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ABSTRACT

‘We examine the Galerkin (inecluding single-mode and Lorenz)
equations for convection in a sphere to determine which physi-
cal processes are neglected when th: eqguations of motion are
truncated toc severely. We test .ur conclusions by calculating
solutions to the equations of motion for different values of
+he Rayleigh number and for different values of the limit of
the horizontal spatial resolution. We show that the transitions
from steady-state to periodic, then to aperiodic convection
depend not only on the Rayleigh number but also very strongly
on the horizontal resolution. All of our models are well-
resolved in the vertical direction, so the transitions do not
appear to be due to poorly resolved boundary-layers. One of the
effects of truncation is to enhance the high wavenumber end of
the kinetic energy and thermal variance spectra. Our numerical
examples indicate that as long as the kinetic energy spectrum
decreases with wavenumber, a truncation gives a qualitatively

correct solution.

= JUNIP P
e e o g SR T o S SR o e i+ R 5 e o S



T e G A

¢ Yo S S i - e e R PR T SR R o P R T B 5 ey i e+ 5 < e et e = £ R B T R R e

REPRODUCIBILITY OF THE
r. INTRoDUCTION CPMGINAL PAGE IS POOR

In Rayleigh-Bernard convection, discrete transitions from
steady-state to periodic to aperiodic convection have been experi-
mentally observed. (See the recent reviews by Fenstermacher et al.
1978 and Busse 19878.) As the Rayleigh number is increased and the
fluid becomes more "turbulent", the Fourier spectrum (in time) of
the velocity develops a single spike (and its overtones) and
sho&s a gradual increase of the broad band background noise

that eventually overwhelms the spikes. Although the transitions

depend not only on the Rayleigh number but also on the

Prandtl number and initial conditions, there has recently been

much interest in trying to compute these transitions
from the actual equations of motion.

In attempting to compute time-dependent numerical soluticns
to the three-dimensional Navier-Stokes equation,one is forced to
make severe approximations. When simplifying the equations of
motion to make them numerically tractable,one hopes to esta-
blish a compromise so that the modified equations are uncompli-
cated enough to be easily solved, yet complete
enough that the underlying physics of the fluid dynamics is
not lost.

The crudest approximation is the Lorenz (1863) model. The
Lorenz model predicts not only the transitions to steady-state
and time~dependent convection, but also a sequence of bifurca-
tions that eventually leads to chaotic (aperiodic) behavior.

For low Rayleigh numbers near the onset of convection the heat

flux (Nusselt number) predicted by the Lorenz model is in fair
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agreement with laboratory results. As the Rayleigh number increases,

the calculated and experimentally observed Nusselt numbers begin ) :

to> differ. When the Rayleigh number is as large as the one at
whici the Lorenz model'predicts a transition to chaos, there is
an appreciable difference between theoretical and experimental
values of the heat flux and one must seriously qua2stion the quali-
tative behavior of the time-dependency of the solution. MclLaughlin
and Martin (1975) have expanded the Lorenz model to four inter-
acting modes and have found suppert of the Rouelle-Takens (1971)
theory of turbulence,which states that after no more than three
bifurcations to a periodic or quasi-periodic state there should
be a transition to aperiodicity. The fundamental gquestion to be
answered, of course, is whether the qualitative time dependence

of these equations is due to the underlying physics that these
equations are trying to model or whether bifurcaticns are a
general property of sets of severely truncated nonlinear differen-
tial equations. A truncation of the governing equations of con-
vection that is less severe than Mclaughlin and Martin's treat-
ment in the radial direction is single-mode theory (Gough et al.,
1975). Single-mode theory has only one horizontal mode

so has less horizontal resolution than Mclaughlin and Martin's
t-mode solution. Surprisingly, the numerical solutions to the
single-mode equations (Toomre et al., 1977) do not exhibit bifur-
cations to periodic or aperiodic states and are time-independent
for all Rayleigh numbers. Numerical solutions to a truncated
Galerkin expansion of the equations of convection that is less

severe than both single-mode theory and McLaughlin and Martin's
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equations have been computed by this author (Marcus 1980a, 1980b),
in which not just one but several horizontal modes of the expan-
sion are retained. TFor steady-state convection the results are
in good agreement with single-mode calculations. However, at lar-
ger Rayleigh numbers we find that the solutions become periodic
in time and,as the Rayleigh number is increased further, aperio-
dic in time. For some Rayleigh numbers that produce steady-
state solutions, we find (holding the Rayleigh number and the
resolution in the radial direction fixed) that as we decrease
the number of horizontal medes in the Galerkin expansion, there
is a transition from steady-state convection to a solution that
is periodic in time. As the number of modes is decreased still
further, the solutions become aperiodic. Obviously, the bifur-
cations depend not only on the Rayleigh number, Prandtl number
geometry and initial conditions, but also on the horizontal
resolution of the equations of motion.

