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Abstract: The spread of the COVID-19 pandemic has highlighted the close link between economics
and health in the context of emergency management. A widespread vaccination campaign is con-
sidered the main tool to contain the economic consequences. This paper will focus, at the level of
wealth distribution modeling, on the economic improvements induced by the vaccination campaign
in terms of its effectiveness rate. The economic trend during the pandemic is evaluated, resorting to a
mathematical model joining a classical compartmental model including vaccinated individuals with
a kinetic model of wealth distribution based on binary wealth exchanges. The interplay between
wealth exchanges and the progress of the infectious disease is realized by assuming, on the one hand,
that individuals in different compartments act differently in the economic process and, on the other
hand, that the epidemic affects risk in economic transactions. Using the mathematical tools of kinetic
theory, it is possible to identify the equilibrium states of the system and the formation of inequalities
due to the pandemic in the wealth distribution of the population. Numerical experiments highlight
the importance of the vaccination campaign and its positive effects in reducing economic inequalities
in the multi-agent society.

Keywords: wealth distribution; kinetic models; wealth inequalities; compartmental epidemic model-
ling; vaccination campaign; COVID-19

1. Introduction

In the early 2020s, the spread of the COVID-19 pandemic highlighted the close link
between economics and health in the context of emergency management. Because of this,
assessing the impact of an epidemic phenomenon on a country’s economy has emerged as
one of the key aspects to consider in the context of containment strategies. From a mathem-
atical point of view, a systematic approach to the study of the effects on the economies of
countries facing a severe pandemic is a very complex problem and a mathematical model
can only provide rough indications of the possible consequences, based on simplifying
assumptions about the key parameters driving the pandemic evolution. The basic idea is
to trace these phenomena back to the evolution of the so-called wealth distribution of a
country, which measures how many people belong to increasing income levels.

A first attempt to understand changes in wealth distribution in the presence of epi-
demic spread was proposed in [1] by combining the classical SIR compartmental model
of susceptible, infected and recovered individuals [2,3] with the kinetic model of wealth
distribution introduced in [4], and assuming that, due to the presence of the pandemic,
individuals in different compartments act differently in the economic process. Although the
model was developed in a relatively simplified context, it has provided a general framework
for socio-epidemiological modeling that can be easily extended to more complex dynamics,
both in terms of economic transactions [5] and in terms of epidemic interactions [6,7]. We
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mention in this direction the recent survey reported in [8] and the seminal approaches
proposed in [9–12] investigating the economic effects of infectious diseases, as well as the
study presented in [13].

More precisely, according to [4], the financial transactions in [1] were based on the
choice of two parameters. The first defines the so-called safeguard threshold, i.e., the
maximum percentage of money that the individual is willing to employ in a transaction,
and the second is the random risk inherent in the transaction, characterized by its variance
through a spread proportional to the square of the individual’s wealth. There, the time
dependence of the variance was postulated by assuming that, in the presence of a significant
epidemic spread, the variance of the risk tends to increase. This is in agreement with the
financial market reactions that were often observed during the COVID-19 pandemic to
announcements of rising numbers of infected people in several countries [14]. With the
use of the model in [1], it was possible to qualitatively observe the effects of the pandemic
in terms of a reduction in the middle class and the increase in social inequalities (see
also [15,16]).

The possibility, starting in early 2021, of launching a widespread vaccination cam-
paign has led to general optimism about the ability to improve economic performance
while limiting the health consequences of the epidemic. However, it is clear that the re-
duction of economic consequences is closely linked to the effectiveness of the vaccine in
containing infections.

In this paper we will focus, at the level of wealth distribution, on the economic im-
provements induced by the vaccination campaign in terms of its percentage of effectiveness.
The interplay between the economic trend and the pandemic will be evaluated by resorting
to a mathematical model joining a kinetic model of wealth distribution based on binary
transactions with a compartmental epidemic model including vaccinated individuals (see
also [17]). In particular, a fraction of vaccinated individuals, which is determined by the
efficacy of the vaccine, may contract the disease. Without intending to review the extensive
literature on this topic, we cite the recent papers [18–26] that highlight the possible partial
immunity provided by vaccinations. Moreover, the emergence of viral variants means that
the efficacy of the vaccine inherently non-constant and subject to collective compliance
with non-pharmaceutical interventions.

The underlying theoretical framework we consider is that of kinetic models for collect-
ive social phenomena, which allows for the linking of microscopic agent-based behavior to
emerging observable patterns [27]. In particular, mathematical modeling of wealth distribu-
tion has seen a marked development in recent decades [5,28–35], in which, at least partially,
the essential economic mechanisms that are responsible for the formation of large-scale
economic indicators such as the Pareto or Gini index have been understood [36,37].

The interplay between epidemic spread and the social economic background is de-
scribed here as the result of interactions among a large number of individuals, each of which
is characterized by the variable w ∈ R+, measuring the amount of wealth of a single agent.
In this regard, as shown in [1,8,38,39], the fundamental tools of statistical physics allow the
understanding of epidemiological dynamics by linking classical compartmental approaches
with a statistical description of economic aspects. Indeed, the multiscale nature of kinetic
theory allows for the determination of the macroscopic (or aggregate) and measurable
features of disease evolution [27,40,41].

