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Effects of thymic selection of the T-cell repertoire on
HLA class I-associated control of HIV infection
Andrej Košmrlj1,2*, Elizabeth L. Read1,3,4*, Ying Qi5, Todd M. Allen1, Marcus Altfeld1, Steven G. Deeks6,
Florencia Pereyra1, Mary Carrington1,5, Bruce D. Walker1,7 & Arup K. Chakraborty1,3,4,8

Without therapy, most people infected with human immunodefi-
ciency virus (HIV) ultimately progress to AIDS. Rare individuals
(‘elite controllers’) maintain very low levels of HIV RNA without
therapy, thereby making disease progression and transmission
unlikely. Certain HLA class I alleles are markedly enriched in elite
controllers, with the highest association observed for HLA-B57
(ref. 1). Because HLA molecules present viral peptides that activate
CD81 T cells, an immune-mediated mechanism is probably
responsible for superior control of HIV. Here we describe how
the peptide-binding characteristics of HLA-B57 molecules affect
thymic development such that, compared to other HLA-restricted
T cells, a larger fraction of the naive repertoire of B57-restricted
clones recognizes a viral epitope, and these T cells are more cross-
reactive to mutants of targeted epitopes. Our calculations predict
that such a T-cell repertoire imposes strong immune pressure on
immunodominant HIV epitopes and emergent mutants, thereby
promoting efficient control of the virus. Supporting these predic-
tions, in a large cohort of HLA-typed individuals, our experiments
show that the relative ability of HLA-B alleles to control HIV
correlates with their peptide-binding characteristics that affect
thymic development. Our results provide a conceptual framework
that unifies diverse empirical observations, and have implications
for vaccination strategies.

HIV infection leads to acute high level viraemia, which is subse-
quently reduced to a set-point viral load. Without therapy, most
patients experience a subsequent increase in viral load, and ultimately
the development of AIDS. Viraemia levels and time to disease vary
widely, and the differences correlate with the expression of different
HLA class I molecules (reviewed in ref. 2). Effector CD81 T cells
(CTLs) are implicated in viral control because T-cell antigen recep-
tors (TCRs) on CD81 T cells recognize complexes of viral peptides
and class I HLA molecules presented on the surface of infected cells,
and depletion of CD81 T cells leads to increased viraemia in animal
models of HIV infection3. We describe a feature of the HLA-B57-
restricted CD81 T-cell repertoire that contributes to enhanced con-
trol of viraemia.

Algorithms4 based on experimental data predict whether a particular
peptide will bind to a given HLA molecule5. We tested four predictive
algorithms against available experimental data on peptide binding to
diverse HLA molecules and found that, in most cases, they are highly
accurate (Supplementary Fig. 1 and Supplementary Table 1). For
example, predictions using the best algorithm for HLA-B*5701 were
97% accurate. Using these algorithms, we computed the fraction of
peptides derived from the human proteome6 that bind to various HLA

molecules. Of the ,107 unique peptide sequences, only 70,000 are
predicted to bind to HLA-B*5701, and 180,000 bind to HLA-
B*0701 (an allele that is not protective against HIV). Essentially iden-
tical results were obtained for randomly generated peptides (data not
shown). The protective allele in macaques, Mamu-B*17, also binds
fewer self peptides than other Mamu molecules for which data are
available (Mamu-B*17 binds 4, 6 and 13 times fewer self peptides than
Mamu-A*11, Mamu-A*01 and Mamu-A*02, respectively; Sup-
plementary Table 1).

The intrinsic differences in self-peptide binding among HLA mole-
cules are important during T-cell repertoire development. Immature
T cells are exposed to diverse host-derived peptide–HLA complexes
presented in the thymus. As fewer self peptides are able to bind to
HLA-B*5701 (and Mamu-B*17) molecules, a smaller diversity of self-
peptide TCR contact sequences will be encountered by HLA-B*5701/
Mamu-B*17-restricted T cells in the thymus (Supplementary
Discussion 1).