In trying to understand mathematically the bifurcation
sequence of a truncated representation of the equations of motion,
it is easy to 1lose sight of what is physically happening in
the fluid. Therefore, the purpose of this paper is to examine
the solutions to truncated modal equations for convection in a
sphere and to determine which qualitative features of the solu-
tions represent real physical processes in the fluid and which
features are due solely to the effects cf truncation.

In section 2 of this paper we briefly review the Galerkin

multi-mode equations (including single-mcde and Lorenz) for
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spherical convection. We attempt to describe the physics that
each system of equations models, which physical processes are
neglected by the various truncation schemes, and what artifi-
cial constraints each model imposes on its solutions. In the
third section we present the results of our multi-mode calcula-
tions for two different values of the Rayleigh number. For
each Rayleigh number we compute several models, each with a
different degree of horizontal truncation. By computing how
the energy spectra, convective flux,ard temperature gradient
change as a functior. of *the severity of truncation,we provide
a possible explanation for the time-dependence of our solutiens.
Qur conclusions appear in section 4.
II. APPROXIMATIONS NEEDED FOR TEE LORENZ,
SINGLE-MODE AND MULTI-MODE MODELS

Convection in a Boussinesq fluid is governed by the Navier-
Stokes, continuity and thermal diffusion equations, and the
Boussinesq equation of state. (See,for example, Chandrasekhar,
1961). A standard technique used to simplify these coupled,
nonlinear, partial differential equations is the Galerkin method.
The thermodynamic quantities and velocity are expanded as an
infinite sum of coefficients multiplied by orthonormal functions
and substituted into the governing equations. Then, depending
on how many of the coefficients are solved and how many are
arbitrarily set equal to zero, one arrives at a Lorenz, single-

mode, or multi-mode model.
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A) Review of the Multi-Mode Equations

Let us consider convection in a self-gravitating sphere of
Boussinesq fluid with thermal expansion coefficient a, heat
capacity Cp, kinematic viscosity v, thermal diffusivity k,
radius d, and a heat source H(r) in the fluid. Each
scalar quantity, such as the temperature,is written as a

sum of its mean,<T(r,t)>,and fluctuating, T(r,9,¢,t), parts where

<T(r,t)> = JrI%r,6,¢,t) dQ/um (2.1)
and A ' L

- 1/2 2: 2,m
T (r,8,6,t) =2(27) 4o1 v [TR . m(r,t) Re(Y™*™)

- - 1] ]

L,m
+ TI,Q,m(r’t) Im (Y"*™)]
-1/2 £,0
+ 2 TR,2,0(Tt) Y77 (2.2)

9

Re(Yz’m) and Im(Yn’m) are the real and imaginary parts of the
of the spherical harmonic. The velocity is written as a sum
of its poloidal Yy and toroidal v, parts which are derived from

scalar fields w and ¢

2
vy = ¥ [3(rw)/8r] - (rV7w) & (2.3)

<
"

vp = r7 x (Y8 ) (2.4)

Substituting expressions (2.3) and (2.4) into the equa-
~ions of motion yields the equations for the coefficients for
the temperature, T, pressure, P, gravita*ional potential, ¢,

and velocity, v (Marcus, 1980a):
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where i)g is the differential operator defined by its action on

the scalar, f:

27: (£) = [az(rf)/ar2 - 2(R+1) £/r)/> (2.12)
and where;i(r) is the luminosity

r

I(r) s 4r f <H> v 2 ar! (2.13)

(2]

In equations (2,5) - (2.11),Rs & aGd3;t£d)/3k2vCP is the Rayleigh
number, Pr £ v/k is the Prandtl number and Yy stands for either
R or I.

