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As seen in Eq. (7.7), the N factor is obtained by integrating the growth rate

in the streamwise direction. By examining the growth rates corresponding with

each N factor, it can be found how the growth rate is influencing the N factor. A

growth rate plot for each case is given in Fig. 7.21. Comparing cases 1a and 1b

the growth rate for each frequency is overall larger for case 1a. Also, the range

along the cone for the unstable frequencies is larger for case 1a, i.e., a frequency

for case 1a is unstable over a larger length of the cone. Noting these differences,

the difference in N factor between cases 1a and 1b is due to the larger growth rate

and the larger range over which the frequencies are unstable.

Comparing cases 1b and 2, the growth rates for both cases, as well as the

unstable ranges, are nearly the same. Looking specifically at the second mode at

487.5 kHz, the maximum growth rate is 12.82 at 0.64 m for case 1b and is 12.98

at 0.63 m for case 2. This is a relative difference of 1.2% between these cases.

This difference makes sense as the maximum N factor of the two cases was nearly

identical.

Comparing cases 2 and 3 it can be seen that the growth rate is nearly the same

for both cases, therefore, the difference in N factor must be explained by a larger

unstable range for case 2. Here, blowing is causing the unstable region to become

larger for the most unstable frequencies in the domain.

The growth rates of cases 1a, 1b, 2, and 3, show that the highest frequency

is not always the first unstable frequency. For example, notice Fig. 7.21(c) where

the highest frequency included in the calculations is 537.5 kHz and it crosses from

stable to unstable at s = 0.276 m. Upstream of s = 0.276 m, there are lower

frequencies than 537.5 kHz, such as 525 kHz, that are already unstable. This

behavior is most likely due to the decreasing boundary-layer thickness causing

some higher frequencies to become unstable later. This behavior is not seen for

either case 4 or case 5 as there are no significant second mode instabilities when

the boundary-layer is decreasing.
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(a) case 1a (b) case 1b

(c) case 2 (d) case 3

(e) case 4 (f) case 5

Figure 7.21: Growth rate (−αi) comparison.
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Again, it is possible to analyze real gas effects by comparing case 2 with case

4 and case 3 with case 5 (Figs. 7.21(c) and 7.21(e) and Figs. 7.21(d) and 7.21(f),

respectively). Comparing cases 2 and 4, it can be seen that the growth rates for

the real gas are larger than for the ideal gas. Also, the frequencies are unstable

over a larger streamwise distance. Similarly, the growth rates for case 3 are much

larger than for case 5 and the unstable range is larger for case 3. For this case, real

gas effects increase the disturbance growth rate as well as increase the unstable

range of the disturbance.

To analyze the effects of transverse curvature on the second mode only, the N

factor was obtained using LST without the curvature terms for each case. Note

that the meanflow is still computed with the transverse curvature effect and it is

only in the instability waves where transverse curvature is neglected. Figure 7.22

shows the N factor comparison for case 1b with and without transverse curvature.

The largest N factor computed with the transverse curvature terms neglected is

4.68 for the 487.5 kHz second mode. This results in a 37% amplification compared

to case 1b where the transverse curvature terms are included. The frequency for

the largest N factor is not changed. This trend is the same for each of the cases.

For each case, excluding the transverse curvature terms results in a larger N

factor, i.e. the second mode is destabilized, but the frequency remains the same.

These results are consistent with previous instability calculations using a perfect

gas [MS91] and a chemically reacting flow [CVM97].
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Figure 7.22: N factor comparison for case 1b of the most amplified frequency

(487.5 kHz) with and without transverse curvature.
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CHAPTER 8

Linear Stability Analysis of the Reentry-F

M∞ = 19.925 Blunt Cone

This blunt cone case corresponds to a flight test, called Reentry F, designed to

study the effects of a turbulent boundary layer on surface heating. High quality

transition data is available from this experiment at multiple points along the flight

trajectory. The vehicle geometry is a 5 deg cone with an ablating nose cone. This

ablating nose cone is blunted and has a nominal nose radius of 2.54 mm [JSW72].

The vehicle geometry, along with the simulated shock location, is shown in Fig. 8.1.

The freestream conditions simulated here are for the vehicle at 100 kft and are

given in Table 8.1. The blunt-cone nose was composed of ATJ graphite from

the nose tip to 0.22 m downstream along the cone axis. During the flight, the

nose cone ablated and changed shape, thus, an estimate for the ablated nose tip

radius at the given flight altitude is needed. The same estimated nose tip radius

of 3.1×10−3 m from [Mal03] is used here. The remaining section of the straight

cone had a beryllium surface. Surface temperature measurements are available

along the beryllium portion of the cone [How71]. These conditions have been

studied extensively by previous researchers [Mal03, JC05] where the most unstable

frequencies and their N factors at transition onset were calculated for multiple gas

models. However, their analysis neglected outgassing due to an ablating nose cone

and carbon species in the freestream due to ablation which are accounted for in

the current work.
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Figure 8.1: Physical domain of the Reentry-F simulation. The shock is red, the

surface of the ablating nose cone is blue, and the surface of the remainder of the

cone is black.

Table 8.1: Freestream conditions

for the Reentry-F cases.

Parameter Value

M∞ 19.925

ρ∞ [kg/m3] 0.01672

p∞ [N/m2] 1099.0

cN2
0.767

cO2
0.233

8.1 Steady-State Solutions of the Reentry-F M∞ = 19.925

Blunt Cone

Two separate meanflow simulations were run. The first case, called case 6, is a

five species thermochemical nonequilibrium simulation. This simulation is similar

to the meanflow simulations run in [Mal03] and [JC05]. The surface temperature

is set from experimental results downstream of the ablating nose and an estimate

from [Mal03] is used for the nose temperature. Non-catalytic conditions at the

surface are used for each species across the entire length of the vehicle. The

second case, called case 7, is an eleven species thermochemical nonequilibrium
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simulation. This simulation accounts for the ablating nose through inclusion of

the surface chemistry model described in Sec. 2.1. Downstream of the ablating

nose, the experimental wall temperature is used and a non-catalytic condition is

enforced at the surface.

The grid used in cases 6 and 7 is a body conforming ijk grid. It has 1250

points in the streamwise direction, 481 points in the wall-normal direction, and

4 points in the transverse direction. Figure 8.2 shows an example of the grid for

part of the physical domain on the nose cone for k=1. The streamwise points

are clustered near the ablating nose cone to give more resolution in areas of high

streamwise gradients near the nose. Also, there is grid clustering near the surface

and near the shock.

Figure 8.2: Part of the physical grid on the nose cone for case 6. Every 10 grid

points are shown in each direction.

Figure 8.3 shows a comparison of the streamwise velocity between case 6, case

7, [Mal03], and [JC05]. Different computational grids were used for the different

cases making the comparison at slightly different streamwise locations. However,

the comparison between the cases is quite good. There are only slight differences

between each of the cases. There is a difference between case 6 and case 7 but

it is not visible in the plot. This shows that the inclusion of the ablating nose

cone has only a slight effect on the meanflow profile of wall-tangent velocity at

the domain outlet.

132



Figure 8.3: Comparison of streamwise velocity. Case 6 at s=3.21 m denoted by

, case 7 at s=3.21 m denoted by , [Mal03] at s=3.24 m denoted by , and

[JC05] at s=3.26 denoted by .

The wall temperature for cases 6 and 7 is shown in Fig. 8.4(a). The wall tem-

perature used in [Mal03] and [JC05] is the same as case 6. The maximum wall

temperature at the stagnation point for both cases is nearly the same. The wall

temperature for case 7 drops quicker than case 6 near the stagnation point and

then almost levels off near s = 0.22 m which corresponds to the end of the ab-

lating nose cone. After the ablating nose cone, case 7 is fit to the experimentally

measured wall temperature and is the same as case 6 downstream of s = 1.0 m.

The main difference between these two cases is the brief leveling off of the wall

temperature before dropping again in case 7 which is not seen in case 6. Fig-

ure 8.4(b) shows the comparison of the computed wall heat flux between case 6,

case 7, [Mal03], and [JC05]. This comparison also has corresponding experimental

data. For [Mal03] and [JC05], there is a noticeable rise in heat flux downstream of

the nose near s = 0.1 m that is only slightly present in case 6 and not present at

all in case 7. It is likely that this rise in heat flux is due to the estimated wall tem-

perature distribution and likely exacerbated by a lack of streamwise grid in this
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(a)

(b) Case 6 , case 7 , [Mal03] , [JC05] , and experiment

Figure 8.4: Comparison of (a) wall temperature and (b) heat flux.
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area of rapid wall temperature decrease. The heat flux for case 7 is more natural.

It is a maximum at the stagnation point and decreases downstream. There is a

jump near s = 0.22 m due to the discontinuity in surface boundary conditions.

After this discontinuity, the heat flux increases slightly due to recombination of

species, especially CO2, near the wall. This increase in heat flux more accurately

matches the experimentally measured heat flux than the other cases. Downstream

of s = 1.0 m, each of the cases heat fluxes lie on top of each other.

The translation-rotation temperature and the vibration temperature at sev-

eral streamwise locations are shown in Fig. 8.5. Each profile has the same wall

temperature except the station at x=0.22 m which is at the end of the nose cone.

At this station, both temperatures are higher for case 7. Moving downstream

starting from x=1.76 m, the translation-rotation temperature shows little varia-

tion between case 6 and 7. Each of the profiles for case 7 are shifted away from

the wall due to a thickening of the boundary layer from blowing, but the shift is

small. For the vibration temperature there is a larger difference. For case 6, the

vibration temperature is consistently less which is most likely due to the existence

of CO2, as well as a thicker boundary layer, for case 7. From these meanflow

results, it is likely that temperature effects on flow instability will be more pro-

nounced upstream near the nose cone where the difference between the cases is

the largest.

The surface mass flux nondimensionalized by the freestream mass flux is given

in Fig. 8.6. The mass flux is a maximum at the stagnation point where it is 2% of

the freestream mass flux. The most significant blowing occurs on the hemispherical

nose tip. Downstream of the hemispherical nose tip on the straight portion of the

cone, the mass flux is less than 0.1% of the freestream mass flux. It seems likely

that any effects on flow instability due to blowing would stem from the higher

mass flux on the nose tip rather than the lower mass flux on the straight portion

of the nose cone.
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(a)

(b)

Figure 8.5: Wall-normal profiles for cases 6 (red) and 7 (black) of (a) the

translation-rotation temperature and (b) the vibration temperature.
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Figure 8.6: Surface mass flux for case 7.

The mass fractions of CO and CO2 for case 7 are shown in Fig. 8.7. Of the

gas species containing carbon, only CO and CO2 are shown because they are

the most massive. Each station is normal to the surface at a given location.

The first location corresponds to the end of the ablating nose cone. At this

station, carbon in the freestream is mainly in the form of CO and it makes up

approximately 10% of the fluid mass near the surface. At x=0.50 m, CO accounts

for roughly 1% of the mass near the center of the boundary layer. Downstream of

x=1.00 m, the mass of CO has become less than 0.1% and continues to decrease

downstream. On the other hand, CO2 is less than 0.1% at the exit of the nose

cone due to the high surface temperature. But increases rapidly to 5% of the mass

at the wall at x=0.5 m. Then decreases gradually downstream. Downstream of

x=0.50 m there is not a significant amount of carbon in any species except CO2.

Therefore, it is expected that CO2 will impact flow instability more than CO near

the experimentally measured transition location.
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(a) (b)

Figure 8.7: Wall-normal profiles for case 7 of (a) cCO and (b) cCO2
.

8.2 Instability Characteristics of Reentry-F M∞ = 19.925

Blunt Cone

N factor plots for both cases 6 and 7 are shown in Fig. 8.8. The location of

transition onset, as indicated by the rise in the experimental heat flux, is s=2.9 m.

This location is marked on the figures. The largest N factor at this streamwise

location for case 6 is 7.8 at a frequency of 260 kHz. Compare this with the value

of 8.1 at a frequency of 240 kHz obtained in [Mal03] using linear stability theory

and a finite-rate chemistry model. Considering the differences in the model, the

N factor at transition is quite close. In [JC05], an N factor of 8.7 at a frequency of

250 kHz was obtained using a similar thermochemical nonequilibrium model, but

the parabolized stability equations were used rather than linear stability theory

to compute the flow instability. With a similar gas model, one would expect

the comparison of the N factor to be closer, however, N factors computed from

PSE are generally larger than those computed using LST, so the difference is not

unusual. Overall, the stability calculations agree reasonably well with previous

stability calculations for the same geometry and flow conditions.
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(a) case 6

(b) case 7

Figure 8.8: N factor comparison.
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The largest N factor at s = 2.9 m for case 7 is 7.7 at a frequency of 250 kHz.

This is not a large difference from the N factor of 7.8 obtained in case 6 and may

be near to the numerical noise of the simulation. However, this slight damping

effect is consistent along the cone downstream of s = 1.0 m making it unlikely

that it is significantly affected by numerical noise. Also, the frequency that leads

to transition for case 7 is 10 kHz lower than that of case 6. This same stabilizing

behavior was seen in Sec. 7.3 where the carbon chemistry obtained from ablation

was shown to slightly stabilize the flow as compared to a simulation with only 5

species air.

