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ABSTRACT 

We examine the Galerkin (including single-mode and Lorenz) 

equations for convection in a sphere to determine which physi­

cal processes are neglected when tht e~uations of motion are 

truncated too severely. We test Jur conclusions by calculating 

solutions to the equations of motion for different values of 

the Rayleigh number and for different values of the limit of 

the horizontal spatial resolution. We show that the transitions 

from steady-state to periodic, then to aperiodic convection 

depend not only on the Rayleigh number but also very strongly 

on the horizontal resolution. All of our models are well-

resolved in the vertical direction, so the transitions do not 

appear to be due to poorly resolved boundary-layers. One of the 

effects of truncation is to enhance the high wavenumber end of 

the kinetic energy and thermal variance spectra. Our numerical 

examples indicate that as long as the kinetic energy spectrum 

decreases with wavenumber, a truncation gives a qualitatively 

correct solution. 
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REPRODUCIBILITY OF THE 
I. INTRODUCTION ORIGINAL PAGE IS Poor? 

In Rayleigh-Bernard convection, discrete transitions from 

steady-state to periodic to aperiodic convection have been experi­

mentally observed. (See the recent reviews by Fenstermacher et al. 

1978 and Busse 1978.) As the Rayleigh number is increased and the 

fluid becomes more "turbulent",the Fourier spectrum (in time) of 

the velocity develops a single spike (and its overtones) and 

shows a gradual increase of the broad band background noise 

that eventually overwhelms the spikes. Although the transitions 

depend not only on the Rayleigh numbe~ but also on the 

Prandtl number and initial conditions, there has recently been 

much interest in trying to compute these transitions 

from the actual equations of motion. 

In attempting to compute time-dependent numerical solutions 

to the three-dimensional Navier-Stokes equation,one is forced to 

make severe approximations. When simplifying the equations of 

motion to make them numerically tractable,one hopes to esta-

blish a compromise so that the modified equations are uncompli­

cated enough to be easily solved, yet complete 

enough that the underlying physics of the fluid dynamics is 

not lost. 

The crudest approximation is the Lorenz (1963) model. The 

Lorenz model predicts not only the transitions to steady-state 

and time-dependent convection, but also a sequence of bifurca-

tions that eventually leads to chaotic (aperiodic) behavior. 

For low Rayleigh numbers near the onset of convection the heat 

flux (Nusselt number) predicted by the Lorenz reodel is in fair 

• 
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agreement with laboratory results. As the Rayleigh number increases, 

the calculated and experimentally observed Nusselt numbers begin 

t~ differ. When the Rayleigh number is as large as the one at 

whic~ the Lorenz model predicts a transition to chaos, there is 

an appreciable difference between theoretical and experimental 

values of the heat flux and one must seriously qu!stion the quali­

tative behavior of the time-dependency of the solution. McLaughlin 

and Martin (197S) have expanded the Lorenz model to four inter­

acting modes and have found support of the Rouelle-Takens (1971) 

theory of turbulence,which states that after no more than three 

bifurcations to a periodic or quasi-periodic state there should 

be a transition to aperiodicity. The fundamental question to be 

answered, of course, is whether the qualitative time dependence 

of these equations is due to the underlying physics that these 

equations are trying to model or whether bifurcations are a 

general property of sets of severely truncated nonlinear differen-

tial equations. A truncation of the governing equations of con-

vection that is less severe than McLaughlin and Martin's treat­

ment in the radial direction is single-mode theory (Gough et al., 

1975). Single-mode theory has only one horizontal mode 

so has less horizontal resolution than McLaughlin and Martin's 

4-mode solution. Surprisingly, the numerical solutions to the 

single-mode equations (Toomre et al., 1977) do not exhibit bifur­

cations to periodic or aperiodic states and are time-independen~ 

for!!! Rayleigh numbers. Numerical solutions to a truncated 

Galerkin expansion of the equations of convection that is less 

severe than both s~ngle-mode theory and McLaughlin and Martin's 

• 
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BEPRODUCmILITY OF THE 
ORIGINAL PAGE IS ponr; 

equations have been computed by this author (Marcus 1980a, 1980b), 

in which not just one but several horizontal modes of the expan­

sion are retained. For steady-state convection the results are 

in good agreement with single-mode calculations. However, at lar­

ger Rayleigh numbers we find that the solutions become periodic 

in time and,as the Rayleigh number is increased further, aperio­

dic in time. For some Rayleigh numbers that produce steady-

state solutions, we find (holding the Rayleigh number and the 

resolution in the radial direction fixed) that as we decrease 

the number of horizontal modes in the Galerkin expansion, there 

is a transition from steady-state convection to a solution that 

is periodic in time. As the number of modes is decreased still 

further, the solutions become aperiodic. Obviously, the bifur­

cations depend not only on the Rayleigh number, Prandtl number 

geometry and initial conditions, but also on the horizontal 

resolution of the equations of motion. 