In equations (2 §) = (2.13) the unit of time is k/d2
length is d, mass is pd3 and temperature lsJ:(d)/uan k.
Equations (2.5) - (2.10) may be thought of as the governing
equations for each eddy or mode (v,2,m) that make up the total
velocity field. The nonlinear terms in equations (2.5) - (2.13)
such as {rar'tx'V)xj}y,l,m are the eddy-eddy interaction terms,
with contributions from all other pairs of modes (y',2',m')
and (y",2",m") that obey certain selection rules. The selection
rules and the explicit expressions for the nonlinear inter-
actions are given in a previous paper (Marcus 1979) in terms of
Wigner-3j symbols. For a sphere with an impermeable, stress-

free boundary the velocity is constrained at r=1 so that:

1) = (2. 1)
u-(,ﬂ.,m (1) =13
.2 2 o | 2.15)
- QY’z,n / a- !:‘21 0 (60
Y &I !/ vy Y = (A 15>
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We also require that the surface be isothermal:

Ty,g’m (L) =0 . (2.17)
We are free to choose the mean Ttemperature to be zero
at rsl:

<T(r=l)> = 0 . (2.18)

However the gradient of the mean temperature (and therefore

the flux) at r=l is free to vary. The central temperature,

<T(0)>, is alsc free to vary and is a measure of the efficiency

of the overall convective flux. The lower the value of <T(0)>,

the more isothermal the fluid is. The central temperature is given

by
<T(0)> = fcﬁ/rz dr

+'1 -
,/; v,iom M Ty g m Oy am /7T
) d 2 2
- = [j; r'¢ <T(r')> dr']/x¢ dr (2.19)

We must use the central temperature as 2 measure of the effi-
ciency convection because the Nusselt number is not well-definecd

for our boundary conditions.

3) Sufficien+t Condi<ions for a Goed Trunca<ion

-

The infini-e set modal egquations (2.3) - (2.13) for the

-

coefiizients can cnly Se sclved by artitrarilyv satting some of

st

~he =caffisients ecual %o zero (or scme sther functicnal form

3 md - 2 ey
ey The remalnlly Sini<e seT o ccelll-
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cients. What are the consequences of setting some modes equal
to zerc? The equation for mean value of the temperature,
(2.11),1is well approximated, if and only if the term Zl(hl)
“y 4.m Ty,l,m /v, when summed over the finite set of kept modes,
is nearly equal to what it would be if it were summed over all
modes. Now, Zl(hl) w T /r is equal to the con-

Yy &ym “y,i,m
vective flux and the contribution from each mode is just the

convective flux carried by that particular eddy. Therefore
equation (2.11) is well-approximated if we keep those
eddies that carry most of the flux in the Galerkin expansion.
Similarly it can be shown that equations (2.5) - (2.8) are well
approximated only if we include the modes that are responsible
for (1) the production of kinetic energy from buoyancy forces,
(2) the production of the temperature variance, 1/2 %2, (3) the
viscous dissipation of kinetic energy, (&) the dissipation of
the temperature variance, (5) and those modes that provide

the nonlinear cascade of energy from the production modes to

the dissipative modes. We expect that the modes most responsible

for production of the kinetic energy temperature variance and
convective flux are the largest spatial modes. We alsoc expect
that if we wish to include all of the modes that are important
in the cascade and dissipation of kinetic energy and temperature
variance,we will have to retain all modes with Reynolds or

Feclet numbers are greater than cne.
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C. The Effects of Truncations on the Kinetic Energy

s R . . ? 1 ..2,3 .
The rate at which kinetic energy-??—:[ ¥V d°r enters
the fluids due to buoyancy is (Marcus, 1980a)
) 2
! * 2L
Kzin s 47 Pr Rs F e 2(R+1) T‘{,i,m wY,l,m v dr (2 )
o

There are no cross-terms between different modes on the right-
hand side of equation (2.20) and each term represents the kinetic
energy contribution from one mode (i,m,a). However, combining
equation (2.11) with (2.20) shows us that we can write KEi in

n
terms of the luminosity and temperature gradient:

1
KE.,_ = um Pr st. 3%%1 r3 + rQZf
=)

in

r
- '§§t- r f r'z <T(r')>» dr'{dr (
o

L) ]
.

