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Abstract
Recently, an increased interest in nanotechnology applications can be observed in various fields (medicine, materials science,
pharmacy, environmental protection, agriculture etc.). Due to an increasing scope of applications, the exposure of humans to
nanoparticles (NPs) is inevitable. A number of studies revealed that after inhalation or oral exposure, NPs accumulate in, among
other places, the lungs, alimentary tract, liver, heart, spleen, kidneys and cardiac muscle. In addition, they disturb glucose and
lipid homeostasis in mice and rats. In a wide group of nanoparticles currently used on an industrial scale, titanium dioxide
nanoparticles—TiO2 NPs—are particularly popular. Due to their white colour, TiO2 NPs are commonly used as a food additive
(E 171). The possible risk to health after consuming food containing nanoparticles has been poorly explored but it is supposed
that the toxicity of nanoparticles depends on their size, morphology, rate of migration and amount consumed. Scientific databases
inform that TiO2 NPs can induce inflammation due to oxidative stress. They can also have a genotoxic effect leading to, among
others, apoptosis or chromosomal instability. This paper gives a review of previous studies concerning the effects of exposure to
TiO2 NPs on a living organism (human, animal). This information is necessary in order to demonstrate potential toxicity of
inorganic nanoparticles on human health.
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Introduction

Recently, nanotechnology has been a subject of great interest,
offering considerable advantages in many areas. Titanium di-
oxide (TiO2 NPs) is among the most often used nanoparticles.
The particle size depends on its application, including ultra-
fine particles < 100 nm, and fine particles 0.1 to ca. 3 μm [1].
It occurs in three different variants: as rutile, anatase and, more
rarely, brookite [2, 3] (Fig. 1) [4]. With regard to its increased
photocatalytic activity [3, 5], anatase in comparison to rutile

and brookite has a higher number of industrial applications;
however, it is the most toxic form [6].

Occurrence of TiO2 NPs

TiO2 NPs is used in many areas of life, such as environmental
protection and building engineering, medicine, agriculture
and the food and cosmetic industry [4] (Fig. 2) [7]. With
regard to its catalytic properties, TiO2 NPs are a component
of self-cleaning roof tiles, windows, they are used in water and
sewage treatment, gas combustion, as an antibacterial material
for decontamination, as well as a catalyst in organic synthesis
[2, 8]. Their biomedical applications include pharmaceuticals
and medical devices [2]. In the agriculture industry, they are
used in the production of fertilisers and pesticides which can
significantly affect soil fertility, growth of plants and crop
yield [9, 10]. TiO2 NPs have a wide range of applications in
the food industry (E171) [11, 12]; they are used in the pro-
cessing and packing of food for the purposes of product im-
provement. They are also used in the cosmetics industry, phar-
maceuticals and toothpastes [13–15]. They have a wide-range
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antibacterial effect extending the shelf life of foodstuffs [16,
17].

With regard to the fact that TiO2 NPs are used widely and
commonly in many areas of industry, the risk of exposure
increases; hence, their potential effect on the human body
should be explored in more detail.

TiO2 NPs in Foodstuffs

In recent years, the effect of nanoparticles on human health
has given rise to serious controversies. According to the
Nanotechnology Consumer Product Inventory (CPI), from
March 2015, the global market offered 1814 products based
on nanotechnology, including 117 in the Bfood and beverage^
category [18, 19]. In the USA, TiO2 NPs can be used in food if

its content does not exceed 1% of the total weight of the
product containing nTiO2 [20–22]. In Europe, the at quantum
satis principle is in force, which means it can be used in
amounts not exceeding the intended target level [23, 24].

TiO2 NPs as a Food Additive

TiO2 NPs are added to many foodstuffs, including cheeses
and sauces, skimmed milk, ice cream and confectionery prod-
ucts, e.g. as coating on sweets and chewing gum [23, 25–27].
Its content in sweets, and in particular in candy, chewing gum,
chocolate and white-coated products, compared to other prod-
ucts, is very high, reaching 2.5 mg Ti/g of food [24, 25]. It is
estimated that a child can consume even 2–4 times more TiO2

NPs per 1 kg of body weight (bw) a day than an adult person.