The rest of the paper is organized as follows. Section 2 introduces the SIR-type system
of kinetic equations that includes vaccinated individuals and combines the dynamics of
wealth evolution with the spread of infectious disease in a system of interacting agents.
Next, in Section 3 we study the main mathematical properties of the system, and show that,
through a suitable asymptotic procedure, the solution of the kinetic system tends to the
solution of a system of Fokker–Planck-type equations, which exhibits explicit equilibria
of the inverse Gamma type. Finally, in Section 4, we investigate numerically the solutions
of the Boltzmann-type kinetic system, and its Fokker–Planck asymptotics, along with the
evolution of the Gini index, characterizing the wealth inequalities. These simulations
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confirm the model’s ability to describe phenomena that are characteristic of economic
trends in situations compromised by the rapid spread of an epidemic, and their variations
as a function of the effectiveness of the vaccination campaign.

2. Wealth Dynamics in Epidemic Phenomena

In this Section, we present an extension of the SIR-kinetic compartmental description
of epidemic spreading introduced in [1], which additionally takes into account the popula-
tion of vaccinated individuals. The model consists of a system of four kinetic equations
describing the evolution of wealth in the presence of an infectious disease with partial
efficacy of vaccination. The entire population is divided then into four compartments:
susceptible individuals (S), who can contract the disease; identified infectious individuals
(I), who are recognized to have contracted the disease and can transmit it; vaccinated
individuals (V), who have received a vaccine, but can still be at least partially infected
and contagious; and the recovered individuals (R), who are healed and immune. The
model can be easily adapted to include disease-related mortality and other compartments
of interest in terms of available data, such as records of hospitalized individuals. We refer
to [3,6,7,42] and the references therein for possible developments in these directions. It
should be noted that, since we are referring to an advanced epidemic situation in which we
assume the existence of a vaccine, the dynamics of unidentified asymptomatic individuals,
so significant in the early stages of the COVID-19 pandemic, has become less relevant
thanks to mass screening programs. For this reason, we have chosen to employ only one
compartment I related to the identified infected individuals. To measure the aggregate
effects of vaccination over the whole population, we have considered the compartment V
with a given vaccine efficacy.

The agents of each compartment are characterized uniquely by their wealth w ≥ 0.
Hence, we denote by fH(w, t), H ∈ {S, I, V, R}, the distributions of wealth at time t ≥ 0 in
each compartment, such that fH(w, t)dw denotes the fraction of agents belonging to the
compartment J, which, at time t ≥ 0, are characterized by wealth between w and w + dw.
The total wealth distribution density is then defined by the sum of the distributions in
all compartments

f (w, t) = fS(w, t) + f I(w, t) + fV(w, t) + fR(w, t),
∫
R+

f (w, t)dw = 1,

for all t ≥ 0. Hence, the fractions of the population belonging to each compartment are
given by

J(t) =
∫
R+

f J(w, t)dw, J ∈ {S, I, V, R}.

We denote by mJ,κ(t) the local momenta of order κ for the wealth distributions in
each compartment

mκ,J(t) =
1

J(t)

∫
R+

wκ f J(w, t)dw, (1)

and we denote with mκ(t) the moment of order κ > 0 of the wealth distribution f (w, t)

mκ(t) =
∫
R+

wκ f (w, t)dw = ∑
J∈{S,I,V,R}

J(t)mκ,J(t).

2.1. The Kinetic Model

Following [1], we assume that the evolution of the densities obeys an SIR-type com-
partmental model and that the wealth exchange process is influenced by the epidemic’s
dynamics. This gives a system of four kinetic equations for the unknown distributions
fH(w, t), H ∈ {S, I, V, R}, expressed by
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∂t fS(w, t) = −K( fS, f I)(w, t)− α fS(w, t) + ∑
J∈{S,I,V,R}

QSJ( fS, f J)(w, t),

∂t f I(w, t) = K( fS, f I)(w, t) + (1− ζ)K( fV , f I)(w, t)− γI f I(w, t) + ∑
J∈{S,I,V,R}

QI J( f I , f J)(w, t),

∂t fV(w, t) = α fS(w, t)− (1− ζ)K( fV , f I)(w, t) + ∑
J∈{S,I,V,R}

QV J( fV , f J)(w, t),

∂t fR(w, t) = γI f I(w, t) + ∑
J∈{S,I,V,R}

QRJ( fR, f J)(w, t),

(2)

where γ ≥ 0 is the recovery rate for the infected compartment and α ∈ [0, 1] is the
vaccination rate of individuals, whereas the term 0 ≤ 1− ζ ≤ 1 quantifies the effectiveness
of the vaccine, in such a way that high effectiveness corresponds to values close to one
of the parameters, ζ. The operator K(·, ·) governs the transmission of the infection and is
considered to be of the following form

K( fH , f I)(w, t) = fH(w, t)
∫
R+

β(w, w∗) f I(w∗, t) dw∗, (3)

for any H ∈ {S, I, V, R}. In (3) the function β(w, w∗) ≥ 0 denotes the contact rate between
people with wealth w and, respectively, w∗. A leading example for β(w, w∗) is obtained by
choosing analogously to [1]

β(w, w∗) =
β̄

(c + |w− w∗|)ν
, (4)

where β̄ > 0, ν > 0 and c ≥ 0. According to the above contact rate, agents with similar
wealth are more likely to interact. The extrapolation of heterogeneous contact rates have
been deeply studied in mathematical epidemiology; see [1,43–47] and the references therein.