In trying to understand mathematically the bifurcation 

sequenceofatruncated representation of the equations of motion, 

it is easy to lose sight of what is physically happening in 

the fluid. Therefore, the purpose of this paper is to examine 

the solutions to truncated modal equations for convection in a 

sphere and to determine which qualitative features of the solu­

tions represent real physical processes in the fluid and which 

features are due solely to the effects of truncation. 

In section 2 of this paper we briefly review the Galerkin 

multi-mode equations (including single-mode and Lorenz) for 

; 
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spherioal oonveotion. We attempt to desoribe the physios that 

eaoh system of equations models, whioh physioal prooesses are 

negleoted by the various trunoation sohemes, and what artifi­

oial oonstraints eaoh model imposes on its solutions. In the 

third seotion we present the results of our multi-mode calcula­

tions for two different values of the Rayleigh number. For 

each Rayleigh number we compute several mode:s, each with a 

different degree of horizontal trunoation. By computing how 

the energy spectra,convective flux,ar.d temperature gradient 

change as a functior. of ~he severity of truncation,we provide 

a possible explanation for the time-dependence of our solutions. 

Our conclusions appear in section 4. 

II. APPROXIMATIONS NEEDED FOR THE LORENZ, 
SINGLE-MODE AND MULTI-MODE MODELS 

Convection in a Boussinesq fluid is governed by the Navier-

Stokes, continuity and thermal diffusion equations, and the 

Boussinesq equation of state. (See,for example,Chandrasekhar, 

1961). A standard technique used to simplify these coupled, 

nonlinear, partial differential equations is the Galerkin method. 

The th~rmodynamic quantities and velocity are expanded as an 

infinite sum of coefficients multiplied by orthonormal functions 

and substituted into the governing equations. Then, depending 

on how many of the coefficients are solved and how many are 

arbitrarily set equal to zero, one arrives at a Lorenz, single-

mode, or multi-mode model. 

2 
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RnrR01NDAUtC~l~E IS POOR 
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A) Review of the Multi-Mode Equations 

Let us consider convection in a self-gravitating sphere of 

Boussinesq fluid with thermal expansion coefficient a, heat 

capacity Cp ' kinematic viscosity v, thermal diffusivity k, 

radius d, and a heat source HCr) in the fluid. Each 

scalar quantity, such as the temperature,is written as a 

sum of its mean,<TCr,t»,and fluctuating, T(r,e,~,t), parts where 

<TCr,t» = J TCr,e,$ ,t) dfl/411' C2.1) 

411' { 

~ (r.e.~.t) :2(2~)1/2 ~l 
and R. 

L 
m=l 

+ TI,t,mCr,t) Im Cyt,m») 

+ 2-
1

/2 TR.L.O(r.t) yL.o }. (2.2) 

ReCyt,m) and ImCyt,m) are the real and imaginary parts of the 

of the spherical harmonic. The velocity is written as a sum 

of its ~oloidal Yp and toroidal vT parts which are derived from 

scalar fields wand W 

(2.3) 

( 2.4) 

Substituting expressions (2.3) and (2.4) into the equa-

-tions of motion yields the equations for the coefficients for 

the temperature, I, pressure, P, gravitational potential, ¢, 

and velocity, ~ (Marcus, 1980a): 
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-r (R.O.+1)J-
1 

[RIPrr Ty,R.,m + a (Py,R.,m + ty,R.,m)/o:-J 

+ ?r X>R. (Wy,R.,m) 

- 1(R.+1)-1 {r ir • (~.V)~J}y,R.,m 

O~y,l,m/at = Pr ~ (~y,1,m) 

_l(1+1)-1 {r ir • V x (v·V)v]) - - y, 1,m 

- LV • VT] _ y,.2.,m 

tJ;. (p y,.2. ,m) = ?r ;';.,: ;e~ + ~a~ /~~) 
'. ~ y , 2. , m - -y , .2. , m ~ -

_
~-2~ {r(~ .. eAr • ( V) J }/~ a ~. ~ y,l,m or 

- {V • [(v • V)vJ} _ y,1,m 

(t ) = 
y,1,m 

-3 Pr Rs T ~ . y, N,m 

< W > = < ~ > = 0 

a<T> _ ~-2;~(~2~<~>/~r)/a~ + 
~- _ ,0 _ ... -" -

~l: . 

- a ['\ :" 2. 0.+1):' "m w", n "J / dr} L y, .. , .• "N, ... 
y,i,o 

~ 
It. ---------------.--~-~---.~.- .-----~-

( 2 .5) 

(2.6) 

(2.7) 

(2.8) 

(2.9 ) 

(2 .10 ) 

(2.1::' ) 

• 
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ORIGINA', p/\r;P, r5 POOR 

where1)t is the differential operator defined by its action on 

'the scalar, f: 

and 

tr: (f) 5 ra 2
(rf)/ar2 - 1(1+1) 

Where~(r) is the luminosity 

f/rJ/r 

r 

tCr) = 41T J <H> r t 2 dr t (2.13) 

o 

In equations (2.5) - (2.11),Rs = aGd3~(d)/3k2vC is the Rayleigh 
p 

number, Pr = v/k is the Prandtl number and y sta:1ds for either 

R or I. 