Fig. 2 Application of TiO2 NPs
(%) in industry. Based on Hong
et.al [7]

Fig. 1 Tetragonal structures of crystalline forms of rutile, anatase and brookite TiO2 NPs (spheres: red—02, grey—Ti). Based on Samat et al. [4]
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In Great Britain, children under the age of 10 consume about
2–3 mg TiO2/kg BW/day, while adults consume about 1 mg
TiO2/kg bw/day [6].

Safety of TiO2 NPs in Foodstuffs

The wide applications of TiO2 NPs in the food industry give
rise to many controversies regarding safety. The International
Agency for Research on Cancer (IARC) classified the TiO2

NPs pigment as a potential carcinogenic factor from group 2B
(probably carcinogenic to humans) based on mechanisms and
tests involving animals regarding exposure by inhalation
[28–30]. The European Food Safety Authority (EFSA) in its
latest study on the safety of E171 (titanium dioxide) in 2016
found that data concerning values and exposure of humans to
TiO2 NPs in food do not raise concerns [24]. However, with
regard to the insufficiency of research data, the admissible
daily intake of TiO2 NPs was not determined. Based on the
results of tests involving animals, a safety margin of 2.25 mg
TiO2 NPs/kg bw/day was established [24].

Ways of Exposure and Accumulation of TiO2
NPs in Human/Animal Body

The effect of TiO2 NPs on the human body has been explored
for many years. Both its exposure and toxicity to a human
body/animal body has been widely investigated and
discussed. The crystalline structure, particle size and coating
can affect the surface charge, sedimentation, aggregation and
thus toxicity of TiO2 NPs [31–34].

The previous in vitro and in vivo tests confirm the toxic
effects of TiO2 NPs on human body such as altered cell cycle,
constriction of nuclear membranes and apoptosis [35–38].
Studies also showed that TiO2 NPs can cause DNA damage
[32, 39, 40] and interact with the epithelium of the small
intestine responsible for absorption of nutrients. After expo-
sure to TiO2 NPs by various ways, mainly by inhalation, in-
jection, skin contact and absorption in the alimentary tract,
TiO2 NPs can be found in different internal organs. In vivo
tests revealed that after inhalation or oral exposure, TiO2 NPs
accumulate in, among other places, the lungs, alimentary tract,
liver, heart, spleen, kidneys and cardiac muscle. In addition,
they disturb glucose and lipid homeostasis in mice and rats
[41–43, 34]. Age can also be a factor playing a significant role
in the harmful effect of TiO2 NPs. As indicated by the results
of tests on young and adult rats [44], different age groups can
require different biomarkers for detecting and monitoring oral
toxicity of nanoparticles. In young rats, liver swelling was
observed, along with cardiac injuries and non-allergic activa-
tion of mast cells in gastric tissue. On the other hand, adult
animals showed insignificant liver and renal damage as well

as reduced intestinal permeability and molybdenum content
following exposure to TiO2 NPs. Wang et al. [45] demonstrat-
ed that the size of nanoparticles can affect both toxicity and
accumulation of TiO2 NPs in different organs. Those authors,
after a one-time oral administration of TiO2 NPs to mice of
different size, demonstrated that larger particles (80 nm) are
mainly accumulated in the liver, whereas smaller particles
(25 nm) can be found in the spleen and, to a lesser extent, in
the kidneys and lungs.