Finally, the operators QHJ( fH , f J), H, J ∈ {S, I, V, R} characterize the evolution of
the wealth in each compartment due to wealth exchange activities between agents of the
same class, or between agents of different classes H and J. Their form follows the one
originally proposed in the Cordier–Pareschi–Toscani model [4]. An interaction between
two individuals in compartment H and J with wealth pair (w, w∗) leads to a wealth pair
(w′JH , w′HJ) defined by relations

w′HJ = (1− λH)w + λJw∗ + ηHJw

w′JH = (1− λJ)w∗ + λHw + ηJHw∗,
(5)

with H, J ∈ {S, I, V, R}. In (5) the constants λH , λJ ∈ (0, 1) are exchange parameters
defining the saving propensities 1− λH and 1− λJ , i.e., the maximum percentage of money
that individuals are willing to employ in a general monetary transaction. Note that the
parameters are different in each compartment, underlining the differing behavior of agents
in the presence of the pandemic. The choice λV > λS, for example, reflects the fact that
susceptible non-vaccinated agents have reduced action in wealth exchanges due to various
government restrictions with respect to vaccinated individuals.

Furthermore, ηJH ≥ −λH , ηHJ ≥ −λJ are independently centered random variables
with the same distribution Θ such that Var(ηHJ) = Var(ηHJ) = σ2(t). The quantity σ2(t)
represents the market risk, which is the same for the whole population and is influenced
by the progress of the pandemic. This is in agreement with market reactions that have
been observed during new epidemic waves; see, e.g., ref. [14]. It is convenient to express
the operators QHJ( fH , f J) in weak form, i.e., the way these operators act on observable
quantities [27].
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Let ϕ(w) be a test function and let 〈·〉 denote the expectation with respect to the pair
of random variables ηJH , ηHJ in the interaction process (5). Then, for H, J ∈ {S, I, V, R} we
define the Boltzmann-type bilinear operators as follows∫

R+

ϕ(w)QHJ( fH , f J)(w, t)dw =

〈∫
R2
+

(ϕ(w′HJ)− ϕ(w)) fH(w, t) f J(w∗, t)dw dw∗

〉
(6)

where (w, w∗)→ (w′JH , w′HJ) as in (5) and where 〈·〉 denotes the expectation with respect
to the independent random variables ηHJ , ηHJ .

Binary interactions between individuals (5) reflect the idea that wealth exchanges occur
between pairs of agents who invest a fraction of their wealth in the presence of an equivalent
good. In each case, such investments involve nondeterministic speculative risks that can
provide additional wealth or a loss of wealth. The aggregate behavior of the population is
then provided by the operators (6), from which we obtain the emerging macroscopic trends
of the binary exchanges considered in each epidemiological compartment.

Remark 1. In the kinetic epidemic model (2) the passage from susceptible to vaccinated is governed
by a very simple dynamics that does not take into account possible vaccine limitations, as in the
first phase of the vaccination campaign. In general, the vaccination rate α may depend on several
factors such as the age and work status of individuals and time. It is worthwhile to observe that, in
addition to the natural dependency of the recovery rate γI from age [8,22,48], we may also consider
wealth-dependent recovery rates to take into account the fact that high wealth can provide access to
better hospitals in some health systems, thus ensuring a higher chance of recovery [1]. We point the
interested reader to [39] for a more detailed discussion based on the available data.

2.2. Evolution of Macroscopic Quantities

In the following, we discuss the evolution of emerging macroscopic quantities from
the kinetic model (2). Let ϕ(w) be a test function. Choosing ϕ(w) = 1 in (6), we have

∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QHJ( fH , f J)(w, t)dw = 0,

which corresponds to mass conservation, i.e., the conservation of the number of agents.
If ϕ(w) = w in (6), we get the evolution of the average wealth in each compartment,
corresponding to the first quantity not conserved in time:

d
dt

m1,H(t) =
1

H(t) ∑
J∈{S,I,V,R}

∫
R2
+

〈w′HJ − w〉 fH(w, t) f J(w∗, t)dwdw∗

= H(t) ∑
J∈{S,I,V,R}

J(t)(λJm1,J(t)− λHm1,H).
(7)

The total mean wealth is then conserved:

d
dt ∑

H∈{S,I,V,R}

∫
R+

w fH(w, t)dw =
d
dt

m1 = 0.

The evolution of mass fractions can be easily obtained from (2) via direct integration
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d
dt

S(t) = −
∫
R2
+

β(w, w∗) fS(w, t) f I(w, t)dw dw∗ − αS(t),

d
dt

I(t) =
∫
R2
+

β(w, w∗) fS(w, t) f I(w, t)dw dw∗ + (1− ζ)
∫
R2
+

β(w, w∗) fV(w, t) f I(w, t)dw dw∗ − γI I(t),

d
dt

V(t) = αS(t)− (1− ζ)
∫
R2
+

β(w, w∗) fV(w, t) f I(w, t)dw dw∗,

d
dt

R(t) = γI I(t).

(8)

To obtain a closed-form evolution of the macroscopic quantities, we consider a constant rate
function, β(w, w∗) = β̄ > 0, obtained from (4) for ν = 0, and a constant-in-time market risk
σ2(t) = σ2. Under these assumptions, thanks tothe mass conservation of Boltzmann-type
operators (6), we obtain a classical SIR model with vaccination

d
dt

S(t) = −β̄S(t)I(t)− αS(t),

d
dt

I(t) = β̄S(t)I(t) + (1− ζ)β̄V(t)I(t)− γI I(t),

d
dt

V(t) = αS(t)− (1− ζ)β̄V(t)I(t),

d
dt

R(t) = γI I(t).