Upstream of s = 1.0 m, the ablating nose cone has increased the N factor.

The largest difference is 68% at s = 0.8 m. Here, the blowing effects are stronger

than at s = 2.9 m as the location is closer to the nose cone. Recall from Fig. 7.21

that blowing effects over a M∞=16 blunt cone were shown to destabilize the

second mode. It is likely that this close to the nose cone, the blowing effects are

destabilizing the second mode more than the carbon species are stabilizing the

second mode. This results in a net increase in the most amplified second mode

upstream of s = 1.0 m.

The growth rates for each of the frequencies used to create the N factor plots

for cases 6 and 7 are shown in Fig. 8.9. For case 6, the largest amplitude occurs

upstream for the higher frequencies shown, and then decreases downstream as the

frequency decreases. However, the streamwise extent over which a frequency is

unstable increases as the frequency decreases. Therefore, even if the maximum

amplitude is lower, the unstable region is larger which leads to larger N factors

for the lower frequencies. For case 7, the behavior is a little different. The start of

instability for the 460 kHz second mode has moved upstream and the maximum

amplitude has decreased. This leads to an overall amplification of the 460 kHz

instability by 38%. So, even though the maximum amplitude decreases, the larger

unstable range increases the N factor of the second mode for case 7. Downstream
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(a) case 6

(b) case 7

Figure 8.9: Growth rate (−αi) comparison.
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of approximately s = 0.6 m, the differences in the growth rates between cases 6

and 7 is minimal.

Along with the growth rates, the phase velocities for each of the frequencies

used to create the N factor plots for cases 6 and 7 are shown in Fig. 8.10. Down-

stream of s = 0.6 m, there are only slight differences between cases 6 and 7.

However, upstream of s = 0.6 m for the frequency range 420–460 kHz, there is a

marked difference in the phase velocity at which the second mode first becomes

unstable. For case 6, when the 460 kHz second mode first becomes unstable, the

phase velocity is near 0.96. However, for case 7, the phase velocity at which the

460 kHz second mode first becomes unstable is near 0.925. It seems that the nose

cone effects are decreasing the phase velocity of the second mode instability at

instability onset.

Figure 8.11 shows a comparison of the growth rate and phase velocity between

case 6 and case 7 at a single frequency of 460 kHz. For case 6, there is clear

second-mode instability denoted by a large positive growth rate and a change in

the sign of the phase velocity slope near s=0.5 m. This change in phase velocity

slope occurs near the synchronization location of the fast and the slow acoustic

modes. There is also a clearly defined third mode unstable region denoted by a

large positive growth rate and a change in the sign of the phase velocity slope

near s = 3.0 m. This region of second mode growth, and then a later region of

third mode growth, was also seen in [Mal03] and [JC05].

Comparing the second-mode growth region for cases 6 and 7, the maximum

second-mode growth rate for case 7 is less than case 6. However, the maximum

second-mode growth rate and location of initial instability growth has shifted

upstream for case 7. This creates a larger region over which the second mode is

unstable. Even though the maximum amplification has decreased, the increased

extent over which the second mode is unstable results in a higher N factor for case

7. Also, there is a jog in the growth rate for case 7 near s=0.5 m which is likely
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(a) case 6

(b) case 7

Figure 8.10: Phase speed (cr) comparison.
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(a) (b)

Figure 8.11: 460 kHz frequency comparison.

due to the rapid change in temperature slope at the same streamwise location and

not to a switch from first to second modes. The third mode is affected by a shift

upstream while the maximum growth rate is unaffected.

To analyze the effects of carbon species on the second-mode instability wave at

a frequency of 460 kHz, the sign for the heat of formation for CO2 was switched

in the linear stability analysis. The computed growth rates along the cone are

shown in Fig. 8.12. When the sign for the heat of formation of CO2 is switched,

the resulting second-mode instability wave is destabilized. This means that, when

the sign is not switched, the effects of CO2 are to stabilize the instability wave.

Recall from Fig. 8.7(b) that there is a large addition in the mass of CO2 due to

recombination in the range 0.22 m≤ x ≤0.5 m. It is this addition of mass due to

recombination that is likely leading to this stabilizing effect. The same numerical

experiment was run for CO where it was found that there was a stabilizing effect

when the sign for the heat of formation was switched. Therefore, when the sign

is not switched, the second mode would be destabilized. Each of these results are

consistent with the results in Sec. 7.3 of a Mach 15.99 blunt cone with surface

ablation. Downstream of x = 0.6 m where there is not significant recombination
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Figure 8.12: 460 kHz growth rate with sign of heat of formation of CO2 switched.

of CO2, switching the sign for the heat of formation of either CO or CO2 results

in a negligible difference.

Over the length of the cone simulated, the frequency 460 kHz has an unstable

second mode region that spans part of the ablating nose cone, as well as an

unstable third mode region that begins near the aft end of the cone. For this

frequency, meanflow profiles are given at s = 0.22 m (downstream edge of the

nose cone), s = 0.50 m, and s = 3.00 m. At each of these profiles, the unstable

second, or third mode, eigenfunctions are shown. The figures for each of the

meanflow profiles and wall-normal eigenfunctions are Figs. 8.13–8.21 where the

wall-normal coordinate is scaled by the local boundary-layer thickness defined as

98.5% of the total enthalpy boundary layer.

In [Mac84], it was shown that the second and third modes had pressure

eigenfunctions where the real part crossed the zero axis once and twice, respec-

tively. The real part of the pressure eigenfunction crosses the zero axis once in

Figs. 8.14(a) and 8.17(a), showing that the unstable mode is the second mode. The
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Figure 8.13: Meanflow profiles at s = 0.22 m for (a) species density and (b) ut ,

10 · un , T , and TV .
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Figure 8.14: Eigenfunction obtained from LST for the 460 kHz 2nd mode at

s = 0.22 m. Real component , imaginary component , and amplitude .
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Figure 8.15: Eigenfunction for the 460 kHz 2nd mode at s = 0.22 m continued.

Real component , imaginary component , and amplitude .
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Figure 8.16: Meanflow profiles at s = 0.50 m for (a) species density and (b) ut ,

100 · un , T , and TV .
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Figure 8.17: Eigenfunction obtained from LST for the 460 kHz 2nd mode at

s = 0.50 m. Real component , imaginary component , and amplitude .
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Figure 8.18: Eigenfunction for the 460 kHz 2nd mode at s = 0.50 m continued.

Real component , imaginary component , and amplitude .
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Figure 8.19: Meanflow profiles at s = 3.00 m for (a) species density and (b) ut ,

100 · un , T , and TV .
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Figure 8.20: Eigenfunction obtained from LST for the 460 kHz 3rd mode at

s = 3.00 m. Real component , imaginary component , and amplitude .
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Figure 8.21: Eigenfunction for the 460 kHz 3rd mode at s = 3.00 m continued.

Real component , imaginary component , and amplitude .
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real part of the pressure eigenfunction crosses the zero axis twice in Fig. 8.20(a),

showing that the unstable mode is the third mode.

The comparison of growth rate and phase velocity for the 260 kHz instability

between cases 6 and 7 is shown in Fig. 8.22 and has only slight differences. Only

second mode instability is present for this frequency over the portion of the cone

simulated. The unstable region begins near s = 1.5 m and is shifted slightly

upstream for case 7. There is very little variation in shape between the cases

for both growth rate and phase velocity. Essentially, both cases give the same

result with case 7 shifted slightly upstream of case 6. This is likely due to the

slight increase in boundary-layer thickness of case 7 due to the outgassing in the

nose cone. This is why case 7 has a lower frequency for the largest N factor at

s = 2.9 m.

The ablating nose cone extends 0.22 m downstream of the stagnation point.

Over the downstream portion of the nose cone, there is some unstable growth of the

second mode for frequencies near 410–470 kHz. Fig. 8.23 shows the second-mode

N factor over the ablating nose cone for the meanflow of case 7. The difference

between the figures is that the perturbation boundary condition at the surface

used for the linear stability analysis has been changed. Similar to the results

in Sec. 7.3, the temperature perturbation boundary condition from Eq. (3.78)

destablizes the second mode compared to the case with T̂w = 0. The onset of

instability is moved upstream and the most amplified frequency is 14% larger.

However, the maximum N factor achieved on the nose cone is small for either case

and does not directly affect the frequency that likely leads to transition.

It has been shown that including the ablative nose cone affects frequencies

differently. For higher frequencies, whose second mode unstable regions are near

the nose cone, such as the 460 kHz frequency, the location of initial instability

growth is moved upstream and there is a slight damping of the second mode. The

growth rate of the third mode is unaffected with a slight upstream shift. For lower
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(b)

Figure 8.22: 260 kHz frequency comparison.
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(a) T̂w 6= 0

(b) T̂w = 0

Figure 8.23: N factor comparison on the nose cone.

157



frequencies, whose second mode unstable region is far downstream of the ablating

nose cone, such as the 260 kHz frequency, the growth rate and phase velocity of

the instability is the same except for a slight upstream shift. It is likely that this

upstream shift is attributable to the increase in boundary-layer thickness caused

by the ablating nose cone.

These findings indicate that including the effects of the ablating nose cone is

stabilizing to the second mode instability when the second mode is far downstream

of the nose. Near the nose cone, ablation induced outgassing effects cause an in-

crease in the region of instability and a decrease in the maximum amplification

rate which does result in a higher N factor. However, assuming that the transi-

tion location is far enough downstream of the ablating nose cone, the effects of the

ablating nose cone are to slightly stabilize the second mode. It should be noted

that a LST analysis, like the one performed here, does not include the receptivity

process which is likely different when the ablating nose cone is included. This

would result in different initial amplitudes to the eigenmode growth process for

cases 6 and 7. However, N factor correlation, which is derived from an eigenmode

analysis without including receptivity, has been shown to reliably correlate with

transition onset. This correlation implies that transition is strongly affected by

eigenmode growth and the effect that the ablating nose cone has on eigenmode

growth, for the conditions tested, is small. Therefore, this small difference in N

factors and frequencies that lead to transition seems to indicate that, for these

flight conditions, the nose cone effects can be safely neglected to obtain a reason-

able estimate of the value of the N factor and the corresponding frequency at the

transition location.
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CHAPTER 9

DNS Results for M∞ = 10 Flat Plate

Commonly, in studies of boundary-layer instability over a flat plate, a local

Reynolds number, R, is used. This Reynolds number is defined as

R =
ρ∞u∞L

µ∞

(9.1)

where L is the local length scale of the boundary-layer thickness and is defined as

L =

(
µ∞x

ρ∞u∞

)1/2

. (9.2)

This local length scale is used here to nondimensionalize the growth rate. The

frequency of a boundary-layer mode for LST, or a disturbance simulated in a DNS,

is commonly nondimensionalized to obtain

F =
2πfµ∞

ρ∞u2∞
(9.3)

where f is the dimensional frequency. Also the frequency may be nondimension-

alized with a spatial component resulting in

Ω =
2πfL

u
= RF. (9.4)

Both nondimensionalizations for frequency will be used here.

For a DNS, it is required that the meanflow be perturbed in order to study

the growth, or decay, of the perturbation. Here, the flow is perturbed with a

suction/blowing slot at the plate surface. The equation for the mass flux of the

slot is

ρv (x, t)′w = ǫb (ρu)∞ exp

{

−(t− µb)
2

2σ2
b

}

sin

{
2π (x− xb)

lb

}

(9.5)
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where lb is the length of the slot, xb is the center of the slot measured from

the leading edge of the flat plate, ǫb scales the function, µb shifts the gaussian

component to avoid negative times, and σb adjusts the spectral content of the

function. Notice the time dependent gaussian portion of the function. When

transformed to frequency space, this yields a continuous range of frequencies with

non-zero amplitudes making this particular approach for perturbing the meanflow

an effective strategy when studying a wide range of frequencies.

The freestream conditions are from the previous LST studies of [MA91] and

[Hud96] that investigated second-mode instability of a real-gas flow over a flat

plate. The freestream conditions are given in Table 5.1. The freestream unit

Reynolds number, Reu, is 10.9×106 /m and the freestream stagnation enthalpy,

ho,∞, is 5.9 MJ/kg.

A schematic of the DNS simulation is given in Fig. 9.1. The computational

domain is bounded by the inlet, outlet, shock, and flat plate. For the DNS simu-

lation, the meanflow is initially converged to a specified tolerance. This tolerance

must be below the linear forcing of the blowing/suction slot, or numerical noise

will contaminate the unsteady results. Next, the slot is activated, and a linear

perturbation is introduced at the slot. This perturbation is then simulated as it

travels throughout the meanflow.

roughness

shock

blowing/suction

perturbation

inlet
outlet

Figure 9.1: Schematic of the physical domain with the roughness location and

blowing/suction slot.
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Table 9.1: Case numbers for

M∞ = 10 flat plate DNSs.

