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Changes in psychological state have been proposed as a cause of variation in

brain-computer interface performance, but little formal analysis has been conducted

to support this hypothesis. In this study, we investigated the effects of three mental

states—fatigue, frustration, and attention—on BCI performance. Twelve able-bodied

participants were trained to use a two-class EEG-BCI based on the performance

of user-specific mental tasks. Following training, participants completed three testing

sessions, during which they used the BCI to play a simple maze navigation game while

periodically reporting their perceived levels of fatigue, frustration, and attention. Statistical

analysis indicated that there is a significant relationship between frustration and BCI

performance while the relationship between fatigue and BCI performance approached

significance. BCI performance was 7% lower than average when self-reported fatigue

was low and 7% higher than average when self-reported frustration was moderate.

A multivariate analysis of mental state revealed the presence of contiguous regions in

mental state space where BCI performance wasmore accurate than average, suggesting

the importance of moderate fatigue for achieving effortless focus on BCI control,

frustration as a potential motivating factor, and attention as a compensatory mechanism

to increasing frustration. Finally, a visual analysis showed the sensitivity of underlying

class distributions to changes in mental state. Collectively, these results indicate that

mental state is closely related to BCI performance, encouraging future development of

psychologically adaptive BCIs.
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1. Introduction

Brain-computer interfaces allow information to be conveyed to an external device, such as a
computer, using cognitive activity alone (Mak and Wolpaw, 2009). Originally envisioned simply
as a means of communication and environmental control for individuals with disabilities (Wolpaw
et al., 2002), more and more prospective applications of BCIs have been proposed in recent years
for both healthy and disabled individuals. BCIs have been harnessed for recreational purposes
in gaming and virtual reality applications, where they provide an alternative input modality by
which a simulation can be controlled (Lécuyer et al., 2008). BCIs have also been used to enable
creative expression by translating cognitive activity into music and visual art (Miranda, 2006), to
track changes in cognitive states such as alertness (Zander and Kothe, 2011), as a neurofeedback
tool to achieve altered states of consciousness via meditation (Crowley et al., 2010), and in
neurorehabilitation for individuals who have lost motor control due to stroke (Ang et al., 2010).
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Most current BCIs use electroencephalography (EEG) as a
tool to infer mental state and communicative intent (Lotte
et al., 2007). EEG provides a low-resolution spatial map of
electrical activity on the cortex (Niedermeyer and da Silva,
2005). Despite this low resolution, it has generally been favored
for BCI applications due to its relatively simple setup and
low cost. Some recent research has also investigated the usage
of hemodynamic imaging technologies such as near-infrared
spectroscopy (Sitaram et al., 2007) and transcranial Doppler
ultrasound (Myrden et al., 2011), but these technologies cannot
currently match the information transfer rate of EEG-BCIs.
However, these hemodynamic imaging technologies may be
useful in combination with EEG. Recent work on hybrid
EEG-NIRS BCIs has shown that simultaneous measurement of
electrical and hemodynamic activity on the cerebral cortex may
allow for more accurate BCI operation by combining features
from both modalities (Leamy et al., 2011; Fazli et al., 2012). More
complex arrangements are also possible—Liu et al. (2012) have
shown that attention measured based on NIRS may improve the
reliability of an EEG-BCI, while Koo et al. (2015) showed that
NIRS can be used to detect whether motor imagery has been
performed while EEG is used to differentiate different types of
motor imagery, allowing the development of a self-paced BCI.

EEG-BCIs that are used for communication and control
typically employ one of two paradigms. The first depends upon
involuntary neuronal reactions to presented stimuli, and has
been described as a “reactive BCI” (Zander and Kothe, 2011).
This includes BCIs that detect the P300 response to anticipated
visual, auditory, or tactile stimuli (Hoffmann et al., 2008) and
steady-state visually evoked potential (SSVEP) BCIs that detect
the flicker frequency of the stimuli on which the user is fixated
(Cheng et al., 2002). Both of these types of BCIs allow the user to
choose one option from a grid of stimuli and are most commonly
used as the basis for a spelling system. The second paradigm
depends upon the detection of a voluntary cognitive activation,
typically produced by performing a specific mental task. This has
been described as an “active BCI” (Zander and Kothe, 2011).
Active BCIs differentiate two or more mental tasks from each
other, allowing the user to employ each task to communicate a
different message. Differentiating more than two tasks from each
other typically incurs a decrease in classification accuracy, and it
is rare for more than four mental tasks to be used (Schlögl et al.,
2005). Mental tasks used for active BCIs in previous research
have included a rest state, motor imagery, mental arithmetic, and
a verbal fluency task, among others (Pfurtscheller and Neuper,
2001; Curran and Stokes, 2003; Myrden et al., 2011).

