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Effects of transport memory and nonlinear damping in a generalized Fisher’s equation
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Memory effects in transport require, for their incorporation into reaction-diffusion investigations, a gener-
alization of traditional equations. The well-known Fisher’s equation, which combines diffusion with a logistic
nonlinearity, is generalized to include memory effects, and traveling wave solutions of the equation are found.
Comparison is made with alternative generalization procedures.
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I. INTRODUCTION

Fisher’s equation@1# describes the dynamics of a fie
u(x,t) subject to diffusive transport and logistic growth:

]u

]t
5D

]2u

]x2
1ku~12u/K !. ~1!

This kind of reaction-diffusion equation is relevant in chem
cal kinetics as well as in ecological contexts whereu diffuses
via a diffusion constantD and grows with a linear growth
ratek while the environment imposes a carrying capacityK.
Equation~1! belongs to a family of single component mode
of broad applicability. Fisher proposed it as a determinis
model of the spread of a favored gene in a population@2#.
Other systems in which Eq.~1! plays a significant role in-
clude flame propagation, neutron flux in a nuclear reac
and the dynamics of defects in nematic liquid crystals@1,3–
6#. Work has been done on the propagation of wavel
structures in unbounded systems@6,7#, as well as on the for-
mation of spatial structures in finite geometries@8#.

Diffusion is typically a limit of a more coherent motio
interrupted by scattering events which is valid when the s
tering events are extremely frequent. A useful manner of
scribing situations in which the frequency of scatteri
events is not infinitely large is through the incorporation
memories with finite decay times@9#. An analytical investi-
gation of reaction-diffusion phenomena based on the in
duction of exponential memory in the context of the logis
nonlinearity of the Fisher’s equation, and a piecewise line
ity approximation, was recently given by Manne, Hurd, a
Kenkre ~MHK ! @10#. A number of interesting results ap
peared in that analysis, including a generalization of the
lation between the minimum speed of shock fronts and
system parameters, and the appearance of a speed lim
yond which the fronts would exhibit spatial oscillations.

As stated in Ref.@10#, the generalization of Fisher’s equa
tion is not unique, the one employed in Ref.@10# having been
chosen for analytic tractability. A more natural generalizat
results in a more complex structure of the equation, invol
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a nonlinearity in the damping, and is the subject of t
present paper. Our investigations show that, in the light
the present generalization, some of the interesting pre
tions of Ref.@10# are modified drastically, while others ar
only slightly changed.

Reference@10# first generalized the linear part of Eq.~1!
by incorporating an exponential memory, converted the
sulting integro-differential equation via differentiation into
differential ~specifically the telegrapher’s! equation, and fi-
nally added the nonlinear logistic term to obtain the start
point of the analysis. Here, however, we take as our poin
departure

]u

]t
5DE

0

t

f~ t2t!
]2u

]x2
dt1k f~u!, ~2!

which reduces to Fisher’s equation if the nonlinearity is
gistic and if the memory functionf(t) is a d function in
time. Generally, the decay time off(t) is a measure of the
time between scattering events: we will takef(t) to have a
simple exponential formf(t)5ae2at, where 1/a represents
the scattering time.

Transformation of Eq.~2! into a differential equation is
trivially done by differentiating once with respect to time:

]2u

]t2
1@a2k f8~u!#

]u

]t
5v2

]2u

]x2
1ak f~u!, ~3!

where, as in@10#, we putDa5v2, the physical meaning ofv
being the speed dictated by the medium in the absenc
scattering. This is the speed at which the underlying qu
particle, whose number density or probability density is d
scribed byu(x,t), moves ballistically~coherently! in be-
tween scattering events. If the coherent motion is interrup
too often by scattering, the motion looks diffusive and o
returns to the Fisher limit.