Biodistribution and Absorption of TiO2 NPs
in Human/Animal Body

All nanomaterials can differ considerably in composition,
charge, morphology, specific surface area and state of matter,
which has an influence on what happens to them in the ali-
mentary tract and potential toxicity [46]. Food differs greatly
in terms of its composition, appearance, structure and physical
properties, which can lead to perceptible changes in the prop-
erties of nanoparticles, including their release, transport, solu-
bility, state of matter and absorption. The nature and type of
food containing inorganic nanoparticles can affect what hap-
pens to them in the alimentary tract [46, 47]. The content of
water can affect the release of nanoparticles from the food
matrix, whereas processing of food before it is swallowed
can significantly alter the structure and properties of proteins
[47, 48]. NPs, before they are absorbed in the human body,
must pass through the gastrointestinal tract (GIT) regions
(Fig. 2), which can alter their properties and change their
potential toxicity [47]. The degree of intake and absorption
of TiO2 NPs from the GIT into the blood circulation system
can depend on many factors, i.e. species, type of particles/
nanoparticles, their size, dispersability or particle charging
[49, 50].

The current data is inconsistent and most of it indicates that
when swallowed, most particles are not absorbed into the
blood circulation system but are excreted with the GIT [49].
The results of recent studies showed that TiO2NPs were
scarcely captured from the GIT and transferred into systemic
circulation in rats and humans [51–53]. Studies concerning
toxicity after oral administration to rats show a low level of
toxicity at NOAEL > 1000 mg/kg bw/24 h (NOAEL—no
observable adverse effect level) [49]. Cho et al. [53] demon-
strated that the concentration of titanium in blood, when TiO2

NPs were administered to rats as particles every day (up to
1042 mg/kg bw/day), was not significantly higher than in the
control group. Similarly, MacNicoll et al. [54] in their studies
involving rats showed that a dose of 5 mg TiO2 NPs/kg body
weight did not lead to considerable capturing of TiO2 NPs
(measured as titanium) from the GIT into the blood, urine or
different internal organs. Also, studies involving humans
found that the absorption from the GIT into blood and urine
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was scarce [51]. It was demonstrated that both after adminis-
tration of a single dose to volunteers (5 mg/kg bw/day) and of
TiO2 NPs with different particle sizes, 15 nm (nanoshell),
100 nm (nanoshell) and < 5000 nm (pigments), TiO2 NPs
had no impact on increased absorption of titanium depending
on the particle size [51].

Alimentary Tract

Studies have shown that nanoparticles can disturb digestion
and absorption of food components, which can lead to defi-
ciencies of macro- and microelements in the body [47]. Chen
et al. [55] studied the toxicity of TiO2 NPs in mice in vivo.
Different doses (0, 324, 648, 972, 1296, 1944, 2592 mg/kg)
were injected into their mouth at different time intervals (24 h,
48 h, 7 days and 14 days). Mice showed strong symptoms of
toxicity (loss of appetite, passive behaviour, trembling and
lethargy). The highest accumulation of TiO2 NPs was found
in the spleen that also sustained damage. Other observations
included necrosis of liver cells and apoptosis, liver fibrosis
and swelling of renal glomeruli. TiO2 NPs were also deposited
in the lungs where blood clots were found that could have
resulted from blockage of blood vessels. Duan et al. [56] dem-
onstrated weight loss in mice after intragastric administration
of TiO2 NPs anatase in doses of 125 and 250 mg/kg. This
should be explained by the reduced number of intestinal villi
and the resulting loss of surface of the small intestine capable
of absorbing nutrients, which consequently leads to malnutri-
tion and weight loss. Amedollia et al. [57] in their studies also
showed that after oral exposure of rats to a dose of 2 mg/kg
body weight, TiO2 NPs are capable of penetrating the intesti-
nal mucosa. Brun et al. [58] argue that it is likely that TiO2

NPs would be translocated both through the ileac epithelium
and through Peyer’s patches, which would lead to damage and
most likely chronic failure of the intestinal epithelium.
Nogueira et al. [59] found an inflammation in the small intes-
tine ofmice after theywere administered TiO2 NPs (66 nm) by
oral gavage in the dose of 100 mg/kg over 10 days.