One pervasive challenge in BCI research is the tendency for
BCI accuracy to decrease over time due to the non-stationarity
of the signals used (Shenoy et al., 2006). It is well-known that
class distributions tend to change over time, and maintaining
high BCI performance during long sessions and across weeks
and months of usage is typically difficult (Shenoy et al., 2006).
This inconsistent performance is a significant impediment to
the adoption of BCIs as access modalities for individuals with
disabilities and may also be a significant risk factor for the
abandonment of BCIs by these individuals (Phillips and Zhao,
1993). It has been proposed that one cause of this inconsistent

performance may be fluctuations in psychological variables
such as alertness and distraction (Curran and Stokes, 2003;
Millán et al., 2010). Systems that track this type of involuntary
ongoing cognitive user state can be categorized as passive BCIs
(Zander and Kothe, 2011). Examples include estimation of task
engagement and attention (Berka et al., 2007; Ayaz et al., 2012;
Hasenkamp et al., 2012; Harrivel et al., 2013), mental workload
(Berka et al., 2007; Hirshfield et al., 2009), fatigue (Shen et al.,
2008), and emotional state (Sitaram et al., 2011). These passive
BCIs each use either EEG, NIRS, or fMRI, allowing them to
be integrated with an active or reactive BCI that uses the
same modality (or a complementary modality in the case of
a hybrid BCI). Such a combination may allow adaptation to
fluctuations in mental state, mitigating the observed variation
in BCI performance over time. However, it is first imperative
to verify that these fluctuations in mental state are related to
variation in BCI performance, as to the best of our knowledge,
this hypothesis has not been formally tested.

This paper investigates the effects of user mental state on
BCI performance. Three mental states of particular interest were
identified based on previous work—cognitive fatigue, frustation,
and attention (Curran and Stokes, 2003). Subjective self-reported
estimations of these three mental states were gathered from BCI
users while playing a simple maze navigation game. These ratings
were compared to BCI performance to identify relationships
between mental state and classification accuracy. A multivariate
analysis was also performed to identify a region in mental
state space for optimal BCI performance. Finally, the class
distributions of the rest and active tasks were analyzed in the
feature space to determine the effects of changes in mental state
on the individual signal features used for classification.

2. Materials and Methods

2.1. Population
Twelve able-bodied participants (two male, average age 27.7
years) were drawn from graduate students and staff at Holland
Bloorview Kids Rehabilitation Hospital. Participants had normal
or corrected-to-normal vision and refrained from consuming
caffeine for 4 h prior to each session. Participants provided
written informed consent, and the experimental protocol was
approved by the Holland Bloorview Research Ethics Board.

2.2. Instrumentation
During each session, electrical signals from the cortex were
recorded using a B-Alert X24 wireless EEG headset (Advanced
Brain Monitoring, Carlsbad, CA, USA). Signals were recorded
from the Fz, F1, F2, F3, F4, Cz, C1, C2, C3, C4, CPz, Pz, P1, P2,
and POz locations according to the international 10-20 system
(Homan et al., 1987). Signals were band-pass filtered between
2 and 30Hz, and artifacts resulting from eye movements were
removed using independent component analysis (Mognon et al.,
2011).

2.3. Training Sessions
Participants completed two training sessions on separate days.
The goal of these sessions was to identify a mental task that could
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reliably be differentiated from rest for each participant. Four
candidate mental tasks were considered—mental arithmetic,
motor imagery, music imagery, and word generation. Multiple
tasks were considered because the most effective BCI task
typically varies across participants (Guger et al., 2003). The
mental arithmetic task required participants to perform a
repeated addition or subtraction task in their head. The motor
imagery task required participants to imagine performing finger-
to-thumb opposition with the hand of their choice. The music
imagery task required participants to sing a song of their choice
in their heads. The word generation task required participants to
silently think of asmany words as possible that began with a given
letter.