Equation~3! becomes, in the absence of the nonlinear
k50, the well-known telegrapher’s equation@11# suggested
by Lord Kelvin for the description of propagation of transa
lantic telegraph signals. Equation~3! differs from the starting
point of the MHK analysis, viz.,

]2u

]t2
1a

]u

]t
5v2

]2u

]x2
1ak f~u!, ~4!

in a significant way. The former shows that the dampi
coefficient multiplying]u/]t is not constant, and can eve
be negative.
-
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Whereas Eq.~4! is obviously simpler in form than Eq.~3!,
the latter could be argued to stem from a more natural g
eralization of the Fisher equation, involving a simple r
placement of ad-function memory by a finite decay tim
memory in the transport termD]2u/]x2 in Eq. ~1!. We are
interested in comparing the physical consequences of the
generalizations in the context of traveling wave solutio
We do this in two steps. In Sec. II, we give a general analy
of traveling wave solutions without approximating the equ
tion in any way. We investigate the minimum speed of wa
fronts, the existence of spatially oscillatory fronts given
MHK, and give a qualitative description of all the kinds
front shapes that the system can support as a function o
parameters. In a certain regime in parameter space, a
namical stabilization of the unstable state of the logis
equation is observed, with fronts of stateu50 invading the
state u5K. In Sec. III, we replace the nonlinearity by
piecewise linear approximate form and obtain analytic so
tions following the method of MHK. We end with conclud
ing remarks in Sec. IV.

II. NONLINEAR ANALYSIS

We look for waves moving in the direction of increasin
x:u(x,t)5KU(x2ct)5KU(z), wherec is the speed of the
nonlinear wave, generally different from the speed of line
wavesv, dictated by the medium. We are also renormaliz
with respect to the carrying capacityK to simplify the reac-
tion term in the logistic case. With this ansatz, we obt
from Eq. ~3! the following ordinary differential equation:

~v22c2!U91c@a2k f8~U !#U81ak f~U !50. ~5!

For a logistic reaction termf (U)5U(12U) and f 8(U)
5122U, so that Eq.~5! becomes

mU91c~a2k12kU!U81akU~12U !50, ~6!

where we have followed the notation of MHK,m5v22c2,
to emphasize the formal similarity between Eq.~6! and the
equation of motion of a damped oscillator of massm, subject
to the nonlinear force2akU(12U).

A convenient way to analyze the solutions of Eq.~6! is to
write it as a first order system:

U85V[ f ~U,V!,

V85
1

m
@~k2a22kU!cV2akU~12U !#[g~U,V!.

~7!

The system~7! has two equilibria: (U* ,V* )5(0,0) and
(U* ,V* )5(1,0). We can analyze the character of these
looking at the linear behavior in the neighborhood of t
equilibria.

At the equilibrium (0,0) we have the eigenvalues

l75
c~k2a!7A~k2a!2c224kam

2m
. ~8!
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If we assume thatU is a density or a concentration, solution
where U oscillates belowU50 are not allowed. This im-
poses the condition that the eigenvaluesl7 be real, from
which we obtain

c>cmin5v
1

A11
1

4
~y21/y!2

, ~9!

wherey5Aa/k. This relation states that there is a minimu
value of the speed of the nonlinear waves. It is to be co
pared to the known result in the context of Fisher’s equati
cmin52AkD ~see, for example,@1#!. If we make the formal
identificationDa5v2, as in Eq.~3!, we have

c>cmin52vA1/y2. ~10!

Equation~9! is also to be compared to the previously fou
result of Ref.@10#:

c>cmin
MHK5v

1

A11
1

4
y2

, ~11!

Figure 1 displays a comparison of the minimum speedscmin
as a function of the system parametera/k in the three cases
purely diffusive~Fisher limit!, the MHK generalization, and
the present generalization. It can be seen that the two ge
alizations approach asymptotically the behavior of the pur
diffusive situation for large values ofa/k. This is to be ex-
pected sincea→`,v→`,v2/a5D is the diffusive limit of
Eq. ~2!. At low values of the ratioa/k, however, there is a