(9)

As a consequence, for large times t→ +∞, we have a disease-free equilibrium state, where
I(t)→ 0+, S(t)→ 0+, V(t)→ V∞ and R(t)→ R∞ with V∞ + R∞ = 1 (see [3]).

The dynamics of mean wealth can be recovered from (7) as follows

S(t)
d
dt

m1,S(t) = S(t)(m̄1(t)− λSm1,S(t)),

I(t)
d
dt

m1,I(t) = β̄S(t)I(t)(m1,S −m1,I) + β̄(1− ξ)V(t)I(t)(m1,V −m1,I)

+ I(t)(m̄1 − λIm1,I),

V(t)
d
dt

m1,V(t) = αS(t)(m1,S −m1,V) + V(t)(m̄1 − λVm1,V),

R(t)
d
dt

m1,R(t) = γI I(t)(m1,R(t)−m1,I(t)) + R(t)(m̄1(t)− λRm1,R(t)),

(10)

where we defined the weighted mean wealth as

m̄1(t) = ∑
J∈{S,I,V,R}

λJm1,J(t)J(t). (11)

Therefore, based on (10), we can observe that the large time behavior of the mean wealth
satisfies

2m̄∞
1 − λVm∞

1,V − λRm∞
1,R = 0.

Hence, we obtain
λVm∞

1,V = λRm∞
1,R,

together with the constraint R∞m∞
R,1 + V∞m∞

V,1 = m, based on the conservation of total
mean wealth. Thanks to the latter equalities, we can observe that the asymptotic mean
wealth in the compartments of vaccinated and recovered individuals is given by

m∞
1,V =

λR
λRV∞ + λV R∞ m, m∞

1,R =
λV

λRV∞ + λV R∞ m. (12)
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Likewise, we obtain the system for the the second moments

S(t)
d
dt

m2,S(t) = (λ2
S − 2λS + σ2)Sm2,S + S(t)m̄2 + 2(1− λS)Sm1,Sm̄1,

I(t)
d
dt

m2,I(t) = β̄SI(m2,S −m2,I) + (1− ζ)β̄VI(m2,V −m2,I)

+ (λ2
I − 2λI + σ2)Im2,I + Im̄2 + 2(1− λI)Im1,Im̄1,

V(t)
d
dt

m2,V(t) = αS(m2,S −m2,V) + (λ2
V − 2λV + σ2)Vm2,V + Vm̄2

+ 2(1− λV)Vm1,Vm̄1,

R(t)
d
dt

m2,R(t) = (λ2
R − 2λR + σ2)Rm2,R + Rm̄2 + 2(1− λR)Rm1,Rm̄1,

(13)

where m̄1 has been defined in (11) and we have introduced the following notation

m̄2(t) = ∑
J∈{S,I,V,R}

λ2
J m2,J(t)J(t).

The evolution of the second moment for the whole system is governed by

d
dt

m2(t) = m̄2(t) + ∑
J∈{S,I,V,R}

(
mJ,2(λ

2
J − 2λJ + σ) + 2(1− λJ)mJ,2m̄1(t)

)
J(t).

For large times, the second-order moment for susceptible and infected is such that m2,S, m2,I
→ 0+ for t→ +∞. Therefore, m∞

2,V , m∞
2,R are solutions to

(λ2
V − 2λV + σ2)m∞

2,V + m̄∞
2 + (1− λV)m∞

1,Vm̄∞
1 = 0,

(λ2
R − 2λR + σ2)m∞

2,R + m̄∞
2 + (1− λR)m∞

1,Rm̄∞
1 = 0.

from which we get

m∞
2,R =

λ2
V(1− λV)V∞m∞

1,Vm̄∞
1 − AV(1− λR)m∞

1,Rm̄∞
1

AV(λ
2
R(1 + R∞)− 2λR + σ2)− λ2

Vλ2
RV∞R∞

m∞
2,V =

λ2
R(1− λR)R∞m∞

1,Rm̄∞
1 − AR(1− λV)m∞

1,Vm̄∞
1

AR(λ
2
V(1 + V∞)− 2λV + σ2)− λ2

Rλ2
VV∞R∞

where
AH = λ2

V(1 + H∞)− 2λV + σ2, H ∈ {V, R},

and m̄∞
1 = λVm∞

1,VV∞ + λRm∞
1,RR∞ and m∞

1,V , m∞
1,R have been obtained in (12).

Remark 2. In the general case where a non-constant incidence rate β = β(w, w∗) is considered,
the macroscopic system of equations is not closed. Depending on the specific choice of β and using
the knowledge on the equilibrium states discussed in Section 3.1 it is possible, through the classical
hydrodynamic closure of kinetic theory, to derive epidemic models where the dynamics, instead of
being homogeneous as in classical compartmental modeling, is influenced by the heterogeneous
wealth status of individuals. We refer to [8,38] for examples in this direction.

3. Properties of the Kinetic Model

In this section we study the mathematical model (2) from an analytical point of view,
by proving the well-posedness and convergence to equilibrium of the solution. To this
end, we made suitable simplification assumptions on the contact rate by restricting to the
case β(w, w∗) = β̄. We resort to classical mathematical approaches for kinetic equations
to characterize the trend to equilibrium [1,27]. In particular, taking into account methods
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for nonconservative systems—see, e.g., ref. [49]—we provide an existence and uniqueness
result. Given a function f (w) ∈ L1(R+), we define its Fourier transform as follows

f̂ (z) =
∫
R

e−iwz f (w)dw.