During each training session, participants completed 150
trials. These were evenly divided between the four candidate
mental tasks and a rest task, during which participants were
instructed to relax and let theirminds wander. Each trial was 15 s
long, consisting of a 5-s preparation period during which a visual
cue was displayed to indicate the required task for the trial; a 5-s
task period during which the participant performed the required
task; and a 5-s cool-down period before the next trial began.
Participants were instructed to remain silent and still during the
preparation and task periods tominimize motor artifacts. The
visual cue for each trial was displayed on a computer monitor
using a custom LabVIEW interface. To avoidmislabeling training
data, participants were prompted to report whether they had
successfully completed each trial at the end of the cool-down
period. This was done through an on-screen dialog box that had
to be completed before the next trial could begin. At the end
of each training session, participants ranked the four candidate
mental tasks in order of preference for future BCI usage.

2.4. BCI Development
Following the completion of the training sessions, a BCI was
trained to differentiate each candidate mental task from the rest
task. There were a total of 60 trials for each task. For each signal
from each electrode, the spectral power within the signal in 1-Hz
increments (from 0–1 to 29–30Hz) was estimated by summing
the squares of the corresponding Fourier coefficients. These
local spectral power estimates yielded 450 individual features (30
frequencies from 15 electrodes) for each trial.

Two feature selection methods were used to reduce the
dimensionality of the feature set to between 1 and 12 features
for classification. In the first method, a fast correlation-based
filter (FCBF) directly reduced the dimensionality from 450 to the
target number of features. This resulted in most of the feature
set being discarded. In the second, this 450-dimensional feature
set was reduced by clustering highly correlated features and
performing principal component analysis (PCA) on each cluster
to compute 75 intermediate features before using a FCBF to
arrive at the target number of features. The latter approach was
included to accommodate tasks that elicited widely distributed
cortical activation at varying frequencies.

For each feature space dimensionality, a linear discriminant
analysis (LDA) classifier (Bishop, 2006) was trained for each
candidate task and feature selection method. Ten runs of ten-fold
cross-validation were performed and the average classification

accuracy across the folds was computed. This resulted in a
set of 24 different classifiers for each task. The classifier that
yielded the highest classification accuracy was identified for
each task and the tasks were then ranked by their maximum
accuracy. Participants were presented with these accuracy-based
task rankings along with their own rankings of task preference.
Based on this information, they were allowed to choose which
active task they wanted to use for the remainder of the study.

2.5. Testing Sessions
Participants completed three testing sessions on separate days.
During these sessions, they used a BCI based on the task that they
selected at the end of the training sessions to play a simple maze
navigation game that was programmed in LabVIEW. Participants
attempted to complete a series of 10 mazes. Each session started
with the first (and simplest) maze. Mazes grew more difficult as
the session progressed, but this was primarily due to the number
of intersections between the origin and destination rather than
the cognitive difficulty of plotting a path through the maze.

Participants navigated through the maze by moving from
intersection to intersection. Their current position was indicated
by an image of a person, while the destination was indicated by
an image of a door. At each intersection, there were between two
and four potential directions (labeled as north, south, east, and
west) in which movement to another intersection was possible.
Participants were prompted to select the direction in which they
wanted to travel from an on-screen window. Subsequently, the
potential navigational directions were highlighted one at a time
for 5 s each, constituting four task periods. Each task period was
punctuated with a 5-s break. When a direction was highlighted,
appropriate task cues were shown, namely the cue for the active
task for the selected direction of travel and the cue for the rest
task for all other directions. The selected direction of travel was
recorded only to label data for future analysis and to ensure that
appropriate task cues were presented during each task period.
An example of the game, depicting an initial intersection, a BCI
decision, and the subsequent intersection, is shown in Figure 1.

The EEG recording from each 5-s task period was classified in
real-time by the BCI. When the task period had been completed
for each potential direction, the BCI decided which task period
was most likely to represent the active task rather than the rest
task, and the image on screen was moved in the corresponding
direction. However, before this movement was displayed, the
participant was prompted to self-report their perceived levels of
fatigue, frustration, and attention. Each of these mental states
was rated by moving a slider on a continuous scale from 0
to 1 with textual anchors at either end (e.g., “Least fatigued”
and “Most fatigued”). A new maze was automatically loaded
when the current maze was completed (i.e., when the participant
navigated to the door) and the session was terminated either after
completion of the tenth maze or once 50min had elapsed.