FIG. 1. The ratio of the minimum speed of nonlinear wavescmin

to the medium-dictated speedv, as a function of the system param
eter a/k, which is the ratio of the scattering rate at which motio
coherence is interrupted to the growth rate. Lower values ofa/k
represent more coherent motion. Three curves are shown:
present generalization~full line!, the MHK generalization of Ref.
@10# ~dashed line!, and the purely diffusive Fisher limit~dotted line!
with D5v2/a.
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notable difference. The finite correlation time generalizatio
allow waves with lower speed than those present in Fish
equation and, in addition, there is no divergence whena/k
→0. Moreover, the present generalization predicts a sha
different behavior in the regiona,k, due to the antidamping
present in Eq.~6!. This growing branch of thecmin function
turns out to have drastic consequences in the nature o
traveling fronts when the system is far from the diffusi
regime. On the one hand, it can be seen that waves
speedc5v are obtained at a finite value of the memo
constanta, namely,a5k. When approaching the ballisti
limit beyond this point, traveling waves are allowed wi
speeds lower thanv. The nature of these will be analyzed
the following discussion.

Around the equilibrium (1,0) the eigenvalues are

m75
2c~k1a!7A~k1a!2c214kam

2m
. ~12!

Oscillations around this equilibrium are in principle possib
as observed in@10#, since there is no impediment to th
solution growing beyondU51. The condition for oscilla-
tions is found from the radicand of the eigenvaluesm7 :

~k1a!2c214ka~v22c2!,0, ~13!

which, after some manipulation, becomes

~a2k!2c214kav2,0. ~14!

Both terms in this relation are positive, implying that th
relation cannot be satisfied by the wave speed for any se
parameters.

A similar analysis can be carried out with Eq.~4!, corre-
sponding to the MHK model. The character of the equilib
for both generalizations is summarized in Tables I and
Note that there is acosc in Table II Case~7!, not present in
the results in Table I because Eq.~14! cannot be satisfied
Different combinations of parameters allow a variety of tra
eling fronts connecting one equilibrium to the other. Ca
~1! to ~7! in Table II are the fully nonlinear equivalents of th
piecewise linear situations analyzed in@10#. The situations
resumed in Table I are discussed below.

Equation~6! can be exploited directly to understand t
nature of the solutions of the traveling wave problem, wi

TABLE I. Character of the equilibria for the possible combin
tions of parameters and wave velocity, according to the genera
tion studied in this paper. The ‘‘case number’’ refers to the disc
sion in the text.

Case no. a,k c (0,0) (1,0)

~1! a.k c,cmin stable spiral saddle
~2! cmin,c,v stable node saddle
~3! v,c saddle unstable node
~4! a,k c,cmin unstable spiral saddle
~5! cmin,c,v unstable node saddle
~6! v,c saddle unstable node
06661
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out obtaining analytical solutions via simplifications. We w
base the following discussion on the mechanical interpre
tion of Eq. ~6!, which can be reinterpreted, following MHK
as describing the motion of a particle of massm in a nonlin-
ear potential, subject to a state-dependent damping that
be positive or negative. Since the mass of the particle
also be positive or negative, depending on whether the
locity c is lower thanv or not, we analyze the two case
separately.

A. cËv

In this case a particle of massm.0 is moving in a po-
tential f(U)5ak(U2/22U3/3) @see Fig. 2~a!#. This poten-
tial has a minimum atU50, but we have ruled out solution
that oscillate around it based on the positivity ofU @these are
cases~1! and~4! in Table I#. Another possible solution is an
overdamped trajectory that connects the equilibrium atU
51 with that atU50. This corresponds to a traveling fron
of the state 1 invading the system at state 0. The damp
coefficient isg5c(a2k12kU). We can see that ifa.k
theng.0 for all values ofU along this trajectory. This is a
solution that connects the saddle with the stable node sh
in case~2! of Table I.

a-
-

TABLE II. Character of the equilibria for the possible combin
tions of parameters and wave velocity, according to the genera
tion studied in@10#.

