
����������
�������

Citation: Yu, R.; Zeng, C.; Chang, M.;

Bao, C.; Tang, M.; Xiong, F. Effects of

Urban Vibrancy on an Urban

Eco-Environment: Case Study on

Wuhan City. Int. J. Environ. Res.

Public Health 2022, 19, 3200.

https://doi.org/10.3390/

ijerph19063200

Academic Editors: Man Yuan,

Chiara Baldacchini and Paul

B. Tchounwou

Received: 5 November 2021

Accepted: 27 February 2022

Published: 9 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Effects of Urban Vibrancy on an Urban Eco-Environment: Case
Study on Wuhan City
Ruijing Yu 1, Chen Zeng 1,2,*, Mingxin Chang 1, Chanchan Bao 1, Mingsong Tang 1 and Feng Xiong 3

1 Department of Land Management, Huazhong Agricultural University, Wuhan 430070, China;
yurj331@126.com (R.Y.); hzauggglcmx@126.com (M.C.); krybcc@163.com (C.B.);
yevat@webmail.hzau.edu.cn (M.T.)

2 Research Center for Territorial Spatial Governance and Green Development,
Huazhong Agricultural University, Wuhan 430070, China

3 Sino-Ocean Group Holding Limited, Wuhan 430021, China; 13407123069@139.com
* Correspondence: lunarzeng@126.com

Abstract: In the context of rapid urbanisation and an emerging need for a healthy urban environ-
ment, revitalising urban spaces and its effects on the urban eco-environment in Chinese cities have
attracted widespread attention. This study assessed urban vibrancy from the dimensions of density,
accessibility, liveability, diversity, and human activity, with various indicators using an adjusted
spatial TOPSIS (technique for order preference by similarity to an ideal solution) method. The study
also explored the effects of urban vibrancy on the urban eco-environment by interpreting PM 2.5
and land surface temperature using “big” and “dynamic” data, such as those from mobile and social
network data. Thereafter, spatial modelling was performed to investigate the influence of urban
vibrancy on air pollution and temperature with inverted and extracted remote sensing data. This
process identified spatial heterogeneity and spatial autocorrelation. The majority of the dimensions,
such as density, accessibility, liveability, and diversity, are negatively correlated with PM 2.5, thereby
indicating that the advancement of urban vibrancy in these dimensions potentially improves air
quality. Conversely, improved accessibility increases the surface temperature in most of the districts,
and large-scale infrastructure construction generally contributes to the increase. Diversity and human
activity appear to have a cooling effect. In the future, applying spatial heterogeneity is advised to
assess urban vibrancy and its effect on the urban eco-environment, to provide valuable references
for spatial urban planning, improve public health and human wellbeing, and ensure sustainable
urban development.

Keywords: urban vibrancy; urban eco-environment; spatial modelling; Wuhan

1. Introduction

The urban eco-environment has attracted increasingly widespread concern in the
context of rapid urbanisation and low-density urban expansion over the past decade. The
eco-environment system is composed of all kinds of natural resources that human beings
rely on for survival, including water, land and atmosphere [1]. Environmental problems
such as air and water pollution, uncontrolled land use, heat island effect and resource
scarcity have emerged, which are closely related to human health. Chronic exposure to
air pollution, especially inhalable particulate matter (PM), such as PM 2.5 and PM 10 is
proven to increase the morbidity and mortality of the population [2,3]. Meanwhile, the
outbreak of COVID-19 has changed the way people live, work, socialise and integrate
with urban spaces [4]. This disease has led to a rethinking of the relationship between the
urban eco-environment and public health. China is experiencing a transformation of its
growing focus on improving its eco-environment, which includes natural elements and
processes, as well as anthropogenic activity. Exploring the relationship between urban
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vibrancy and eco-environment is critical to address major public health emergencies and
ensure sustainable urban development.

Scholars define urban vibrancy from various perspectives. Jacobs [5] first proposed
this concept as a condition where “liveness and variety attract more liveness” and em-
phasised that it primarily refers to humans and their activities in streets. Gehl described
urban vibrancy as the vitality of a public place, regardless of the number of occupants [6].
Moreover, measurement methods of urban vibrancy are developing based on Jacobs’s six
conditions for urban vitality, namely, land use mix, density, block size, building age and ac-
cessibility [5]. Thereafter, extended quantitative measures of the built environment such as
urban morphology [7], urban form or design indicators and some “vibrant” characteristics,
including walking [8], social [9] and economic [10] activities, have emerged. In the era of
big data, geo-referenced datasets including traditional location-based, social network and
human mobility data sets, are applied to quantify vibrancy [11].

In addition, scholars have focused on the impact of urban vibrancy on the urban eco-
environment for a long time, and empirical studies have shown the intrinsic relationship
between urban vibrancy and the urban environment. Based on the exploration of urban
vibrancy measurement, research has revealed that urban vibrancy is closely related to the
urban environment through the analysis of the association between urban form metrics
and intensity of human activities [12]. For instance, building density can change land
temperature by changing the speed of near surface airflows [13]. High intensity of human
activity, including high intensity of entertainment and recreation, public facilities and other
factors, closely correlate with high surface temperature [14]. It is also acknowledged that
urban forms including building morphology, transportation system, public infrastructure,
ecological infrastructure, and human activity affect urban thermal environments [15]. The
close relationship between the hotspots of land surface temperature and the distribution
of built-up land has been identified in Zhao et al.’s study [16]. It is also revealed that
regional temperature difference can be distinguished by land cover and building surface
fraction [17]. Meanwhile, road density has a positive effect on land surface temperature
in which high accessibility areas would be hotter than areas with low road density [18].
Various types of land use have different effects on air quality. Air pollution can be caused
by industrial and residential activities on land, as well as external transportation, and the
impact of industrial air pollution shows spatial variation [19]. It is found that a high degree
of urban aggregation is associated with poor air quality in northern China, whereas an
opposite association of urban aggregation and air quality has been identified in southern
China [20].