3. Results

3.1. Choice of BCI Task
Offline performance for each participant during the training
sessions is summarized in Table 1. Word generation was selected
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FIGURE 1 | Maze navigation. The position of the participant is represented

by the image of a person and the destination by the image of a door. The

participant chose to move east at Intersection 1, so they are shown a cue for

the word generation task when the arrow pointing east is highlighted. A cue

for the rest task was shown when the north and west arrows were

highlighted. The BCI analyzed the task period from each direction, predicting

that the north and west task periods represented rest tasks (green bars)

while the east task represented the word generation task (red bar).

Consequently, the BCI moved the participant to Intersection 2, ignoring the

intermediate intersection where the only options would have been to

continue moving in the same direction or to go back to the last intersection.

At the new intersection, the participant chose to move west to continue

approaching the exit, so a new word generation cue was shown when that

direction was highlighted.

TABLE 1 | Classification accuracies for each participant during the

training sessions for the mental arithmetic (MA), motor imagery (MI),

music imagery (MuI), and word generation (WG) tasks.

Participant MA% MI% MuI% WG% Selected task

1 87 95 67 74 MI

2 63 60 63 70 WG

3 58 75 68 50 MI

4 65 64 66 70 WG

5 80 77 62 82 WG

6 62 55 57 60 WG

7 N/A 69 61 69 WG

8 50 71 65 71 WG

9 56 61 59 66 WG

10 82 81 73 83 WG

11 69 N/A 71 64 MuI

12 66 55 56 57 WG

Word generation was selected by nine participants, motor imagery by two participants,

and music imagery by the remaining participant. Entries labeled as “N/A” indicate

occasions when a mental task was removed from the second training session for a

participant due to both poor classification accuracy during the first training session

and placement as the least preferred task for that participant following the first training

session.

as the optimal BCI task by nine participants, motor imagery by
two participants, and music imagery by the final participant. The
average classification accuracy of the selected task was 72.4%.
This exceeded theminimal BCI performance criteria of 70%
despite the short task duration and relatively small selection of
electrodes. Since the analysis focused on the effects ofmental state
on BCI performance, it was not necessary to obtain extremely
high accuracy. In fact, high accuracy may have inhibited the
analysis, as it is likely that a smaller range of ratings would be

induced for each mental state if BCI performance was close to
perfect.

3.2. Online BCI Performance
Participant 7 was excluded from this analysis as he or she was
not able to control the BCI during the testing sessions, and
Participant 8 was unable to attend the testing sessions. One
testing session for each of Participants 2 and 3 could not be
analyzed due to signal quality issues. Three testing sessions were
analyzed for all other participants. Although retraining the BCI
after each testing session for all participants would have resulted
in higher accuracies, it was avoided tominimize the number
of factors affecting classification accuracy. Consequently, BCIs
were retrained after testing sessions only when the experimenters
felt it absolutely necessary in order to maintain motivation for
participants. This occurred only for the final testing sessions for
Participants 11 and 12. All other participants used the same BCI
for all testing sessions.

Two metrics were considered: the balanced individual
classification accuracy, referring simply to the average of
sensitivity and specificity for the individual tasks; and the
collective classification accuracy, referring to the proportion of
maze intersections at which the BCI correctly identified the
intended direction of transit. There were typically three or four
potential directions of transit, so the collective accuracy was
expected to be lower than the individual accuracy.

Figures 2, 3 depict the individual and collective accuracies,
respectively, for each participant during each online session.
Despite the non-adaptive classifier, four of ten participants
exceeded the 70% threshold for individual classification accuracy
during one or more testing sessions. Furthermore, five of ten
participants achieved a collective classification accuracy that
exceeded this threshold during one or more sessions.
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Both individual and collective classification accuracy
increased in the second and third sessions, suggesting that
participants became more proficient with the BCI over time. For
the third session, both individual and collective classification
accuracy neared the 70% threshold when averaged across all
participants.

