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Memory effects in transport require, for their incorporation into reaction-diffusion investigations, a gener-

alization of traditional equations. The well-known Fis

her’s equation, which combines diffusion with a logistic

nonlinearity, is generalized to include memory effects, and traveling wave solutions of the equation are found.
Comparison is made with alternative generalization procedures.
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I. INTRODUCTION

Fisher's equatiorf1] describes the dynamics of a field
u(x,t) subject to diffusive transport and logistic growth:
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This kind of reaction-diffusion equation is relevant in chemi-
cal kinetics as well as in ecological contexts whewiffuses
via a diffusion constanD and grows with a linear growth
ratek while the environment imposes a carrying capaéity
Equation(1) belongs to a family of single component models

of broad applicability. Fisher proposed it as a deterministic

model of the spread of a favored gene in a populaf@n
Other systems in which Eq1) plays a significant role in-

PACS nunid)er05.45—-a, 82.40.Ck, 82.40.Np, 87.23.Cc

a nonlinearity in the damping, and is the subject of the
present paper. Our investigations show that, in the light of
the present generalization, some of the interesting predic-
tions of Ref.[10] are modified drastically, while others are
only slightly changed.

Referencd 10] first generalized the linear part of E(.)
by incorporating an exponential memory, converted the re-
sulting integro-differential equation via differentiation into a
differential (specifically the telegraphej’'squation, and fi-
nally added the nonlinear logistic term to obtain the starting
point of the analysis. Here, however, we take as our point of
departure

d%u
—2d7+ kf(u),
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which reduces to Fisher’s equation if the nonlinearity is lo-
gistic and if the memory functiorb(t) is a & function in

clude flame propagation, neutron flux in a nuclear reactoriime. Generally, the decay time @f(t) is a measure of the

and the dynamics of defects in nematic liquid crysfal8—

time between scattering events: we will tafét) to have a

6]. Work has been done on the propagation of wavelikesimple exponential forng(t) = ae™ ', where 14 represents

structures in unbounded systef8s7], as well as on the for-
mation of spatial structures in finite geometri&s.
Diffusion is typically a limit of a more coherent motion

interrupted by scattering events which is valid when the scat-
tering events are extremely frequent. A useful manner of de-

scribing situations in which the frequency of scattering
events is not infinitely large is through the incorporation of
memories with finite decay timg®]. An analytical investi-
gation of reaction-diffusion phenomena based on the intro
duction of exponential memory in the context of the logistic
nonlinearity of the Fisher’s equation, and a piecewise linear
ity approximation, was recently given by Manne, Hurd, and
Kenkre (MHK) [10]. A number of interesting results ap-
peared in that analysis, including a generalization of the re

lation between the minimum speed of shock fronts and the
system parameters, and the appearance of a speed limit qQ;

yond which the fronts would exhibit spatial oscillations.
As stated in Ref{10], the generalization of Fisher’s equa-
tion is not unique, the one employed in Rgf0] having been

the scattering time.
Transformation of Eq(2) into a differential equation is
trivially done by differentiating once with respect to time:

é°u o du %

pe +[a—kf (u)]at =v P + akf(u), 3
where, as if10], we putD a=v?, the physical meaning of
being the speed dictated by the medium in the absence of
scattering. This is the speed at which the underlying quasi-
particle, whose number density or probability density is de-
scribed byu(x,t), moves ballistically(coherently in be-
tween scattering events. If the coherent motion is interrupted
too often by scattering, the motion looks diffusive and one
returns to the Fisher limit.

Equation(3) becomes, in the absence of the nonlinearity,
0, the well-known telegrapher’s equatiptil] suggested

by Lord Kelvin for the description of propagation of transat-
lantic telegraph signals. Equati¢®) differs from the starting
point of the MHK analysis, viz.,

chosen for analytic tractability. A more natural generalization

results in a more complex structure of the equation, involves
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in a significant way. The former shows that the damping
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be negative.
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Whereas Eq(4) is obviously simpler in form than Eq3), L