Case Number h/δ

8 0

9 25.0%

10 37.5%

In order to quantify roughness effects on the instability process, multiple cases

are run for varying roughness heights. These cases are defined in Table 9.1 which

shows that case 8 has no roughness element, while cases 9 and 10 have a roughness

element of the same width but different height. Only the roughness height is varied

as it was shown in [FWZ15] that varying the roughness height plays a much more

significant role in second mode suppression than varying the width. The roughness

elements have an elliptical shape defined by

(x− xc)
2

a2
+
y2

h2
= 1 (9.6)

where xc is the center of the roughness element and 2a is the width. For this case,

xc = 0.27 m and a = 2.55× 10−3 m.

Before analyzing the simulation results, a grid convergence study was per-

formed to ensure that the computational grid was sufficiently dense to capture

the relevant flow physics. The first grid used 642 by 241 points in the stream-

wise and wall-normal directions, respectively. The second grid was a double grid

solution which used 1282 by 481 points. Case 9 was used as the test case for

the grid convergence study. For both grids, the meanflow solution was converged

within a specified tolerance and then a perturbation was simulated. Figure 9.2

shows the frequency spectrum of the wall-pressure perturbation directly behind

the roughness at x = 0.28 m. There are only minimal differences between the

161



f (kHz)

(p
′ w
/p

w
)/
(ρ
v
′ w
/ρ
u
∞
)

Figure 9.2: Comparison of single grid (642 by 241) results to double grid (1282

by 481) results for case 9. single grid , double grid .

two simulations. The lack of any significant difference between the two separate

results shows that the single grid result is grid converged.

9.1 Steady Flow Simulations for M∞ = 10 Flat Plate

The first part of the direct numerical simulation is to simulate the time invariant

meanflow. Figure 9.3 shows the meanflow pressure contours for cases 9 and 10.

Initially, the roughness element compresses the incoming flow which is shown by

the increase in pressure near x = 0.26 m to the center of the roughness element.

This compression turns into a Mach wave which travels downstream. As the

roughness height is increased, the strength of this Mach wave increases and will

eventually become a shock wave. After this compression, there is a flow expansion

on the leeward side of the roughness element resulting in a decreased pressure.

Also, it can be seen that as the height of the roughness element is increased, its

effects are present further upstream.
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(a)

(b)

Figure 9.3: Meanflow solutions of pressure for (a) case 9 and (b) case 10.
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Meanflow simulations are also shown in Fig. 9.4 for the translation-rotation

temperature and 1 − T/TV near the roughness element for cases 8 and 10. For

case 8, the translation-rotation temperature contour remains nearly constant in

the streamwise direction over the region shown. Similarly, contours of 1 − T/TV

remain constant in the streamwise direction over the region shown. For case

10, there is a noticeable increase in translation-rotation temperature as the flow

reaches the bump due to the flow compression. After the bump, the flow expands

and the temperature decreases. The maximum translation-rotation temperature

at x = 0.28 m for case 10 is actually 20 K less than the maximum value for case

8. As the flow moves further downstream, the maximum temperature for case 10

approaches the value of case 8.

9.2 Unsteady Flow Simulations for M∞ = 10 Flat Plate

Figure 9.5 shows the wall-normal mass flux imposed at the centerline (x = xb) of

the surface blowing/suction slot. For cases 8–10, xb = 0.15 m (R(xb) = 1719),

lb = 0.002 m, ǫb = 1× 10−4, µb = 3× 10−6, and σb = 8× 10−7. These parameters

were chosen to ensure that the perturbation is linear, as well as ensuring larger

forcing amplitudes for the frequencies of interest. As the gaussian function has

tails that approach zero at infinity, the function needs to be truncated while

not strongly affecting the frequency content. Here, the function was truncated

at t = 6 × 10−6 s without any adverse effects. Figure 9.5(b) shows the analytic

Fourier transform, along with the discrete Fourier transform (DFT) obtained from

the DNS results, at x = xb. The two results lie directly on top of one another,

as they should. Note that most of the spectral energy density is contained in the

range 0 ≤ f ≤ 400 kHz which contains the most unstable second mode.

Before analyzing the unsteady results, a comparison with previous findings

for the same flow conditions is performed to show that the current findings are
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(a) case 8

(b) case 10

(c) case 8

(d) case 10

Figure 9.4: Steady state solutions of (a–b) translation-rotation temperature and

(c–d) 1− T/TV .
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(a) (b)

Figure 9.5: The (a) mass flux imposed at x = xb and (b) comparison of the Fourier

transform to the discrete Fourier transform obtained from DNS.

consistent with previous results. A comparison of the growth rate and phase

velocity of the second mode to the previous results of [Hud96] is shown in Fig. 9.6.

In [Hud96], the same thermochemical nonequilibrium model is used for solution

of the meanflow except the reactions and reaction rates differ. Overall the growth

rate compares quite well. The maximum amplification, as well as the frequency

at maximum amplification, compare well. There is some difference in the phase

velocity for Ω > 0.7 and the reason for the small difference is unclear. Likely

it is due to the differences in the gas model or perhaps small differences in the

meanflow. Overall, the comparison between the two methods is adequate, showing

that the current results follow previous findings.

When the blowing/suction slot is activated in a DNS, the disturbance is not

a pure mode. As the disturbance travels downstream, some frequency compo-

nents will grow and some will decay. Further, each frequency component can be

composed of multiple modes that may individually grow or decay. As one mode

begins to dominate for a single frequency component, i.e., its amplitude grows

much larger than any other mode’s amplitude, it is possible to achieve an accu-

rate comparison for that mode between a DNS and LST calculations. Figure 9.7
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Figure 9.6: Comparison at R = 739.6 of (a) growth rate and (b) phase velocity

to [Hud96]. Current work , and [Hud96] .
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Figure 9.7: Comparison of DNS ( ) at F = 4.28× 10−5 for case 8 with mode S

( ) and mode F ( ) obtained from LST.

shows a comparison of the growth rate and phase velocity obtained from a DNS

to those obtained from LST for case 8. Near the blowing/suction slot (R = 1719),

the DNS results do not match either mode F or mode S. However, near R = 1900,

the DNS results match closely with mode S, or the second mode, predicted by

LST. This shows that as the disturbance travels downstream, the second mode
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begins to grow significantly and dominate the other boundary-layer modes at that

frequency. Also, this shows that the disturbance created by the blowing/suction

slot is developing into the second mode.

In the previous results of [DWZ13, FWZ13, FWZ14, FWZ15], it was found

that for a fixed frequency, when a roughness element was placed upstream of

the synchronization point in a hypersonic boundary layer, the second mode was

destabilized. Conversely, when it was placed downstream of the synchronization

point, the second mode was stabilized. It should be noted that the synchronization

point referred to is obtained from the meanflow solution without any surface

roughness. Here, that would refer to case 8. Therefore, for analysis of the DNS

results, it is necessary to find the synchronization point of mode S and mode

F using LST from the meanflow of case 8. Figure 9.8 shows the phase velocity

and growth rate for mode S and mode F at R=1719. Recall that the roughness

is located at R=1719. This figure is obtained by fixing the streamwise location

and varying the frequency. To differentiate between the first discrete mode that

originates from the fast acoustic spectrum and the second, the terminology “mode

F I” is used to refer to the first and “mode F II” used for the second. Mode F

I synchronizes with mode S at Ω = 0.085, or F = 4.94 × 10−5. Therefore, it is

expected that frequencies above F = 4.94×10−5 will be damped while frequencies

below F = 4.94× 10−5 will be amplified.

Figure 9.9 shows the wall-pressure perturbation for two fixed frequencies. The

break in the lines of each plot for cases 9 and 10 is due to the surface roughness.

The first frequency, F = 3.43×10−5, is below the frequency at the synchronization

location so it is expected that it will be amplified compared to case 8. Each of

the three cases start with the same pressure perturbation near R = 1600. As the

perturbation approaches the roughness element, the wall-pressure perturbation

increases wildly. After the roughness, there is some slight damping before the

wall-pressure perturbation grows again and becomes larger than the perturbation
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Figure 9.8: Plot of (a) phase velocity and (b) growth rate at the fixed location

R = 1719.
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(a) F = 3.43× 10−5 (f = 200 kHz)
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(b) F = 5.14× 10−5 (f = 300 kHz)

Figure 9.9: Wall-pressure perturbation for cases 8–10 of a single frequency (a)

below and (b) above the synchronization frequency.

for case 8. This growth is second mode growth. Recall from Fig. 9.8 that the

growth in the DNS disturbance was similar to LST predictions of the growth rate

and phase velocity of the second mode. Also note that, as the roughness height

increases, the growth of the disturbance increases. These findings that a frequency

below the synchronization frequency is amplified, and a larger roughness height
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more strongly amplifies the second mode, correspond with the previous results of

[DWZ13, FWZ13, FWZ14, FWZ15].

The second frequency, F = 5.14 × 10−5, is above the frequency at the syn-

chronization location so it is expected that it will be damped when compared to

case 8. Each of the three cases start with the same pressure perturbation near

R = 1600. Similar to F = 3.43× 10−5, as the perturbation approaches the rough-

ness element, the wall-pressure perturbation increases wildly. After the roughness

element, the wall-pressure perturbation stays damped for the remaining portion

of the simulation. Also, as the roughness height is increased, the corresponding

damping of the wall-pressure perturbation is decreased. These findings that a

disturbance at a frequency below the synchronization frequency is damped, and a

larger roughness height more strongly damps the second mode, correspond with

the previous results of [DWZ13, FWZ13, FWZ14, FWZ15].

Similar to analyzing a single frequency along the flat plate, since the frequency

content of the perturbation is continuous, it is possible to fix the streamwise

location and visualize the frequency spectra. Figure 9.10 shows the wall-pressure

perturbation spectra at two separate streamwise locations. The large amplitudes

are due to the growth of the second-mode instability. The first location, R = 1687

is upstream of the roughness element. Notice that for both roughness cases the

perturbation is amplified for almost the entire frequency range. Upstream of the

roughness, the effects of the roughness are to amplify each frequency component.

The second location, R = 1985, is downstream of the roughness element. Now

the damping effect due to the roughness element is clear. The amplifying effect

of the roughness on the second mode is slight at this streamwise location but still

visible for case 10 at F = 5× 10−5.

Overall, the results for the Mach 10 flat plate cases 8–10 of a real-gas flow

were shown to be consistent with previous research for hypersonic flows with a

perfect gas assumption. It was shown that a two-dimensional roughness element
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Figure 9.10: Wall-pressure perturbation frequency spectra for cases 8–10 at a

location (a) upstream and (b) downstream of the roughness element.

can suppress second-mode instability in a real gas. These results show that the

idea of stabilizing a hypersonic boundary layer through use of two-dimensional

roughness elements does extend to real gas flows.
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CHAPTER 10

DNS Results for M∞ = 15 Flat Plate

The freestream conditions are from the previous LST studies of [MA91] and

[Hud96] for second-mode instability of a real-gas flow over a flat plate. They are

given in Table 10.1. The freestream unit Reynolds number, Reu, is 3.33×106 /m

and the freestream stagnation enthalpy, ho,∞, is 32.6 MJ/kg. The boundary con-

ditions at the flat plate are no-slip for each of the velocities, a constant wall

temperature of Tw = TV,w = 1225 K, and non-catalytic conditions for each of the

chemical species.

Table 10.1: Freestream conditions

for M∞ = 15 flat plate.

Parameter Value

M∞ 15.0

ρ∞ [kg/m3] 1.391×10−2

p∞ [N/m2] 2812

cN2
0.78

cO2
0.22

A schematic of the DNS simulation is given in Fig. 10.1. The computational

domain is bounded by the inlet, outlet, shock, and flat plate. For the DNS simu-

lation, the meanflow is initially converged to a specified tolerance. This tolerance

must be below the linear forcing of the blowing/suction slot, or numerical noise
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will contaminate the unsteady results. Next, the slot is activated, and a linear

perturbation is introduced at the slot. This perturbation is then simulated as it

travels throughout the meanflow.

roughness

shock

blowing/suction

perturbation

inlet
outlet

Figure 10.1: Schematic of the physical domain with the roughness location and

blowing/suction slot.

In an attempt to quantify real gas and roughness effects in the instability

process, multiple cases are run for varying gas models and roughness heights.

These cases are defined in Table 10.2. The cases are a mix of varying roughness

heights and either a real gas, or a perfect gas, model. The perfect gas model is

obtained from the real gas model described in Ch. 2. For the case of a perfect

gas, the source terms are turned off, the vibration energy is held constant, and

the mass fractions are held to their freestream values. This is done so that the

viscosity, thermal conductivity, etc., are calculated the exact same way for either

the real, or perfect, gas.

Before analyzing the simulation results, a grid convergence study was per-

formed to ensure that the computational grid was sufficiently dense to capture

the relevant flow physics. The first grid used 962 by 241 points in the streamwise

and wall-normal directions, respectively. The second grid was a double grid solu-

tion which used 1922 by 481 points. Case 12 was used as the test case for the grid

convergence study. For both grids, the meanflow solution was converged within

a specified tolerance and then a perturbation was simulated. Figure 10.2 shows

173



Table 10.2: Types of DNSs for

M∞ = 15 flat plate.

Case Number h/δ Gas Model

11 0 real gas

12 10% real gas

13 20% real gas

14 30% real gas

15 0 perfect gas

16 10% perfect gas

17 20% perfect gas

18 30% perfect gas

Figure 10.2: Comparison of single grid (962 by 241) results to double grid (1922

by 481) results for case 12. single grid , double grid .
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the frequency spectra of the wall-pressure perturbation over the region tested.