3.3. Effects of Fatigue, Frustration, and Attention
on BCI Performance
For each participant, self-reported ratings for each mental state
during each session were quantized to two levels, defined as,
for example, “low fatigue” and “high fatigue.” The cut point for
quantization was varied for each participant and mental state to
ensure that each level contained as close to the same amount of

FIGURE 2 | Balanced individual classification accuracies for all

participants during each session.

FIGURE 3 | Collective classification accuracies for all participants

during each session.

trials as possible. Each individual trial was categorized as either
low or high for each mental state and the classification accuracy
at each level across all participants was computed. By ensuring
that each session was equally represented in the low and high
categories for each mental state, this approach controlled for
learning effects. These results are presented in Table 2 for the
individual classification accuracy.

Classification accuracy at low fatigue was about 2.5% inferior
when compared to high fatigue, a result that approached
significance using the chi-squared test (p = 0.088). The 4%
difference in classification accuracy between low and high
frustration was statistically significant (p = 0.0038). There was
no significant difference between classification accuracy at low
attention and high attention levels. However, these findings
collectively indicate that there is a significant relationship
between BCI performance and mental state.

To investigate whether the choice of mental task influenced
the relationship between mental state and BCI performance,
participants were split into two categories—those who chose
word generation as the active task and those who did not—and
the preceding analysis was repeated. The results for each group
are depicted in Table 3. While frustration appeared to affect
the two groups similarly, fatigue had more impact on the WG
group and attention on the not-WG group. However, due to the
small sample sizes incurred by splitting the group in two, further
research with control groups of equal size for each task would be
necessary to draw significant conclusions.

Since the two-level quantization of each rating was a
simplistic means of investigating these effects, further analysis
was conducted using normalized values for each mental state.
For each session, the self-reported ratings for each mental state
were normalized to zero mean and unit variance. For each
mental state, all trials across all participants were then sorted

TABLE 2 | Individual classification accuracies at low and high levels for

each mental state.

Level Fatigue Frustration Attention

Low 62.6 61.7 63.8

High 65.0 65.7 64.2

Classification accuracies were based on 4814 trials across ten participants, and each level

contained roughly the same number of trials.

TABLE 3 | Classification accuracies at low and high levels for each mental

state.

Task Level Fatigue Frustration Attention

WG Low 61.5 60.7 62.3

High 64.0 64.4 63.3

Not WG Low 66.7 64.3 68.8

High 67.2 68.8 66.0

Classification accuracies were based on 4814 trials across ten participants, and each level

contained roughly the same number of trials.
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by their normalized rating. Since each trial was also associated
with a classification result (i.e., either a correct or incorrect
decision by the BCI), this allowed the construction of a binary
sequence representing BCI performance over the full range of
normalized ratings. This sequence was smoothed tominimize the
noise produced by the usage of individual classification results,
resulting in a classification accuracy curve Cactual for each state.

Since ratings from each participants were not uniformly
distributed within the range of ratings for each state, Cactual

was biased due to individual variations in classification accuracy.
To mitigate this, an expected classification accuracy curve
Cexpected was constructed by replacing the actual classification
result from each trial with the average classification accuracy
from the session within which each trial originated. The
same smoothing process was performed, and the effects of
mental state on BCI performance were assessed based on the
difference between Cactual and Cexpected, as depicted in Figure 4.
Through random sampling, the difference between actual and
expected classification accuracy was observed to follow a normal
distribution with a 90% confidence interval of 0 ± 0.032. The
bounds of this confidence interval are depicted in Figure 4.

These figures support the results from Table 2 while also
providing a higher-resolution view of the trends in classification
accuracy. Performance was poor for low levels of self-reported
fatigue, with the difference between actual and expected accuracy
surpassing −7%, well outside of the 90% confidence interval.
For frustration, higher classification accuracies than expected
were exhibited for moderate values, peaking at approximately
+7%. In contrast, the difference between actual and expected
classification accuracy over the full range of attention ratings
was small, remaining almost entirely within the 90% confidence
interval.