(3%
| =
g

By numerical experimentation we have found that no matter
how few moZes are kept in the Galerkin expansion, the mean temp-

erature gradient becomes nearly isothermal in the sense that

<<é_<_!.‘l (2.22)
r

‘a<r>
ar

Using equation (2.22) and taking the time-average (dencted by

double brackets) of equation (2.21) we obtain:

1
<<KZ, >> S um Pr Rsf c:f/(r) rér (2.23)
- O
We find that even the most severe =Truncations produce a clcse

approximaticn %o the correct value of <<XI, >>,

-
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The time-averaged value of the rate at which kinetic

energy is d:.ss:.pa'ted,«KEou >>, must be equal to <<KEin>>. Khout

t
is given by

1l
KE_ , = =47 ppf H r~132 (rKE) /3r? (2.24)
o
; 2 =2
+Z\-[2(£+l)] d wy,z,m D£ (mYs‘z,m) gEPRODUCIBILITY OF
%,m RIGINAL PAGE 15 PoggE
-2
-2(2+1) r a(er,z’m)lar a[r'ﬂD (wy’g,m)]/ar

- AL Yy eom D, (Wy,e,m! riar

where KE(r) is the kinetic energy of the fluid at radius »
and is

KE(r) = 3 Z 2(2+1) H sz p g RCE4D)
Ys%,m >

2 2 2
+ [B(rwy,z’m)/BLJ /r” + wY,i,HIH (2.25%)

Again, there are no cross terms between modes on the right-
hahd side of eguation (2.24) and each term in the sum repre-
sents the dissipation due to one mode. If the high wavenumber
modes responsible for the viscous dissipation are not included
in the Galerkin expansion (or if the modes that are responsible
for the cascade of kinetic energy to the dissipative modes are
not included) <<KE._»>> will nct be strongly affected. However,

in
to keep <<K25u2> equal to <<KEin>> the fluid must compensate
[

by dissipating more kinetic energy in the large scale modes.
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From equation (2.24) we see that cne way in which the rate of
dissipation can be increased is by increasing the kinetic energy
of the modes. We therefore expect the kinetic energy of a se-
verely truncated system to be abnormally high. This increase

will be evident in the numerical examples in the next section.

D. The Effect of Truncation on the Fluctuating Thermal Energy

The rate at which temperature variance is created in the
fluid is

1
TE. = -Mrf -a-ﬁ-lz-r Z
in o ar

Y,4,m

T 2(L+ d .27
y.e,m %y,2,m (2+1) dr (2 )

Each term in equation (2.27) corresponds to the thermal

input of one mode. Even though |3§§ll will generally be much

less than ==, we have found that for fixed Prandtl and

E - Rayleigh nué%ers,@%%zl can vary by an order of magnitude
depending upon the number of modes kept in the Galerkin expan-
tion. Therefore, <<TEin>>(unlike <<KEin>>)is a sensitive func-
tion of the truncation. The rate at which the temperature vari-

ance is dissipated is

2m2 2
TY m] r°dr

TE . = =47 Z [(aT

out m/ar)2 + 2(241) v~
Y’R’,m

Y, 2, W2,

(2.28)

If the Galerkin truncation does not include the thermally.
3 dissipative modes, the truncated solution will have <o adjust

itself so that <«<IE_ _>> is kept equal to <<TE, >>. The sclu-
out in

e ama e e
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tion can increase the rate of thermal dissipation in the re-
tained modes by increasing the thermal variance of the modes.
However, unlike <<KEin>>, <<TEin>> is not constrained and the
fluid can adjust to its inability to dissipate the thermal
variance by decreasing <<TBin>>. Since <<TEin>> is propor-
tional to the mean-temperature gradient (eq. 2.27), the fluid
can reduce its rate of production of thermal variance by be-
coming more isothermal. In the next section we show numerical
examples in which a truncated solution both increases <<TEout>>

by increasing its thermal variance and decreases <<TEin>> by

becoming more isothermal.