According to the above assumption regarding the contact rate, we rewrite (2) in weak form:

∂t

∫
R+

ϕ(w) fS(w, t)dw = −β̄I(t)
∫
R+

ϕ(w) fS(w, t)dw− α
∫
R+

ϕ(w) fS(w, t)dw

+ ∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QSJ( fS, f J)(w, t)dw,

∂t

∫
R+

ϕ(w) f I(w, t)dw = β̄I(t)
∫
R+

ϕ(w) fS(w, t)dw + (1− ζ)β̄I(t)
∫
R+

ϕ(w) fV(w, t)dw

− γI

∫
R+

ϕ(w) f I(w, t)dw + ∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QI J( f I , f J)(w, t)dw,

∂t

∫
R+

ϕ(w) fV(w, t)dw = α
∫
R+

ϕ(w) fS(w, t)dw− (1− ζ)β̄I(t)
∫
R+

ϕ(w) fV(w, t)dw

+ ∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QV J( fV , f J)(w, t)dw,

∂t

∫
R+

ϕ(w) fR(w, t)dw = γI

∫
R+

ϕ(w) f I(w, t)dw + ∑
J∈{S,I,V,R}

∫
R+

ϕ(w)QRJ( fR, f J)(w, t)dw.

(14)

Hence, we consider ϕ(w) = e−izw in (14) to get

∂t f̂S(z, t) = −β̄I(t) f̂S(z, t)− α f̂S(z, t) + ∑
J∈{S,I,V,R}

Q̂SJ( f̂S, f̂ J)(z, t),

∂t f̂ I(z, t) = β̄I(t) f̂S(z, t) + (1− ζ)β̄ f̂ I(z, t) f̂V(z, t)− γI f̂ I(z, t) + ∑
J∈{S,I,V,R}

Q̂I J( f̂ I , f̂ J)(z, t),

∂t f̂V(z, t) = α f̂S(z, t)− (1− ζ)β̄ f̂ I(z, t) f̂V(z, t) + ∑
J∈{S,I,V,R}

Q̂V J( f̂V , f̂ J)(z, t),

∂t f̂R(z, t) = γI f̂ I(z, t) + ∑
J∈{S,I,V,R}

Q̂RJ( f̂R, f̂ J)(z, t).

(15)

Similarly to [1] the operators Q̂HJ( f̂H , f̂ J)(z, t) may be rewritten as follows∫
R+

e−iwzQHJ( fH , f J)dw = 〈 f̂H(AHJz, t)〉 f̂ J(λJz, t)− J(t) f̂H(z, t),

where
AHJ = 1− λH + ηHJ .

We assume that the parameters of the trading activity satisfy the condition

ν = max
H,J∈{S,I,V,R}

[λ2
J + 〈A2

HJ〉] < 1. (16)

Let Ps(R+) be the set of probability measures f (w) with bounded s−moment, and, for any
pair of densities f and g in Ps(R+), let us consider the class of metrics ds defined by

ds( f , g) = sup
z∈R

| f̂ (z)− ĝ(z)|
|z|s , (17)

where f̂ and ĝ denote the Fourier transforms of f and g. Then, the distance (17) is well-
defined and finite for any pair of probability measures with equal moments up to order
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[s] (where [s] denotes the integer part of s), if s is a real number or up to s− 1, if s is an
integer [27].

Inequality (16), combined with a Fourier-based distance, allows one to obtain an
exponential convergence to equilibrium for system (2). This condition is verified whenever

σ2 < 2 min
J∈{S,I,V,R}

λJ(1− λJ),

namely, when the market risk is not too great in relation to the saving propensities. To
study the large-time behavior of the solution to systems such as (15) we follow [1,27].
Then, we have the following result

Theorem 1. Let f J(w, t) and gJ(w, t), J ∈ {S, I, V, R}, be two solutions of the kynetic system (2),
corresponding to the initial values f J(w, 0) and gJ(w, 0) such that d2( f J(w, 0), gJ(w, 0)), J ∈
{S, I, V, R}, is finite. Then, if condition (16) holds, the Fourier-based distance d2( f J(w, t), gJ(w, t))
decays exponentially in time toward zero and the following holds:

∑
J∈{S,I,V,R}

d2( f J(w, t), gJ(w, t)) < ∑
J∈{S,I,V,R}

d2( f J(w, 0), gJ(w, 0)) exp{−(1− ν)t}. (18)

The previous result and the Equation (18) give us the contractivity of the system in the d2
metric, which will be the essential to prove the existence theorem. Theorem 1 allows us to
further investigate the properties of the steady state f ∞

J (w), J ∈ {S, I, V, R}.
In order to obtain an existence result we need to introduce a subset of P2(R)

Dm1,m2 :=

{
F ∈ P2(R) :

∫
R

vdF(v) = m1,
∫
R

v2dF(v) = m2

}
. (19)

Following [49], it is possible to prove that Dm1,m2 is a metric Banach space with the
d2(·, ·) metric. Now, we define

D∞ := Dm∞
V,1,m∞

V,2
×Dm∞

R,1,m∞
R,2

as the product space of two sets such as (19), where the momenta are those of the steady
states for the relative distributions f J(w), for J ∈ {V, R} (we are only considering these
two classes since for large time I, S → 0+). We also recall a variant of the metric used in
Theorem 1

d2( f , g) := ∑
J∈{V,R}

d2( f J(w, t), gJ(w, t)). (20)

Now, we are able to prove the following theorem.