1.4 i
the latter could be argued to stem from a more natural gen: | |
eralization of the Fisher equation, involving a simple re- 121 i
placement of as-function memory by a finite decay time I
memory in the transport teri d%u/dx? in Eq. (1). We are 1.0 _

interested in comparing the physical consequences of the twi
generalizations in the context of traveling wave solutions. ., 98
We do this in two steps. In Sec. Il, we give a general analysis~ [
of traveling wave solutions without approximating the equa- 6
tion in any way. We investigate the minimum speed of wave 4 |
fronts, the existence of spatially oscillatory fronts given by _ with memory (MHK)
MHK, and give a qualitative description of all the kinds of 0.2
front shapes that the system can support as a function of th
parameters. In a certain regime in parameter space, a dy 0-001 — 1' —— 1'0 — ""1'00
namical stabilization of the unstable state of the logistic ’

equation is observed, with fronts of state0 invading the o'k

stateu=K. In Sec. Ill, we replace the nonlinearity by a FIG. 1. The ratio of the minimum speed of nonlinear waegs,

piecewise linear approximate form and obtain analytic solutg the medium-dictated speed as a function of the system param-
tions following the method of MHK. We end with conclud- eter a/k, which is the ratio of the scattering rate at which motion

with memory (this generalization)

........ purely diffusive

ing remarks in Sec. IV. coherence is interrupted to the growth rate. Lower valueg/&f
represent more coherent motion. Three curves are shown: the
Il. NONLINEAR ANALYSIS present generalizatiotfull line), the MHK generalization of Ref.

[10] (dashed ling and the purely diffusive Fisher limitotted ling

We look for waves moving in the direction of increasing with D=v?/ a.
x:u(x,t)=KU(x—ct)=KU(z), wherec is the speed of the
nonlinear wave, generally different from the speed of lineardf we assume that is a density or a concentration, solutions
wavesv, dictated by the medium. We are also renormalizingwhere U oscillates belomJ=0 are not allowed. This im-
with respect to the carrying capaciyto simplify the reac- poses the condition that the eigenvalues be real, from
tion term in the logistic case. With this ansatz, we obtainwhich we obtain
from Eq. (3) the following ordinary differential equation:

1
(v2—c®)U"+c[a—kf' (U)JU' +akf(U)=0. (5)

C=Cmin=v ) 9
1 2
For a logistic reaction ternfi(U)=U(1—-U) andf’(U) V 1+ Z(y—l/y)

=1-2U, so that Eq(5) becomes

wherey = \/a/k. This relation states that there is a minimum
value of the speed of the nonlinear waves. It is to be com-
pared to the known result in the context of Fisher’s equation:
cmin=2kD (see, for exampld1]). If we make the formal
identificatonDa=v?, as in Eq.(3), we have

mU"+c(a—k+2kU)U’+ akU(1-U)=0, (6)

where we have followed the notation of MHIKy=v?—c?,
to emphasize the formal similarity between E6) and the
equation of motion of a damped oscillator of masssubject

to the nonlinear force- akU(1—U). >c.. =20JIN2 10
A convenient way to analyze the solutions of Eg).is to C=Cmin=20 VIN". (10
write it as a first order system: Equation(9) is also to be compared to the previously found
, result of Ref.[10]:
U’ =V=£(U,V),

1 S (11

V'= (k= a—2kU)cV—akU(1-U)]=g(U,V). min 1

LI\

@ Ty

Thf SXStemW) has two equilibria: U*,V*)=(0,0) and  Figure 1 displays a comparison of the minimum speggls
(U*,V*)=(1,0). We can analyze the character of these bys a function of the system parametek in the three cases:
looking at the linear behavior in the neighborhood of thepyrely diffusive (Fisher limit, the MHK generalization, and

equilibria. the present generalization. It can be seen that the two gener-
At the equilibrium (0,0) we have the eigenvalues alizations approach asymptotically the behavior of the purely
B — diffusive situation for large values at/k. This is to be ex-
xi:c(k—a)+ V(k—a)%c®~4kam (g  Pected sincer—,v—»,0%/a=D is the diffusive limit of
- 2m ' Eqg. (2). At low values of the ratiaw/k, however, there is a
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TABLE |. Character of the equilibria for the possible combina- ~ TABLE Il. Character of the equilibria for the possible combina-
tions of parameters and wave velocity, according to the generalizaions of parameters and wave velocity, according to the generaliza-
tion studied in this paper. The “case number” refers to the discustion studied in[10].
sion in the text.