E. Single-Mode Theory

L

The severest truncation of a multi-mode expansion is to

retain only one horizontal mode. This requires that the solu=-

tion be of the form:

T(r,8,¢,t) = <T(r,t)> + g(r,t) h (8,0¢) (2.29)
P(r,8,¢,t) = <P(r,t)> + ;(r,t) h (8,¢) (2.30)
w(r,8,t) = :(r,t) h (8,¢) (2.31)
¥y =0 (2.32)

where h(8,¢) is an eigenfinction of the horizental Laplacian,
(v? - L -732 r)
T oar

Because the toroidal modes are not involved in the convective

flux, kinetic energy production, cr temperature variance produc=-
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ion they are neglected in s;ngle-mode theory. Our multi-mode
numerical e:xperiments have shown that the toroidal velocity is
much smaller than the poloidal velocity except for large wave-
number modes in large Rayleigh number convection. (See
Marcus 1980b).

Unlike expansions with more than one horizontal mode, the
single-mode solutions are always time-independent. Toomre et al.
(1977),working with a plane-parallel geometry,also found that
a single-mode always leads to a steady-state solutien. Expansions
with a single-mode suffer not oniy from the effects of truncation
mentioned in the previous secticn, but alsc from other problems.
For example, the correlation between the radial velocity and

temperature,

(e ]
111}

<TV >/<T (2.33)

)

/2, 2 1/2
I‘

is always identically esqual tc 1 for a single-mode; whereas,
experimentally, Deardorff and Willis (1967) have founcd that the
correlation in air for Rayleigh-Bernard convection is between
.5 and .7 for Rayleigh numbers between 6><10S and 107. The con-

vective flux, <Tvr>’ that is far from the bounday predicted by
'single-mode +heory is in good agreement with the flux predicted from

multi-mode calculations (see §3). Because the single-mode over-
~

. 2 2 . =
§, it always underestimates <T " ><V’>, thes product of

-

(]
w
ot
-
H
n
ot
(1
w

+he +hermal variance and radial component of the kinetic energy.

Another peculiarity of the singls-mode equations is that the

nickness ¢f the boundary-layver at the surface i< controllad by
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viscosity and decreases as the Rayleigh number is increased
(see Toomre et al. 1972) In a real fluid we would expect the
boundary-layer to become turbulent and wide as the radially
moving fluid smashes into the impermeable outer boundary. The
thickness of the turbulent boundary-layer is not regulated by
viscosity, but by the rate at which energy can be transferred
to other modes. The increase in boundary-layer thickness due
to the nonlinear cascade in a multi-mode calculation has been:
reported by this author elsewhere (1980a). In a single-mode
calculation with a large Rayleigh number and an artificially
thin boundary-layer, most of the dissipation of kinetic energy

takes place near the surface with

-~ 2 2
<<K:out>> lHrPr'fl (v » V2 v) »° dr (2.34)
-X

where X is the thickness of the boundary-layer. From equation
(2.34) we see that <<KEout>> is proportional to 1/X. Therefore,
a single-mode calculation can compensate for its loss of dissi-

pation in the missing high wavenumber modes by decreasing X.

F. Lorenz Model

A further truncation of single-mode expansion gives us the
Lorenz model. Using the equilibrium conductive temperature
gradient with the single-mode equations,we can compute the com-
zlete set of orthonormal eigenmodes of the velocity and
temperature (as functions of radius). By expanding the radial
dependence of the velocity and temperature in terms of these
eigenmodes, substituting the expansions into the single-mode

equations and retaining only a single mode in the radial expan-

sion, we obtain the Lorenz equations. These equations
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were originally derived for a convecting fluid in a plane-parallel
geometry, but they can easily be extended to a spherical gecmetry.
The Lorenz model not only suffers from all of the physical approxi-
mations of single-mode theory but alsc contains some additional lia-
bilities. Because the functional form of the velocity and fluce-
tuating temperature are fixed and only their amplitudes are allowed to
vary, the fluid can never develop boundary-layers to help dissipate
the kinetic and thermal energy. More importantly, becau:e the
functional form of the velocity and temperature are fixed, the
mean-temperature gradient can not become isothermal.