In equations (2.5) - (2.13) the unit of time is k/d
2

, 

length is d, mass is Pd
3 

and temperature iS~(d)/41TPCpdK. 
Equations (2.5) - (2.10) may be thought of as the governing 

equations for each eddy or mode (y,l,m) that make up the total 

velocity field. The nonlinear terms in equations (2.5) - (2.13) 

such as {re .(v·V)v)} ~ are the eddy-eddy interaction terms, 
r - - y, .... ,m 

with contributions from all other pairs of modes (y' ,1' ,m') 

and(y",l",m") that obey certain selection rules. The selection 

rules and the explicit expressions for the nonlinear inter­

actions are given in a previous paper (Marcus 1979) in terms of 

Wigner-3j symbols. For a sphere with an impermeable, stress-

free boundary the velocity is constrained at r=l so that: 

w. _ (1) = 0 
( , 1"11 

(2.1:") 

(2. 15 ) 

C2.16) 

-.--~~" -~-- - .---=------------.. -_ ...... - -
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We also require that the surfaee be isotnermal: 

Ty ,1,m (1) = 0 (2.17) 

We are free to choose the mean temperature to be zero 

at r=l: 

<TCr=l» = 0 C2.18) 

u ~~. ~ h ( d h f n.owever,t~e graloOl.ent 0 ... t e mean temperature an t ere ore 

the flux) at r=l is free to vary. The central temperature, 

<T(O», is also free to vary and is a measure of the efficiency 

of the overall convective flux. The lower the value of <TCO», 

the more isothermal the fluid is. The central temperature is given 

by 1 

< T ( a ) > = - I cl.. / r 2 dr 

o 1 \ 

-1 ~ 1(1+1) T w Ir dr y,1,m y,t,m y,1,m 
o 

-"* ,[\10"' r,2 <1(r'» cr'l/r
2 

cr (;;'1.9) 

We must use ~he central tem~eratu~e as a measure of ~he .ffi-

ciency convection :,ecause the Nusselt n\.!ruber is not well-defined. 

for our boundary conditions. 

3) Sufficient C:nci~ions fo~ a Good 7runcation 

.... .•.• ... .• 0 ... ·_' e~'.!a ... ior.s (:.5) - (:.:'3) f':J-: -ene .:.ne :..n::.n:..-:e se't ..• ~a 

~.. . -"'~'j ~e =o_"le"" ~-'J .,.. .... : ....... .:~., 5 4 --':-'. SO-' -.: coer::.c:.e:r:s ca.:: w ... .:.. _ _ \.... -_ W'_ -. -- .... ~ _. ...... .......... ... 

the :oeffi:ier.ts e~'.!al to :e-:o (o~ scme othe-: functicna: fc-:m) 

A -".:~~-~., 3-~·1;~~ _X:, ____ __ .j """'- ...... ~ - -~e ~-~.:~:~~ #:.:-- se- 0# c~e·=:-:C:-' ••• • -:. ••• ~- ... -.~ .......... '!:: .. - _ •• -
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REPRODUCIBILITY OF THE 
ORIGINAL PAGE IS POOR 

cien~s. What are the consequence~ of setting some modes equal 

to zero? Th. equation for mean value _ of the temperature, 

(2.11),is well approximated, if and only if the termi:l(l+l) 

w & T 1 Ir, when summed over the finite set of kept modes, y,A-,m y, ,m 

is nearly equal to what it would be if it were summed over all 

modes. Now, ~1(1+1) w ~ T ft Ir is equal to the con-L y,A-,m y,A-,m 

vective flux and the contribution from each mode il jUlt the 

convective flux carried by that particular eddy. Therefore 

equation (2.11) is well-approximated if we keep those 

eddies that carry most of the flux in the Galerkin expansion. 

Simila~ly it can be shown that equations (2.5) - (2.S) are well 

approximated only if we include the modes that are responsible 

for (1) the production of kinetic energy from buoyancy forces, 

"'2 (2) the production of the temperature variance, 1/2 T ~ (3) the 

viscous dissipation of kinetic energy, (ij) the dissipation of 

the temperature variance, (5) and those modes that p~ovide 

the nonlinear cascade of energy from the production modes to 

the dissipative ~odes. We expect that the modes most responsible 

for production of the kinetic energy temperature variance and 

convective flux are the largest spatial modes. We also expect 

that if we wish to include all of the modes that are impor~ant 

i~ the cascade and dissipation of kinetic energy and temperature 

variance, we will have to retain all modes with Reynolds or 

?eclet numbers are greater than one. 
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C. The Effects of Truncations on the Kinetic Eneriv 

The rate at which kinetic 

the fluids due to buoyancy 

K!in : 1.4'n' Pr Rs r 
o 

energy-ri-J t v
2

d
3
r 

is (Marcus, 1980a) 

er.te'!"s 

There are no cross-terms between different mode. on the right­

hand side of equation (2.2~) and each term represents the kinetic 

energy contribution from one mode (t,m,~). However, combining 

equation (2.11) with (2.20) shows us that we can write Ktin in 

terms of the luminosity and temperature gradient: 

KI in • .. ~ Pr Rs t[ ai~> r3 + rt. 