The diversity of self peptides presented in the thymus shapes the
characteristics of the mature T-cell repertoire. Experiments7,8 and
theoretical studies9,10 show that T cells that develop in mice with only
one type of peptide in the thymus are more cross-reactive to point
mutants of peptide epitopes that they recognize than T cells from
mice that express diverse self peptides. Thus, by encountering fewer
self peptides during thymic development, HLA-B57-restricted CD81

T cells should be more cross-reactive to point mutants of targeted
viral peptides.

We carried out in silico thymic selection experiments to test this
hypothesis. We chose an HLA-dependent number of thymic self pep-
tides, each with amino acids of the TCR contact residues picked
according to the frequency with which they appear in the human
proteome6,9. A diverse set of immature CD81 T cells (thymocytes)
was generated by choosing the sequences of their peptide contact
residues in the same way, and by varying the TCR–HLA interactions.
A thymocyte emerges from the thymus as a mature CD81 T cell if its
TCR binds to at least one self-peptide–major histocompatibility com-
plex (pMHC; human MHC is called HLA) molecule with an affinity
that exceeds the positive selection threshold, and does not interact
with any pMHC more strongly than the negative selection threshold.
Using a computational model9,10 in the class of ‘string models’11, we
assessed the affinity of TCR–self-peptide–HLA complexes (Methods)
to determine which T cells survive positive and negative selection, and
become a part of the mature repertoire. Our qualitative results are
independent of the parameters used to determine these interaction
strengths (Supplementary Figs 2 and 3)9,10.
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The mature T cells that emerged from these in silico thymic selec-
tion experiments were then computationally challenged by a viral
peptide (that is, not seen in the thymus) bound to the same HLA
type. T cells that recognize this peptide–HLA complex were obtained
by assessing whether the interaction strength exceeded the negative
selection threshold (shown to be equal to the recognition threshold in
mouse models12); qualitative results are invariant if the recognition
threshold is not much weaker than that corresponding to negative
selection (Supplementary Fig. 3). Cross-reactivity of these T cells was
then determined in silico by mutating each TCR contact residue of the
peptide to the other 19 possibilities. Sites on the viral peptide were
called ‘important contacts’ if half the mutations therein abrogated
recognition by T cells that target this epitope. The frequency of the
number of important contacts in viral peptides that determine T-cell
recognition was obtained by repeating this procedure 1,000 times
with different choices of thymocytes and self and foreign peptides.

Our calculations predict that a T-cell repertoire restricted by an
HLA molecule such as HLA-B*5701, which presents fewer self pep-
tides in the thymus, has a higher frequency of occurrence of T cells
that recognize viral peptides through smaller numbers of important
contacts (Fig. 1a). In contrast, the frequency of occurrence of T cells

that recognize viral peptides through many important contacts is
larger for repertoires restricted by HLA alleles that present a greater
diversity of self peptides in the thymus (data not shown for .four
contacts). Mutations at sites different from the important contacts do
not affect binding strength substantially. Therefore, when the inter-
action between peptide–HLA and TCR is mediated by fewer import-
ant contacts, a larger number of possible point mutations of the
peptide do not affect peptide recognition, thereby making the T cells
more cross-reactive to mutants that arise. Thus, the HLA-B57-
restricted T-cell repertoire is expected to be more cross-reactive to
mutants of targeted viral peptides than repertoires restricted by HLA
alleles that present a greater diversity of self peptides.

Our computational models give this qualitative mechanistic
insight, but do not provide quantitative estimates of the extent of
this enhanced cross-reactivity of T cells. However, compelling experi-
mental data13 has shown that the effect revealed by our studies is
important in humans. Peripheral blood mononuclear cells from
patients expressing HLA-B57 contained CTLs that were more
cross-reactive to various HIV epitopes and their point mutants than
those of HLA-B8-positive patients. HLA-B8 is associated with rapid
progression to disease13, and the most accurate algorithm for peptide
binding suggests that the HLA-B8 molecule binds a greater diversity
of self peptides than HLA-B57 (Supplementary Fig. 4 and
Supplementary Table 1). Other experimental studies also show that
patients expressing HLA-B57 cross-recognize point mutants of the
dominant epitope and use more public TCRs14,15.