The results of the abovementioned in vivo tests confirmed
the results of in vitro studies on human intestine cell cultures.
The authors [60] came to similar conclusions. Their studies on
Caco-2/HT29-MTX cells showed that exposure to TiO2 NPs
had a considerable impact on the transportation of nutrients,
that is, Fe and Zn, capturing of fatty acids and IAP activity
(inhibitor of apoptosis protein). They found a decrease in the
number of microvilli resulting in a reduction of the surface
area available for absorption of nutrients. Faust et al. [21], in
their in vitro studies of the human intestine model, showed
that after exposure to TiO2 NPs, the villi in the small intestine
were destroyed. They also found that about 42% of intestinal
microvilli were lost when 350 ng of TiO2 NPs were added per
1 cm2 of the medium.

The present studies provide evidence that TiO2 NPs have
both a positive and negative effect on the quality of intestinal
villi, which seems to be dependent on the dose and on the age
of the animals. In young animals, the permeability of the in-
testinal wall is probably higher, and thus the rate of absorption
and bioavailability is increased, which leads to increased ex-
posure to TiO2 NPs [61].

Wang et al. [62], after intragastric administration of TiO2

NPs to mice over 30 days in three doses (5, 50 and 150 mg/kg
bw), observed insignificant damage to the cells of the spleen
(denser and larger lymph follicles in splenic tissue) in animals
exposed to the lowest dose, which was not the case with
higher concentrations. TiO2 NPs caused a significant increase
in the accumulation of reactive oxygen species in the spleen of
mice due to lipid peroxidation. Mohamed [63] administered 5,
50 and 500 mg TiO2 NPs/kg bw to mice orally and found that,
even when the dose was low, TiO2 NPs were permanently
accumulated in mice, which led to inflammation, apoptosis
and oxidative stress, and consequently induced chronic
gastritis.

In most of the existing studies, liver failure was observed in
mice and rats exposed to TiO2 NPs. Bu et al. [64], after oral
administration of TiO2 NPs to rats, observed liver and heart
damage as the consequences of disturbances in energy and
amino acid metabolism and in intestinal microflora. Duan
et al. [56] came to similar conclusions. They observed an
increase in liver ratios and histopathological changes in the
liver after oral administration of TiO2 NPs (5 nm) to mice at
62.5, 125 and 250 mg/kg bw over 30 days.

In three publications, the researchers [Kreyling et al.
65–67] investigated biokinetics and translocation of TiO2

NPs administered via three classical ways (intravenous injec-
tion (40–400 mg/kg), oral administration (30–80 mg/kg) and
injection into the trachea (40–240 mg/kg) in identical labora-
tory conditions. Female rats were administered single doses of
anatase nanoparticles (TiO2 NPs) 48V isotope labelled to en-
sure precise tracking of translocation kinetics and total
biodistribution of 48V-nTiO2 NPs in different tissues over
28 test days. It was found that a single dose administered
orally was 99.7% excreted with faeces whereas 0.3%
remained in the body for at least 7 days and continued to
accumulate in the liver and spleen according to previous stud-
ies [68, 44, 45]. Other results of tests on mice show that oral
administration of 5 mg TiO2 NPs/kg bw (5 days, 10 weeks)
can contribute to intensification of an existing intestinal cancer
(colon cancer) [69].

Literature also recounts cases where TiO2 NPs had no toxic
effect. In the 90-day-long study on oral toxicity, male and
female rats were exposed to TiO2 NPs via gastric tube at 0,
100, 300 and 1000 mg/kg bw/day. No deaths were recorded in
connection with TiO2 NPs and no clinical, ophthalmological
or neurobehavioural changes were observed due to exposure
to TiO2 NPs. In addition, no adverse effects on body weight
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were recorded. The largest examined dose, i.e. 1000 mg/kg
BW/day, did not cause any changes in male and female rats
[49].