_ it r ~r r' 2 <T(r'» ar}:lr (2.22) 

91 numerical experimentation we have found that no matter 

how few mo~es are kept in ~he ~alerkin expansion, the mean temp-

erature gradient becomes nearly isothermal in the sense that 

la;~>1 «~r) O.Z:) 

Using equation (2.22) and taking the time-average (denoted by 

double brackets) of equation (2.:1) we obtain: 

«Kt. » ::: 
In 

4'n' ?r R.Jl~(r) 
o 

We fin~ tha~ even the most severe truncatic~s prc~uce a =1:5e 

approxima~icn to the correct va:~e of «KE. ». 
:.n 
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The time-averaged value of the rate at which kinetic 

energy is dissipated ,«KE
out

» , must be equal to «KEin»' KEout 

is given by 

w D (w ) 
y,1,m 1 y,1,m REPRODUCffiI 

ORIGINAl PA~ElTY OF THE 
.J IS POOR 1,m 

-1(1+1) r-
2 

a(rw n )far a[rl),y (wv n )]/ar y,,,,,m I ,,,,,m 

- 1(1+1) lPy ,1,m ~1 (lPy ,1,m)} r
2
dr 

where KE(r) is the kinetic energy of the fluid at radius r 

and is 

KE(r) 1 2: R.(R.+l) 
[ {w;,~,m R.CR.+l) = 2" y,R.,m 

[acrwy,~,m)larl2 } Ir2 + + 
w

2 
] y,1,m 

Again, there are no cross terms between modes on the right-

(2.25) 

hand side of equation (2.24) and each term in the sum repre­

sents the dissipation due to one mode. If the high wavenumber 

modes responsible for the viscous dissipation are not included 

in the Galerkin expansion (or if the modes that are responsible 

for the cascade of kinetic energy to the dissipative modes are 

not included) «KE. » will net be strongly affected. However, 
~n 

to keep «KE »equal to «KE. » the fluid must compensate 
out ~n 

by dissipating more kinetic energy in the large scale modes. 

. -. 

• 
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From equation (2.24) we see that one way in which the rate of 

dissipation can be increased is by increasing the kinetic energy 

of the modes. We therefore expect the kinetic energy of a se­

verely truncated system to be abnormally high. This increase 

will be evident in the numerical examples in the next section. 

D. The Effect of Truncation on the Fluctuating Thermal Energy 

The rate at which temperature variance is created in the 

fluid is 

3<T> 
-r 

3r 
L T W II R. ( R. + 1 ) dr 

II y,R.,m Y,A.,m 
Y,A.,m 

(2.27) 

Each term in equation (2.27) corresponds to the thermal 

. - E h h I 3<T> I '11 11 b h ~nput or one mode. ven t oug -ar- W~ genera y e muc 

less than ~, we have found that for fixed Prandt1 and 

. r ,3 <T> I b d f . d 
Rayle~gh numbers,l--ar can vary yan or er 0 magn~ tu e 

depending upon the number of modes kept in the Galerkin expan-

tiona Therefore, «TE. »(unlike «KE. »)is a sensitive f~nc-
~n ~n 

tion of the truncation. The rate at which the temperature vari­

ance is dissipated is 

(2.28) 

If ~he Galerkin truncation does not include the thermally, 

dissipative modes, the truncated sol~tion will have ~o adjust 

itself so that «~E t» is kept equal to «~E. ». The sclu-ou ~n 

• 
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tion can increase the rate of thermal dissipation in the re-

tained modes by increasing the thermal variance of the modes. 

However, unlike «KE. », «TE. » is not constrained and the 
~n ~n 

fluid can adjust to its inability to dissipate the thermal 

variance by decreasing «TE. ». Since «TE. » is propor-
~n ~n 

tional to the mean-temperature gradient (eq. 2.27), the fluid 

can reduce its rate of production of thermal variance by be­

coming more isothermal. In the next section we show nurr.erical 

examples in which a truncated solution both increases «TE t» ou 

by increasing its thermal variance and decreases «TE. » by 
~n 

becoming more isothermal. 