There are only minimal differences between the two simulations. The lack of any

significant difference between the two separate results shows that the single grid

result is grid converged.

10.1 Steady Flow Simulations for M∞ = 15 Flat Plate

The first step in the direct numerical simulation is to simulate the time invariant

meanflow. Figure 10.3 shows the meanflow contours of the translation-rotation

temperature and 1−T/TV near the roughness element for cases 11 and 14. For case

11, the translation-rotation temperature contour remains nearly constant in the

streamwise direction over the region shown. However, the vibration temperature

is increasing and equilibrating with the translation-rotation temperature as the

flow moves downstream. For case 14, the roughness element compresses the flow

and causes a strong increase in translation-rotation temperature near x = 0.185 m.

Behind the roughness, the maximum translation-rotation temperature is higher

than case 11. Also, the vibration temperature is increased and moves closer to

thermal equilibrium behind the roughness element. Overall, the roughness element

serves to increase the translation-rotation temperature of the flow and move the

vibration temperature closer to thermal equilibrium.

Figure 10.4 shows the meanflow contours of temperature for cases 15 and 18.

Similar to the roughness element in a real gas flow, the roughness element in the

perfect gas flow increases the temperature immediately upstream of the roughness.

It also increases the maximum temperature in the boundary layer downstream of

the roughness in the range x ≥ 0.2 m. Overall, the temperature for the perfect

gas flow is higher than that for a real gas. This makes sense as energy is input

into chemical reactions, as well as higher energy modes, for the real gas flow which

are not present in the perfect gas flow.
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(a)

(b)

(c)

(d)

Figure 10.3: Meanflow contours of translation-rotation temperature for (a) case

11 and (b) case 14 along with contours of 1 − T/TV for (c) case 11 and (d) case

14.
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(a)

(b)

Figure 10.4: Meanflow contours of the temperature for (a) case 15 and (b) case

18.

Figure 10.5 gives a comparison of cases 11 and 14 with cases 15 and 18 at

two separate streamwise locations. The first location—x = 0.22 m (R=856.0)—

is 19.6δ downstream of the roughness element. Both temperatures have clearly

increased for case 14 compared to case 11 with the maximum vibration tem-

perature increasing nearly 600 K. Similarly, the temperature for case 18 has

clearly increased when compared to case 15. The second location—x = 0.37 m

(R=1110)—is 117.6δ downstream of the roughness element. The difference be-

tween the temperatures here is much less pronounced. Near the wall, there is little

distinguishable difference between any of the profiles. There is some difference in

the translation-rotation temperature for cases 11 and 14 where y > 0.003 m due

mainly to boundary-layer thickening. For the vibration temperature, there is still

an increase in the maximum value but it is not as pronounced as before. For cases
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(a) (b)

Figure 10.5: Wall-normal profiles of temperatures at (a) x = 0.22 m (R = 856.0)

and (b) x = 0.37 m (R = 1110).

15 and 18, there is also an increase in the maximum value, but again, it is not

as pronounced as before. Overall, as the flow moves downstream, the roughness

perturbed meanflow approaches the unperturbed meanflow with a slight shift due

to boundary-layer thickening.

As the roughness element strongly increases the translation-rotation temper-

ature, it is expected that this will have an effect on the chemical composition of

the flow. The reaction this increase in temperature is likely to affect the most is

the dissociation of oxygen. Figure 10.6 shows the contours of the mass fraction

of atomic oxygen for cases 11 and 14. There is an increase in cO for case 11 in

the downstream direction, as well as for case 14. However, the increase in cO for

case 14 is much larger due to the increased temperatures created by the roughness

element. As cO increases, the flow moves closer to chemical equilibrium.

To compare the concentration of cO between cases 11–14, Fig. 10.7 shows the

wall-normal profiles of the mass fraction of atomic oxygen at two separate stream-

wise locations. For each case the roughness element increases the concentration of
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(a) case 11

(b) case 14

Figure 10.6: Meanflow contours of the mass fraction of atomic oxygen.
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(a) (b)

Figure 10.7: Wall-normal profiles of the mass fraction of atomic oxygen (cO) at

(a) x = 0.22 m (R = 856.0) and (b) x = 0.37 m (R = 1110).

atomic oxygen with the largest roughness case creating the highest concentration

of atomic oxygen. As the flow moves far downstream from the roughness element

to x = 0.37 m, the concentration of atomic oxygen is still significantly larger for

case 14 than case 11. This is unlike the temperatures which are approaching the

same value.

A common question that naturally arises when studying the flow over a per-

turbed surface is, “how does the perturbation affect the surface heat transfer?”

If the surface heat transfer induced by the perturbation is larger than the heat

transfer obtained from a turbulent flow, then the purpose of delaying transition

by judiciously placed surface roughness is partially defeated. Figure 10.8(a) shows

the wall heat flux from case 2 with and without surface roughness. The two results

begin to diverge near R = 770 where the roughness case actually has less heat

transferred to the wall than the clean case. At the roughness, the wall heat flux

for the roughness case is nearly 5 times larger than the clean case. However, this

rise in heat flux is only over a small portion of the plate. Downstream of R = 900,

the heat flux for the clean and roughness cases converges to the same value.
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(a) (b)

Figure 10.8: Comparison of (a) wall heat flux and (b) total wall heat transfer for

cases 11 and 14. Roughness at R=795.5. Case 11 , Case 14 .

Clearly, there is a difference in the local surface heat flux near the element,

but how does this affect the total energy transferred to the vehicle surface? In

Fig. 10.8(a), the total heat transferred to the vehicle is shown. The total heat

transfer is obtained by integrating, along the body surface, the local surface heat

flux. As the flat plate is infinite in the transverse direction, the result is given

in units of power over length. It can be seen that the difference between the

clean and perturbed surface is small. At R = 1000, the difference between the

two is 0.04%. This small difference shows that, for a single roughness element,

there is no significant change in the total heat transferred to the vehicle surface.

To summarize, near the roughness there are strong local variations in the surface

heat flux, however, the total heat transferred to the surface remains relatively

unaffected when a single roughness element is added to the flat plate’s surface.
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10.2 Unsteady Flow Simulations for M∞ = 15 Flat Plate

Figure 10.9 shows the wall-normal mass flux imposed at the centerline (x = xb)

of the surface blowing/suction slot. For cases 11–18, xb = 0.10 m, lb = 0.002 m,

ǫb = 1×10−6, µb = 3×10−6, and σb = 5×10−7. These parameters were chosen to

ensure that the perturbation is linear, as well as ensuring larger forcing amplitudes

for the frequencies of interest. As the gaussian function has tails that approach

zero at infinity, the function needs to be truncated while not strongly affecting the

frequency content. Here, the function was truncated at t = 6×10−6 s without any

adverse effects. Figure 10.9(b) shows the analytic Fourier transform, along with

the discrete Fourier transform (DFT) obtained from the DNS results, at x = xb.

The two results lie directly on top of one another, as they should. Note that most

of the spectral energy density is contained in the range 0 ≤ f ≤ 700 kHz. This

was done to more strongly force the frequencies near the second and third mode

frequency ranges for the simulated domain.

(a) (b)

Figure 10.9: The (a) mass flux imposed at x = xb and (b) comparison of the

Fourier transform to the discrete Fourier transform obtained from DNS.

Before analyzing the unsteady results, a comparison with previous results for

the same geometry and flow conditions is performed to show that the current find-
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Figure 10.10: Comparison at R=1000 of (a) growth rate and (b) phase velocity

to [MA91]. Current work , and [MA91] .

ings are consistent with previous results. A comparison of the growth rate and

phase velocity of the second mode to the previous results of [MA91] is shown in

Fig. 10.10. In [MA91], a boundary layer solver is used to compute the meanflow

which is modeled using an assumption of chemical equilibrium. This differs from

the thermochemical nonequilibrium assumption used here and the shock-fitting

method used to simulate the meanflow. Considering the differences, the two re-

sults match quite well. The maximum amplification, as well as the frequency at

maximum amplification, compare well. There is some difference in the amplifi-

cation rate near 0.06 < Ω < 0.08. However, this difference could be due to the

different gas models used, or, the solution procedure of the meanflow. Similarly,

the phase velocity compares well over the region of second mode instability. Away

from the second-mode unstable region, near the tails of the plot, the differences

are larger. Overall, considering the two different gas models and solution pro-

cedures, the comparison between the two methods is quite accurate. This shows

that the current results are consistent with previous results for the same geometry

and flow conditions.
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Instantaneous snapshots of the translation-rotation and vibration tempera-

tures for cases 11 and 14 are shown in Fig. 10.11. In Figs. 10.11(a) and 10.11(b)

there is a Mach wave visible near y = 0.001 m. This Mach wave is due to the

flow adjusting to the initial perturbation at the wall. It is about an order of mag-

nitude larger than any other flow disturbance. The Mach wave is not visible in

the vibration temperature plots because the induced perturbation from the Mach

wave is too weak. Also, notice that the original Gaussian forcing has changed to a

pattern that is clearly oscillatory. As the initial disturbance enters the boundary

layer, it excites boundary-layer modes for different frequencies that grow and/or

decay at different rates. These boundary-layer modes are oscillatory in nature

thus creating the oscillatory structure in the figures.

Between the Mach wave and the wall, the largest perturbation amplitudes are

found near the leading edge of the perturbation near x = 0.2 m. Moving upstream,

the perturbation gradually decreases until it reaches far enough upstream where

it decays to zero. Both temperatures have an oscillation in amplitude near the

boundary-layer edge and the wall. The oscillation near the wall is much stronger

for translation-rotation temperature than vibration temperature. These oscilla-

tions are characteristic of a second-mode wave in a hypersonic boundary-layer

where the translation-rotation temperature eigenfunction has large amplitudes

near the boundary-layer edge and wall. For Figs. 10.11(a) and 10.11(c), the oscil-

latory pattern is smooth and continuous. However, when the roughness is added

to the meanflow as shown in Figs. 10.11(b) and 10.11(d), this pattern is adjusted.

From 0.18 m ≤ x ≤ 0.19 m, there is a squishing together of the high and low

amplitudes as the disturbance moves into the compression region in front of the

roughness element. Behind the element in the region 0.19 m ≤ x ≤ 0.20 m, the

low amplitude disturbance at the wall is stretched out and decreased in magni-

tude when compared to the flow with no roughness. Also, the high amplitude

disturbance is pushed away from the wall.
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(a) case 11

(b) case 14

(c) case 11

(d) case 14

Figure 10.11: Instantaneous translation-rotation temperature and vibration tem-

perature perturbation from DNS.
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(a) case 11

(b) case 14

Figure 10.12: Instantaneous pressure perturbation from DNS.

An instantaneous snapshot of the pressure perturbation is given in Fig. 10.12.

Similar to the perturbation of translation-rotation temperature, there is a Mach

wave near y = 0.001 m due to the flow adjusting to the initial gaussian forcing

at x = 0.10 m. Towards the wall, the pressure perturbation is characteristic of

a second-mode wave in a hypersonic boundary-layer with the largest amplitude

found at the wall. Again, before the roughness, the disturbance seems to squish

together where behind the roughness it seems to stretch out. Note how down-

stream of the roughness there are two more peaks in pressure where upstream of

the roughness there is only one. This is due to the fact that after the roughness

the pressure disturbance is traveling along the compression and expansion waves

present in the meanflow.
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Figure 10.13: Plot of (a) phase velocity and (b) growth rate at the fixed location

R = 795.5.

In order to determine the synchronization location of the fast (mode F) and

slow (mode S) acoustic modes, the phase velocity and the growth rate of the modes

were computed using LST and are shown in Fig. 10.13. This plot is found using

the meanflow of case 11 and fixing the location while varying the frequency. The

location corresponds to the center of the roughness element at x=0.19 m which

corresponds to R=795.5. The synchronization location of mode F and mode S

is loosely defined as the location where the phase velocities of the modes are

equal rather than the more strict definition requiring both the real and imaginary

parts of α to be equal. This occurs at Ω = 0.056 which corresponds to the

nondimensional frequency F = 7.06× 10−5. Although it is not shown, the perfect

gas synchronization frequency was found to be Ω = 0.055 which corresponds to

F = 6.96 × 10−5. Similarly, the synchronization location between mode S and

the second discrete mode originating out of the fast acoustic spectrum (mode F

II) can be found. This synchronization occurs at Ω = 0.128 which corresponds to

F = 1.615 × 10−4. There is no change in the synchronization frequency for the

third mode in the perfect gas flow.
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Figure 10.14 shows contour plots of wall-pressure perturbation for cases 11–14.

These figures show the frequency range over which the second mode is unstable.

Note that the roughness element for cases 12–14 is located at R = 795.5. For case

11 where there is no roughness element, the contours are smooth and ordered.

There is a clear high amplitude region running across the figure from F = 9×10−5

at R = 750 to F = 7 × 10−5 at R = 1100. This high amplitude region is caused

by second-mode growth. For the cases with roughness elements, the contours

are less ordered and the clear region of second-mode growth changes. For each

roughness case, there are wild oscillations in amplitude immediately upstream of

the roughness element. These oscillations are not dependent on the frequency,

rather each frequency experiences them. Near the region of second mode growth,

these wild oscillations can lead to large amplitudes before the roughness element.