3.4. Multivariate Analysis
The previous analysis considered only the effects of each
individual mental state. A multivariate analysis of the effects
of mental state on BCI performance was also conducted by
analyzing the effects of each combination of two states. The
raw self-reported ratings were extracted for each participant
without quantization. A grid was constructed across the full range
from 0 to 1 for each mental state with a resolution of 0.01. At
each point within the grid, the nearest 500 trials, regardless of
participant, were identified. For this set of 500 trials, the actual
classification accuracy Cactual was computed. In addition, the
expected classification accuracy was computed as:

Cexpected = 6pwpCp,s (1)

where wp represents the proportion of the nearest 500 trials
which originated from Participant p and Cp,s represents the
overall classification accuracy of all trials originating from session
s for Participant p. The difference between actual and expected
classification accuracies was used to characterize this point. The
results of this process are depicted in Figures 5–7 for fatigue and
frustration; fatigue and attention; and frustration and attention,
respectively. Again, the difference between actual and expected

FIGURE 4 | Difference between actual and expected classification

accuracy across all participants for normalized values of self-reported

fatigue, frustration, and attention ratings. The distributions of fatigue and

frustration ratings were positively skewed while the distribution of attention

ratings was negatively skewed, causing the apparent variation in range

between states. Dotted lines represent the 90% confidence interval for the

mean of the deviation between actual and expected classification accuracy.

classification accuracy was compared to the 90% confidence
interval, established previously as 0± 0.032.

The fatigue-frustration and fatigue-attention graphs reveal
relatively contiguous optimal regions for BCI control. For
fatigue-frustration, two optimal regions are apparent—one from
moderate to high fatigue and low tomoderate frustration and one
from low to moderate fatigue and moderate to high frustration.
Of these, the former is larger and more consistent across a wide
region in mental state space. For fatigue-attention, there is an
optimal region for moderate to high fatigue and attention. Again,
these findings corroborate the univariate analyses despite the
usage of raw ratings rather than quantized or normalized ratings.

The graph for frustration-attention is more equivocal. The
area within mental state space that exceeded the bounds of
the 90% confidence interval was small and located in the high
frustration and high attention region. This may imply that
high attention is necessary to compensate for high frustration.
However, given the small size of this region, this could also
potentially be a result of random variation.

3.5. Effects of Mental State on Class Distributions
The effects of mental state on BCI performance were also
analyzed from a signal feature perspective. As in the univariate
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FIGURE 5 | Two-dimensional view of the difference between actual

and expected classification accuracies as a function of fatigue and

frustration. The middle graph depicts the variation in classification

accuracy as shown on the legend on the left, and the right graph shows

only regions for which the difference exceeded 3.2% (in green) or was less

than −3.2% (in red).

FIGURE 6 | Two-dimensional view of the difference between actual

and expected classification accuracies as a function of fatigue and

attention. The middle graph depicts the variation in classification accuracy

as shown on the legend on the left, and the right graph shows only

regions for which the difference exceeded 3.2% (in green) or was less than

−3.2% (in red).

FIGURE 7 | Two-dimensional view of the difference between actual

and expected classification accuracies as a function of frustration

and attention. The middle graph depicts the variation in classification

accuracy as shown on the legend on the left, and the right graph shows

only regions for which the difference exceeded 3.2% (in green) or was less

than −3.2% (in red).

Frontiers in Human Neuroscience | www.frontiersin.org 7 June 2015 | Volume 9 | Article 308

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Myrden and Chau Mental state and EEG-BCIs

analyses, all trials for each participant were split into low and high
categories for each mental state. In this case, the LDA classifier
trained for each participant after the training sessions was used
to project each trial to one dimension. The separability of the rest
and active tasks were then estimated by computing the Fisher
score for each projection. The Fisher score is defined as (Foley
and Sammon, 1975):

J =
|µ1 − µ2|

2

s21 + s22
(2)

where µ1 and s1 represent the mean and the variance of the
projected values for the rest class and µ2 and s2 represent the
mean and the variance of the projected values for the active class.
The results of this analysis are depicted in Figure 8.

These results suggests that the classifiers trained based on
the training sessions were much less effective during the testing
sessions, accentuating the importance of frequent retraining.
However, the average differences between Fisher scores for low
and high ratings for each mental state also suggest that, for some
participants, mental state may affect class distributions in feature
space.