E. Single-Mode Theory 

The severest truncation of a multi-mode expansion is to 

retain only one horizontal mode. This requires that the solu­

tion be of the form: 

'" T(r,6,q"t) = <T(r,t» + T(r,t) h (6 ,¢) (2.29) 

'" P(r,6,q"t) = <P(r,t» + P(r,t) h (e ,¢) (2.30) 

'" w(r,6,t) = w(r,t) h (9,$) (2.31) 

1JJ = a (2.32) 

where an eigenfl'.nction of the horizontal Laplacia""\, 

Because the toroidal modes are not involved in the convective 

flux, kinetic energy production, cr temperature variance procuc-
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tion they are neglected in single-mode theory. Our multi-mode 

numerical e::periments have shown that the. toroidal velocity is 

much smaller than the poloidal velocity except for large wave­

number modes in large Rayleigh number convection. (See 

Marcus 1980b). 

Unlike expansions with more than one horizontal mode, the 

single-mode solutions are always time-independent. Toomre et all 

(1977),working with a plane-parallel geometry,also found that 

a single-mode always leads to a steady-state solution. Expansions 

with a single-mode suffer not only from the effects of truncation 

mentioned in the previous section, but also from other problems. 

For example, the correlation between the radial velocity and 

temperature, 

( 2 • 33 ) 

is always identically equal to 1 for a single-mode; whereas, 

expe:oimentally, Deardorff and l-1illis (1967) have rou...,d ":hat the 

correlation in air for Rayleigh-Bernard convection is between 

.5 and .7 for Rayleigh numbers between 6xl0
5 

and 10
7

. The con­

vective flux, <TV>, that is far from the bounday predicted by 
r 

single-mode theory is in good agreement with the flux predicted from 

multi-mode calculations (see §3). Secause the ~ingle-mode over­

es~i~ates 8, it always underestimates <~2><v2>, t~e oroduct of . ..... 

":he thermal va:oiance and radial cooponent of the kinetic energy. 

~no""""'e"" "'ec"'';a''''i~y 0';: -he si"'O"'.2-mod.2 ~q1!a"'l._ions ';s .... 'l.. a- 't';"~ .~ I. .... ~ ......... __ .. .. \.. - •• 0--. - - - .• ~.J. ...... -

thickness of the boundary-layer at the surface i' con~rolled ~y 
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viscosity and decreases as the Rayleigh number is increased 

(see Toomre et ale 1972) In a real fluid we would expect the 

boundary-layer to become turbulent and wide as t'he radially 

moving fluid smashes into the impermeable outer boundary. The 

thickness of the turbulent boundary-layer is not regulated by 

viscosity, but by the rate at which energy can be transferred 

to other modes. The increase in boundary-layer thickness due 

to the nonlinear cascade in a multi-mode calculation has been 

reported by this author elsewhere (1980a). In a single-mode 

calculation with a large Rayleigh number and an artificially 

thin boundarY-layer, most of the dissipation of kinetic energy 

takes place near the surface with 

«KE .» = 4rrP rl (v. v2 v) r2 dr 
ou~ rl-

I-X 

(2.34) 

where X is the thickness of the boundary-layer. From equation 

(2.34)we see that «KE
out

» is proportional to l/X. Therefore, 

a single-mode calculation can compensate for its loss of dissi­

pation in the missing high wavenumber modes by decreasing X. 

F. Lorenz Model 

A further truncation of single-mode expansion gives us the 

Lorenz model. Using the equilibrium conductive temperature 

gradient with the single-mode equations,we can compute the com-

?lete set of orthonormal eigenmodes of the velocity and 

temperat~re (as functions of radius). By expanding the radial 

dependence of the velocity and temperature in ~erms of these 

eigenmodes, substituting the expansions into the single-mode 

equations and retaining only a single mode in the radial expan­

sion, we obtain the Lorenz equa~ions. These equations 
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were originally derived for a convecting fluid in a plane-parallel 

geometry, but they can easily be extended to a spherical geometry. 

The Lorenz model not only suffers from all of the physical approxi­

mations of single-mode theory but also contains some additional lia­

bilities. Because the functional form of the velocity and fluc­

tuating temperature are fixed and only their amplitudes are allowed to 

vary, the fluid can never develop boundary-layers to help dissipate 

the kinetic and thermal energy. More importantly, becau~a the 

functional form of the velocity and temperature are fixed, the 

mean-temperature gradient can not become isothermal. 

If we were interested in computing solutions only when the 

Rayleigh number is slightly greater than its critical value, it 

would be practical to expand the velocity and temperature in the 

eigenmodes that a:e calculated with the conductive temperature gradient. 