However, behind the roughness element these oscillations are quickly damped. As

the roughness element increases in height, the clearly defined second mode region

in Fig. 10.14(a) slowly changes until in Fig. 10.14(d) where the second mode region

looks like it is almost split into two separate horizontal sections. The frequency at

which this splitting occurs corresponds roughly to the synchronization frequency

which was found to be F = 7.06× 10−5.

Figure 10.15 shows contour plots of wall-pressure perturbation over the third-

mode frequency range for cases 11–14. These figures show the frequency range

over which the third mode is unstable. Note that the roughness element for cases

12–14 is located at R = 795.5. For case 11 where there is no roughness element,

the contours are more smooth and ordered. There is a clear high amplitude region

running across the figure from F = 1.8×10−4 at R = 750 to F = 1.2×10−4 at R =

1100. This high amplitude region is caused by third-mode growth. The waviness

seen in the contours of Fig. 10.15(a) for frequencies higher than F = 1.8 × 10−4

is due to modulation caused by multiple boundary layer modes all present in

the boundary layer simultaneously. For the cases with roughness elements, the
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(a) case 11 (b) case 12

(c) case 13 (d) case 14

Figure 10.14: Contour plots of wall-pressure perturbation for the second mode.
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(a) case 11 (b) case 12

(c) case 13 (d) case 14

Figure 10.15: Contour plots of wall-pressure perturbation for the third mode.
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contours are less ordered and the clear region of third-mode growth changes. For

each roughness case, there are wild oscillations in amplitude immediately upstream

of the roughness element. These oscillations are not dependent on the frequency,

rather each frequency experiences them. Near the region of third-mode growth,

these wild oscillations can lead to large amplitudes before the roughness element.

However, behind the roughness element these oscillations are quickly damped. As

the roughness element increases in height, the clearly defined third-mode region

in Fig. 10.15(a) slowly changes until in Fig. 10.14(d) where the third-mode region

looks like it is almost split into two separate horizontal sections. The frequency at

which this splitting occurs corresponds roughly to the synchronization frequency

of mode S and mode F II which was found to be F = 1.615× 10−4.

Figure 10.16 shows the wall-pressure perturbation contours for cases 15 and

18. These are the ideal gas cases that correspond to the real gas cases 11 and 14.

Qualitatively, the contour plots of the wall-pressure perturbation for the second

mode are the same for each of the ideal gas cases. However, the amplitude for the

ideal gas cases is slightly lower. Similarly, the contour plots of the wall-pressure

perturbation for the third mode are the same for the ideal gas. However, there is

no noticeable decrease in the amplitude of the third mode.

To analyze which frequencies are stabilized and/or destabilized by the rough-

ness elements, Fig. 10.17 shows the wall-pressure perturbation for cases 11–14 of

a single frequency below and above the synchronization frequency. The frequency

below the synchronization frequency is destabilized for each of the cases with a

roughness element when compared to the case without a roughness element. This

destabilizing effect is rather small but it is noticeable. Also, the destabilizing ef-

fects increase as the roughness height increases. Conversely, the frequency above

the synchronization frequency is stabilized for each of the cases with a roughness

element. This stabilizing effect is rather weak for cases 12 and 13 and is much

stronger for case 14. Clearly, for this frequency, the resultant damping due to
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(a) case 15 (b) case 18

(c) case 15 (d) case 18

Figure 10.16: Contour plots of wall-pressure perturbation for second and third

modes of perfect gas cases.
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Figure 10.17: Wall-pressure perturbation for cases 11–14 of a single frequency (a)

below and (b) above the synchronization frequency.

changing the roughness height is nonlinear. This is unlike the destabilizing effect

shown in Fig. 10.17(a) where the resultant growth due to changing the roughness

height is close to linear. These effects are most likely associated with the rough-

ness height rather than the gas model as the perfect gas simulations show the

exact same behavior.

Figure 10.18 shows the wall-pressure perturbation spectra near the frequency

range of the second and third modes. The growth in the wall-pressure perturbation

in Fig. 10.18(a) is due to the second mode and the growth in Fig. 10.18(b) is

due to the third mode. From Fig. 10.18(a), it is seen that as the roughness

height increases, the amplitude of the perturbation decreases and moves to a

lower frequency. Also, similar to the single frequency results of Fig. 10.17(a), the

decrease in amplitude is nonlinear. For Fig. 10.18(b), the results are less clear.

While it seems that the roughness elements are damping the third mode, the

damping is not as large as the second mode. Part of this is due to the fact that

the growth rate of the third mode is about one third of the second mode’s growth

rate. With this small of a growth rate, the third mode is not clearly the dominant
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Figure 10.18: Wall-pressure perturbation for cases 11–14 at R = 948 over the

frequency range of (a) the second mode and (b) the third mode.
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instability mode over this frequency range. This is shown by the waviness in the

wall-pressure perturbation. This waviness is not seen in Fig. 10.18(a) over the

second mode frequency range.

The difference between the perfect gas and real gas cases at the frequencies

F = 4.73×10−5 and F = 7.09×10−5 for the wall-pressure perturbation is shown in

Fig. 10.19. It is interesting to note that either with or without a roughness element

the ideal gas case has a larger amplitude at R = 1100 for F = 4.73× 10−5. This

is likely caused by the slightly thicker boundary layer for the perfect gas which

causes the second-mode instability to move to a lower frequency range. However,

this difference is minimal and the two gas models behave almost identically. For

F = 7.09× 10−5, the real gas perturbation is larger over the entire domain either

with or without roughness.

Figure 10.20 shows a comparison of cases 11, 14, 15, and 18 at R = 948 for the

second and third modes. The difference between cases 11 and 15, as well as the

difference between cases 14 and 18, is the gas model. The difference between cases

11 and 14, as well as cases 15 and 18, is the roughness height. The percent differ-

ence of the maximum amplitude between cases 11 and 14 in Fig. 10.20(a) for the

second mode is 40.0%. The percent difference of the maximum amplitude for the

second mode between cases 15 and 18 is 34.9%. These differences are due solely

to the damping effect of the roughness. Taking this information into account, it

follows that the real-gas flow with a roughness element at R = 948 is damping the

maximum second-mode instability 5.1% more than the corresponding perfect-gas

flow. In other words, the real gas with roughness flow is more effective at damp-

ing the maximum second-mode instability than the corresponding perfect gas flow.

There are a couple of possible explanations as to why the roughness element more

effectively damps the second mode instability in the real-gas flow. Recall from

Fig. 10.5(a) that the roughness element for case 14 significantly increases the vi-

bration temperature moving it closer to equilibrium with the translation-rotation
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Figure 10.19: Comparison of the wall-pressure perturbation at two distinct fre-

quencies.
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Figure 10.20: Comparison of the wall-pressure perturbation at R = 948 for cases

11, 14, 15, and 18 for (a) the second mode and (b) the third mode.
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temperature. Also, recall from Fig. 10.6 that these increases in temperature cause

oxygen in the real-gas flow to dissociate and form a larger amount of atomic oxy-

gen. Both of these physical phenomena require a closer look to determine exactly

what is responsible for the increased damping.

Recall from the discussion of Figs. 10.5(a) and 10.6 that the roughness element

is moving the flow closer to thermal and chemical equilibrium. Also, in [Hud96]

it was shown that an equilibrium flow, with the exact same flow conditions and

geometry used in this work, had a more stable second mode than a correspond-

ing thermochemical nonequilibrium flow. Therefore, for the geometry and flow

conditions tested, it would seem that the roughness element serves to move the

flow closer to thermal and chemical equilibrium which is stabilizing to the second

mode. Note that this explanation applies to this case only, and is not generally

applicable to all nonequilibrium flows. For example, in [Hud96] for a Mach 10 flow

over a flat plate, the second mode instability was substantially damped by assum-

ing a thermochemical nonequilibrium flow as compared to an equilibrium flow. It

seems, for that situation, that the real-gas flow may damp the second mode less

than the perfect gas flow as equilibrium would be destabilizing. Certainly, further

test cases would be required to help elucidate these issues.

For the third mode region shown in Fig. 10.20(b), the results are different

than the second mode. Both of the gas models damp the third mode the same

amount and the stronger real gas stabilizing effects are not seen. The reasons for

this are currently unclear. The third-mode instability may not be large enough to

dominate other boundary-layer modes at the same frequency making the damping

effects on only the third mode unclear. Also, it is possible that the third mode

damping by surface roughness is truly unaffected by the gas model. Further study

must be done to determine the cause.
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CHAPTER 11

Summary and Future Work

11.1 Summary

The objectives of this research were to study the receptivity and instability of

thermochemical nonequilibrium flows with: 1) the effects of surface ablation and

2) the effects of isolated two-dimensional surface roughness. To accomplish this,

multiple flow configurations were analyzed using direct numerical simulation and

linear stability theory.

To study the effects of surface ablation on boundary-layer receptivity and

instability, a new high-order shock-fitting method for hypersonic flows with ther-

mochemical nonequilibrium and graphite surface ablation was developed and vali-

dated. Also, a new linear stability theory code for thermochemical nonequilibrium

flow with a linearized surface ablation model was developed and validated. An

11-species gas model without ionization was used for chemical nonequilibrium,

and a two-temperature model was used for thermal nonequilibrium. The shock

was treated using a shock-fitting formulation using the Rankine-Hugoniot jump

conditions. The surface reactions simulated consisted of oxidation, recombination

of atomic oxygen, and sublimation of C, C2, and C3.

Three cases with a spherical geometry were computed to validate the direct

numerical simulation method. Two cases were taken from the PANT program

with M∞ = 15.99 where the shock-fitting results were compared to a code with

similar gas and surface chemistry models. The third case was atM∞ = 5.84, where
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the shock-fitting results were compared to a code with different gas and surface

chemistry models, as well as compared to corresponding experimental data. The

two PANT cases showed that the shock-fitting method correctly simulated species

mass concentrations in the flow, as well as translation-rotation and vibration tem-

peratures. The comparison to the third case showed that the shock-fitting method

was capable of accurately predicting surface mass flux due to graphite ablation.

Overall, the new shock-fitting method compared well with established research

codes.

Using the new validated high-order shock-fitting method, a direct numerical

simulation was run for a 7 deg half angle blunt cone at Mach 15.99 to find how a

real gas and graphite ablation affects boundary-layer receptivity and instability.

Three separate cases were simulated in order to investigate real gas and graphite

ablation effects. Fast acoustic freestream disturbances were used to perturb the

steady base flow. The real gas simulation showed a strong second mode wave for

the 525 kHz frequency. On the other hand, neither ideal gas simulation showed sig-

nificant second mode growth for any of the simulated frequencies. Steady surface

blowing was small and found to have a minimal effect for the simulated conditions.

However, real-gas effects were found to significantly enhance boundary layer in-

stability. The results show that real-gas effects for similar flow conditions should

not be ignored.

The effects of surface ablation induced outgassing, in the absence of surface

recession and roughness, on the instability of a real and ideal gas hypersonic

boundary layer has been studied using linear stability theory. Before studying

the instability physics, a new thermochemical nonequilibrium linear stability the-

ory code with carbon species due to graphite ablation and a linearized surface

model for graphite pseudo-ablation was developed and validated. The deriva-

tion of the linear stability theory coefficient matrices follows the work of Hudson.

An eleven species gas model was used where five species model air and six more
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species are used to model graphite ablation effects. A linearized surface model for

graphite pseudo-ablation applicable to parallel and non-parallel flows was given.

The derivative operators were discretized using Lagrange polynomials in physical

space, where, for a five point stencil, the order of error was shown to be four.

The code was then validated with results from a direct numerical simulation of

flowfield disturbances over a blunt cone. The comparison of the eigenfunction am-

plitudes were good. As direct numerical simulation and linear stability theory are

two dramatically different methods to analyze linear instabilities in a boundary

layer, the good agreement obtained between the methods shows that they have

been implemented correctly.

To study hypersonic boundary layer instability physics, multiple simulations

were run for two separate geometries and freestream conditions. Five simulations

were run for a 7 deg half angle blunt cone at Mach 15.99 and two simulations

were run for a 5 deg half angle blunt cone at Mach 19.925. The meanflows, when

applicable, had the same blowing and wall temperature profiles so that the effects

of a real gas, blowing, and carbon species on hypersonic boundary-layer instability

could be isolated and analyzed. N factors for different unstable frequencies and

their corresponding growth rates were computed. For the first set of conditions, it

was shown that changing the temperature perturbation boundary condition for an

ablative flow has a strong effect on boundary-layer instability. For these freestream

conditions, real gas effects are strongly destabilizing. The amplification rates are

higher and the instability zones are longer for a real gas. The effects of carbon

species on second-mode instability was slightly stabilizing when compared to a

similar case with only five species air. Blowing was seen to be slightly destabilizing

for a real gas but its effect was negligible on an ideal gas. As a consequence to

these results, a real gas should be considered in transition prediction for vehicles

with ablative surfaces. If a real gas was not considered, the estimated transition

location may be severely overpredicted.
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For the second set of conditions, inclusion of the ablating nose cone was shown

to increase the region of second mode growth near the nose cone. Away from the

nose cone, the second mode was relatively unaffected. It was shown that exclusion

of the nose cone effects gives a reasonable estimate of the frequency that leads to

transition and its N factor at transition for the given case.