Case no. a,k c (0,0) (1,0)
Case no. a,k c (0,0) (1,0) :

(8] a>k c<Cnin stable spiral saddle
(1) a>KkK Cc<Cmin stable spiral saddle (2 Cmin<C<v  stable node saddle
(2 Cmin<c<v stable node saddle 3) v<c saddle unstable node
(3 v<c saddle unstable node (4) a<k C<Cpin stable spiral saddle
(4) a<k C€<Cmin unstable spiral saddle (5) Cmin<C<v  stable node saddle
(5) Cmin<C<v unstable node saddle (6) v<C<Cysc saddle unstable node
(6) v<c saddle unstable node 7) Cosc<C saddle unstable spiral

notable difference. The finite correlation time generalizationsout obtaining analytical solutions via simplifications. We will
allow waves with lower speed than those present in Fisher'gase the following discussion on the mechanical interpreta-
equation and, in addition, there is no divergence whék  tion of Eq. (6), which can be reinterpreted, following MHK,
—0. Moreover, the present generalization predicts a sharplys describing the motion of a particle of massn a nonlin-
different behavior in the regioa <k, due to the antidamping ear potential, subject to a state-dependent damping that can
present in Eq(6). This growing branch of they,, function  be positive or negative. Since the mass of the particle can
turns out to have drastic consequences in the nature of thlso be positive or negative, depending on whether the ve-
traveling fronts when the system is far from the diffusive jocity ¢ is lower thanv or not, we analyze the two cases
regime. On the one hand, it can be seen that waves witBeparately.
speedc=v are obtained at a finite value of the memory
constante, namely,a=Kk. When approaching the ballistic

limit beyond this point, traveling waves are allowed with

speeds lower than. The nature of these will be analyzed in  In this case a particle of mass>0 is moving in a po-

A. c<v

the following discussion. tential p(U) = ak(U?/2—U?3/3) [see Fig. 2a)]. This poten-
Around the equilibrium (1,0) the eigenvalues are tial has a minimum at) =0, but we have ruled out solutions
that oscillate around it based on the positivitylbfthese are
—c(k+a) ¥ (k+ a)?c®+ 4kam cased1) and(4) in Table I]. Another possible solution is an
K== om : 12 overdamped trajectory that connects the equilibriumUat

=1 with that atU=0. This corresponds to a traveling front

Oscillations around this equilibrium are in principle possible,of the state 1 invading the system at state 0. The damping
as observed iff10], since there is no impediment to the coefficient isy=c(a—k+2kU). We can see that ite>k

solution growing beyondJ=1. The condition for oscilla- theny>0 for all values ofU along this trajectory. This is a
tions is found from the radicand of the eigenvalyes: solution that connects the saddle with the stable node shown

in case(2) of Table I.

(k+ a@)?c?+ 4ka(v?—c?) <0, (13
which, after some manipulation, becomes (a) (b)
(a—k)2c?+4kav?<0, 1 ¢ ¢

Both terms in this relation are positive, implying that the
relation cannot be satisfied by the wave speed for any set o

parameters. ! N
A similar analysis can be carried out with Ed), corre- 4 2
sponding to the MHK model. The character of the equilibria (c) (1-a/k)/2 (d)
for both generalizations is summarized in Tables | and II. 0 /
Note that there is & in Table Il Case(7), not presentin Y (1-a/k)/2 Y
the results in Table | because E{4) cannot be satisfied. 0 \ 2

Different combinations of parameters allow a variety of trav-
eling fronts connecting one equilibrium to the other. Cases

(1) to (7) in Table Il are the fully nonlinear equivalents of the 0 U 1 0 U 1
piecewise linear situations analyzed[it0]. The situations
resumed in Table | are discussed below. FIG. 2. The potentials and the damping coefficients of the me-