In response to the need to cope with public health emergencies, concern about urban
vibrancy is increasing in developing countries, such as China, along with the growing
focus on environmental protection in the context of global warming and eco-environment
deterioration. The impact of urban vibrancy on environmental protection is extensively
explored in a quantitative manner. During the COVID-19 pandemic, resilient open spaces,
equitable urban communities and quality medical service, which enhance the living con-
ditions of residents and revitalise their communities, have attracted more attention than
before [21–23]. These factors are closely related to urban vibrancy and the eco-environment.
Therefore, analysing the effects of urban vibrancy on the environment can help communi-
ties to respond to COVID-19 in targeted ways and improve human wellbeing and public
health during the pandemic. Our study aims to fill the gaps in two aspects. First, this
study aims to design comprehensive metrics to characterise urban vibrancy with synthe-
sised and geo-referenced mobile and social network data. A single metric or data set is
insufficient to perform a systematic reflection on the characteristics of urban vibrancy in
modern cities. Density, accessibility, land use and human activities are expected to be
included with a powerful big dataset. Second, the relationship between urban vibrancy
and the eco-environment remains unclear, although research assumptions claim an impact
on the terrestrial, atmospheric and aquatic environments. Remote sensing and other ad-
vanced monitoring techniques have enabled a fine-scale assessment on the eco-environment.
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Therefore, quantitative investigations have been conducted to explore the effects of ur-
ban vibrancy on environmental indicators, which can serve as a reference in formulating
strategies for sustainable urban development, public health security and human wellbeing
promotion. The rest of this paper is structured as follows. Section 2 introduces the study
area and methodologies. Section 3 describes the results. Sections 4 and 5 present the
discussion and conclusion, respectively.

2. Materials and Methods
2.1. Study Area and Data Source

Wuhan was selected as the case study area because of its strategic position in central
China, as well as its experience during the COVID-19 pandemic. It is the capital city of
Hubei Province and has been regarded as the core city in the Yangtze River Economic Belt
(Figure 1). In 2020, the permanent population of Wuhan reached 12.32 million, and the total
GDP had grown to 1561.61 billion. The National Development and Reform Commission
has designated Wuhan as the country’s National Economic Centre, High-tech Innovation
Centre, Trade and Logistic Centre and International Exchange Centre. Wuhan is also the
transportation hub in central China and has a bus rapid system through the downtown and
interlocking highways, roads and bridges. Wuhan had 10,170 bus stations and five subway
lines in 2017 (98.48% of subway stations have bus stations within 1 km; therefore, subway
stations are not used in an accessibility calculation system). Wuhan also possesses abundant
natural resources with considerable water areas, such as rivers and lakes, which make
eco-environmental protection a critical issue in the city [24]. The rapid urban expansion
has not only led to environmental degradation and widespread urban decline but also
put forward higher requirements for residents’ health and wellbeing in the past decades.
Thus, the urban renewal plans have been promoted to improve vitality in the urban space,
thereby realizing the efficiency of resource use, enhancing human health and wellbeing,
and supporting sustainable development.
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Figure 1. Location of research area (Wuhan).

Considering the evidence from empirical studies and data availability, the spatial scales
of community neighbourhood are regarded as the basic observation units. In this study,
we examined 1074 community neighbourhoods as research units. Due to the outbreak of
COVID-19, data from 2019 to 2021 are all affected, and these datasets do not easily reflect
the true urban vitality of Wuhan. All data which we use to analyse the urban vibrancy of
Wuhan are from around 2017. The datasets we used to measure urban vibrancy include
those on population, points of interest (POI), road networks, land use and mobile phone
signalling. Population data are obtained from Wuhan statistical yearbooks published by
the local government (http://tjj.wuhan.gov.cn/, accessed on 1 September 2018). POI data

http://tjj.wuhan.gov.cn/
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including geographic points of schools, shops, hospitals and bus stops were collected from
the Baidu website (http://map.baidu.com/, accessed on 1 September 2018), one of the
largest Chinese search engines. Land use data were obtained from the National Geomatics
Centre of China. Land use classification is aggregated into six categories: cultivated land,
forest land, grassland, water area, construction land and unused land. Mobile phone
signalling data included social media check-ins and mobile phone positioning records. The
check-in data were obtained from Sina Weibo in 2017. Mobile phone positioning records
were provided by a mobile communication service company in Wuhan. Weekend data
(from 7 to 8 October 2017) and workday data (9 October 2017) containing 2441 trajectories
were used to calculate urban vibrancy.