Next, we computed interaction strengths between diverse viral
peptides and members of T-cell repertoires restricted by HLA mole-
cules that present differing numbers of self peptides in the thymus.
This allowed us to obtain the probability with which a randomly
picked T-cell clone and viral peptide will interact sufficiently strongly
for recognition to occur. The results (Fig. 1b) indicate that a typical
CD81 T cell restricted by an HLA molecule such as HLA-B*5701,
which presents fewer peptides in the thymus, has a higher probability
of recognizing a viral epitope compared to a T cell restricted by other
HLA molecules. Thus, more HLA-B*5701-restricted T cell clones are
likely to recognize a viral epitope, making effective precursor fre-
quencies higher in an HLA-B*5701-restricted repertoire (a strong
predictor of response magnitude16). A greater precursor frequency
for viral epitopes in the naive repertoire restricted by HLA-B57 is
indicated by experimental results showing that HLA-B*5701 contri-
butes the most to acute-phase CTL responses of all HLA alleles
tested17.

The results in Fig. 1 stem from the constraint that thymocytes must
avoid being negatively selected by each self-peptide–HLA complex
encountered during development in the thymus. T cells expressing
TCRs with peptide contact residues composed of amino acids that
interact strongly with other amino acids (for example, charged resi-
dues, flexible side chains) have a high probability of binding to a self
peptide strongly. The greater the diversity of self peptides presented
in the thymus, the higher the chance that a TCR with such peptide
contact residues will encounter a self peptide with which strong
interactions will result in negative selection. Thus, as the diversity
of self peptides presented in the thymus increases, the peptide contact
residues of TCRs in the mature T-cell repertoire are increasingly
enriched in weakly interacting amino acids (Supplementary Fig. 5).
T cells bearing TCRs with weakly interacting peptide contact residues
recognize viral peptides by means of several moderate interactions,
making many contacts important for recognition. In contrast, TCRs
with peptide contact residues containing strongly interacting amino
acids are more likely to recognize viral peptides through a few
important contacts mediated by these residues, making recognition
cross-reactive to mutations at other peptide sites. These mechanistic
insights are supported by experimental results7,9 (Supplementary
Discussion 2).

By studying a model of host–pathogen dynamics that builds on past
models of host–HIV interactions18–20, we explored the consequences
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Figure 1 | Thymic selection against fewer self peptides leads to a more
cross-reactive T-cell repertoire. a, Histogram of the frequency with which T
cells recognize viral peptides (that is, not seen in the thymus) through only a
small number (0, 1, 2, 3) of important contacts is shown for three T-cell
repertoires that developed with different numbers of self-peptide–HLA
complexes in the thymus. Important contacts were determined by making
single point mutations. If the TCR–peptide–HLA interaction is sufficiently
strong, no single point mutation can abrogate recognition, resulting in zero
important contacts. A higher frequency of occurrence of a small number of
important contacts indicates a more cross-reactive T-cell repertoire because
only mutations at these contacts are likely to abrogate recognition. The
frequency with which T cells recognize viral peptides through many
significant contacts (greater than four) is larger for T-cell repertoires
restricted by HLA alleles that present more self peptides in the thymus (not
shown). b, The probability that a TCR binds to viral peptides with a certain
interaction strength is shown for three T-cell repertoires (as in a). A
particular TCR recognizes a viral peptide when the binding strength exceeds
the recognition threshold (dotted black line). Members of a T-cell repertoire
selected against fewer self peptides are more likely to recognize a viral
peptide. The model we used describes qualitative trends robustly9,10

(Methods), but is not meant to be quantitatively accurate.
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of the HLA-B57-restricted CD81 T-cell repertoire having a higher
precursor frequency for viral peptides and being more cross-reactive
to point mutants of targeted epitopes on the control of HIV. Because
of the importance of immune control exerted by CD81 T cells17,21, we
focused on the interaction between a mutating virus quasispecies and
epitope-directed, variably cross-reactive, host CTL responses.