Equation(6) can be exploited directly to understand the chanical analog of Eq(6). Cases(@) and (c) correspond tan>0,
nature of the solutions of the traveling wave problem, with-while (b) and(d) correspond tan<<0.
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1 T T T is given, together with a reference to the cases enumerated in
1.2 (6) 3) 1  Tablel
10 o e R T lll. PIECEWISE LINEARIZATION
oslL i Explicit solutions corresponding to the front waves de-
I 2 ] scribed above cannot be found in the fully nonlinear situa-
06 | tion. However, a piecewise linearization of E@) can be
\Q made, as in related models of reaction-diffusion processes
04 I ) (see, for exampld,12—14 for excitable systemg;15] for an
T (1) ] electrothermal instability, and the generalization of Fisher’s
T — 3 equation found iff10]). Following[10], we take the follow-
0.2 1  ing as a reaction function:
0.0 R AT S . Ula, U<a, 16
0.1 1 10 =
Ik ) (b—U)/(b—a), U=a, (16
a

FIG. 3. The regions in parameter space where different travelindvhere a<b. With this reaction term, which, incidentally,

fronts are found. The front shapes are schematic. The numbers refdf€ralizés somewhat the logistic formhich corresponds
to the cases shown in Table 1. to a=b), the oscillator equations in the traveling wave an-

satz(5) become

Now, if @<k, the motion is damped on part of the trajec-
tory [when U>(1-a/k)/2, see Fig. &)] and antidamped
on the rest, specifically ne&alr=0. This means that the equi-
librium at U=0 is unstable, and there is a solution connect-
ing it to the equilibrium atJ=1. It is a trajectory connecting where
the unstable node at (0,0) to the stable manifold of the saddle
at (1,0)[see Table I, caséb)]. This trajectory corresponds to

mU"+2y, U’ +k2U =0, Us<a, (17

mU"+2y, U’ +k3(b—U)=0, U=a, (18

a front of state 0 invading the state 1 _¢ K _S X 19
g : n=zla-3z], rve=5le- g5 (19
o<
B.v<c , ak , ak
In this situationm is negative, so we multiply Ed6) by ki=0 k=p—5 (20
—1, to obtain
Im|U"—c(a—k+2kU)U' = akU(1—U). (15) Suppose that we are looking for a front solution that in-

terpolates fromJ=hb asz— — to U=0 asz—o0. Without

) . ) loss of generality, we takel=a atz=0. We look for solu-
Now the particle of masgm| moves in the potentiab(U)  tions of two oscillators: one to the right a0, and one to

= —ak(UZ./Z—.U3/3) [refer to Fig. 2b)], where there is @ the |eft of z=0. We define the following variables:
stable equilibrium atU=1. The sign of the damping coeffi-

cient is also reversed, and the motion is always antidamped Ur(2)=U(2), z=0, (21)
when a>k. When a<k, it is always antidamped in the vi-
cinity of U=1. It can be seen in Table[taseq3) and (6)] U (—2)=b—U(z), z=0.

that the equilibrium at (0,0) is always a saddle, and the equi-
librium at (1,0) is always an unstable node. There is a traEquations(17) and(18) become
jectory that connects the unstable node to the stable manifold

of the saddle, corresponding to a front of state 1 invading the mUg+ 2y, Up+k2Ug=0, (22
state O.
We note that, contrary to the generalized telegrapher’s -mU/+2y, U + k"{U L=0. (23

equation studied if10], we do not have here oscillating
wave shapes$corresponding to the unstable spiral at (1,0) The wave front shape, which is a solution to E¢fs7) and
shown in Table I]. Also to be remarked are the solutions (18), can be easily found in terms of exponentials, by match-
where the staté) =0—which is an unstable state of the lo- ing solutions of Eqs(22) and (23) and their derivatives on
gistic equation—invades the stdfie=1. This stabilization of  either side ofz=0. In some cases, one of the solutions of
the null state has been made possible by interplay of memortfgs. (22) or (23) contains a growing exponential, and the
and reaction, through the state-dependent damping coeffcorresponding factor has to be set to zero to avoid un-
cient of Eq.(3). bounded growth. Examples of all the cases described in the
A phase diagram summarizing these results is shown iprevious section are shown in Fig. 4, within this piecewise
Fig. 3. A qualitative indication of the nature of the front wave linear scheme. The solutions have been arbitrarily shifted in
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generalization of Fisher’s equation to include wavelike trans-
port. There are a number of issues, such as the stability of the
solutions against perturbations introduced into the system,
which will be studied in future investigations.