2.2. Urban Vibrancy Indicators and Assessment

In this study, urban vibrancy is assessed through the DALDH (density, accessibility,
liveability, diversity, and human activity) model. Dimensions, indicators, data sources and
corresponding years involved in this model are described in detail in Table 1. In accordance
with our previous studies comparing urban vitality in Wuhan and Chicago [25] and to
accommodate the trend of emphasising human activity and using “big” and “dynamic”
data, density includes the indicators of population, road and building density, the density of
mobile users and floor area ratio (total floor area above ground divided by the net land area,
FAR). The density of mobile users reflects the spatial distribution of flowing population,
and FAR embodies the 3D characteristics of buildings, thereby characterising the dynamic
and multi-dimensional features in density. Accessibility is measured by the distance of
urban facilities, which reflects the convenience and achievement of urban function, and
liveability is measured by the number of urban facilities which exhibit the capacity to satisfy
all-around living requirements. Diversity measures mixed land. Urban vibrancy is directly
related to people’s daily lives and affects human health and wellbeing. We have embraced
the dimension of human activity, which is estimated using mobile and social network
data [26–28]. In particular, the measurement of human activity is conducted by calculating
the inflow and outflow numbers and density of Weibo users [29,30]. Human activity is
measured by the inflow, outflow and total flow (sum of inflow and outflow) numbers
and the number of social network platform check-ins. These data contain information
on human activity, which can better capture details of people’s daily life and accurately
measure the urban vitality [31].

Table 1. Descriptions of DALDH model.

Dimensions Indicators Data Source Year

Density Population density Census data set from local government 2017

Building density Wuhan Natural Resources and Planning Bureau 2017

Density of mobile users Mobile phone GPS positioning requests 2017

Floor Area Ratio Wuhan Natural Resources and Planning Bureau 2017

Road density Wuhan Natural Resources and Planning Bureau 2017

Accessibility Distance to school Big data platform (Baidu API) 2017

Distance to hospital Big data platform (Baidu API) 2017

Distance to shop Big data platform (Baidu API) 2017

Distance to bus stop Big data platform (Baidu API) 2017

Liveability Number of banks Big data platform (Baidu API) 2017

Number of food service sites Big data platform (Baidu API) 2017

http://map.baidu.com/
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Table 1. Cont.

Dimensions Indicators Data Source Year

Number of life service sites Big data platform (Baidu API) 2017

Number of leisure sites Big data platform (Baidu API) 2017

Diversity Land use diversity National Geomatics Centre of China 2017

Human activity Inflow Mobile phone GPS positioning requests 2017

Outflow Mobile phone GPS positioning requests 2017

Total Flow Mobile phone GPS positioning requests 2017

Weibo check-in Social network platform (Weibo) 2017

Note: Baidu API, Application Programming Interface, a developer’s open data platform; GPS, Global
Positioning system.

The values of urban vibrancy and different dimensions are calculated as follows:
First, we obtained the data needed for the calculation from different sources and then

normalized the values of the different indicators to unify the range from 0 to 1.
Second, we used the entropy weight method to determine the index weight. The

entropy weight method is an assignment method to determine the weight of each index
by the size of information entropy. The index weight value determined by this method
reduces the human subjective interference [32,33]. WDENV , WAV , WLV , WDIVV , WHAD are
the corresponding weights of DENV(density), AV(Accessibility), LV(Livability), DIVV(Diversity)
and HAD(Human activity), respectively. Wdeni is the weight of each index in the dimension
of density. Wacci is the weight of each index in the dimension of accessibility. Wlivi is the
weight of each index in the dimension of accessibility. Whadi is the weight of each index in
the dimension of human activity.

Third, we calculated the values of urban vibrancy in different dimensions based on
the weights and their normalized values as follows (Equations (1)–(6)).

VRCi = WDENV ∗ DENVi + WAV ∗ AVi + WLV ∗ LVi + WDIVV ∗ DIVVi + WHAD ∗ HADiVRCi
= WDENV ∗ DENVi + WAV ∗ AVi + WLV ∗ LVi + WDIVV ∗ DIVVi + WHAD ∗ HADi

(1)

DENV(density) = Wden1 ∗ Denpop + Wden2 ∗ Denbud + Wden3 ∗ Denmob + Wden4 ∗ Den f lr + Wden5
∗DenrodDENV(density)
= Wden1 ∗ Denpop + Wden2 ∗ Denbud + Wden3 ∗ Denmob + Wden4 ∗ Den f lr + Wden5 ∗ Denrod

(2)

AV(Accessibility) = Wacc1 ∗ Distsch + Wacc2 ∗ Disthosp + Wacc3 ∗ Distshp + Wacc4 ∗ Distbus AV(Accessibility)
= Wacc1 ∗ Distsch + Wacc2 ∗ Disthosp + Wacc3 ∗ Distshp + Wacc4 ∗ Distbus

(3)

LV(Livability) = Wliv1 ∗ Numbks + Wliv2 ∗ Num f d + Wliv3 ∗ Numl f + Wliv4 ∗ NumlsrLV(Livability)
= Wliv1 ∗ Numbks + Wliv2 ∗ Num f d + Wliv3 ∗ Numl f + Wliv4 ∗ Numlsr

(4)

DIVV(Diversity) = −∑n
i=1 pilnpiDIVV(Diversity) = −∑n

i=1 pilnpi (5)

HAD(Human activity) = Whad1 ∗ In f l + Whad2 ∗ Our f l + Whad3 ∗ T f l + Whad4 ∗ WCinHAD(Human activity)
= Whad1 ∗ In f l + Whad2 ∗ Our f l + Whad3 ∗ T f l + Whad4 ∗ WCin

(6)

where VRC refers to the urban vibrancy value; DENVdensity is the density value which
includes population density (Denpop), building density (Denbud), density of mobile users
(Denmob), floor ratio area (Den f lr), and road density (Denrod); AVAccessibility is the acces-
sibility value that is calculated using the indices of distance to school (Distsch), hospital
(Disthosp), shop (Distshp), and bus stop (Distbus); LVLivability is the liveability value that is
calculated based on the number of banks (Numbks), food service sites (Num f d), life service
sites (Numl f ), and leisure sites (Numlsr); DIVVdiversity is the diversity value measured using
the Shannon diversity index (pi is the percentage of ith land use parcel, n is the number of
parcels); and HADHuman activity is the human activity dimension using the indices of inflow
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and outflow number (In f l,Out f l), total number of mobile flows (T f l ), and geo-referenced
social network users on Weibo (WCin).