Similarly, Warheit et al. [70] did not find any changes in the
body weight of rats after administration of 5 g TiO2 NPs/kg
BW. Other authors [57] studying HT-29 cell cultures did not
find TiO2 NPs to have a cytotoxic effect at different concen-
trations (1–20 mg/cm2) after 6, 24 and 48 h exposure, either.
Table 1 summarises the effect of TiO2 NPs exposure.

Cardiovascular System

Different ways of exposure to nanoparticles can have various
influences on the cardiovascular system. The influence de-
pends on the amounts, dose of exposure, mechanisms and
transfer routes, duration of exposure and the target organ [20].

Some studies showed that TiO2 NPs could be toxic and
have a negative effect on the cardiovascular system. The in-
flammatory response triggered by TiO2 NPs is deemed one of
the main causes for cardiovascular system malfunction.
Increased expression of inflammatory cytokines such as
TNF-α, INF-g and IL- 8 in blood after intake of TiO2 NPs
was observed by Gui et al. [71] and Trouiller et al. [72]. Chen
et al. [20], in their in vivo tests on rats, set forth a hypothesis

that heart damage and inflammatory response could be possi-
ble mechanisms of adverse cardiovascular activity triggered
by TiO2 NPs. They demonstrated that a low dose of TiO2 NPs
could lead to potential undesirable cardiovascular effects after
30 or 90 days of oral exposure. After 90 days of intravenous
administration of TiO2 NPs (0, 2, 10, 50mg/kg), those authors
observed heart arrhythmia manifested in reduced activity of
lactate dehydrogenasis (LDH), α-hydroxybutyrate dehydro-
genase (alpha-HBDH) and creatine kinase (CK). After shorter
exposure to TiO2 NPs (30 days), changes in heart rate (HR)
and blood pressure (BP) could be noted. Savi et al. [73] dis-
covered that intra-breath in vivo administration of the saline
solution containing TiO2 NPs (2 mg/kg) increased the rate of
cardiac conduction, which results in increased likelihood of
developing arrhythmia. Kan et al. [74], in their studies, dem-
onstrated that after inhalation of ultrafine titanium dioxide
(UFTiO2), the heart rate considerably increased and the aver-
age diastolic blood pressure was higher in response to
isoproterenol.

Wang [45] evaluated the toxicity of TiO2 NPs (25 and
80 nm) in adult mice in comparison to fine TiO2 NPs
(155 nm). A fixed dose of 5 g/kg bw was determined accord-
ing to the procedure designed by the Organisation for
Economic Cooperation and Development (OECD). Changes
were identified in the following biochemical parameters in

Table 1 The effect of exposure to NPsTiO2 on the alimentary tract

Model Type NPsTiO2 Dose Exposure time Effect References

Mice Anatase-TiO2 0.324, 648, 972, 1296,
1944, 2592 mg/kg

24 h, 48 h, 7,
14 days

Spleen damage, necrosis of liver cells
and apoptosis, liver fibrosis, swelling
of renal glomeruli

[55]

Rats Anatase-TiO2 2 mg/kg 5 days [57]

Caco-2/HT29-MTX Unknown 106 s/cm2 (low), 108/cm2

(medium) and 1010/cm2

(high)

4 h, 5 days Decrease in the number of microvilli
resulting in a reduction of the surface
area available for absorbtion of
nutrients

[60]

Caco-2BBe1 Food grade
TiO2, isolated from

candy

350 ng TiO2 NPs/cm
2

medium
19–21 days [21]

Mice Anatase TiO2 5, 50 and 150 mg/kg 30 days Insignificant damage to the cells of the
spleen in animals exposed to the
lowest dose. Significant increase in
the accumulation of reactive oxygen
species in the spleen of mice due to
lipid peroxidation

[62]

Mice Mixture of rutile and
anatase

5, 50 and 500 mg/kg 24 h, 7 and
14 days

Apoptosis, oxidative stress, chronic
gastritis

[63]