However, these are not a very useful set 0: functions in which to 

expand the velocity and temperature when the Rayleigh number is 

large. For example, for any large Rayleigh number,we can choose a 

complete basis in which to expand the velocity and temperature by 

calculating the fundamental and all of the higher harmonic solutions 

to the single-mode equations. By retaining only the fundamental 

mode in the expansion, a modified set of Lorenz-type equations is 

obtained. We have computed the steady-state solutions to the 

regular spherical Lorenz equation and to the new modified Lorenz 

eq'Jations for a Rayleigh number I'\" 30 times greater than -:he c:-i -:i-

cal val~e :or t~e onset of co~vecticn. The solution -:0 -:he regular 

Lorenz eouatior. is uns~able with reSDect to -:i=e-de?er.ce~t pe:--:ur-. . 

~ations; ~cth the solution to the modified Lorenz equation anc 
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the steady-state solution to th~ multi-mode equations with this 

Rayleigh number are stable. We oonolude that qualitative descrip­

tion of the Lorenz model is not aoourate for large Rayleigh numbers. 

_. ______ ""'"--8~ ~ 

III. NUMERICAL RESULTS OF MULTI-MODE CALCULATIONS 

In this seotion we present the numerioal results of 

multi-mode calculations for Pr=lO and Rayleigh numbers of 

10
4 

and lOS. For each Rayleigh number we repeat the oal­

culation several times, each time using a different set of 

modes to show the effects of truncation. For all calculations, 

the heat source H(r) (see eq.2.l3) is constant for r~O.3 and 

zero elsewhere. 

A. Rs = 10
4 

To compute solutions to the modal equations,we have chosen 

the set of modes in the Galerkin expansion to be all of the 

spherical harmonics, y2,m with ~ S ~cutoff,and all m. The radial 

dependence is finite-differenced with 128 grid points. For 

~cutoff=3,6,9, and 12 we find that the solution is time-indepen-

dent. A complete description of the solution with ~ - 12 
cutoff -

appears elsewhere (Marcus 1980a). To c~mpare the overall fea­

tures of the truncated solutions, we have listed the central 

temperature, KE in and TEin as a function of ~cutoff in Table 

3.1. 

TABLE 3.1 

£cutoff KE. I ....-
<T(O» J.':". 

~n ~n 

, ? .... 0.686 4.94X10 5 
4.08 

9 0.685 4.94xlO 5 
4.01 

6 8.675 4.90x10 6 3.93 
~ 

3 0.528 u.4I.+x10'"' 1. 71 

- . - -
- ~ - ~- . 
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There is virtually no difference in the calcula.ted values of 

<TCO», K!in or TE in for 1cutoff=6,9, and 12,·which indicates 

that modes with 1 > 6 are not important in production, trans-

port or dissipation of energy. Using the value of KE. from l.n 

table 3.1, we find that the Kolmogorov length is ~ 0.212 which 

approximately corresponds to a wavenumber, i, of ~ 4. The 

solution with 1cutoff=3 shows the effects of truncation; the 

rate of input of thermal energy for t t ~~=3 is nearly 60% cu 0 .... 

lower than it is for icutoff=i2. ~·.~e ~a~A KE. ~or 1 __ =3 .. -.. ~- l.n - cutorr 

is nearly equal to K!in for 1cutoff=12. The large decrease in 

TEin is consistent with the analysis presented in § 2 which shows that tJ'le 

fluid can compensate for the loss of the thermally diffusive 

modes by decreasing TEin " KEin is constrained bYlthe fact that 

it must always be approxioately equal to 4'TrprRSf lc::,)~ e:-= 4.94~d05 
o 

To compensate for the loss of the high wavenumber modes that 

dissipate the thermal variance when t t ~f = 3, the fluid de­
Cll o. 

creases TE
in 

by making the temperat~re gradient more nearly 

isothermal. The isothermal nature of the icutoff = 3 solution 

car. be seen by noting that the central temperature for t ~o:: cu ......... 

= 3 is less than it is for 1 f- = 12. cuto r 

A more sensitive probe of the effects of truncation is the 

kinetic and thermal energy spectra as functions 0: the hori=on-

tal wavenumber. In table 3.2 we have lis~ed !E(t,r=O.5),whic~ 

is t~e 2-dimensional thermal va~iance s?ec~ru~ at ~=O.5, with 

waven~mber 1, i.e. 

(3.1) 

_.-
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We have also listed the kinetio eneriY speotra, KE(l,O.S), at 

r = 0.5, as funotions of , and 'cutoff in table 3.3. The ki­

netio energy spectra show that the value of K!(loutoff'O=.S) 

is higher than it should be. As pointed out in 13,the trun­

cation causes an upward curl in the energy spectrum at 'cutoff 

beoause the energy that oasoades down from the larie 8cale 

modes piles up at 'cutoff" The upward curl at the larae wave­

number end of the speotrum is even more pronounoed in the thermal 

varianoe speotra. Beoause the Prandtl number is areater than 

unity, the dissipation of thermal eneray is less effioient than 

the diffusion of kinetio eneray. The thermal varianoe does not 

dissipate in the produotion modes as does the kinetio energy 

and is free to oasoade down the speotrum and pile up at the 

larae wavenumbers. For the severest trunoation, 'outoff = 3, 

the thermal eneriY speotrum has inverted itself and TEC3,O.S) > 

TE(2,0.S) > TEC1,0.S). 