Case no. a,k c (0,0) (1,0)

~1! a.k c,cmin stable spiral saddle
~2! cmin,c,v stable node saddle
~3! v,c saddle unstable node
~4! a,k c,cmin stable spiral saddle
~5! cmin,c,v stable node saddle
~6! v,c,cosc saddle unstable node
~7! cosc,c saddle unstable spiral

FIG. 2. The potentials and the damping coefficients of the m
chanical analog of Eq.~6!. Cases~a! and ~c! correspond tom.0,
while ~b! and ~d! correspond tom,0.
5-3
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Now, if a,k, the motion is damped on part of the traje
tory @when U.(12a/k)/2, see Fig. 2~c!# and antidamped
on the rest, specifically nearU50. This means that the equ
librium at U50 is unstable, and there is a solution conne
ing it to the equilibrium atU51. It is a trajectory connecting
the unstable node at (0,0) to the stable manifold of the sa
at (1,0) @see Table I, case~5!#. This trajectory corresponds t
a front of state 0 invading the state 1.

B. vËc

In this situationm is negative, so we multiply Eq.~6! by
21, to obtain

umuU92c~a2k12kU!U85akU~12U !. ~15!

Now the particle of massumu moves in the potentialf(U)
52ak(U2/22U3/3) @refer to Fig. 2~b!#, where there is a
stable equilibrium atU51. The sign of the damping coeffi
cient is also reversed, and the motion is always antidam
whena.k. Whena,k, it is always antidamped in the vi
cinity of U51. It can be seen in Table I@cases~3! and ~6!#
that the equilibrium at (0,0) is always a saddle, and the e
librium at (1,0) is always an unstable node. There is a
jectory that connects the unstable node to the stable man
of the saddle, corresponding to a front of state 1 invading
state 0.

We note that, contrary to the generalized telegraph
equation studied in@10#, we do not have here oscillatin
wave shapes@corresponding to the unstable spiral at (1,
shown in Table II#. Also to be remarked are the solution
where the stateU50—which is an unstable state of the lo
gistic equation—invades the stateU51. This stabilization of
the null state has been made possible by interplay of mem
and reaction, through the state-dependent damping co
cient of Eq.~3!.

A phase diagram summarizing these results is show
Fig. 3. A qualitative indication of the nature of the front wa

FIG. 3. The regions in parameter space where different trave
fronts are found. The front shapes are schematic. The numbers
to the cases shown in Table I.
06661
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is given, together with a reference to the cases enumerate
Table I.

III. PIECEWISE LINEARIZATION

Explicit solutions corresponding to the front waves d
scribed above cannot be found in the fully nonlinear situ
tion. However, a piecewise linearization of Eq.~3! can be
made, as in related models of reaction-diffusion proces
~see, for example,@12–14# for excitable systems,@15# for an
electrothermal instability, and the generalization of Fishe
equation found in@10#!. Following @10#, we take the follow-
ing as a reaction function:

f ~U !5H U/a, U<a,

~b2U !/~b2a!, U>a,
~16!

where a,b. With this reaction term, which, incidentally
generalizes somewhat the logistic form~which corresponds
to a5b), the oscillator equations in the traveling wave a
satz~5! become

mU912g1 U81k1
2U50, U<a, ~17!

mU912g2 U81k2
2~b2U !50, U>a, ~18!

where

g15
c

2 S a2
k

aD , g25
c

2 S a2
k

b2aD , ~19!

k1
25

ak

a
, k2

25
ak

b2a
. ~20!

Suppose that we are looking for a front solution that
terpolates fromU5b asz→2` to U50 asz→`. Without
loss of generality, we takeU5a at z50. We look for solu-
tions of two oscillators: one to the right ofz50, and one to
the left of z50. We define the following variables:

UR~z!5U~z!, z>0, ~21!

UL~2z!5b2U~z!, z>0.

Equations~17! and ~18! become

mUR912g1 UR81k1
2UR50, ~22!

2mUL912g2 UL81k1
2UL50. ~23!