To verify this, the class distributions for the rest and active
tasks under different mental state conditions were inspected
based on two of the features used for classification. Figure 9
shows the class distributions of each task for Participant 4 under
low and high attention conditions. The center of each ellipse
represents the class mean under that condition while the size of
the ellipse represents the 67% confidence interval for the class,
oriented along the eigenvectors of the covariance matrix. Even in
this low-dimensional space (the classifier for this participant used
10 features), it is evident that modulations in mental state affect

FIGURE 8 | Average Fisher scores across all participants during

training sessions and testing sessions. Data from the testing sessions

were split into low and high categories for each mental state before the Fisher

score was computed. Error bars are extremely wide due to large variance in

class separability (and thus classification accuracy) between participants—see

Table 1.

class distributions, as the two classes are nearly separable when
attention is high but inseparable when attention is low.

4. Discussion

4.1. Optimal Mental State for BCI Control
It is clear from our univariate analyses that mental state and
BCI performance are closely intertwined. However, some of
our observations were surprising. Online BCI performance was
significantly less accurate during the trials for which participants
reported the lowest fatigue levels and significantly more accurate
during the trials for which participants reported high frustration
levels. This was observed when each trial was categorized by
quantized ratings for each state and also when ratings were
normalized within each session. Based on the same analyses,
attention seemed to have little impact on BCI performance.
Analysis based on the choice of active task suggests that there
may be task-related effects, but further investigation would be
necessary for statistical verification.

Self-reported mental state ratings were quantized and
normalized for these initial analyses in an attempt to account
for the fact that different participants may have anchored
their ratings differently on the continuous scales used for each
state. However, one shortcoming of this approach was that it
ignored differences in average mental state. Since one participant
reporting a higher average fatigue level than another could be
either a result of variation in anchoring or a legitimate difference
in fatigue levels, the raw ratings were used for the multivariate
analysis in order to compare the results.

This multivariate analysis suggested the presence of optimal
mental state regions for BCI control. The most interesting

FIGURE 9 | Class distributions for the rest and active task for

Participant 4 during the testing sessions. Each ellipse represents the

distribution of one class (the rest task for solid lines and the active task for

dashed lines) under one categorization of attention levels (low in blue lines,

high in red lines). While classes were nearly separable when attention was

high, they were unseparable when attention was low.
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observation came from the fatigue-attention analysis, which
showed that the highest accuracies occurred when moderate
values were maintained for fatigue and moderate to high values
for attention. BCI performance decreased markedly when these
states varied, particularly for low fatigue and high attention. The
multivariate analysis also presented a more nuanced portrait
of the effects of each mental state on BCI perfomance. The
fatigue-frustration and frustration-attention cases both showed
interactions between pairs of states. In general, the former
analysis showed that optimal performance occurred for either
moderate fatigue and high frustration or high frustration and
low fatigue. In contrast, the low fatigue and low frustration case
exhibited notably poor performance.

Although there is no pre-existing BCI literature for
comparison, some support for these results can be found in other
disciplines. The state of psychological flow has been identified as
a requirement for excellent performance in many fields (Jackson
et al., 2001; Demerouti, 2006; de Manzano et al., 2010). Flow is
characterized by what Romero describes as effortless attention,
a state of deep concentration where perceived effort is generally
lower than would be expected (Romero and Calvillo-Gámez,
2014). This is contrasted with effortful attention, in which the
perceived effort to achieve focus is quite high and individuals
must fight to maintain deep concentration. We hypothesize that,
due to the high perceived effort, effortful attention is likely to
be characterized by higher self-reported fatigue and potentially
higher self-reported attention than effortless concentration.
Since optimal performance can be expected during effortless
attention, this could produce the pattern seen in Figure 6.

The role of frustration has also attracted attention in previous
research. In learning studies, it has been observed that frustration,
in moderation, is not necessarily a negative factor (Baker et al.,
2010). In fact, the presence of frustration during a difficult
task may simply represent motivation, which is a factor likely
to improve performance. However, studies have also observed
that high frustration induces boredom, reducing attention and
leading to poor performance (D’Mello and Graesser, 2012).
This implies that optimal performance may be associated with
moderate frustration, corroborating our findings, particularly
those depicted in Figure 4.