To study the effects of two-dimensional surface roughness on suppression of the

second mode in a thermochemical nonequilibrium flow, a new high-order shock-

fitting direct simulation method for hypersonic flows with thermochemical non-

equilibrium and arbitrary surface roughness was developed and validated. A set

of five chemical species was used to model chemical nonequilibrium in air where a

two-temperature model was used for thermal nonequilibrium. A cut-cell method

was used to simulate arbitrary shaped surface roughness elements that cannot be

simulated with a body conforming grid.

The cut-cell method validation was performed using a surface element that

could be simulated with a body-fitted grid, or a cut-cell, grid. There was little

noticeable difference in the wall-normal velocity and pressure contours between

the two grid solutions. The percent difference in temperature profiles at three

separate streamwise locations was less than 1% for each profile. Overall, the

simulation of the flow on the cut-cell grid accurately compared to the simulation

performed on the body-fitted grid, which showed that the implementation of the

cut-cell method was valid.

Two separate meanflow conditions were used to study hypersonic boundary-

layer instability in a real gas over a flat plate. For a Mach 10 flow, it was found

that a roughness element placed downstream of the synchronization location of

mode S and mode F stabilized the second mode. When the same roughness

element was upstream of the synchronization location for a given frequency, the

second mode was destabilized. These results are consistent with the results of

previous researchers for a perfect gas.
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For a Mach 15 flow, both real-gas and perfect-gas simulations were run with

and without surface roughness. The real-gas flow with a roughness element re-

sulted in a 40.0% reduction in the maximum amplitude of the second mode, where

the perfect-gas flow with a roughness element resulted in a 34.9% reduction. The

real-gas flow with a two-dimensional roughness element more effectively stabilized

the second-mode instability when compared to a perfect-gas flow. Also, the third

mode was found to be moderately stabilized by a roughness element for both a

real-gas and a perfect-gas flow. The stronger stabilizing effect in a real gas was

not visible for the third mode, instead, both gas models stabilized the third mode

the same amount.

11.2 Future Work

For both DNS and LST codes, future work includes updating the gas phase chem-

istry models with up-to-date forward reaction rates and equilibrium constants.

Also, a good next step would be to add a model for flow ionization.

For surface ablation, it would be useful to study how ablation affects boundary-

layer transition on a shape similar to a reentry capsule, such as a sphere. The

instabilities on blunt capsules that lead to transition, especially at an angle-of-

attack, will likely be different than the second mode studied here.

To further understand how surface roughness affects second-mode instability

in a real-gas boundary layer, it would be useful to use the new method described

here to simulate a blunt geometry where real-gas effects are, in general, stronger.

Specifically, it would be useful to use the Mach 10 flow conditions described here

to study the flow over a blunted plate. The blunted plate should significantly

alter the chemical composition of the flow, as compared to a perfect gas, hopefully

revealing a more complete understanding of the effects on second-mode instability

for a two-dimensional roughness element in a real-gas boundary layer.
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APPENDIX A

Gas Model Constants

Constants for the gas model and surface chemistry model are given here. Con-

stants for the forward rates in the dissociation reactions are given in Table A.1 and

constants for the forward rates in the exchange reactions are given in Table A.2.

The coefficients to compute the viscosity are given in Table A.3. The coefficients

used to predict sublimation are given in Table A.4.

Table A.1: Dissociation reactions with corresponding

forward reaction rate constants.

Reaction Partner Cf

(
m3

mol·s

)

η θd (K)

1 N2+M ⇀↽ N+N+M all molecular species 3.70× 1015 −1.6 113200

all atomic species 1.11× 1016 −1.6 113200

2 O2+M ⇀↽ O+O+M all molecular species 2.75× 1013 −1.0 59500

all atomic species 8.25× 1013 −1.0 59500

3 NO+M ⇀↽ N+O+M all molecular species 2.30× 1011 −0.5 75500

all atomic species 4.60× 1011 −0.5 75500

4 C3+M ⇀↽ C2+C+M all species 1.60× 1010 1.0 87480

5 CO2+M ⇀↽ CO+O+M all species 1.20× 105 0.5 36850

6 C2+M ⇀↽ C+C+M all species 4.50× 1012 −1.0 70930

7 CO+M ⇀↽ C+O+M all species 8.50× 1013 −1.0 129000

8 CN+M ⇀↽ C+N+M all species 2.50× 108 0.0 71000

* Reactions 1-3 from [Par85], 8 from [PHJ91], and 4-7 from [BL92].
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Table A.2: Exchange reactions with corresponding

forward reaction rate constants.

Reaction Cf

(
m3

mol·s

)

η θd (K)

9 N2+O ⇀↽ NO+N 3.18× 107 0.10 37700

10 NO+O ⇀↽ N+O2 2.16× 102 1.29 19220

11 CO+O ⇀↽ C+O2 2.00× 104 1.00 69500

12 CN+O ⇀↽ NO+C 1.60× 107 0.10 14600

13 CO2+O ⇀↽ O2+CO 3.00× 102 1.00 18210

14 CO+C ⇀↽ C2+O 4.10× 104 0.50 59790

15 N2+C ⇀↽ CN+N 2.00× 108 0.00 23200

16 CN+C ⇀↽ C2+N 5.00× 107 0.00 13000

17 C3+C ⇀↽ C2+C2 1.70× 103 1.50 19580

18 CO+N ⇀↽ CN+O 2.00× 108 0.00 38600

19 CO+N ⇀↽ NO+C 9.00× 1010 −1.00 53200

20 CO+CO ⇀↽ CO2+C 1.00× 10−3 2.00 72390

21 C2+CO ⇀↽ C3+O 1.20× 107 0.00 43240

22 CO+CO ⇀↽ C2+O2 9.20× 105 0.75 163300

23 CO+NO ⇀↽ CO2+N 1.00× 10−3 2.00 20980

24 N2+O2 ⇀↽ NO+NO 6.69× 103 −2.54 64639

* Reactions 9,10, and 24 are from [Par85], reactions 12,

16, and 18 from [PHJ91], and the remaining reactions

are from [BL92].
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Table A.3: Species viscosity coefficients.

species Aµ
s Bµ

s Cµ
s

N2 0.0268142 0.3177838 -11.3155513

O2 0.0449290 -0.0826158 -9.2019475

NO 0.0436378 -0.0335511 -9.5767430

C3 -0.0147000 0.8811000 -13.5051000

CO2 -0.0195274 1.0478180 -14.3221200

C2 -0.0031000 0.6920000 -12.6127000

CO -0.0195274 1.0132950 -13.9787300

CN -0.0025000 0.6810000 -12.4914000

N 0.0115572 0.6031679 -12.4327495

O 0.0203144 0.4294404 -11.6031403

C -0.0001000 0.7928000 -13.4154000

Table A.4: Sublimation reaction probabilities

and vapor pressure coefficients.

αs Ps Qs

C 0.14 -85715 18.69

C2 0.26 -98363 22.20

C3 0.03 -93227 23.93

* αs from [PM68] and Ps and

Qs [DMG68].
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The elements of the Jacobian matrix (∂Fi

∂xj
) used to solve the nonlinear system

of equations for the surface chemistry model at each grid point at the surface is

given here. The derivatives have been discretized using a Lagrange polynomial as

defined in Eq. (2.64).

∂Fi

∂xj
=

1

ρ
(δij − ci) (ṁ− ρDiA1)+ ci

ns∑

l=1

∂ṁl

∂ρj
− ∂ṁi

∂ρj
−
(

Di + ρ
∂Di

∂ρj

) N∑

Q=1

AQci,Q,

i = 1, 2, . . . , ns− 1 j = 1, 2, . . . , ns (A.1)

∂Fi

∂xj
= ci

ns∑

l=1

∂ṁl

∂T
− ρ

∂Di

∂T

N∑

Q=1

AQci,Q − ∂ṁi

∂T
,

i = 1, 2, . . . , ns− 1 j = ns+ 1 (A.2)

∂Fi

∂xj
= − R

Mj

T, i = ns j = 1, 2, . . . , ns (A.3)

∂Fi

∂xj
= −

ns∑

s=1

ρs
R

Ms

, i = 1, 2, . . . , ns− 1 j = ns+ 1 (A.4)

∂Fi

∂xj
=

∂k

∂ρj

N∑

Q=1

AQTQ +
∂kV
∂ρj

N∑

Q=1

AQTV,Q +
ns∑

s=1

hsDs

(
N∑

Q=1

AQcs,Q

)

+ ρ

ns∑

s=1

hs
∂Ds

∂ρj

(
N∑

Q=1

AQcs,Q

)

+ A1

ns∑

s=1

hsDs (δsj − cs)−
ns∑

l=1

∂ṁl

∂ρj

ns∑

s=1

cshs,o

− ṁ

ρ

ns∑

s=1

(δsj − cs)hs,o − ṁ
ns∑

s=1

cs
∂hs,o
∂ρj

,

i = ns+ 1 j = 1, 2, . . . , ns (A.5)

∂Fi

∂xj
=
∂k

∂T

N∑

Q=1

AQTQ+
∂kV
∂T

N∑

Q=1

AQTV,Q+A1 (k + kV )+ρ
ns∑

s=1

∂hs
∂T

Ds

(
N∑

Q=1

AQcs,Q

)

+ ρ
ns∑

s=1

hs
∂Ds

∂T

(
N∑

Q=1

AQcs,Q

)

− 4σǫT 3 −
ns∑

l=1

∂ṁl

∂T

ns∑

s=1

cshs,o − ṁ
ns∑

s=1

cs
∂hs,o
∂T

,

i = ns+ 1 j = ns+ 1 (A.6)
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APPENDIX B

Complex Matrix Coefficients for LST

The nonzero elements of each complex matrix for the nonequilibrium linear sta-

bility theory perturbation equations are given along with the equation itself for

reference. Here ~φ = (ρ̂1, ρ̂2, . . . , ρ̂ns, û, v̂, ŵ, T̂ , T̂v)
T , δij is the Kronecker delta

and all i and j subscripts run from 1, 2, . . . , ns where ns is the number of species.

The bars on the steady state variables have been dropped for simplicity. Grid

transformation effects are included yielding

α0 =
α

h1

β0 =
β

h3

m11 =
1

h1

∂h1
∂y

m13 =
1

h1h3

∂h3
∂x

m33 =
1

h3

∂h3
∂y

.

(

A
d2

dy2
+B

d

dy
+C

)

~φ = ~0

Aij = Di (ci − δij)

Ans+1,ns+1 = 1

Ans+2,ns+2 = 1

Ans+3,ns+3 = 1

Ans+4,j =
ns∑

s=1
hsDscs − hjDj
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Ans+4,ns+4 = −k

Ans+4,ns+5 = −kV
Ans+5,j =

ns∑

s=1
evsDscs − evjDj

Ans+5,ns+5 = −kV
Bij = −

[

ρ d
dy

(
Di

ρ

)

+ (m11 +m33)Di

]

δij + ρ d
dy

(

Di
ci
ρ

)

+
(

ci
dρ
dy −

dρi
dy

)
∂Di

∂ρj
+ (m11 +m33)Dici

Bi,ns+2 = ρi

Bi,ns+4 =
(

ci
dρ
dy −

dρi
dy

)
∂Di

∂T

Bns+1,j =
1
µ

∂µ
∂ρj

(
du
dy − um11

)

Bns+1,ns+1 =
1
µ
dµ
dy +m11 +m33

Bns+1,ns+2 = α0

(
i13
)

Bns+1,ns+4 =
1
µ
∂µ
∂T

(
du
dy − um11

)

Bns+2,j = − 3
4µ

R
Mj
T − 1

2
u
µm13

∂µ
∂ρj

Bns+2,ns+1 = α0

(
1
4i
)
+ 1

4m13

Bns+2,ns+2 =
1
µ
dµ
dy +m11 +m33

Bns+2,ns+3 =
1
4β0i

Bns+2,ns+4 = − 3
4µ

P
T − 1

2
u
µm13

∂µ
∂T

Bns+3,ns+2 =
1
3β0i

Bns+3,ns+3 =
1
µ
dµ
dy +m11 +m33

Bns+4,j = −dT
dy

∂k
∂ρj

− dTV

dy
∂kV
∂ρj

+ ρ d
dy

[

1
ρ

(
ns∑

s=1
hsDscs − hjDj

)]

+
ns∑

s=1
hs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂ρj
+ (m11 +m33)

(
ns∑

s=1
hsDscs − hjDj

)

Bns+4,ns+1 = 2µ
(

um11 − du
dy

)
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Bns+4,ns+2 = P + T
ns∑

s=1
ρscv,s +

ns∑

s=1
ρsevs +

ns∑

s=1
ρsh

o
s +

4
3µum13

Bns+4,ns+4 = −dT
dy

∂k
∂T − dk

dy −
dTV

dy
∂kV
∂T +

ns∑

s=1
hs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂T

− (m11 +m33) k +
ns∑

s=1
Ds

(

cs
dρ
dy −

dρs
dy

)(

cv,s +
R
Ms

)