The introduction of memory functior[®] into the analy-
sis of reaction-diffusion systems was made by Manne, Hurd,
and Kenkreg[10] to allow the description of coherent aspects
of motion which are always present at short enough times,
and equivalently to avoid problems associated with the infi-
nite propagation speed characteristic of diffusion equations.
A more recent analysigl6] with the same motivation has
proposed two generalizations of E(l)—one in discrete
time and one in continuous time—that involve a long-range
interaction or spread in the field In that analysis the prob-
lem of the asymptotic speed of fronts was studied: it was
shown that the speed of propagating frofits the discrete
system is also smaller than the result of Fisher’s equation,
and indeed it is bounded instead of diverging when the reac-

0.8 |

U 04

0.0

FIG. 4. Front waves in the piecewise linear version of the

del.a<2k anda> 2k d to the two distinct regimes of 1072t diverges.
MOdel. a= sk anda > 2K Correspond to the two distinct regimes ot \ye mention in passing the problem of what kind of initial
damping or antidamping in this linearized model. We have taken

a=1/2 andb=1 conditions eventually evolv_e _into a traveli_ng f_r(_)nt. The gen-

’ eral problem can be very difficult, but a simplified treatment
is possible as follows. Consider that the initial state has the
behavior u(x,0)~Ae®* for x—o. Correspondingly, we
suppose that the leading edge of the traveling wave has the
form

the variablez=x— ct to avoid superposition of the curves. In
the model linearized according to E(L6), the regimes of
damping and antidamping of E@5) are separated by the
conditiona= 2k, which is used in the figure caption to clas-
sify the curves(The condition separating the damping from
the antidamping regimes i@=k/a in the piecewise linear
model, instead of thee=k of the fully nonlinear model.

u(x,t)=Ae akx-cv, (24)

with a and A arbitrary.

We substitute this into the differential equation, and sup-
pose that, at the leading edges O:

Reaction-diffusion systems in which the transport process
is wavelike at short times and diffusive at long times are the (ac)?u+ aacu—kacu+o(u?)=v?a?u+ aku+o(u?).
focus of the present investigation. This passage of the char- (25
acter of the motion from coherent to incoherent is a general
feature of all physical systems and may be represented by Risregarding the terms in? we arrive at a dispersion rela-
memory function whose decay tinfer correlation timg¢rep-  tion betweenc anda:
resents the demarkation. We have analyzed here a generali-
zation of Fisher’s reaction-diffusion equation which has a K— 2

.y . i . . a (at+k)
logistic nonlinearity describing the reaction process. Our c= + 4/ +v2. (26)
study has centered on traveling wave solutions. From argu- 2a 4a”
ments without approximation we have found a generalization
of the known Fisher’s equation result regarding the minimumThe negative sign before the square root in this expression
speed of the traveling waves. While the generalization conleads to negative, and can be disregarded. The expression
verges to the Fisher’s equation result in the limit of diffusive with the positive sign gives the speed of the front wave that
transport(memory that decays infinitely fastsharp differ-  will eventually develop from an initial condition that has an
ences occur in the wavelimisee Fig. L solutions are found exponential decay of coefficieat
to be possible involving “inverse” fronts, in which the state
U=0 invades the statt&/=1 (see Fig. 3 We have also
found explicit analytic solution&ypical cases plotted in Fig.
4) via the piecewise linearization introduced for this problem This work was supported in part by the Los Alamos Na-
elsewhereg[10] and pointed out a number of differences in tional Laboratory via a grant made to the University of New
the predictions arising in our present analysis. Some of thes@lexico (Consortium of the Americas for Interdisciplinary
differences are expected but at least one of them is surpricience and by the National Science Foundation’s Division
ing: solutions that oscillate spatially when they have a speedf Materials Research via Grant No. DMR0097204. G.A.
above a certain valu@alledc,. in Ref.[10]; see also Table acknowledges the support of the Consortium of the Americas
II) predicted in Ref.[10] are found to disappear in the for Interdisciplinary Science and the hospitality of the Uni-
present analysis, which can be argued to be a more naturaeérsity of New Mexico.
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