Finally, to combine all the values in the DALDH framework, we employed the spatial
technique for order preference by similarity to ideal solution (Technique for Order Pref-
erence by Similarity to an Ideal Solution (TOPSIS) method to produce the ultimate urban
vibrancy value. Hwang and Yoon [34] proposed the traditional TOPSIS to identify the
optimal solutions from a finite set of alternatives using multiple criteria. Spatial TOPSIS
modifies the traditional TOPSIS method by using the Euclidean distances as the weight
to calculate the gap between the actual and optimal values for each observation [25]. This
modification involves the incorporation of spatial interaction in the assessment because
spatial influence in urban space is a factor that cannot be disregarded. The neighbouring
communities are capable of influencing the local communities because of the critical nature
of the inner urban network. Hence, the principle of the calculation in our study is that we
take the distance to neighbouring communities into account in additions to their attribute
values when measuring the values of gaps among the observations. This distance is applied
in traditional TOPSIS as the components of spatial weights to form spatial-TOPSIS. Here
are the main calculation step for spatial-TOPSIS ((Equation (7)) and the computing method
of spatial weights (Equation (8)):

Gij =

√√√√ m

∑
j

wij ∗
(

fij − fimax
)2 (7)

wij =
DISTij

∑m
j=1 DISTj

(8)

where Gij is the gap value of the jth observation for the ith candidate which indicates the
dimensions of density, accessibility, liveability, diversity and human activity. fij is the jth
observation in the ith dimension, fimax is the highest value in the ith dimension. DISTij is
the spatial distance of jth observation to the ideal solution in the ith dimension, which is
the maximum value in the ith dimension. In this paper, we take the highest value as the
ideal solution as the ideal solution in each dimension. DISTj is the sum of the distances
from the jth observation to all other observations in the ith dimension. wDij is the spatial
distance weight of jth observation in the ith dimension. Then, we ranked the communities
according to the value of Gij.

2.3. Retrieval of Eco-Environmental Indicators

In the context of global warming and increasing concern about air pollution in China,
we applied two indicators, namely, PM 2.5 concentrations and temperature, to reflect the
eco-environment quality with consideration of data accessibility and urban sustainability
issues [35,36]. In terms of temperatures, because abnormal temperature was observed
from 2017 to 2019 and data acquisition restrictions were encountered due to the COVID-19
pandemic, we used the remote sensing inversion model to retrieve the surface temperature
from the thermal infrared sensor on board the Landsat 8 with spatial resolution of 30 m in
2016. The practical split-window algorithm with consideration of atmospheric water vapor
was applied to retrieve land surface temperature (LST) using the professional software
development of Ren et al. [37,38]. We used the global annual PM 2.5 grids from Moderate-
resolution Imaging Spectroradiometer (MODIS) provided by the socioeconomic data and
applications centre in 2016. The raster grids present the values of PM 2.5 concentrations with
cell resolution of 0.01◦ (https://sedac.ciesin.columbia.edu/data, accessed on 1 September
2018). The retrieved LST and PM 2.5 data set are overlaid with urban communities in
Wuhan to acquire the mean land surface temperature and PM 2.5 concentrations in each
urban community. Given the substantial differences in the areas of urban communities, the
treatment of the values for each community conforms to different principles. When the cell
size of the LST or PM 2.5 grids is larger than the community area, the value of the cell is

https://sedac.ciesin.columbia.edu/data
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the value in the community. When the cell size of the LST or PM 2.5 grids is smaller than
the community area, the average values of all the covered cells are used as the values in
the community.

2.4. Effects of Urban Vibrancy on Eco-Environment

We assumed that there are spatial interactions among eco-environmental and DALDH
indicators according to the empirical studies [39,40]. As a result, the spatial econometric
model was applied to explore the relationship between urban eco-environmental indicators
and DALDL indicators. The dependent variables are land surface temperature and PM
2.5. The explanatory variables are density, accessibility, liveability, diversity, and human
activity in both situations. Thereafter, we use Moran’s I index and Lagrange multiplier (LM)
statistics to diagnose the spatial autocorrelation and spatial econometric model selection.
Moran’s index is a measure of spatial autocorrelation and has been widely used in various
studies to examine the existence of correlations in a signal among nearby locations in
space [41,42]. LM is an indicator of spatial dependence that was first derived in Anselin’s
study [43]. Together with Moran’s I, this statistic has also been embedded in spatial
econometric packages in various software to identify spatial dependence and provide
guidance for determining the existence of spatial autocorrelation in lags or errors [42]. The
current study uses LMerror and LMsar to test the spatial autocorrelation in the residuals
after the ordinary least squares (OLS) regression to check the significance level for the
determination of suitable spatial econometric models. The basic forms of the spatial lag
model (Equation (9)) and spatial error model (Equation (10)) are as follows:

Temp/PM 2.5i = αwijTemp/PM 2.5j + M ∗ XDALDHi + ε (9)

Temp/PM 2.5i = βXDALDHi + λWu + ε (10)

where i and j refer to the different areas, Temp/PM 2.5i is the value of land surface tem-
perature or PM 2.5 in the ith urban community. XDALDHi is the DALDH values in the
ith urban community. wij is the N × N order spatial weights matrix of spatially lagged
response variables (Temp/PM 2.5j). α denotes spatial autoregressive coefficient, and ε is
the independently distributed errors. u is spatially lagged errors. W is the N × N order
spatial weights matrix of the spatially lagged error (u). β is the regression coefficient of
independent variable. λ represents the spatial error regression coefficient.