If we were interested in computing solutions only when the

Rayleigh number is slightly greater than its critical value, it
would be practical *to expand the velocity and temperature in the
eigenmodes that are calculated with the conductive temperature gradient.
However, these are not a very useful set of functions in}which to
expand the velocity and temperature when the Rayleigh number is
large. Tor example, for any large Rayleigh number,we can chocse a
complete basis in which to expand the velocity and temperature by
calculating the fundamental and all of the higher harmonic solutions
to the single-mode equations. By retaining only the fundamental
mode in the expansion, a modified set of Lorenz-type egquations is
obtained. We have computed the steady-state solutions to the
regular spherical Lorenz equation and to the new medified Lorenz
equations for a Rayleigh number ~ 30 times greater than the criti-

cal value for t=e onset of convecticn. The solution to the regular

g
L)
3
[§ N
[11]
8}
ot
‘U
®
H
o}
[
L ]
]

Lorenz equation is uns=able with respect to time-de

mations; both the solution to the modified Lorenz equation and
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the steady-state solution to the multi-mode equations with this
Rayleigh number are stable. We conclude that qualitative descrip-

tion of the Lorenz model is not accurate for large Rayleigh numbers.

ITII. NUMERICAL RESULTS OF MULTI-MODE CALCULATIONS

In this section we present the numerical results of
multi-mode calculations for Pr=10 and Rayleigh numbers of
lOu and 105. For each Rayleigh number we repeat the cal- o
culation several times, each time using a different set of
modes to show the effects of truncation. TFor all calculations,

the heat source H(r) (see eq.2.13) is constant for r$0.3 and

zero elsewhere.

A. Rs = 10%

To compute solutions to the modal equations,we have chosen
the set of modes in the Galerkin expansion to be all of the

. : L.m .
spherical harmonies, Y™*™ with & S lcutoff’and all m. The radial

dependence is finite-differenced with 128 grid points. For
chtoff=3’6’9’ and 12 we find that the solution is time-indepen~

dent. A complete descriptio f th i i =

P p n of the solution with zcutoff 12
appears elsewhere (Marcus 1980a). To compare the overall fea-
tures of the truncated solutions, we have listed the central
temperature, KLin and TEin as a function of zcutoff in Table

3.1.

TABLE 3.1
2cutoff <T(0)> KEin TEin
12 0.685 4.9ux10° 4.08
9 0.685 4.9ux10° 4.01
5 0.875 5.90x138 3.93
3 0.528 L. uux10® 1,71 |
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There is virtually no difference in the calculated values of

<T(O)>"Kzin or TEin for gcutoff=6’g’ and 12,which indicaﬁgs

that modes with £ > € are not important in production, trans-
port or dissipation of energy. Using the value of Kzin from
table 3.1, we find that the Kolmogorov length is ~ 0.212 which
approximately corresponds to a wavenumber, &, of ~ 4. The

K] (] - : L3 .
solution with lcutoff'a shows the effacts of truncation; the

rate of input of thermal energy for 1 £=3 is nearly 60%

cutefs
\ ‘o 2 . - -
lower than it is for 2, ...¢%12. The rate K&,

F
i for lc 3

:g-.
utoss

is nearly equal to KEin for zcutoflez‘ The large decrease in

TEin is consistent with the analysis presented in §2 which shows that the

fluid can compensate for the loss of the thermally diffusive

modes by decreasing TEin. Kzin is constrained by the fact that

- 1
it must always be approximately equal to LHrPr-Rsf I,'C':')r &= u.euxlos
o
To compensate for the loss of the high wavenumber modes that

issi tt 1 vari z flui -
dissipate the thermal variance when 2cutoff 3, the fluid de

creases TE;n by making the temperature gradient more nearly

isothermal. The isothermal nature of the 2 utore ° 3 sclution
can be seen by noting that the central temperature for Lueoss
-
- . it is for 2 s .
3 is less than it is for cutofsf 12

A more sensitive prcbe of the effec*ts of truncaticn is the
kinetic and thermal energy spvectra as functicns of the herizon-

~2] wavenumber. In tabls 3.2 we have lis<ed TZ(2,rs0.3),which

is the 2-dimensional thermal variance specTrum 2%t »=0.5, with
wavenumber ¢, i.s2.
) ) 7=
TZ(i,2) = I= T “w .
&, ( Y,z’m (3.-)
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We have also listed the kinetic energy spectra, KE(2,0.5), at 4

r =z 0.5, as functions of & and L outoff in table 3.3, The ki-

netic energy spectra show that the value of XE(L, . z¢:02.5) ?
is higher than it should be. As pointed out in §3,the trun- |
cation causes an upward curl in the energy spectrum at icutof!
because the energy that cascades down from the large scale

modes piles up at lcutoff’ The upward curl at the large wave=
number end of the spectrum is even more pronounced in the thermal
variance spectra. Because the Prandtl number is greater than
unity, the dissipation of thermal energy is less efficient than
the diffusion of kinetic energy. The thermal variance does not
dissipate in the production modes as does the kinetic energy

and is free to cascade down the spectrum and pile up at the

large wavenumbers. For the severest truncation, ¢ s 3,

cutoff
the thermal energy spectrum has inverted itself and TE(3,0.5) »

TE(2,0.5) » TE(1,0.5).