The essential features of the model are depicted in Fig. 2a (details in
Methods). The virus is modelled as a number of epitopes consisting of
strings of amino acids, and new viral strains (point mutations of
epitopes), which differ in replicative fitness, arise over the course of
infection. For each individual, an HLA-dependent CD81 T-cell re-
pertoire was chosen. To mimic the results obtained from our thymic
selection calculations (Fig. 1b), more or less cross-reactive repertoires
were chosen (Supplementary Fig. 6) to represent HLA-B57-restricted
T cells and those restricted by other HLAs, respectively. Infection rates
were limited by target CD41 T cells, and CTL contraction and
memory were included. Other dynamic models were studied, includ-
ing one that does not incorporate target cell limitation or CTL con-
traction. Our qualitative results about the effects of cross-reactivity
are robust to variations in parameters and model assumptions
(Supplementary Figs 7–16).

We find that individuals with a more cross-reactive CTL repertoire
control viral loads better during the acute phase of the infection
(Fig. 2b). This is in agreement with findings in simian immunodefi-
ciency virus (SIV)-infected rhesus macaques22, where the number of
cross-reactive TCR clones negatively correlates with viral load. Our
simulations show that a larger number of CTL clones in a more cross-
reactive T-cell repertoire recognize epitopes from the infecting viral
strain (Fig. 2c). This is because the predicted higher precursor fre-
quency for viral epitopes (Fig. 1b) leads to a greater response mag-
nitude (as in mouse models16). This conclusion is supported by data
showing that in people with a protective HLA allele, the initial T-cell
response to HIV is dominated by T cells restricted by the protective
HLA and not those restricted by other HLAs expressed17. Our simu-
lations also show that enhanced cross-reactivity of the T-cell re-
pertoire leads to greater immune pressure on the emergent viral
mutants by individuals expressing HLA-B57 compared to those with
T cells restricted by HLA molecules that bind more types of self
peptides. The stronger immune pressure on infecting and emerging
viral strains results in superior control of viral load. Thus, we predict
that HIV-infected individuals with HLA alleles that bind fewer self
peptides are more likely to control viral loads to low values.

To test this prediction, we studied two large HLA-typed cohorts:
1,110 controllers with less than 2,000 HIV particles ml21 and 628
progressors (or non-controllers) with viral loads exceeding 104 ml21

(Methods). From these data, we obtained the odds ratio (OR) for
individual HLA alleles. People with HLA alleles associated with an
OR value greater or less than one are more likely to be progressors
or controllers, respectively. We focused on HLA-B alleles because they
are associated with control of HIV23. Of 40 HLA-B alleles that were
studied, significant results (P value ,0.05) were obtained for five
HLA-B alleles (Supplementary Table 2) and peptide-binding data
are available for four of them. In support of our predictions, those
HLA-B alleles associated with higher OR values also bind more self
peptides (Fig. 3).