Various types of interaction effects occur between the spatial lag model (SLM) and
spatial error model (SEM). The first model contains endogenous interaction effects among
the dependent variable (Temp/PM 2.5) and the other interaction effects among the error
terms (λ). Generally, interaction effects can describe why a dependency exists between
an observation in a specific location and observations at other locations [12]. Endogenous
interaction effects mean that the dependent variable of a particular unit A depends on the
dependent variable of other units such as unit B. The interaction effects among the error
terms are matched with a situation where determinants of the omitted dependent variable
in the model are spatially autocorrelated, or with a situation where the unobservable blows
are associated with a spatial pattern [44]. According to LMerror and LMsar, SLM is taken
in Qiaokou, while SEM is suitable for other locations in the spatial regression for PM 2.5.
For land surface temperature, OLS is taken in Jiangan and Qingshan, while SEM is suitable
for other locations.

3. Results
3.1. Urban Vibrancy Assessment

The results of the urban vibrancy assessment have shown great differences in different
dimensions. Table 2 shows the maximum value, minimum value, mean value, deviation
in the DALDH dimensions, and integrated urban vibrancy. Figure 2 illustrates the spatial
distribution of the urban vibrancy values. In general, accessibility has the highest mean
value and diversity has the largest deviation. Integrated urban vibrancy has a mean value
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of 0.1085 and deviation of 0.002. The spatial distribution of density, diversity, and human
activity shows a similar pattern, where the highest values are scattered in the southeastern
and middle-eastern areas of the Hongshan district. By contrast, accessibility and liveability
exhibit high degrees of similarity in spatial distribution with clustering trend of high values
along the Yangtze River and the horizontal axis in the eastern area. Mobile data record
human mobility, and we extracted individual flows in three days to analyse the inflow and
outflow in each urban community (Figure 3). To eliminate the “fault” and “problem” data
and guarantee data consistency, we selected 2441 trajectories in analysing the population
flow. In general, we observed no substantial difference in the spatial distribution of inflow
and outflow, thereby indicating that the phenomenon of “high-in and low-out” or “high-out
and low-in” hardly appears. The urban communities with the highest human mobility
are in the Hongshan district in the eastern area of Wuhan, where several prestigious
universities (e.g., Wuhan University and Huazhong University of Science and Technology)
and scenic parks (e.g., eco-tourism scenic spots in East Lake and a botanical garden) are
located. The lowest “mobilised” communities are along the Yangtze River, where piers,
urban villages (a dualistic phenomenon showing the coexistence of city and village caused
by the fast urban expansion in the urbanisation process [45]), and derelict factories are
located, such as in Xiwan Pier, Rocket Village, and Qingshan Shipyard, where land use
function is generally one-fold, and the frequency of the population flow has a low level.
Thus, urban communities with the highest urban vibrancy are spread in the outer rings
and clustered in the western area along the Yangtze River.

Table 2. Normalised values in different dimensions.

Dimension Density Accessibility Liveability Diversity Human Activity Urban Vibrancy

Mean 0.0985 0.865 0.0477 0.184 0.0932 0.1085
SD 0.0038 0.0096 0.0043 0.0201 0.0057 0.002

Note: Mean indicates mean value, and SD indicates standard deviation.
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Figure 3. Mobile phone trajectories.

The communities with the highest urban vibrancy values are the TongFu and Xiaojia
urban communities. They are old towns in the Jiangan district and are located in a bustling
commercial district near the famous Jianghan Pedestrian Street. These communities have
extensive facilities, including those related to housekeeping, maintenance, food, and medi-
cal treatment, and the population size and flow are evident. The third one is Guanshan
Village in the Hongshan district surrounded by several prestigious universities with a
lively population flow. In all these communities with high urban vibrancy, old villages and
new buildings are found with a series of urban regeneration projects and a transportation
facility that has substantially improved in recent years.