B. Rs = lOS 

For a Rayleigh number of 105 and a Prandtl number of 10, 

we have computed solutions for lcutoff = 12,9,6,4,3,2, and 1. 

With 'outoff = 1 the solution is steady-state and the multi-mode 

equations reduoe to those of single-mode theory. For a compari­

son between single and multi-mode solution~we have plotted 

the kinetic energy of the t ~ 1 mode as a function of radius 

in figure 1 (solid lin .. ). Superimposed on this figure is the 

kinetic energy of the 1 = 1 mode (broken line) computed from the 

steady state solution of the multi-mode equation with lcutoff = 

12. The funotional form of the two curves is quite similar, 
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REPRODUCmlLITY OF THE 
ORIGINAL PAnT.) lS P"f'\" 

the main difference beinl th.t the lin,l.-mod. kin.tic en.rlY 

il conlilt.ntly hilher than the multi-mode lolution. This 

difference in heilht confirms the predictionl we made in 12: 

the kinetic .n.rlY of the sinll.-mod. mUlt be enhanced to in­

cr •••• its rate of viscous dissipation. For the ,inlle-mode, 

6 KEout is ~.2~ x 10 , wh.re.s for the' • 1 component of the 

multi-mode ,01ution,KEout il only 3.13 x 106• Approximately 

32\ of the kinetic enerlY produc.d in the 1 • 1 component of 

the multi-mode solution il lost not throulh dissipation but 

through the nonlinear enerlY calcade. 

In fiaure 2 we have plotted the temperature variance of 

the , • 1 mode of the multi-mode lolution (broken lin.) and 

the sinlle-mode solution (solid line). As in filure 1, the 

two curves have the same function form, but,in leneral,the 

single-mode thermal variance is greater than the multi-mode 

variance. The greater thermal variance allows the single-mode 

to increase its rate of thermal dissipation. The rate, at 

which the temperature variance is dissipated from the 1 • 1 

component of the single- and multi-mode solution are 0.293 and 

0.231 res~ectively. 

For all lolutions computed with 'cutoff !. 4, the solutions 

are steady-state and show truncation effects similar to those 

4 
found for Rs = 10. For 'cutOff = 4, the temperature spectr~ is 

inverted with TE(£+l, O.S) > TEet, 0.5). The kinetic energy 

spectrum is not inverted. In figure 3 we have plotted 

I 
I , 
~ 

t 

i 
'I 

I 
j 

I . 
~ 

! 

I 
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Q I KE C'a2, rcO.S)1 KEC'aS, raO.3) as a fur.~~ion 

of 'cutoff' Q is a measure of the upward curl of the ~inetic 

enerlY spectrum a~ '-3, If there Were no truncation effect., 

we would exp.ct Q alway. to be areater than 1. If Q b.come. 

le •• than l.it mean. that the kinetic enerlY spectrum il 

inverted, i •••• KECLa3, raO.S) > KECta2, raO.S). rieure S 

show. that Q i. areater than 1 but decre.se. a. 'cutoff decrease,. 

t By exuapolatina the point. in fiaure 3, we 14&y expect that Q ~.s 

11 •• than 1 for 'cutoff=3. For 'cutoffs] thl solution is no 

lonaer .teady-.tate but is periodic in time. The kinetic eneray 

calculated with 'cutoff = 3 at r-0.5 as & function of wav.leng~h. 

" and as a function of time i. plotted in fism:" ~ ! Jr one 

period of the fluid's o.cillation. 

We have ar' .trarily labelled the llft-han~ axis of tigu:e 

~ as t=O but,in fact, it takes many iterations ;r;.r the transients 

in the !luid to set'tle down and for the motione ':0 b.oome per­

iodic. At t=O, the kinetic enerlY of the '=1. 2 and 3 wav.1.ng~hs 

are similar in value to the stationary values obt.ined. with 

'cutoff-12 • /A •• time incre •• e., the kineti,' e~ariY of 1= ~ &~a 1= 3 

mode. incre •••• ; they are unable to di •• ipate "Chl,,!.r kin.·t~.c enerlY 

a. fast a. it cascade. into (or is p~oduced ini 

the modes. At t=.O~67 the kinetic eneriY of the g=l modes 

becomes llss than that of tn, '-2 mode, and at 

t=.OS03 the kinetic energy c~ the 1=1 and 1=3 oo~es cross. At 

~his ?oin~ in time, ~he kir.eti~ enerrJ spec~um chan.es ~uickly 

• 
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anet l"'.-~iSt.blishes the 1=1 mode .s the one with the lar,est 

a~ount of kinetic ener,y. 8y tr..1S2~the solution settles down 

from its rapid olcill.tions. The period of the enerlY spec­

trum is tp= .1528, however, 'the perio~ of' temperature and velo-
'\. '\. 