Superior control of viral load due to the greater precursor frequency
and cross-reactivity of those T-cell repertoires restricted by HLA
molecules that bind to few self peptides (for example, HLA-B57)
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Figure 2 | Model of host–pathogen interactions shows superior viral
control by cross-reactive CD81 T-cell repertoires. a, Dynamic model: the
virus mutates, infects limited-target CD41 T cells, and is cleared. Infected
CD41 T cells produce more free virus and die. Infected cells present viral
peptides in complex with HLA molecules (until peptides unbind from HLA).
Activated CD81 T cells produced by recognition of viral epitopes on antigen-
presenting cells (APCs) proliferate and differentiate into effector CTLs.
CTLs kill infected cells bearing cognate peptide–HLA complexes, and turn
into memory cells that are activated after re-exposure to antigen.
b, Simulated HIV viral loads versus time for different cross-reactivities (CR)
of the CD81 T-cell repertoire. Black curve, high cross-reactivity; red curve,
low cross-reactivity. Each curve is averaged over 500 simulations (each
simulation represents a person). The model shows a reduced set-point viral
load for people with a more cross-reactive T-cell repertoire. Other models of
host–pathogen dynamics show similar effects of T-cell cross-reactivity
(Supplementary Figs 7 and 8). c, Virus diversity and immune pressure for
representative people (that is, representative simulations) with high cross-
reactivity (left) and low cross-reactivity (right) of CD81 T-cell repertoires.
Top panels show the relative population sizes of two dominant viral strains:
the infecting strain (black), and an emerging, less fit strain (green) (other less
populous viral strains are not shown). For people with a more cross-reactive
T-cell repertoire, the emergent mutant strain only begins to dominate the
infecting strain after 175 days, whereas for low cross-reactivity the mutant
increases to nearly 100% of the viral population within 100 days after
infection. Bottom panels show the relative immune pressure, defined as the
rate of killing of an infected cell (see equation (4), Methods), imposed on
each viral strain by different CD81 T-cell clones. Each curve represents the
relative immune pressure exerted on that viral strain by a particular T-cell
clone. For people with a more cross reactive T-cell repertoire, several T-cell
clones exert immune pressure on both the infecting and emergent strains.
For people with a low-cross-reactivity T-cell repertoire, the emergent strain
is not recognized, and thus escapes.
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should also confer protection against diseases caused by other fast-
mutating viruses. Indeed, HLA-B57 is protective against hepatitis C
virus (HCV)24, another highly mutable viral disease in which CD81 T
cells are important. Also, HLA-B8, which binds a greater diversity of
self peptides, is associated with faster disease progression in HCV25

and HIV13. Thus, the correlation between the diversity of peptides
presented in the thymus during T-cell development and control or
progression of disease may be general.

Undoubtedly, many complex factors influence the relationship
between HLA type and disease outcome. The effect of the new factor
we have identified should be greatest for HLA molecules that bind
relatively few (for example, HLA-B57) or many (for example, HLA-
B7, -B35, -B8) self peptides. The strong association of HLA-B27—
which binds an intermediate number of self peptides (twice as many as
HLA-B57)—with viral control indicates that, in this case, the effects of
T cell cross-reactivity are reinforced by this molecule binding HIV
epitopes that are subject to very strong structural constraints.

Our results also point to a mechanistic explanation for as yet
unexplained associations between HLA alleles that confer protection
against HIV and autoimmune diseases. T cells restricted by HLA
alleles that bind to few self peptides are subject to less stringent nega-
tive selection in the thymus, and should therefore be more prone to
recognizing self peptides. Indeed, HLA-B57 has been associated with
autoimmune psoriasis26 and hypersensitivity reactions27. Enhanced
cross-reactivity of HLA-B27-restricted T cells and other unique prop-
erties of this molecule (misfolding, homodimers28) probably contrib-
ute to the enhanced risk of autoimmunity associated with this allele29.

Our results shed light on another intriguing observation; acutely
infected patients with low viral loads (and protective HLAs) tend to
target an immunodominant epitope that makes a larger relative con-
tribution to the total CTL response as compared to individuals pre-
senting with higher levels of viraemia30. This is counterintuitive as the
most protective responses appear most focused, rather than broadly
distributed over many epitopes. We calculated how viral load corre-
lates with the number of CTLs responding to the immunodominant
epitope divided by the total number of CTLs activated by the virus (a

quantity analogous to relative contribution30). Mirroring experi-
mental data, HLA alleles that restrict a more cross-reactive repertoire
and are more protective also make a larger relative contribution
(Supplementary Fig. 13). This result unifies the idea of both a broad
and a focused response. The more cross-reactive repertoire targets
more epitopes and emergent mutants, but a larger number of clones
also recognize the dominant epitope (Fig. 2c).

Cross-reactive T cells are rare in people with HLA alleles that
present more self peptides in the thymus than the B57 allele, but they
do exist. Our results suggest that a T-cell vaccine for a diverse popu-
lation must aim to activate these rare cross-reactive T cells that also
target epitopes from a conserved region of the HIV genome (like
HLA-B57 Gag epitopes). This will enable robust responses to infect-
ing and mutant strains until a strain with low replicative fitness
emerges, enhancing control of viral load.