B. Rs = 10°

]

For a Rayleigh number of 10° and a Prandtl number of 10,

we have computed solutions for 2 = 12,9,6,4,3,2, and 1.

cutoff
With Loutofs ° 1l the solution is steady-state and the multi-mode
equations reduce to those of single-mode theory. For a compari-
son between single and multi-mode sclutions, we have plotted
the kinetic energy of the 2 = 1 mode as a function of radius

in figure 1 (solid line). Superimposed on this figure is the

kinetic energy of the 2 1 mode (broken line) computed from the

steady state solution of the multi-mode equation with % utofs =

12. The functional form of the two curves is quite similar,
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the main difference being that the single-mode kinetic energy
is consistently higher than the multi-mode solution. This
difference in height confirms the predictions we made in §2:
the kinetic energy of the single-mode must be enhanced to in-
crease its rate of viscous dissipatien. For the single-mode,
KBout is 4.24 x 105, whereas for the & = 1 component of the
multi-mode soluticn,xxout is only 3.13 x 106. Approximately
32% of the kinetic energy produced in the & = 1 component of
the multi-mode solution is lost not through dissipation but
through the nonlinear energy cascade.

In figure 2 we have plotted the temperature variance of
the 1 = 1 mode of the multi-mode soluticn (broken line) and
the single-mode solution (solid line). As in figure 1, the
two curves have the same function form, but,in general,the
single-mode thermal variance is greater than the multi-mode
variance. The greater thermal variance allows the single-mode

to increase its rate of thermal dissipation., The rates at

which the temperature variance is dissipated from the & = 1

component of the single- and multi-mode solution are 0.293 and

0.231 respectively.

For all solutions computed with Loutoss 2 4 the solutions

are steady-state and show truncation effects similar to those

L

cutoff - 4, the temperature spectrum is

inverted with TE(2+1, 0.5) > TE(L, 0.5). The kinetic energy

spectrum is not inverted. In figure 3 we have plotted

A T




Q ¥ KE (432, r=0.85)/ KE(4=3, r=0.3) as a fur.“ion

of Lcutoft' Q is a measure of the upward curl of the kinetic
energy spectr>um at =3, If there werse no truncation effects,

we would expect Q always to be greater than 1. 1If Q becomes

less than 1,it means that the kinetic energy spectrum is

inverted, i.e., KE(223, r=0,5) > KE(is2, r=0.5). TFigure 3

shows that Q is greater than 1 but decreases as zcutoff decreases.
By extrapoclating the points in figure 3, we may expect that Q ‘s

less than 1 for 1cuto£f=3' Tor & 23 the solutien is no

cutof!
longer steady-state but is periodic in time. The kinetic energy
calculated with zcutoff s 3 at r=20.5 as a function of waveleng:h,
L, and as a function of time is plotted in figuvre 4 for one

period of the fluid's oscillation.

We have ar’.trarily labelled the lef:t-hané axis of figure
4 as tz0 but,in fact, it takes many iterations cr the transients
in the fluid to settle down and for the motions *o bacome per-
iodic. At t=0, the kinetic energy of the 2=., 2 and 3 waveleng<ths
are similar in value to the stationary values ob*ained wicth

L 512, As time increases, the kineti: enargy of 1= and 1=3

cutof?!
modes increases; they are unable to dissipate thair kinetic <nergy
as fast as it cascades into (or is produced in’

the modes. At t=.0487 the kinetic energy of <the 0zl modes
becomes less than that of the 1322 mode, and at