city ia 2tp. We have four~d that TCt+tp)a-TCt) and !(t+tp)a 

-!(t+tp). If W~ .ssume that the characteristic velocity of 
1/2 

the fluid il [2 KE (lal, r=.S)l tao ] ,then we can estimate 

the eddy turnover time, te' to be [2 KE -(1=1, r=S)lt=0]-112 

or 0.022. The period of the 'pectrum, tp is 6.95 te' We 

have r.peated the c.lcul.tion with tcutoff:3 and with the 

viscosity of the t=3 mode. (but not the t=l or 2 modes) increased 

by 10'. With the enhanced vilco.ity the solution i. steady­

.tate. When we incr •••• d the thermal diffusivity of the :'-3 

mod •• by 10', the solution remained p.riodic in tim •• 

With lcutoff:2, the lolution il both tim. dependent and 

aperiodic. The solution wanders between a normal 

and an inverted state. In the normal .t«te KE(1:l):103 and 

KI(t=2)=10. In the inverted state KE(1:1):102 and KI(1:2):104. 

The time depend.nce of the solution i. reminiscent of 'the J7' • .&~ner 

in which a Lorenz .olution wander. betwe.n two stranle attra:­

tors. W. have not att.mpted to determine whether there are 

fixed points in the lcutoft82 equations of motion. 

'-
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IV. DISCUSSION 

We have calculated lolutionl ~o ~he equa~ionl of convec­

tion by expandin, the horizontal .truc~e in a .erie. of mode •. 

Choo.in, the number of mode. to ~e retained iA ~he lolution il 

equivalent to fixina the .patial relolution in the horizontal 

direction. Ke~pinl the n~er of medel tixed,we found that as 

the 'aylei,h n~er increale., the lolution, chance. in time from 

steadY-ltate to periodic, and then to aperiodic. Alterna~ively, 

tie have found that by keepin, the Raylei,h number fixed 

at lOS and decrealin, the number ot model, the lolution ehanall 

trom Iteady-state, to periodic, to aperiodic. In the extreme 

ca •• where the expansion i. limited to mode. ot only one hori­

zontal wavenumDer,the lolution aoel to a IteadY-ltate .inale 

mode. From our o~lervationl ot the time-independent lolutionl 
~ 

with Rla10 • we have toUo"U! that truncati."a the horizontal 

expan.ion relults in: 1) alterin, the kinetic and ther-

mal Ip~c~a by iner.a.ina the amplit~del ot the hiah wavenumber 

model, 2) mAJdnl the mean tempera-:ure &radient more ilothermal 

and the~.by lowerina the central temperature. and 3) decrealina 

the rate at which the temperature variance i. produced in the !lui~. 

w. have .hown that i! the truncation il too levere,the thermal 

variance spectrum will become inverted. with the hiah waven~.r 

~islipation mode. havina more eneray than the low waven~er 

production cedel. !he thermal variance inversion doe. not ee-

5t:-oy t."1e til:l-independent property of the :lui~. We 

hav. shewn !on one example -=hat i! the '::'l.!."'lca'tien !ol .e"(:"1 er.ouah 

h .• . . - ...... IS I .......... ,... "he'" -loot lo"r·· .. ~on t. at t~1 .i(~ne'::.= enerlY spec.......... ... ... " ....... , ... H.,. _ ...... 

. ..'... ....... .. ,:jeceme s • :.::e ... , p ....... en ... 

- - --
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in numerically computing points of bifurcations in the flow 

as a function of Rayleigh number alone. The points of bifur­

cations become curves of bifurcations when plotted both as a 

function of Rayleigh number and limit of spatial resolution. 
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FIGURE CAPTIONS 

Figure 1 - The kinetic energy for the 1=1 mode as a function of 

radius calculated with 1cutoff=1 (solid line) and lcutoff=12 

(broken·line). The higher kinetic energy in the single­

mode calculation allows more kinetic energy to be viscously 

dissipated and compensates for the inability of the single­

mode calculation to lose energy by cascading. 

Figure 2 - Same as figure 3 with the temperature variance of 

the 1=1 mode plotted as a function of radius. 

Figure 3 - Q:: KE(1=2, r=O. 5) lKE( 3 ,r=O. 5) as a function of 

1 Truncation causes the high wavenumber modes of cutoff' 

the kinetic energy spectrum to become anomalously large. 

By extrapolation, it appears that when lcutoff=3, Q<l 

meaning ~thekinetic energy spectrum has become inverted. 

Figure 4 - The kinetic energy calculated with lcutoff=3 at 

r=O.S for the 1=1, 2, and 3 modes as a periodic function 

of time. At t=.0603 kinetic energy inverts so that 

KE(l=l, r=.S) < KE(1=3, r=.S). 
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