METHODS SUMMARY

Predictive algorithm tools for peptide binding to HLA and Mamu molecules

were obtained from the Immune Epitope Database (IEDB)4 and were used to

predict the fraction of bound peptide derived from the human and macaque

proteomes6. Accuracies of these tools were tested on experimental data obtained

from the IEDB4. To assess the effects of thymic selection on TCRs restricted by

different MHC molecules (HLA or Mamu), we used a computational model of

thymic selection described in Methods (and previously9,10).

To explore host–pathogen dynamics, we constructed a small model of the HIV

virus with distinct epitopes and sequence diversity, based in part on past

work18–20. We carried out numerical simulations of ordinary differential equa-

tion models, shown schematically in Fig. 2a and Supplementary Fig. 7.

Parameters and their justification are given in Supplementary Tables 3 and 4

and in the Supplementary Methods. To explore cross-reactivity, we varied the

distribution of pairwise-interaction free energies of TCR–pMHC contacts. Our

goal was not to obtain precise numbers, but to examine the qualitative effects of

variation in repertoire cross-reactivity on virus control. Qualitative results are

robust to variations in parameters and assumptions (Supplementary Figs 8–16).

HLA-typed cohorts of people of diverse races were divided into HIV control-

lers and HIV non-controllers, and analysed for HLA association with the ability

to control HIV. The results (Fig. 3 and Supplementary Table 2) were adjusted for

the effects of HLA-B*0702, HLA-B*3501, HLA-B*2705 and HLA-B*5701.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
HLA–peptide binding predictions. There are at present several HLA–peptide

binding prediction methods. The performance of these algorithms to identify

new epitopes has recently been benchmarked against experimental data31. In

general, artificial neural networks (ANN)32 and the stabilized matrix method

(SMM)33 were found to be superior to other methods31. We used ANN and the

SMM (versions 2009-09-01 and 2007-12-27) prediction tools provided by the

IEDB4. Accuracy of prediction tools was tested against experimental data down-

loaded from the IEDB in September 2009 (Supplementary Fig. 1, Supplementary

Table 1 and Supplementary Notes 1). These experimental data were obtained by

two methods: competition assays, in which purified MHC and radioactive label-

ling are used; and association studies, in which purified MHC and fluorescence

labelling are used. Data obtained from the two methods show significant corre-

lations of measured binding affinities (as measured by half-maximum inhibitory

concentration (IC50) and half-maximum effective concentration (EC50))5.

Prediction tools were tested against experimental data for accuracy of classifying

peptides into binders (IC50 , 500 nM) and non-binders (IC50 $ 500 nM); the

chosen thresholds are commonly accepted values5. We also tested how well these

tools predict absolute measured affinity values, not just classification of binders

and non-binders, which is dependent on the chosen thresholds. The accuracy of

the prediction tools thus determined are summarized in Supplementary Table 1

and Supplementary Fig. 1. We excluded all HLA and Mamu alleles for which

there was not enough experimental data (at least 50 binders and 50 non-binders)

or prediction tools were not sufficiently accurate (Supplementary Notes 1). For

each HLA and Mamu allele, the most accurate prediction tool was used to predict

the fraction of unique peptides derived from the human and macaque proteome

(Homo_sapiens.GRCh37.55.pep.all.fa and Macaca_mulatta.MMUL_1.56.pep.

all.fa obtained from Ensembl6) that can bind to that allele. We focused only

on the binding abilities of peptides of 9 amino acids to HLA molecules, because

there is not enough experimental data available for the binding affinities of

peptides of 8, 10 and 11 amino acids to HLA-B*5701 and the other relevant

HLA-B alleles that emerged from our analyses (HLA-B*2705, HLA-B*0702 and

HLA-B*3501).