Rats Unknown 0.16, 0.4 and 1 g/kg 14 days Liver and heart damage as the
consequences of disturbances in
energy and amino acid metabolism
and in intestinal microflora

[64]

Mice Anatase TiO2 62.5, 125 and 250 mg/kg 30 days An increase in liver ratios and
histopathological changes in the liver

[56]

Mice Food-grade TiO2 was
from SENSIENT
COLOURS

5 mg/kg 5 s TiO2 NPs can contribute to
intensification of an existing
intestinal cancer (colon cancer)

[69]
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blood serum: ALT/AST, LDH (alkaline phosphatase (ALT);
aspartate aminotransferase (AST); lactate dehydrogenase
(LDH), which suggested liver damage after exposure to
TiO2 NPs. In addition, nephrotoxicity and pathological renal
lesions could be observed in experimental groups. Rats receiv-
ing nanoparticles 25 and 80 nm in size showed a considerable
change in the activity of LDH and α-HBDH in blood serum
compared to the control group, which suggested cardiac mus-
cle damage. No pathological lesions were found in the heart,
lung, testicle (or ovary) and splenic tissues.

Bu et al. [64] observed that daily oral administration of
TiO2 NPs (160, 400 and 1000 mg/kg) to rats over 14 days
led to disturbances in energy and amino acid metabolism and
in intestinal microflora. They suggested it could cause slight
damage to the liver and the heart. Comparative tests of TiO2

NPs toxicity after 30 days of oral exposure (0, 10, 50,
200 mg/kg BW/day) to 3-week-old (adolescent) and 8-
week-old (adult) rats revealed decreased activity of HBDH
and CK in young rats, which points to potential damage of
the cardiac muscle [44] Hong et al. [75] in their studies in-
volving mice showed that 6 months of exposure to TiO2 NPs
(1.25, 2.5 and 5 mg/kg) caused damage to the cardiac muscle
and pneumonia, which could be a result of disturbed expres-
sion of cytokines connected with Th1 or Th2 in the heart of
mice. Table 2 summarises the effect of TiO2 NPs exposure.

Nervous System. The Brain

Nanoparticles, due to their small size, are able to cross the
blood-brain barrier (BBB). When inhaled, they accumulate
in three different regions of the respiratory tract: the nose

and pharynx, trachea and teeth and lung alveoli. From there,
through sensory nerves [76, 77], they are accumulated mainly
in the areas of the brain such as the olfactory bulb and the
hippocampus [3, 78, 38].

In the brain, TiO2 NPs can cause protein oxidation, oxida-
tive damage [3, 79, 29] and impairment of antioxidative ca-
pacity and increased production of reactive oxygen species
(ROS). Other findings include shrinkage of nuclear envelopes
[38], apoptosis [33], changes in the content of microelements
and macroelements, i.e. copper (Cu), potassium (K) and zinc
(Zn) [80], and upset the BBB [81]. According to test results,
oxidative stress (OS), apoptosis and the inflammatory re-
sponse are the main mechanisms underlying the neurotoxicity
of metallic nanoparticles [42]. Test results show that antioxi-
dants can reverse neurotoxicity of metallic NPs by decreasing
the production of ROS, increasing the activity of antioxidative
enzymes, inhibiting the inflammatory condition and reducing
the share of apoptotic cells [42].

Many studies revealed a toxic effect of TiO2 NPs depend-
ing on the duration of exposure and the dose of NPs. Some
authors [76, 82] observed this relationship in cultured murine
microglia N9 cells. They found that TiO2 NPs could elicit
apoptosis of N9 cells in vitro, and thus present a potential risk
for the central nervous system (CNS). Ze et al. [83] over
90 days administered TiO2 NPs to mice at three doses and
found that NPs could translocate and accumulate in the brain.
They demonstrated that the levels of the superoxide (O2−),
H2O2, carbonyl protein, 8-hydroxy-2′-deoxyguanosine and
malondialdehyde (MDA) in the brain of mice were increased
in all groups compared to the control group. In addition,
changes were identified in the expression of genes associated
with OS in the brain of mice. Long et al. [84] observed that