Bns+4,ns+5 = −dTV

dy
∂kV
∂TV

−dkV
dy +

ns∑

s=1
Ds

(

cs
dρ
dy −

dρs
dy

)
∂evs
∂TV

−(m11 +m33) kV

Bns+5,j = −dTV

dy
∂kV
∂ρj

+ ρ d
dy

[

1
ρ

(
ns∑

s=1
evsDscs − evjDj

)]

+
ns∑

s=1
evs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂ρj
+ (m11 +m33)

(
ns∑

s=1
evsDscs − evjDj

)

Bns+5,ns+2 =
ns∑

s=1
ρsevs

Bns+5,ns+4 = −dTV

dy
∂kV
∂T +

ns∑

s=1
evs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂T

Bns+5,ns+5 = −dkV
dy −

dTV

dy
∂kV
∂TV

+
ns∑

s=1
Ds

(

cs
dρ
dy −

dρs
dy

)
∂evs
∂TV

−(m11 +m33) kV

Cij =
[

i (α0u− ω −m13α0Di) +Di

(
α2
0 + β2

0

)
+ d

dy

(
Di

ρ
dρ
dy

)

+m13u

+(m11 +m33)
Di

ρ
dρ
dy

]

δij+iα0m13Dici− d
dy

(

Di
ci
ρ
dρ
dy

)

−Dici
(
α2
0 + β2

0

)
−

∂ωi

∂ρj
+ d

dy

[(

ci
dρ
dy −

dρi
dy

)
∂Di

∂ρj

]

+(m11 +m33)
[(

ci
dρ
dy −

dρi
dy

)
∂Di

∂ρj
−Di

ci
ρ
dρ
dy

]

Ci,ns+1 = α0 (iρi) +m13ρi

Ci,ns+2 =
dρi
dy + (m11 +m33) ρi

Ci,ns+3 = iβ0ρi

Ci,ns+4 = −∂ωi

∂T + d
dy

[(

ci
dρ
dy −

dρi
dy

)
∂Di

∂T

]

+(m11 +m33)
(

ci
dρ
dy −

dρi
dy

)
∂Di

∂T

Ci,ns+5 = − ∂ωi

∂Tv

Cns+1,j =
1
µ

d
dy

(
du
dy

∂µ
∂ρj

)

− α0

(

i 1µ
R
Mj
T
)

− d
dy

(
∂µ
∂ρj

)
u
µm11

+ ∂µ
∂ρj

[

−iα0
2
3
u
µm13 + (m11 +m33)

1
µ
du
dy − u

µ

(
m2

11 +m11m33 +
4
3m

2
13

)]

Cns+1,ns+1 = i
(
ωρ
µ

)

− β2
0 − 4

3α
2
0 + α0i

(
4
3m13 − ρu

µ

)
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−m11

(
1
µ
∂µ
∂y +m11 +m33

)

− 4
3m

2
13

Cns+1,ns+2 = α0i
(
7
3m11 +

1
3m33 +

1
µ
dµ
dy

)

− ρ
µ

(

um11 +
du
dy

)

−4
3m13m33 + 2m13m11

Cns+1,ns+3 = −α0

(
1
3β0
)
− i73β0m13

Cns+1,ns+4 =
1
µ

d
dy

(
du
dy

∂µ
∂T

)

− α0i
(

1
µ
P
T

)

− d
dy

(
∂µ
∂T

)
u
µm11

+ ∂µ
∂T

[

−iα0
2
3
u
µm13 + (m11 +m33)

1
µ
du
dy − u

µ

(
m2

11 +m11m33 +
4
3m

2
13

)]

Cns+2,j = − 3
4µ

R
Mj

dT
dy+

3
4m11

u2

µ +α0i
(
du
dy −m11u

)
3
4µ

∂µ
∂ρj

−1
2
u
µm13

d
dy

(
∂µ
∂ρj

)

+ ∂µ
∂ρj

m13

µ

(
1
4
du
dy − 1

4m11u−m33u
)

Cns+2,ns+1 = −α0i
(

1
2µ

dµ
dy +

7
4m11

)

+3
2m11

ρu
µ −m13

(
1
4m11 +m33 +

1
2µ

dµ
dy

)

Cns+2,ns+2 = i 3
4µωρ− 3

4

(
α2
0 + β2

0

)
+ α0i

(
3
4m13 − 3

4µρu
)

− 1
2µ

dµ
dy (m11 +m33)−m2

11 −m2
33

Cns+2,ns+3 = −iβ0
(

1
2µ

dµ
dy +

7
4m33

)

Cns+2,ns+4 = − 3
4µ

d
dy

(
P
T

)
+ α0i

(
du
dy −m11u

)
3
4µ

∂µ
∂T − 1

2
u
µm13

d
dy

(
∂µ
∂T

)

+ ∂µ
∂T

m13

µ

(
1
4
du
dy − 1

4m11u−m33u
)

Cns+3,j = iβ0

µ

(
4
3um13

∂µ
∂ρj

− R
Mj
T
)

Cns+3,ns+1 = −α0

(
1
3β0
)
+ i73β0m13

Cns+3,ns+2 = iβ0

(
1
µ
dµ
dy +

7
3m33 +

1
3m11

)

Cns+3,ns+3 = iρωµ − 4
3β

2
0−α2

0−α0i
(
ρu
µ −m13

)

− ρu
µ m13−m2

13− 1
µ
dµ
dym33−

m2
33 −m11m33

Cns+3,ns+4 = iβ0

µ

(
4
3um13

∂µ
∂T − P

T

)

Cns+4,j = iα0

[

u
(
Tcv,j + evj + hoj

)
+m13

(
ns∑

s=1
hsDscs − hjDj

)]

−iω
(
Tcv,j + evj + hoj

)
− d

dy

(
dT
dy

∂k
∂ρj

)

− d
dy

(
dTV

dy
∂kV
∂ρj

)

+ d
dy

(

Djhj
1
ρ
dρ
dy

)

+
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∂µ
∂ρj

[

−
(
du
dy

)2

+ 2udu
dym11 − 4

3u
2m13 − u2m2

11

]

−
ns∑

s=1
hsDscs

(
α2
0 + β2

0

)
+

hjDj

(
α2
0 + β2

0

)
−

ns∑

s=1

d
dy

(

hsDs
cs
ρ
dρ
dy

)

+
ns∑

s=1

d
dy

(

hs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂ρj

)

+

(m11 +m33)

[
ns∑

s=1
hs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂ρj
+ 1

ρ
dρ
dy

(

hjDj −
ns∑

s=1
hsDscs

)

−dT
dy

∂k
∂ρj

− dTV

dy
∂kV
∂ρj

]

+m13u
(

Tcv,j + evj + hoj +
R
Mj
T
)

Cns+4,ns+1 = iα0

(

p+ T
ns∑

s=1
ρscv,s +

ns∑

s=1
ρsevs +

ns∑

s=1
ρsh

o
s +

4
3µum13

)

+

m13

(

p+ T
ns∑

s=1
ρscv,s +

ns∑

s=1
ρsevs +

ns∑

s=1
ρsh

o
s

)

+2µ
(
du
dym11 − 4

3um
2
13 − um2

11

)

Cns+4,ns+2 = iα0

[

2µ
(

um11 − du
dy

)]

+ d
dy

(
ns∑

s=1
ρscv,sT

)

+
ns∑

s=1

d
dy (ρsevs)+

ns∑

s=1

dρs
dy h

o
s + (m11 +m33)

(

p+ T
ns∑

s=1
ρscv,s +

ns∑

s=1
ρsevs +

ns∑

s=1
ρsh

o
s

)

+4
3µum13 (m11 − 2m33)

Cns+4,ns+3 = iβ0

(

p+ T
ns∑

s=1
ρscv,s +

ns∑

s=1
ρsevs +

ns∑

s=1
ρsh

o
s − 8

3µum13

)

Cns+4,ns+4 = −iω
ns∑

s=1
ρscv,s + iα0

(

u
ns∑

s=1
ρscv,s −m13k

)

+m13u

(
ns∑

s=1
ρscv,s +

p
T

)

+ k
(
α2
0 + β2

0

)
− d

dy

(
dT
dy

∂k
∂T

)

− d
dy

(
dTV

dy
∂kV
∂T

)

+

∂µ
∂T

[

2udu
dym11 −

(
du
dy

)2

− u2m2
11 − 4

3u
2m13

]

+
ns∑

s=1

d
dy

(

hs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂T

)

+
ns∑

s=1

(

cv,s +
R
Ms

)
d
dy

(

Ds

(

cs
dρ
dy −

dρs
dy

))

+

(m11 +m33)

[
ns∑

s=1
hs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂T +
ns∑

s=1

(

cv,s +
R
Ms

)

Ds

(

cs
dρ
dy −

dρs
dy

)

−dT
dy

∂k
∂T − dTV

dy
∂kV
∂T

]

Cns+4,ns+5 = −iω
ns∑

s=1
ρs

∂evs
∂TV

+ iα0

(

u
ns∑

s=1
ρs

∂evs
∂TV

−m13kV

)

+m13u
ns∑

s=1
ρs

∂evs
∂TV

+ kV
(
α2
0 + β2

0

)
− d

dy

(
dTV

dy
∂kV
∂TV

)
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+
ns∑

s=1

d
dy

(

Ds

(

cs
dρ
dy −

dρs
dy

)
∂evs
∂TV

)

+(m11 +m33)

[
ns∑

s=1
Ds

(

cs
dρ
dy −

dρs
dy

)
∂evs
∂Tv

− dTV

dy
∂kV
∂TV

]

Cns+5,j = i

[

α0uevj − ωevj +m13α0

(
ns∑

s=1
evsDscs − evjDj

)]

− d
dy

(
dTV

dy
∂kV
∂ρj

)

− ∂QTV

∂ρj
−

ns∑

s=1
evs

∂ωs

∂ρj
+

(

evjDj −
ns∑

s=1
evsDscs

)
(
α2
0 + β2

0

)
+

d
dy

(

evjDj
1
ρ
dρ
dy

)

−
ns∑

s=1

d
dy

(

evsDs
cs
ρ
dρ
dy

)

+
ns∑

s=1

d
dy

(

evs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂ρj

)

+

m13uevj + (m11 +m33)
(

evjDj
dρ
dy

1
ρ −

ns∑

s=1
evsDs

dρ
dy

cs
ρ − dTV

dy
∂kV
∂ρj

+
ns∑

s=1
evs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂ρj

)

Cns+5,ns+1 = iα0

ns∑

s=1
ρsevs +m13

ns∑

s=1
ρsevs

Cns+5,ns+2 =
d
dy

(
ns∑

s=1
ρsevs

)

+ (m11 +m33)
ns∑

s=1
ρsevs

Cns+5,ns+3 = iβ0
ns∑

s=1
ρsevs

Cns+5,ns+4 = − d
dy

(
dTv

dy
∂kV
∂T

)

− ∂QTV

∂T −
ns∑

s=1
evs

∂ωs

∂T

+
ns∑

s=1

d
dy

(

evs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂T

)

+(m11 +m33)

[
ns∑

s=1
evs

(

cs
dρ
dy −

dρs
dy

)
∂Ds

∂T − dTV

dy
∂kV
∂T

]

Cns+5,ns+5 = i

(

α0u
ns∑

s=1
ρs

∂evs
∂TV

− ω
ns∑

s=1
ρs

∂evs
∂TV

−m13α0kV

)

+kV
(
α2
0 + β2

0

)
− d

dy

(
dTV

dy
∂kV
∂TV

)

− ∂QTV

∂TV
−

ns∑

s=1
evs

∂ωs

∂TV
−

ns∑

s=1
ωs

∂evs
∂TV

+
ns∑

s=1

d
dy

(

Ds

(

cs
dρ
dy −

dρs
dy

)
∂evs
∂TV

)

+m13u
ns∑

s=1
ρs

∂evs
∂TV

+(m11 +m33)

[
ns∑

s=1
Ds

(

cs
dρ
dy −

dρs
dy

)
∂evs
∂TV

− dTv

dy
∂kV
∂TV

]
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APPENDIX C

Partial Derivatives

Partial derivatives are required in solution of the surface chemistry boundary

conditions, as well as in LST. The partial derivatives used in these methods are

given here.

Chemical Source Term Partial Derivatives

For the chemical source terms

ω′
s =

ns∑

r=1

∂ωs

∂ρr
ρ′r +

∂ωs

∂T
T ′ +

∂ωs

∂TV
T ′
V . (C.1)

A generic partial derivative of the chemical source term may be written as

∂ωs

∂x
=Ms

(
∑

c

∂Rc

∂x

)

(C.2)

where each of the reactions Rc for the given chemical source term are included,

and x is either ρs, T , or TV .