3.2. The Spatial Distribution of PM 2.5 and Land Surface Temperature

The spatial distributions of PM 2.5 and surface temperature were then analysed. The
spatial distribution of PM 2.5 presents a progressive decrease pattern from the northwest-
ern to the southeastern area, with the highest and lowest values of 53.6 and 48.8 mg/m3,
respectively (Figures 4 and 5). The mean values of PM 2.5 do not make a substantial
difference with Jiangan, Jianghan and Qiaokou in the western area along the Yangtze River,
having slightly high values (Figure 6, the first number is the mean value of PM 2.5, and
the second number is the stand deviation). The Hongshan urban district has the lowest
PM 2.5 values that are generally attributed to the improvement effect from East Lake and
abundant forest cover. Industrial development and several development zones, such as
the Pan Longcheng Economic Development Zone(Wuhan, China), Wuhan Economic and
Technological Development Zone(Wuhan, China), and Changfu Xin Cheng Economic De-
velopment Zone(Wuhan, China), contribute to the severe air pollution in the northwestern
area. The central urban communities, where railway stations and tunnels across the Yangtze
River are located, have also suffered from air pollution.
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High PM 2.5 values are generally attributed to industrial development and infrastruc-
ture construction in urban areas. The World Health Organization (WHO) has issued air
quality guidelines in which the standards have been formulated (the annual averages of air
quality guideline level is 5 µg/m3 and interim targets 1 to 4 are 35, 25, 15 and 10 µg/m3. The
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24 h average of air quality guideline level is 15 µg/m3 and interim targets 1 to 4 are 75, 50,
37.5, 25 µg/m3 [46]). The ambient air quality standards in China indicate that the first-level
PM 2.5 concentration limit in area I is the annual average of 15 µg/m3 and the 24 h average
of 35 µg/m3; the second-level PM 2.5 concentration limit in area II is the annual average
of 35 µg/m3 and the 24 h average of 75 µg/m3 [47]. Compared with the international
standards, China meets the relaxed standards set by the WHO. Although the overall PM
2.5 in Wuhan is in line with the Chinese concentration limit, it is in interim targets 1 and
2 in the international standards, which are still far from the air quality guideline level.
Among them, urban districts with the highest PM 2.5 are located along the outer ring in the
northwestern area. The Yuhualing and Taizihu urban communities are transformed from
the regeneration of urban villages in the Jiangan urban district. This area has massive real
estate development and infrastructure construction, thereby resulting in high PM 2.5 values
in recent years. Urban districts with the highest PM 2.5 are located along the outer ring in
the northwestern area. The Yuhualing and Taizihu urban communities are transformed
from urban village renovation along the third loop in the Jiangan urban district. This area
has massive real estate development and infrastructure construction, thereby resulting in
high PM 2.5 values in recent years.

Similarly, the spatial distribution of surface temperature was explored. The surface
temperature in Wuhan has apparent spatial heterogeneity and the temperature is higher in
the western area than that in the eastern area along the Yangtze River (Figure 7). Figure 8
shows land surface temperature of different districts (the first number is the mean value, and
the second number is the stand deviation). The highest temperature occurs along the Yangtze
River and Han River at 56 ◦C, whereas rivers and lakes show a low temperature of 22 ◦C.
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To reveal the differences among communities, we made a Boston Consulting Group
(BCG) matrix using two variables (Figure 9): land surface temperature (LST) and PM 2.5.
As a whole, the LST of the communities in the study area is generally high, with few
communities below 30 ◦C and most at around 37.5 ◦C (mean land surface temperature of
37.64 ◦C). In addition, the PM 2.5 levels in the study area communities are all at a high level
(average PM 2.5 of 49.91 ug/m3), and almost all communities are in a lightly polluted state
according to the PM 2.5 detection standard (light pollution range is 75–115 ug/m3). Further
exploration reveals that more points exist in the graph with lower PM 2.5 level and higher
LST or higher PM 2.5 levels and higher LST. Furthermore, the number of communities with
lower LST and higher PM 2.5 level is less. In general, the communities in the study area
differed slightly from each other in terms of PM 2.5 levels and LST.
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3.3. The Spatial Regression Analysis of PM 2.5 or LST vs. Urban Vibrancy Dimensions

Table 3 shows the results of the spatial regression for PM 2.5 in the different districts.
It is noted that a number of pixels indicate missing data of PM 2.5 because of influence
by information sources at coarser resolutions. We overlaid the PM 2.5 data with the
research area and 346 urban communities were used for modelling, which accounted for
almost one-third of the total cells. We analysed the contributions of urban vibrancy to
air pollution in seven urban districts, namely, Jiangan, Jianghan, Wuchang, Hongshan,
Qiaokou, Qingshan, and Hanyang. Spatial autocorrelation was diagnosed in all the urban
districts, and we identified that this spatial influence has high probability to appear in
the error terms in nearly all urban districts except Qiaokou. The greatest power of spatial
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influence in error term is in Qingshan, where Wuhan Iron and Steel Corporation is located.
This district also has the highest R2, and urban vibrancy was capable of explaining 84.45%
of the variance in PM 2.5. In the Qingshan district, density, accessibility and diversity
are positively correlated with PM 2.5, with accessibility having the largest correlation
coefficient. By contrast, human activity and PM 2.5 have a negative relationship. Hongshan
is the largest urban district in the city centre, and the spatial influence is also of high level
with a coefficient of 0.79. However, the only significant dimension is liveability, with a
positive correlation coefficient of 7.14. Wuchang, the other urban district on the eastern
side along the Yangtze River, has the only significant spatial influence factor with all the
dimensions of urban vibrancy insignificantly correlated. On the western side along the
Yangtze River, Jianghan has the highest coefficient in spatial influence and highest R2
with a value of 0.76. Density, accessibility and diversity are negatively correlated, and
human activity is positively correlated with PM 2.5. Accessibility has the most powerful
negative influence on air pollution, which is contrary to the situation in Qingshan. Density
is the only significant factor with a negative influence on PM 2.5 and the coefficient of
spatial influence is 0.71 in Jiangan. In Hanyang, human activity has a significant effect
on air pollution with a correlation coefficient of 3.16, and accessibility and diversity are
negatively correlated with urban vibrancy. Qiaokou is the only urban district with spatial
auto-correlation appearing in a spatial lag with a coefficient of 0.0161. Accessibility and
diversity are two identified factors with a significance level of 0.05, and the previous one
shows negative influence, whereas the latter is positive. Urban vibrancy has been justified
to have a relationship with air pollution with various levels of contributions in the different
urban districts.