Table 2 The effect of exposure to NPsTiO2 on the cardiovascular system

Model Type NPsTiO2 Dose Exposure time Effect References

Rats Anatase TiO2 0, 2, 10, 50 mg/kg 30 and 90 days Heart arrhythmia manifested in reduced activity of
LDH, HBDH and CK, changes in heart rate and
blood pressure

[20]

Rats Mixture of anatase
and rutile

2 mg/kg 4 h Increased the rate of cardiac conduction, arrhythmia [73]

Rats Rutile UFTiO2 Areozol 6 mg/m3 4 h Increased heart rate, increased diastolic blood pressure [74]

Mice Unknown 5 g/kg 14 days Considerable change in the activity of LDH and
alpha-HBDH in blood serum, which suggested car-
diac muscle damage. No pathological lesions were
found in the heart, lung, testicle (or ovary) and
splenic tissue

[45]

Rats Unknown 160, 400 and 1000 mg/kg 14 days Disturbances in energy and amino acid metabolism and
in intestinal microflora. It could cause slight damage
to the liver and the heart

[64]

Rats Anatase TiO2 0, 10, 50, 200mg/kg 30 days Decreased activity of HBDH (hydroxybutyrate
dehydrogenase) and CK (creatine kinase), damage
of the cardiac muscle

[44]

Mice Anatase TiO2 1.25, 2.5 and 5 mg/kg Half a year Damage to the cardiac muscle [75]

CK creatine kinase, LDH lactate dehydrogenase, α-HBDH alpha-hydroxybutyrate dehydrogenase), HBDH hydroxybutyrate dehydrogenase
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TiO2 NPs stimulated brain microglia to produce ROS and
disturbed the production of mitochondrial energy. Huerta-
García et al. [85], in their studies, found that TiO2 NPs had a
toxic effect on the glial cells (C6 and U373P) of rats and
humans. Nanoparticles induced morphological changes, dam-
age to mitochondria and increased the mitochondrial mem-
brane potential (MMP). Other researchers [86] after exposure
to TiO2 NPs also observed a decrease in the mitochondrial
membrane potential and the levels of nicotinamide adenine
dinucleotide (NADH), the mitochondrial function and the pro-
duction of ROS duringmitochondrial respiration in rat tissues.

Márquez-Ramírez et al. [33] evaluated the effect of TiO2

NPs on the glial cells of humans (U373) and rats (C6). They
found that, after 96 h of exposure, TiO2 NPs had a toxic effect
on glial cells by inducing their apoptosis, which suggests that
exposure to NPs can lead to brain damage. The study by
Coccini et al. [36] showed that TiO2 NPs had a neurotoxic
effect on human brain lines SH-SY5Y and D384. Both after
short-term (acute) exposure (4, 24, 48 h; 1.5–250 μg/ml) and
long-term exposure (7–10 days; from 0.05 to 31 μg/ml) to
TiO2 NPs, a toxic effect on the studied cell cultures was ob-
served regardless of the dosage.

Wu et al. [87] investigated the cytotoxicity of TiO2

NPs by means of PC12 cells (cells used as a model of
dopaminergic neurons in vitro for the purposes of studies
on neurodegenerative diseases). They observed apoptosis
and inhibited cell cycle in PC12 cells after exposure to
TiO2 NPs. They also noticed that nanoparticles were
more toxic than micrometre particles and that anatase
was more toxic than rutile. Sheng et al. [88] showed that
TiO2 NPs had a cytotoxic effect on primary hippocampal
neurons in 1-day-old foetal rats. Other authors [89]
found that exposure to TiO2 NPs at two doses (0.25,
0.5 mg/ml) over 24 h resulted in decreased cell viability,
increased release of lactate dehydrogenase and apoptosis.
It was also demonstrated that the rate of apoptosis of
neurons varied depending on the dose. In addition,
TiO2 NPs led to an increase in [Ca2 +] and a reduction
in MMP. Those studies suggest that the apoptosis of
hippocampal neurons triggered by TiO2 NPs could be
associated with the mitochondria and the signalling path-
way. The authors suggest that TiO2 NPs contributed to a
considerable increase in cytotoxicity to PC12 cells by
inducing microglial activation.