Thymic selection model and antigen recognition. The TCR contact residues of

peptides and the peptide contact residues of TCRs are represented as strings of

sites of length N. One-million sequences of TCR peptide contact residues were

subject to development in a thymus containing M self peptides with TCR contact

residues generated according to their frequency of occurrence in the human

proteome. A particular TCR with the sequence of peptide contact residues~tt
successfully matures in the thymus if it avoids negative selection with all self

peptides (Eint . En) and is positively selected by at least one self peptide

(Eint , Ep). Interaction free energy between sequences of TCR and peptide con-

tacts,~tt and~ss, is, respectively:

Eint ~tt ,~sð Þ~Ecz
XN

i~1

J ti ,sið Þ ð1Þ

where Ec represents an interaction between a TCR and an HLA molecule, and J is

an empirically determined statistical potential between interacting amino acids

on a TCR and a peptide. Antigenic peptides are recognized by a mature TCR if

binding is stronger than the threshold for recognition (Eint , Er). The statistical

potentials do not necessarily provide quantitatively accurate values of the inter-

action free energies. However, theoretical analyses and computational results9,10

show that the following qualitative result is true regardless of the choice of the

statistical potentials: the smaller the diversity of self peptides presented in the

thymus, the greater the cross-reactivity of the mature T-cell repertoire that

develops therein. More details of the model and the insensitivity of our results

to parameter variations (for example, qualitative results do not depend on the

choice of J or Ec (as long as Ec is not too small or large)) are described in

Supplementary Information (Supplementary Figs 2 and 3) and elsewhere9,10.

The parameters used for the results in the main text are: N 5 5; En 2 Ec 5 221

kBT; Ep 2 En 5 2.5 kBT; Er 5 En and Miyazawa–Jernigan statistical potential J34.

Numbers of self peptides presented in the thymus, M, were varied to represent

different HLA alleles.

Host–pathogen interaction dynamics. We constructed a small model of HIV

with distinct epitopes and sequence diversity, based in part on models developed

previously18,19. The virus is modelled as displaying L epitopes, each consisting of

M amino acid residues that may be of N types. Different viral strains arise

through point mutations at the amino-acid sites, giving (NM)L distinct strains.

The number of different pMHC types is L 3 NM, because peptide sequences at

epitope positions 1…L are considered to be distinct. The system of ordinary

differential equations corresponding to the model in Fig. 2 and based on pre-

vious work20 is as follows:

dVn

dt
~kn

v In{kc Vnzkm

X

n:m

Vm{Vnð Þ ð2Þ

dI t

dt
~kb{kd I t {kt I t

X

n

Vn ð3Þ

dIn

dt
~kt VnI t{kd

0In{
X

i

X

j

si,j kkPn,j T
�
i ð4Þ

dPn,j

dt
~ksIn{koPn,j{

dI killð Þ
n

dt

Pn,j

In

ð5Þ

dPAPC
n,j

dt
~ks

0In{ko
0PAPC

n,j ð6Þ

dTi

dt
~{kaTi

X

n,j

si,jP
APC
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dT 0
i

dt
~{kpT 0

i zkaTi
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X
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dT m
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dt

~2kpT
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dMi

dt
~kmT�i {kdmMi{kraMi

X

n,j

si,j P
APC
n,j ð11Þ

Target CD41 T cells, I t , are infected by free virus particles, where Vn denotes

virions of strain n. In denotes CD41 T cells infected by virus of strain n, Pn,j is a

pMHC complex of peptide j derived from viral strain n, displayed on the surface

of the infected cell, PAPC
n,j is a pMHC displayed by APCs and Ti is a naive CD81 T

cell of clonotype i. Activated T cells undergo D rounds of cell division before

becoming effector CTLs; T 0
i is an activated CD81 T cell of type i that has not yet

begun dividing and T m
i are the dividing cells, where m runs from 1 to D 2 1.

Effector CTLs, T�i , differentiate into memory CD81 T cells, Mi , which are acti-

vated upon re-exposure to pMHC.