Theorem 2. If the initial value f0(w) = f (w, 0) ∈ D∞ and condition (16) holds, then the system

∂t fV(w, t) = ∑
J∈{V,R}

QV J( fV , f J)(w, t),

∂t fR(w, t) = ∑
J∈{V,R}

QRJ( fR, f J)(w, t),
(21)

has a unique steady state f ∞(w), and it also belongs to D∞.

Proof. Let us consider the flow map

Tt :
(
D∞, d̄2

)
→
(
D∞, d̄2

)
(22)
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which , for any time t > 0, is given by Tt( f0(w)) = f (t) = ( fV(w, t), fR(w, t)), where f (t)
is the solution of (21) at time t with f (w, 0) = f0(w) ∈ D∞. Thanks to (18) we have

d2
(
Tt( f0(w)), Tt(g0(w))

)
< d2

(
f0(w), g0(w)

)
exp{−(1− ν)t}

which is a strict contraction for (22) with constant exp{−(1− ν)t} < 1. Now, it is easy to
see that

(
D∞, d2

)
is a Banach space and therefore the Banach fixed-point theorem ensures

the existence and uniqueness for the steady state in D∞.

Remark 3. Similar results may be obtained in the more realistic case β(w, w∗) = β(w − w∗)
since the transmission operator K(·, ·) defined in (3) possesses, in this case, a convolution structure,
which naturally converts into a product in the Fourier space. We omit the details.

3.1. Fokker–Planck Scaling and Steady States

In the general case, it is difficult to compute analytically the large-time behaviour
of the compartmental kinetic system (2). A deeper insight into the steady states can be
obtained through the so-called quasi-invariant limit procedure [1,4,27]. The goal is to
derive a simplified Fokker–Planck model in which the study of the asymptotic properties is
much easier. It is worth mentioning that this approach is inspired by the so-called grazing
collision limit of the Boltzmann equation; see [50,51].

The driving idea is to scale interactions and trading frequency at the same time.
As a consequence, the equilibrium of the wealth distribution is reached more quickly
with respect to the time scale of the epidemic. Hence, given ε � 1 we introduce the
following scaling

λS → ελS, λI → ελI , λV → ελV , λR → ελR,

σ2 → εσ2, β(w, w∗)→ εβ(w, w∗), γI → εγI ,
(23)

together with the time scaling t → t/ε. We denote as Qε
HJ(·, ·), H, J ∈ {S, I, V, R}, the

scaled interaction terms. Using a Taylor expansion for small values of ε, we get [1]

1
ε

∫
R+

Qε
HJ( fH , f J)(w, t)ϕ(w)dw

=
∫
R+

{
−ϕ′(w)(wλH J −m1,JλJ) +

σ2

2
ϕ′′(w)w2 J(t)

}
fH(w, t)dw + O(ε).

Integrating back by parts, in the limit ε→ 0, we obtain the system of Fokker–Planck equations

∂ fS(w, t)
∂t

= −K( fS, f I)(w, t)− α fS(w, t) +
∂

∂w
{[wλS − m̄(t)] fS(w, t)}

+
σ2

2
∂2

∂w2 (w
2 fS(w, t)),

∂ f I(w, t)
∂t

= K( fS, f I)(w, t) + (1− ζ)K( fV , f I)(w, t)− γI f I(w, t)

+
∂

∂w
{[wλI − m̄(t)] f I(w, t)}+ σ2

2
∂2

∂w2 (w
2 f I(w, t)),

∂ fV(w, t)
∂t

= α fS(w, t)− (1− ζ)K( fV , f I)(w, t) +
∂

∂w
{[wλV − m̄(t)] fV(w, t)}

+
σ2

2
∂2

∂w2 (w
2 fV(w, t)),

∂ fR(w, t)
∂t

= γI(w, t) +
∂

∂w
{[wλR − m̄(t)] fR(w, t)}+ σ2

2
∂2

∂w2 (w
2 fR(w, t)),

(24)
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where m̄ has been defined in (11). The above Fokker–Planck system is complemented with
the following boundary conditions

∂

∂w
[w2gJ(w, t)]|w=0 = 0 [wλJ −m]gJ +

σ

2
∂

∂w
(w2gJ)

∣∣∣∣
w=0

= 0.

We can verify under suitable assumptions that the Fokker–Planck system (24) possesses an
explicitly computable steady state [52]. Let us consider the case of a constant contact rate,
i.e., β(w, w∗) = β̄. Since for large times S, I → 0+ we find that the stationary states f ∞

V (w)
and f ∞

R (w) solve the following equations:

λV
∂

∂w

[
(w−m∞

V ) f ∞
V (w)

]
+

σ2

2
∂2

∂w2 [w
2 f ∞

V (w)] = 0,

λR
∂

∂w

[
(w−m∞

R ) f ∞
R (w)

]
+

σ2

2
∂2

∂w2 [w
2 f ∞

R (w)] = 0.

Based on the above equalities, we find that the two steady states are inverse Gamma
densities

f ∞
V (w) = V∞ κµV

Γ(µV)

e−
κ
w

w1+µV
f ∞
R (w) = R∞ κµR

Γ(µR)

e−
κ
w

w1+µR
(25)

with Pareto indices defined as follows

µV = 1 + 2
λV

σ2 , µR = 1 + 2
λR

σ2 ,

κ = (µV − 1)m∞
V = (µR − 1)m∞

R =
2λRλV

σ2(λRV∞ + λV R∞)
m.