Table 3. Results of spatial regression for PM 2.5 in different districts.

Jiangan Jianghan Wuchang Hongshan Qiaokou Qingshan Hanyang

Observation 50 31 62 154 42 34 63
Density −5.77 *** −12.62 *** 0.1563 0.4902 −4.14 2.08 *** −1.13

Accessibility 0.7992 −14.37 *** −0.2465 0.3763 −3.59 ** 6.27 ** −2.08 *
Liveability −0.0425 0.5554 −3.26 7.14 *** 4.77 −1.24 3.08
Diversity 0.6657 −1.36 ** −0.1600 0.0696 2.16 ** 0.5472 * −1.23 **
Human
activity 1.44 6.10 *** −0.1149 −0.1318 2.25 −3.62 ** 3.16 ***

α - - - - 0.0161 ** - -
λ 0.7122 *** 0.7830 *** 0.5963 *** 0.7903 *** - 0.8571 *** 0.5583 ***

R2 0.6730 0.7607 0.4809 0.6991 0.4828 0.8445 0.4700

Note: *, ** and *** indicate 10%, 5% and 1% significance levels, respectively.

Spatial autocorrelation was also identified to be significant in exploring the relationship
between urban vibrancy dimensions and LST in the majority of the urban districts (except
in Jiangan and Qingshan), with the spatial influence being likely to appear in the error term
(Table 4). Hanyang has the highest coefficient of spatial influence and R2. Accessibility is
the only significant factor in explaining the variance in LST. The coefficients of the spatial
error term are similar in Jianghan and Hongshan. In Jianghan, all dimensions have shown
significant influences except diversity, with liveability and human activity being negative.
In Hongshan, accessibility and diversity are the significant factors with the former being
positive. The contributions of the spatial influences are weak in Wuchang and Qiaokou. In
Wuchang, the only positive significant factor is accessibility, whereas density, diversity, and
human activity show a negative impact, with density being more powerful. In Qiaokou,
diversity is the only significant factor with a correlation coefficient of −3.63. No significant
spatial autocorrelation was observed in Jiangan and Qingshan. All factors are significantly
correlated with LST in Jiangan except diversity. By contrast, only diversity is negatively
correlated with LSI in Qingshan.
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Table 4. Results of spatial regression for land surface temperature in different districts.

Jiangan Jianghan Wuchang Hongshan Qiaokou Qingshan Hanyang

Observation 207 143 206 316 175 83 141
Density −4.33 ** 5.49 * −6.03 * 1101 0.9157 −1623 −0.8696

Accessibility 13.08 *** 18.09 *** 9.61 ** 2464 *** 1.36 2369 11.40 ***
Liveability 2.85 ** −3.90 ** −0.9617 −1815 1.29 −618 3.32
Diversity 0.0769 0.032 −4.57 *** −1041 ** −3.63 *** −2144 *** −0.4684
Human
activity −6.00 *** −4.37 * −4.50 ** 648.82 −0.3313 2961 −3.82

λ 0.5097 *** 0.3247 *** 0.5107 *** 0.3027 *** 0.6541 ***
R2 0.3511 0.3746 0.3316 0.4082 0.2086 0.2161 0.5380

Note: *, ** and *** indicate 10%, 5% and 1% significance levels, respectively.

The correlation between different indicators of urban vibrancy and LST or PM 2.5
varies from one district to another. Both positive and negative correlations exist. Based on
the results of the spatial regression for PM 2.5 and LST, the results of the spatial regression
for PM 2.5 are better, except in the Wuchang, Qiaokou and Hanyang districts, where R2 is
above 0.5. In addition to Hanyang district, the R2 of the results of the spatial regression for
PM 2.5 in other districts are better than the results of the spatial regression for LST. From
the results of the spatial regression for PM 2.5, Qingshan district has the best fitting effect
where R2 is 0.8445. According to the results of the spatial regression for LST, Hanyang
district has the best fitting effect, but its R2 is only 0.5380, and the R2 of other districts are in
the range of 0.3 and 0.4.

4. Discussion

The integrated assessment on urban vibrancy using big and dynamic data and the
exploration of its relationship with the urban eco-environment are imperative for urban
revitalization, sustainable urban development, public health and human wellbeing. The
primary contributions of our study are in the integrated assessment of urban vibrancy with
the extended DALDH indicators and the investigation of the effects of urban vibrancy on the
urban eco-environment. Conceptually, we assessed urban vibrancy by considering features
such as density, diversity and human activity and driving factors such as accessibility
and liveability. The assessment of urban vibrancy has been implemented in our previous
study in Wuhan and Chicago using the DALD model [25]. We extended our indicators of
density to include FAR to manifest the vertical dimension, and the dimension of human
activity was embedded, thereby conforming to the mainstream in this domain. In this
dimension, mobile and social network data were used to indicate the “popularity” degree
in urban community, which is a critical indicator of urban vibrancy in Jacob’s theory [5].
Contemporarily, the urban village was revealed to be of low-density value, whereas a
relatively new urban community (characterised by marketized real estate with various
facilities and stakeholders [48]) has high-density values. These results are similar to the
situation in the dimensions of accessibility and liveability. A high degree of mixed land
use often occurs in urban communities in the outer ring and with a large area, such as the
Wudong community. Substantial population flow and social network are apparent in urban
villages in the Hongshan district, such as Qingling Village. Urban communities with the
highest level of urban vibrancy generally have small areas and are along the Yangtze River
on the west side, which is the commercial centre or lake area on the east side. This condition
revealed urban regeneration functions in Wuhan, whereas the closeness of interpersonal
relationships is higher in the old communities than in the newly built ones. Consequently,
efforts should be exerted to create dynamic and networked urban communities at the
current stage to realise vibrant urban development.