For each of the dissociation reactions,

∂Rc

∂ρr
=

ns∑

s=1

[

−kf,c,s
(
ρc
Mc

δsr
Ms

+
ρs
Ms

δcr
Mc

)

+ kb,c,s

(
ρp1
Mp1

ρp2
Mp2

δsr
Ms

+
ρp1
Mp1

ρs
Ms

δp2r
Mp2

+
ρp2
Mp2

ρs
Ms

δp1r
Mp1

)]

(C.3)

∂Rc

∂T
=

ns∑

s=1

[

− ρc
Mc

ρs
Ms

∂kf,c,s
∂T

+
ρp1
Mp1

ρp2
Mp2

ρs
Ms

∂kb,c,s
∂T

]

(C.4)

∂Rc

∂TV
=

ns∑

s=1

− ρc
Mc

ρs
Ms

∂kf,c,s
∂TV

(C.5)
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where for reactions 1–3

∂kf,c,s
∂T

=
kf,c,s
2T

(

ηf,c,s +
θf,c,s

(TTV )
1/2

)

(C.6)

∂kf,c,s
∂TV

=
kf,c,s
2TV

(

ηf,c,s +
θf,c,s

(TTV )
1/2

)

(C.7)

∂kb,c,s
∂T

=
kb,c,s
T

(

ηf,c,s +
θf,c,s
T

− A1c

Z
+ A3c + A4cZ + 2A5cZ

2

)

(C.8)

and for reactions 4–8

∂kf,c,s
∂T

=
kf,c,s
T

(

ηf,c,s +
θf,c,s
T

)

(C.9)

∂kf,c,s
∂TV

= 0 (C.10)

∂kb,c,s
∂T

=
kb,c,s
T

[

ηf,c,s +
θf,c,s
T

+∆n+ T
∂

∂T

(
Gp1

RT
+
Gp2

RT
− Gr1

RT
− Gr2

RT

)]

(C.11)

where

T
∂

∂T

(
Go

RT

)

= −a1 −
a2
2
T − a3

3
T 2 − a4

4
T 3 − a5

5
T 4 − a6

T
. (C.12)

Similarly, for each of the exchange reactions,

∂Rc

∂ρr
= −kf,c

(
ρr1
Mr1

δr2r
Mr2

+
ρr2
Mr2

δr1r
Mr1

)

+ kb,c

(
ρp1
Mp1

δp2r
Mp2

+
ρp2
Mp2

δp1r
Mp1

)

(C.13)

∂Rc

∂T
= − ρr1

Mr1

ρr2
Mr2

∂kf,c
∂T

+
ρp1
Mp1

ρp2
Mp2

∂kb,c
∂T

(C.14)

∂Rc

∂TV
= 0 (C.15)

∂kf,c
∂T

=
kf,c
T

(

ηf,c +
θf,c
T

)

(C.16)

where for reactions 9,10

∂kb,c
∂T

=
kb,c
T

(

ηf,c +
θf,c
T

− A1c

Z
+ A3c + A4cZ + 2A5cZ

2

)

(C.17)

and for each of the remaining exchange reactions

∂kb,c
∂T

=
kb,c
T

[

ηf,c +
θf,c
T

+∆n+ T
∂

∂T

(
Gp1

RT
+
Gp2

RT
− Gr1

RT
− Gr2

RT

)]

. (C.18)
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Transport Properties

∂µ

∂ρs
=

ns∑

r=1

µr

φr

(
∂Xr

∂ρs
− Xr

φr

∂φr

∂ρs

)

(C.19)

∂Xr

∂ρs
=

1

Mr

(
ns∑

n=1

ρn
Mn

)−1


δsr −
ρr
Ms

(
ns∑

n=1

ρn
Mn

)−1


 (C.20)

∂φr

∂ρs
=

ns∑

n=1

[(

8

(

1 +
Mr

Mn

))1/2
]−1 [

1 +

(
Mn

Mr

)1/4(
µr

µn

)1/2
]2
∂Xn

∂ρs
(C.21)

∂µ

∂T
=

ns∑

r=1

Xr

φr

(
∂µr

∂T
− µr

φr

∂φr

∂T

)

(C.22)

∂µr

∂T
=
µr

T
(2Ar lnT +Br) (C.23)

∂φr

∂T
=

ns∑

s=1

Xs

[√

8

(

1 +
Mr

Ms

)]−1 [

1 +

(
Ms

Mr

)1/4√
µr

µs

](
Ms

Mr

)1/4(
µr

µs

)1/2

(
1

µr

∂µr

∂T
− 1

µs

∂µs

∂T

)

(C.24)

∂Dr

∂ρs
=

2

ρ

(
∂µ

∂ρs
− µ

ρ

)

(C.25)

∂D

∂T
=

2

ρ

∂µ

∂T
(C.26)

∂k

∂ρs
=

ns∑

r=1

kr
φr

(
∂Xr

∂ρs
− Xr

φr

∂φr

∂ρs

)

(C.27)

∂k

∂T
=

ns∑

r=1

(
5

2
cv,tr,r + cv,rot,r

)
Xr

φr

(
∂µr

∂T
− µr

φr

∂φr

∂T

)

(C.28)

∂kV
∂ρs

=
nms∑

r=1

kv,r
φr

(
∂Xr

∂ρs
− Xr

φr

∂φr

∂ρs

)

(C.29)

∂kV
∂T

=
nms∑

r=1

dev,r
dTV

Xr

φr

(
∂µr

∂T
− µr

φr

∂φr

∂T

)

(C.30)

∂kV
∂TV

=
nms∑

s=1

Xs

φs

µs
d2ev,s
dT 2

V

(C.31)

d2ev,s
dT 2

V

=
R

Ms

(
θv,s
TV

)2
exp (θv,s/TV )

TV (exp (θv,s/TV )− 1)2

[

2
θv,s
TV

exp (θv,s/TV )

exp (θv,s/TV )− 1
− 2− θv,s

TV

]

(C.32)
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Vibration-Translation Source Term

∂QT−V

∂ρs
=
ev,s (T )− ev,s (TV )

τs
−

nms∑

r=1

ρr
ev,r (T )− ev,r (TV )

τ 2r

∂τr
∂ρs

(C.33)

∂τr
∂ρs

=
τr

Ms

ns∑

n=1

ρn/Mn

(

1− τr
τrs

)

− τr
TR

pMs

(C.34)

∂QT−V

∂T
=

nms∑

s=1

ρs
τs

(
∂ev,s (T )

∂T
− ev,s (T )− ev,s (TV )

τs

∂τs
∂T

)

(C.35)

∂ev,s (T )

∂T
=

R

Ms

exp (θv,s/T )

(
θv,s/T

exp (θv,s/T )− 1

)2

(C.36)

∂τs
∂T

=
−τ 2s

ns∑

n=1

ρn/Mn

[

T−4/3

3

ns∑

r=1

ρrAsr

Mrτsr
+

(

R

p

ns∑

n=1

ρn
Mn

)(
ns∑

r=1

ρr
Mrτsr

)]

(C.37)

∂QT−V

∂TV
= −

nms∑

s=1

ρs
τs

∂ev,s (TV )

∂TV
(C.38)

Chemical Production Terms

Derivatives of the chemical production terms are required to set the surface con-

ditions for ablation, as well as to set the perturbation conditions at the surface

in the linearized ablation model. The derivatives of the sublimation terms with

respect to wall temperature are

∂ṁC3

∂T
= −ṁC3

2T
− αC3

√

MC3

2πRT

(

pv,C3

PC3

T 2

)

(C.39)

∂ṁC2

∂T
= −ṁC2

2T
− αC2

√

MC2

2πRT

(

pv,C2

PC2

T 2

)

(C.40)

∂ṁC

∂T
= −ṁC

2T
− αC

√

MC

2πRT

(

pv,C
PC

T 2

)

. (C.41)

Since each of the partial pressures in Eqs. (2.51)–(2.53) are taken at the first grid

point away from the surface, the chemical production terms due to sublimation

are only a function of the wall temperature.
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The remaining partial derivatives of the chemical production terms are

∂ṁO2

∂ρO2

= −k1 (C.42)

∂ṁO2

∂ρO
= k3 (C.43)

∂ṁO2

∂T
= −ρO2

∂k1
∂T

+ ρO
∂k3
∂T

(C.44)

∂ṁCO

∂ρO2

=
MCO

MO2

k1 (C.45)

∂ṁCO

∂ρO
=
MCO

MO

k2 (C.46)

∂ṁCO

∂T
= ρO2

MCO

MO2

∂k1
∂T

+ ρO
MCO

MO

∂k2
∂T

(C.47)

∂ṁO

∂ρO2

=
1

2
k1 (C.48)

∂ṁO

∂ρO
= −k2 − k3 (C.49)

∂ṁO

∂T
= ρO2

1

2

∂k1
∂T

− ρO

(
∂k2
∂T

+
∂k3
∂T

)

(C.50)

where

∂k1
∂T

=
k1
2T

(

1 +
2T

α1

∂α1

∂T

)

(C.51)

∂k2
∂T

=
k2
2T

(

1 +
2320

T

)

(C.52)

∂k3
∂T

=
k3
2T

(

1 +
2320

T

)

(C.53)

and
∂α1

∂T
=

14.5 exp (−1450/T ) + 2.6α1 exp (13000/T )

T 2 [1 + 2× 10−4 exp (13000/T )]
. (C.54)

Conservative to Nonconservative Jacobian

When treating the source term implicitly, a nonlinear solver is required. The

nonlinear solver requires the derivative ∂W/∂U to obtain a solution. However,

the derivatives of the source terms were given in terms of the nonconservative

variables, rather than the conserved variables. It is possible to take derivatives of
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source terms, transport properties, etc., with respect to the conserved variables.

However, that complicated task can be easily avoided noting that

∂W

∂U
=
∂V

∂U

∂W

∂V
(C.55)

where

V = (ρ1, ρ2, . . . , ρns, u1, u2, u3, T, TV )
T . (C.56)

The resulting Jacobian is

∂V

∂U
=



























1 0 · · · 0 0 0 0 0 0

0 1 · · · 0 0 0 0 0 0
...

...
. . .

... 0 0 0 0 0

0 0 · · · 1 0 0 0 0 0

−u1

ρ
−u1

ρ
· · · −u1

ρ
1
ρ

0 0 0 0

−u2

ρ
−u2

ρ
· · · −u2

ρ
0 1

ρ
0 0 0

−u3

ρ
−u3

ρ
· · · −u3

ρ
0 0 1

ρ
0 0

∂T
∂ρ1

∂T
∂ρ2

· · · ∂T
∂ρns

−u1

κ
−u2

κ
−u3

κ
1
κ

−1
κ

∂TV

∂ρ1

∂TV

∂ρ2
· · · ∂TV

∂ρns
0 0 0 0 ∂TV

∂ρev



























(C.57)

where

∂T

∂ρs
=

uiui

2
− hos − Tcv,s
ns∑

r=1

ρrcv,r

(C.58)

κ =
ns∑

s=1

ρscv,s (C.59)

∂TV
∂ρ1

= ev,s
∂TV
∂ρev

(C.60)

∂TV
∂ρev

=
1

nms∑

s=1

ρs
∂ev,s
∂TV

. (C.61)
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APPENDIX D

Cut-Cell Derivative Coefficients

The third-order coefficients for a first-order derivative near a boundary using the

cut-cell method are given. The inviscid coefficients are given in Table D.1 and the

viscous coefficients are given in Table D.2.

Table D.1: Finite-difference coefficients for inviscid

terms at irregular points.

a+j,1 a+j,2 a+j,3 a+j,4 a+j,5 a+j,6

j=2 −2
σ(σ+1)(σ+2)

2−3σ
2σ

2σ
σ+1

−σ
2(2+σ)

0 0

j=3 1
σ(1+σ)(2+σ)

−σ−1
2σ

1
1+σ

σ+1
2(2+σ)

0 0

j=4 −2
σ(σ+1)(σ+2)(σ+3)

2+σ
6σ

−2−σ
σ+1

4+σ
2(2+σ)

2+σ
3(3+σ)

0

a−j,1 a−j,2 a−j,3 a−j,4 a−j,5 a−j,6

j=2 0 −11
6

3 −3
2

1
3

0

j=3 0 −1
3

−1
2

1 −1
6

0

j=4 0 1
12

−2
3

0 2
3

− 1
12
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Table D.2: Finite-difference coefficients for viscous terms at irregular points.

aj,1 aj,2 aj,3 aj,4 aj,5 aj,6

j=1
−2(2σ+3)(σ2+3σ+1)
σ(σ+1)(σ+2)(σ+3)

(σ+1)(σ+2)(σ+3)
6σ

−σ(σ+2)(σ+3)
2(σ+1)

σ(σ+1)(σ+3)
2(σ+2)

−σ(σ+1)(σ+2)
6(σ+3)

0

j=2 −6
σ(σ+1)(σ+2)(σ+3)

6−11σ
6σ

3σ
σ+1

−3σ
2(σ+2)

σ
3(σ+3)

0

j=3 2
σ(σ+1)(σ+2)(σ+3)

−σ−1
3σ

1−σ
2(σ+1)

σ+1
σ+2

−σ−1
6(σ+3)

0

j=4 −4
σ(σ+1)(σ+2)(σ+3)(σ+4)

σ+2
12σ

−2(σ+2)
3(σ+1)

1
2+σ

2(σ+2)
3(σ+3)

−σ−2
12(σ+4)
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