Consequently, the global steady state is a mixture of the inverse Gamma distribution

f ∞(w) = f ∞
V (w) + f ∞

R (w), (26)

which may present a bimodal shape with a different intensity.The formation of two peaks
at the equilibrium is due to the fact that we have two different maxima corresponding to
the points

wV =
κ

µV + 1
=

λRλV
(λV + σ)(λRV∞ + λV R∞)

m, (27)

wR =
κ

µR + 1
=

λRλV
(λR + σ)(λRV∞ + λV R∞)

m, (28)

for the vaccinated and for the recovered wealth distributions, respectively. In the next
section we report on the resulting profiles for different choices of λV , λR, σ and V∞, R∞.

Remark 4. The emergence of a multimodal equilibrium wealth distribution has been classically
linked to the appearance of new inequalities in highly stressed societies; see, e.g., [15,35,53]. In
these cases, the economic segregation of part of the society leads to the pauperization of substantial
layers of the middle class. In the present case, the different economic impact played by agents in each
compartment is capable of shaping the wealth distribution towards a bimodal distribution. Indeed,
the trading propensities modeling personal responses to the economic scenario can be substantially
modified by the progression of the epidemic and the vaccine efficacy.

4. Numerical Results

In this section we study the impact of vaccination on the equilibrium of the kin-
etic system through several numerical simulations. This allows us to show the model’s
ability to describe different situations of wealth distribution in the presence of epidemic
dynamics. In particular, we will adopt standard direct simulation Monte Carlo methods
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to simulate the system of kinetic Equation (2); see [27] and the references therein. In all
the subsequent tests we will consider N = 105 agents and the densities are reconstructed
through standard histograms.

In the first test, we verify numerically the convergence of the solution to the kinetic
system (2) to the solution of the Fokker–Planck system (24) under the scaling (23). Then,
we study the emergence of wealth inequalities, measured through the Gini index, in
relation to the effectiveness of the vaccine. These results are obtained both in the case
of a constant market risk variance σ2 and in the case of a variance that depends on the
current epidemic situation. Lastly, we introduce the possibility that the effectiveness of
the vaccine is also affected by the number of positive cases. This situation mimics the
realistic case of the diffusion of viral variants for which an up-to-date vaccine may be not
immediately available.

4.1. Test 1: Long-Time Behavior and Convergence to Equilibrium

In this test, we want to observe the convergence of the numerical solution of the
kinetic system (2) to the one of the Fokker–Planck system (24) in the quasi-invariant limit
introduced in Section 3.1. We consider the simplified case where β(w, w∗) = β̄ = 0.2,
γI = 1/12 and ζ = 0.9, for which we obtained the steady distributions in (25). These values
are representative of realistic dynamics during the beginning of the COVID-19 pandemic;
see, e.g., [6–8,39,54].

At time t = 0 we consider an inverse Gamma distribution

f (w, 0) =
(µ− 1)µ

Γ(µ)

exp
(
−µ− 1

µ

)
w1+µ

, (29)

where Γ(·) is the Gamma function and µ = 10. The distributions of the epidemic compart-
ments are

fS(w, 0) = ρS f (w), f I(w, 0) = ρI f (w), fV(w, 0) = ρV f (w), fR(w, 0) = ρR f (w), (30)

where the mass fractions are ρI = 7.5× 10−3, ρV = 0, ρR = 4× 10−2 and ρS = 1− (ρI +
ρV + ρR). Furthermore, we consider the value σ2 = 0.02 for the market risk. In Figure 1
we show the numerical solution at time T = 300 of (2) in the scaling regime (23) with
ε = 1, 0.5, 10−3.

In particular, provided an epidemic dynamics such that V∞ = 0.51 and R∞ = 0.49,
we give numerical evidence of the aforementioned convergence in two regimes expressing
increasing safeguard thresholds 1− λJ , J ∈ {S, I, V, R}, for non-vaccinated agents

(i) λS = 0.15, λI = 0.10, λV = 0.30, λR = 0.20
(ii) λS = 0.10, λI = 0.05, λV = 0.30, λR = 0.15

where the same values of V∞ and R∞ are unchanged. In particular, we assume that
recovered individuals are characterized by a greater safeguard parameter. This is coherent
with the possibility of reinfection, which will be investigated in the last numerical test.

We observe that, if ε� 1, the Fokker–Planck asymptotic distribution is a consistent
approximation of the equilibrium distribution of the Boltzmann-type model. In both cases,
the global distribution is a mixture of inverse Gamma densities and in the righ-hand plot
depicted in Figure 1, we can clearly observe a bimodal shape for the wealth distribution.
To highlight this, we have drawn the maximum points of the distributions f ∞

V , f ∞
R , which

are at wV , wR, defined in (27) and (28).



Entropy 2022, 24, 216 13 of 22

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 1. Test 1. Comparison of the wealth distributions at the end of the epidemic for the kinetic
system (2) with the explicit Fokker–Planck asymptotics (26) with scaling parameters ε = 1, 1

2 , 10−3.
(Left) λS = 0.15, λI = 0.10, λV = 0.30, λR = 0.20. (Right) λS = 0.10, λI = 0.05, λV = 0.30 λR = 0.15.
In both cases we fixed β̄ = 0.2, γI = 1/12, α = 0.005, ζ = 0.9 and σ2 = 0.02.