+2,0603 the kinetic energy cf the L=1 and 1=3 mcdes creoss. At

this peint in time, the kinetic energy spectrum changes cuickly




PN

b=

Ty O
e

and re-astablishes the 2=zl mtde as the one with the largest
arount of kinetic energy. By tx.152,the sclution settles down

frem its rapid oscillations. The period of the energy spec-

o A

trum is t_=.1528, however, the period of temperature and velo-
" n

P
city is th. We have focurd that T(t+tp)--T(t) and g(t+tp)t
-g(t*tp). If we assume that the ch:y;ctcristic velocity of i
the fluid is [2 XE (221, rs.S)lt.OJ » then we can estimate
-1/2

the eddy turnover time, tgr T be [2 KE (221, r=5)lt=°

or 0.022. The period of the spectrum, tp is 6.95 Ty We

have repeated the calculation with % 23 and with the

cutof?f
viscosity of the £:3 modes (but not the £:1 or 2 modes) increased

R ST T Y

by 10%. With the enhanced viscosity the solution is steady-
state. When we increased the thermal diffusivity of the 133
modes by 10%, the solution remained periodic in time.

With 2 =2, the solution is both time dependent and

cutoff
aperiodic. The solution wanders between a normal

and an inverted state. In the normal stute KE(£=1)=103 and
KE(222)210. In the inverted state KB(2=1)2102 and KE(2s2)310".
The time dependence of the solution is reminiscent of the manner
in which a Lorenz solution wanders between two strange attrac-
tors. We have not attempted to determine whether there are

fixed points in the 1 =2 equations of motien.

cutoff
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IV. DISCUSSION

We have calculated solutions to the squations of convec-
tion by expanding the horizontal structure in a series of modes.
Choosing the number of modes to be retained ia the solution is
equivalent to fixing the spatial rtsoluiion in the horizontal
direction. Xeaping the number of modes fixed, we found that as
the Rayleigh number increases, the solution changes in time from
’staady-statc to periodic, and then to apericdic. Alternatively,
we have found that by keeping the Rayleigh number fixed

at 10°

and decreasing the number ¢f modes, the solution changes
from steady-state, to periodic, to aperiodic. In tﬁc extreme
case where the axpansion is limited to modes of only one horie
zontal wavenumber,the solution goes tco a steady-state single
mode. From our observations of the time-independent solutions
with Rssloﬁ we have found that truncating the horizontal
cxﬁ;nsion results in: 1) altering the kinetic and ther-

mal spectra by increasing the amplitudes of the high wavenuader
modes, 2) maring the mean temperature gradient more iscthermal
and theraeby lowering the central temperature, and 3) decreasing
the rate at which the temperature variance is produced in the flui
We have shcwn that 17 the truncation is too severe the thermal
variance spectrum will become inverted,with the high wavenumber
dissipation modes having more energy than the low wavenumber
production mcdes. The thermal variance inversion does not de-
stroy the time-independen< property of the Fluid. We

have sShown in cne example that il the truncaticn Is severe encugh
that the kinetic energy spectrum is Inverzted, <then the soluticen

Seccmes time dejendent. This suggests that we should be cauticus

¢.
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in numerically computing points of bifurcations in the flow

as a function of Rayleigh number alone. The points of bifur-
cations become curves of bifurcations when plotted both as a

function of Rayleigh number and limit of spatial resolution.
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FIGURE CAPTIONS F THE
CIBILITY O

ORIGINAL
Figure 1 - The kinetic energy for the £z1 mode as a function of

=1 (solid line) and 2% 212

radius calculated with 2 cutoffS

cutoff
(broken line). The higher kinetic energy in the single-

mode calculation allows mbre kinetic energy to be viscously
dissipated and compensates for the inability of the single-

mode calculation to lose energy by cascading.

Figure 2 - Same as figure 3 with the temperature variance of

the %=1 mode plotted as a function of radius.

Figure 3 - Q = KE(2=2, r=0.5)/KE(3.r=0.5) as a function of
2cutoff’ Truncation causes the high wavenumber modes of
the kinetic energy spectrum to become anomalously large.

By extrapolation, it appears that when £ =3, Q<1

cutoff"
meaning that the kinetic energy spectrum has become inverted.

Figure 4 -~ Th i i i =

g The kinetic energy calculated with lcutoff 3 at
r=0.5 for the 2=1, 2, and 3 modes as a periodic function
of time. At t=.0602 kinetic energy inverts so that

KE(2=1, r=.5) < KE(L=3, r=.5).
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