The wave front shape, which is a solution to Eqs.~17! and
~18!, can be easily found in terms of exponentials, by mat
ing solutions of Eqs.~22! and ~23! and their derivatives on
either side ofz50. In some cases, one of the solutions
Eqs. ~22! or ~23! contains a growing exponential, and th
corresponding factor has to be set to zero to avoid
bounded growth. Examples of all the cases described in
previous section are shown in Fig. 4, within this piecew
linear scheme. The solutions have been arbitrarily shifted

g
fer
5-4
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the variablez5x2ct to avoid superposition of the curves. I
the model linearized according to Eq.~16!, the regimes of
damping and antidamping of Eq.~5! are separated by th
conditiona52k, which is used in the figure caption to cla
sify the curves.~The condition separating the damping fro
the antidamping regimes isa5k/a in the piecewise linear
model, instead of thea5k of the fully nonlinear model.!

IV. CONCLUSIONS

Reaction-diffusion systems in which the transport proc
is wavelike at short times and diffusive at long times are
focus of the present investigation. This passage of the c
acter of the motion from coherent to incoherent is a gen
feature of all physical systems and may be represented
memory function whose decay time~or correlation time! rep-
resents the demarkation. We have analyzed here a gen
zation of Fisher’s reaction-diffusion equation which has
logistic nonlinearity describing the reaction process. O
study has centered on traveling wave solutions. From a
ments without approximation we have found a generaliza
of the known Fisher’s equation result regarding the minim
speed of the traveling waves. While the generalization c
verges to the Fisher’s equation result in the limit of diffusi
transport~memory that decays infinitely fast!, sharp differ-
ences occur in the wavelimit~see Fig. 1!: solutions are found
to be possible involving ‘‘inverse’’ fronts, in which the sta
U50 invades the stateU51 ~see Fig. 3!. We have also
found explicit analytic solutions~typical cases plotted in Fig
4! via the piecewise linearization introduced for this proble
elsewhere@10# and pointed out a number of differences
the predictions arising in our present analysis. Some of th
differences are expected but at least one of them is sur
ing: solutions that oscillate spatially when they have a sp
above a certain value~calledcosc in Ref. @10#; see also Table
II ! predicted in Ref.@10# are found to disappear in th
present analysis, which can be argued to be a more na

FIG. 4. Front waves in the piecewise linear version of t
model.a,2k anda.2k correspond to the two distinct regimes
damping or antidamping in this linearized model. We have ta
a51/2 andb51.
06661
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generalization of Fisher’s equation to include wavelike tra
port. There are a number of issues, such as the stability o
solutions against perturbations introduced into the syst
which will be studied in future investigations.

The introduction of memory functions@9# into the analy-
sis of reaction-diffusion systems was made by Manne, Hu
and Kenkre@10# to allow the description of coherent aspec
of motion which are always present at short enough tim
and equivalently to avoid problems associated with the i
nite propagation speed characteristic of diffusion equatio
A more recent analysis@16# with the same motivation ha
proposed two generalizations of Eq.~1!—one in discrete
time and one in continuous time—that involve a long-ran
interaction or spread in the fieldu. In that analysis the prob
lem of the asymptotic speed of fronts was studied: it w
shown that the speed of propagating fronts~in the discrete
system! is also smaller than the result of Fisher’s equatio
and indeed it is bounded instead of diverging when the re
tion rate diverges.

We mention in passing the problem of what kind of initi
conditions eventually evolve into a traveling front. The ge
eral problem can be very difficult, but a simplified treatme
is possible as follows. Consider that the initial state has
behavior u(x,0);Ae2ax for x→`. Correspondingly, we
suppose that the leading edge of the traveling wave has
form

u~x,t !5Ae2a(x2ct), ~24!

with a andA arbitrary.
We substitute this into the differential equation, and su

pose that, at the leading edge,u'0:

~ac!2u1aacu2kacu1o~u2!5v2a2u1aku1o~u2!.
~25!

Disregarding the terms inu2 we arrive at a dispersion rela
tion betweenc anda:

c5
k2a

2a
6A~a1k!2

4a2
1v2. ~26!

The negative sign before the square root in this expres
leads to negativec, and can be disregarded. The express
with the positive sign gives the speed of the front wave t
will eventually develop from an initial condition that has a
exponential decay of coefficienta.
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