Remote sensing techniques have provided immense opportunities for the quantifica-
tion of the eco-environment at a fine scale [12]. We selected PM 2.5 and LST as indicators to
retrieve data from remotely sensed images because air pollution and urban heat island ef-
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fect are primary environmental concerns in Wuhan. Significant spatial autocorrelation and
the relationship between urban vibrancy and eco-environment were observed regardless of
PM 2.5 or LST. Although urban vibrancy is incapable of explaining the variance in PM 2.5
or LST in the entire research area, it is predictable that modelling their relationship in each
urban district may produce different results. Spatial modelling techniques are applied in
this process because of the spatial autocorrelation phenomenon, and they improved the
model fitting considerably compared with the traditional regression with ordinary least
squares method [49]. For the modelling of PM 2.5, spatial influence is the most power-
ful in Qingshan, where air pollution is most severe because of the steel and iron sectors
development. This spatial effect is considerably evident in the Hongshan district with
respect to LST and where East Lake and the East Lake Hi-tech Economic Zone are located.
It is also the urban district with the largest land area where most prestigious universities
are clustered. Thus, the industrial, knowledge and environmental spatial spillover effect
has a high probability to appear. Regularity in terms of the effects of density, accessibility,
liveability, diversity, and human activity on PM 2.5 or LST is difficult to determine. For ex-
ample, negative relationships were identified in Jianghan, but positive ones were observed
in Qingshan with respect to density and PM 2.5. However, a positive correlation coefficient
was observed between density and LST in Jianghan but was negative in the neighbouring
district of Jiangan. For the exploration of the effects of urban vibrancy on LST, diversity and
human activity showed significant negative impact in the majority of the urban districts.
This result is generally attributed to the cooling function of the water area and vegetation
cover and urban heat island effect caused by population clustering. Spatial influence and
spatial heterogeneity in the effects of urban vibrancy on the urban eco-environment is
beneficial to guide the elaborated urban planning in infrastructure construction, land use,
population control and other related policies to improve air quality and sustain the liveable
surface temperature in each urban district and the entire city centre [50].

This study shows a spatial autocorrelation and relationship between urban vibrancy
and the eco-environment. Meanwhile, many studies have linked urban eco-environment
with public health from different aspects. Furthermore, improving urban vibrancy is
one of the goals of urban planning, and it is important to recognise its role in improving
the urban eco-environment, enhancing public health and reducing the negative impacts
of public health emergencies through scientific urban planning. Among the indicators
selected for urban vibrancy in this study, density, population flow and accessibility all
reflect the aggregation in the distribution of population, transportation facilities and public
service facilities in Wuhan. This overconcentrated urban spatial pattern poses a potential
threat in the form of a rapid spread of epidemics. In terms of the diversity of land use,
the insufficiency of public space is a hidden danger in reserving emergency sites during
an epidemic. Accordingly, urban planning in the post-epidemic era can be improved by
strengthening mixed land use, increasing open and green spaces, as well as balancing
the distribution of public service facilities and optimised transportation road networks.
Researchers suggest that open spaces are crucial for residents’ mental wellbeing and human
activity [51,52]. Human wellbeing is also improved by increasing green spaces and their
percentage of vegetation cover and size in all aspects [53,54]. Enhancing urban vibrancy
is crucial in realising the human-oriented urban planning and intrinsically improving the
urban environment. Eco-environment is the key to shaping public health and human
wellbeing. Thus, research on urban vibrancy could help decision makers to integrate the
eco-environment into urban planning to improve public health and wellbeing by optimising
the living space and flow in the post-epidemic era.

5. Conclusions

This study assessed urban vibrancy from the DALDH dimensions and explored its
effects on the urban eco-environment through the interpretation of PM 2.5 and land surface
temperature from remote sensing images. Spatial heterogeneity is observed in the urban
vibrancy distribution and its impact on the urban eco-environment. Density, diversity and
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human activity showed similar spatial patterns with the highest values clustering in the
old town and high-tech and university areas, which determine the spatial distribution
of the ultimate urban vibrancy. Improved accessibility and liveability are apparent in
urban communities in the city centres along the Yangtze River. It is also revealed that
severe air pollution and urban heat island effect have been diagnosed in central business
districts due to the rapid socio-economic development in the past decades, as identified
in other cities in China and around the world. Conversely, the effects of urban vibrancy
on urban eco-environment are complex, as different dimensions of urban vibrancy have
shown different effects with different magnitude. In our study, it was found that the
advancement of urban vibrancy in density, accessibility, liveability and diversity may
improve air quality. However, dense population flow brings air pollution, and the spatial
balance of population distribution can be a feasible method to reduce this negative effect.
Meanwhile, increasing accessibility also raises the surface temperature in most of the
districts, and large-scale infrastructure construction generally contributes to this increment.
Diversity and human activity appear to have a cooling effect. A high level of mixed land
use is suggested to mitigate the global warming effect. In the future, spatial heterogeneity
may be applied in urban vibrancy assessment and its effects on the urban eco-environment
to achieve sustainable urban development. When urban vibrancy is assessed or optimised,
diversity and human activity have to be considered. Meanwhile, urban vibrancy has a
close relationship with the urban eco-environment, and their interaction emerges as an
important issue in ensuring public health and promoting human wellbeing.
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