If T-cell clone i recognizes pMHC j, si,j is 1, and 0 otherwise. In equation

(2),
X

n:m

denotes the sum over viral strains m that are Hamming distance 1 away

from strain n. That is, only point mutations are allowed. The third term of

equation (5) ensures that if an infected cell is killed, the pMHC bound on its

surface must also disappear;
dI killð Þ

n

dt
denotes the third term of equation (4),

which describes killing of an infected cell by CTLs that recognize pMHC on its

surface. Simulations were performed using ode45 and ode15s solvers in

MATLAB. A further dynamic model, which does not incorporate target cell

limitation and allows unlimited expansion of activated CTLs, was also developed

to show robustness of our results to model assumptions. It is discussed in the

Supplementary Information (Supplementary Figs 7–12).

Rate constants used in the models are given in Supplementary Tables 3–4, and

are in keeping with values reported in the literature. We assume a concentration

of 106 CD41 T cells per ml blood before infection, with 1% of these cells activated

and thus initial targets for HIV infection35,36. The initial conditions of infection

in the simulations were one infected CD41 T cell per ml of plasma and a naive-

CD81 repertoire size of one cell per ml of each clonotype. We assume that the

number of epitopes, length of each epitope, and number of amino acids (L, M, N)

are all 2, giving 8 pMHC types and 16 possible viral strains. The number of CD81

clonotypes was chosen to be 20.

The interplay between antigen and immune receptor diversity is captured in this

model through variability in si,j and viral fitness. Different fitness levels for dif-

ferent strains of the virus are modelled by randomly selecting kn
v , the virus proli-

feration rate, for each strain from a uniform distribution between 0 and 2,000 per

day18,37, with the assumption that the infecting strain has the maximum fitness. The

matrix si,j encodes the ability of T cells to recognize pMHCs. We generate si,j in

such a way as to mimic the results of the thymic selection model (Fig. 1b), to

investigate the effects of those predictions on host–pathogen dynamics. That is, we

assume that T-cell repertoires restricted by different HLA types differ in the inter-

action free energies of their TCR–pMHC contacts, and generate si,j accordingly

using a type of random-energy-like model (Supplementary Fig. 6). The interaction

free energy between a T cell and an epitope is given by
X

a

J i,jað Þ, where J i,jað Þ is
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the interaction free energy between T cell of clonotype i and residue a on epitope j.
Similar to the models used for thymic selection, the total interaction free energy is

taken to be the sum of the individual residue interactions and recognition is said to

occur when it exceeds a recognition threshold (in the dynamic model, T-cell

sequences are not specified explicitly). J i,jað Þ is a random variable chosen from

a uniform distribution, and the width of the distribution determines the probabil-

ity that the summed interaction energy falls above the threshold, and thus the

probability that a peptide is recognized by a given T cell. Repertoires generated in

this way approach a Gaussian distribution of interaction energies, and the distri-

bution shifts and thus cross-reactivity increases when the uniform distribution

from which J (i,ja) is selected is wider. Generating si,j in this way allows us to

describe variable cross-reactivities of the T-cell repertoire (both intra- and inter-

epitope), and also accounts for correlated interaction energies and thus recog-

nition probabilities of similar peptide sequences.

HLA-allele association with ability to control HIV. SAS 9.1 (SAS Institute) was

used for data management and statistical analyses. Odds ratios and 95% confid-

ence intervals were determined using PROC LOGISTIC in a comparison of HIV

controllers (those individuals who maintained viral loads of less than 2,000

copies of the virus per ml plasma on three determinations over at least a year
of follow-up and, on average, for approximately 15 years38) to HIV non-con-

trollers (those individuals whose viral loads exceeded 10,000 copies of the virus

per ml plasma). To eliminate the confounding effects of B*0702, B*3501, B*2705

and B*5701, alleles strongly associated with progression or control, these factors

were used as covariates in the logistic regression model for the analysis of all other

HLA class I types39. All ethnic groups were included in the analyses shown

(European, African-American and others) and we adjusted for ethnicity in the

logistical regression model. All P values were corrected for multiple tests using

the Bonferroni correction, a stringent and commonly used approach for mul-

tiple comparisons40.
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