In their works, the authors emphasise the potential ef-
fect of NPs on neurodegenerative diseases. Hu et al. [90],
using the example of embryos of zebrafish (Danio rerio)
and PC12 cell cultures, investigated the neurotoxicity of
titanium dioxide nanoparticles. They demonstrated that
exposure to TiO2 NPs had an effect on the development
of Parkinson’s disease (PD). The results indicated that
exposure to TiO2 NPs could lead to their accumulation
in the brain of zebrafish larvae. An increase in the

expression of genes (PINK1, parkin, α-syn and UCHL1)
associated with the formation of Lewy bodies was ob-
served. In addition, a loss of dopaminergic neurons could
be noted, which is one of the characteristic features of PD.
Researchers [38] demonstrated that TiO2 NPs accumulat-
ed in the murine hippocampus, which led to apoptosis in
the hippocampus and induced impairment of spatial mem-
ory in mice. Mohammadipour et al. [91] found that after
pregnant rats were administered TiO2 NPs (100 mg/kg
bw), their offspring showed decreased proliferation of
hippocampal cells and impaired spatial memory.
Moreover, both the Morris water maze test and the pas-
sive avoidance test revealed that exposure to TiO2 NPs
considerably distorted the inhibition and learning ability
in the offspring. Jeon [92], to enhance the understanding
of the molecular mechanism at protein level, carried out a
proteomic analysis of protein in the brain of mice. In 11
out of 990 analysed proteins, the level of expression
changed more than twice after exposure to TiO2 NPs:
eight proteins had higher and three lower expression after
exposure to TiO2 NPs. Moreover, the activity of several
antioxidative enzymes and acetylcholine esterase in the
brain was reduced. A reduction in the activity of acetyl-
choline esterase can suggest an increase in cholinergic
activity by raising the level of acetylcholine, which is
significant for the treatment of Alzheimer’s disease [93].
Hu et al. [94] in their studies also observed that the ac-
tivity of acetylcholine esterase was inhibited after
intragastric administration of TiO2 NPs to mice (over
60 days). In addition, they demonstrated a decrease in
neurobehavioural and morphological capacity and brain
damage symptoms in the Y maze test on mice. They also
found inhibited activity of Na (+)/K (+) - ATPase, Ca (2+)-
ATPase, Ca (2+)/Mg (2+) - ATPase, acetylcholine esterase,
impaired function of the central cholinergic system, con-
siderable reduction in the level of monoamine neurotrans-
mitters (norepinephrine, dopamine and its metabolite 3,4-
dihydroxyphenylacetic acid, 5-hydroxytryptamine and its
metabolite 5-hydroxyindoleacetic acid) and an increased
content of acetylcholine, glutamate and nitric oxide.
Table 3 summarises the effect of TiO2 NPs exposure.

Conclusions

Along with global economic growth, our direct or indirect
exposure to metallic nanoparticles has been increasing. With
regard to new properties offered by their small size, nanopar-
ticles (NPs) are incorporated in more and more commercial
products. Regular supply of TiO2 NPs at small doses can
affect the intestinal mucosa, the brain, the heart and other
internal organs, which can lead to an increased risk of devel-
oping many diseases, tumours or progress of existing cancer
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processes. The mechanism behind the nanotoxicity of NPs has
not been discovered yet. Many studies attribute it to oxidative
stress, thus nanotoxicity is still an important area for future
exploration.
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