There is one important caveat regarding this study. It has been
shown that fluctuations in mental state are related to fluctuations
in BCI performance. However, it stands to reason that since these
fluctuations affect the underlying class distributions of the active
and rest tasks, as seen in Figure 9, the classifiers used for each
BCI were dependent upon the mental state experienced by each
participant during the training sessions. Consequently, it may be
that the optimal mental state for BCI control is simply that which
most closely approximates the mental state from the training
sessions. However, given the length of each training session,
the commensurate unlikelihood that mental state was consistent
throughout, and the unusual topography of the optimal mental
state regions in Figures 5–7, it is more likely that the results were
affected by both the mental state during the training sessions
and the inherent superiority of certain psychological conditions
for BCI control. Regardless of which factor is most responsible
for the relationship between mental state and BCI performance,

these results strongly suggest that such a relationship does exist.
This motivates future investigation of psychologically adaptive
BCIs.

4.2. Toward Psychologically Adaptive BCIs
It has been proposed that there are two ways in which a computer
system can adapt to information regarding the cognitive state of
a user. These are overt adaptation, in which the adaptation is
apparent to the user, and covert adaptation, in which it is not
apparent to the user (Fairclough, 2009). These definitions can also
be applied to the design of psychologically adaptive BCIs.

Overt adaptation, although potentially more effective than
covert adaptation for modifying user state, also has a potentially
higher cost (Fairclough, 2009). For a BCI, overt adaptation would
require an attempt to modify user mental state to bring it closer
to the optimal region, likely taking the form of an adaptive
user interface (Tan and Nijholt, 2010). Such an interface could
use targeted stimuli or helpful feedback to mitigate undesirable
changes inmental state (Fairclough, 2009; Tan andNijholt, 2010).
The interface could also take more drastic steps, potentially going
so far as to automatically deactivate the BCI when extremely low
attention is detected, reactivating only when the user’s attention
has returned. The interface could even modify the timing
variables of the BCI, extending task durations when it is likely
that classification will be inaccurate, a psychologically-driven
approach with some similarities to the evidence accumulation
algorithms that are often used for online classification. The
danger of overt adaptation lies in the potential for false alarms
(Fairclough, 2009). Explicit interventions that are not required
may actually further inhibit BCI control by inducing additional
frustration or distraction. It may be wise to use overt adaptation
sparingly (Fairclough, 2009).

Covert adaptation, on the other hand, could involve
modifications to the classifier itself. There are several potential
methods by which this could be implemented. First, we observed
in Figures 2, 3 that there was little difference between individual
and collective classification accuracy even though the individual
accuracy was based on a binary decision and the collective
accuracy on a decision that typically involved three or four
options. This implies, for the LDA classifiers that were used,
that there was more difficulty locating an appropriate value
for the bias parameter than for the weight vector. Thus, an
adaptive bias parameter based on mental state may allow for
covert adaptation without repeated classifier retraining. Second,
given the effects of mental state on class distribution observed
in Figure 9, it is possible that selective online resampling of the
training set and retraining of a simple classifier (such as LDA)
could be implemented. This would require online estimation of
user mental state, the selection of the training points most closely
matching this current mental state, and the training of a classifier
based on this subset of the training data. Since these adaptations
would go unnoticed by the BCI user, they could be employed as
frequently as necessary (Fairclough, 2009).

There are two significant limitations for any psychologically
adaptive BCI. First, it is obviously necessary to achieve accurate
detection of these changes in mental state. Our group is currently
working on achieving reliable differentiation between low and
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high values of the three mental states in question. Second, any
psychological adaptation that is implementedmust be adaptive in
itself. Significant differences were observed across participants in
terms of the reactivity of BCI performance to changes in mental
state, and it is unlikely that a “one size fits all” approach will be
sufficient.

5. Conclusions

In this study, we investigated the effects of mental state on BCI
performance. We observed that the relationships between these

variables were complex, rather than monotonic. There appear
to be optimal operating conditions where fatigue, frustration,
and attention levels are most appropriate for effective control of

an EEG-BCI. Moreover, signal features are affected by changes
in mental state, potentially necessitating classifier adaptation.
Future work should consider the development of BCIs that
display both overt adaptation to keep user mental state within the
optimal region and covert adaptation that automatically modifies
the BCI classification algorithm to adapt to changes in mental
state. This will allow the development of BCIs that are more
robust to changes in mental state.
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