4.2. Test 2: Wealth Inequalities and Vaccination Campaign

In the second test case we analyze the emergence of wealth inequalities through the
computation of the Gini index. In particular, we concentrated on the effects linked to the
outbreak of the infection and on the impact of an effective vaccination campaign.

We fixed the epidemic parameters as follows: β̄ = 0.15, γI = 1/12 and a vaccination
rate of α = 10−2. Furthermore, we considered two different vaccine efficacies ζ = 0.95,
corresponding to a high efficacy of the vaccine, and ζ = 0.55 corresponding to a low efficacy
of the vaccine. Since we are interested in the behavior of the system up to the conclusion of
the epidemic phenomenon, the final time was fixed as T = 810, corresponding to a wide
time-span. We kept the same values for the saving propensities and market risk as those
defined for Section 4.1. Hence, we considered initial wealth distributions as in (29) and mass
fractions as in (30), with ρI = 7× 10−3, ρV = 0, ρR = 4× 10−2 and ρS = 1− (ρI + ρV + ρR).
The scaling coefficient was ε = 5× 10−2. The resulting epidemic dynamic is reported in
Figure 2.
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Figure 2. Test 2. Evolution of the epidemic dynamics from (9) for the choice of parameters β̄ = 0.15,
γI = 1/12, α = 0.01 and ζ = 0.95 (left), ζ = 0.55 (right).
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We evaluated the Gini coefficient of the emerging equilibrium distributions. The Gini
index is commonly computed from the Lorenz curve

L(F(w)) =
∫ w

0
f ∞(w∗)w∗dw∗,

where F(w) =
∫ w

0
f ∞(w∗)dw∗ and is defined as follows

G1 = 1− 2
∫ 1

0
L(x)dx.

This index should be understood as a measure of a country’s wealth discrepancy and it
varies in [0, 1], where in the case G1 = 0 the country is in a situation of perfect equality,
whereas G1 = 1 indicates complete inequality. A reasonable value for this parameters is in
the range [0.2, 0.5] for most Western economies [36].

In Figure 3 we show the evolution of the Gini index with the parameters described
above. We may observe that the epidemic peak leads to an increasing of inequalities that
is then absorbed for later times in relation to the efficacy of the vaccine. Consequently,
only when the vaccine is made available to the majority of the population does it actually
contribute to reducing inequalities; otherwise, it may have the opposite effect. This reminds
us of how, on a global level, the importance of making vaccines available to all countries
should be seen not only in terms of epidemics, but also in terms of reducing economic
inequalities. In all the considered cases, in the long term, the Gini index decreases thanks
to the vaccine.

0 122 243 365

0.2

0.25

0.3

Figure 3. Test 2. Evolution of Gini index under the epidemic dynamics described in Figure 2 and for
the choice of parameters λS = 0.10, λI = 0.07, λV = 0.30, λR = 0.15. Two vaccine efficacies were
considered: 95% (green) and 55% (red). In both cases we considered σ2 = 0.02.

Next, we consider the case where the market risk is related to the behavior of the
epidemic’s spread and where there is a linear relation between the market risk and the
number of people infected. The introduction of a time-dependent market risk σ2(t) mimics
an instantaneous influence of the pandemic on the volatility of a market economy, as is
often observed. Therefore, we consider the following:

σ2(t) = σ2
0 (1 + µI(t)) (31)



Entropy 2022, 24, 216 15 of 22

where µ > 0 expresses the effective influence of the epidemic dynamics on the market
volatility and σ2

0 > 0 is an ineradicable baseline risk.
In the following, we choose µ = 50 and σ2

0 = 0.02. In Figure 4 we represent the
evolution of σ2(t) in the presence of an epidemic characterized by β̄ = 0.15, γI = 1/10.
Furthermore, we compare the Gini index in the presence of two effectiveness rates of the
vaccine, i.e., ζ = 0.95 and ζ = 0.55. We may easily observe how an increasing variability
leads to a worsening of the Gini index and, therefore, of the inequalities. The long-term
behavior of the Gini index depends, as before, on the vaccine efficacy ζ such that low
efficacy leads to increasing inequalities in the long term. This is due to the fact that as
t→ +∞ we have I → 0+ and then σ2(t)→ σ2

0 .
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0.03

0.04
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0.35

Figure 4. Test 2. (Left) evolution of the market risk σ2(t) as defined in (31) with µ = 50 and σ2
0 = 0.02

in case of two different vaccine efficacies. (Right) evolution of Gini index under the epidemic
dynamics described in Figure 2 and epidemic-dependent market risk parameter (31).

Finally, in Figure 5 we present the evolution of the full kinetic density solution to (2)
in the scaling ε = 5× 10−2 in the presence of fixed market risk σ2 or with the epidemic-
dependent σ2(t) discussed in (31).

4.3. Nonlinear Incidence Rate and Time-Varying Vaccine Efficacy

In this last test case, to model different frequencies of interactions between agents that
belong to the same wealth class, we introduce a wealth-dependent contact rate β(w, w∗) of
the form

β(w, w∗) =
β̄

(c + |w− w∗|)ν
, (32)

where β̄, c, ν > 0. We have depicted the above contact rate in Figure 6.
We also introduce a time-dependent efficacy of the vaccine ζ of the form

ζ(t) = ζ0 − ψ
∫ t

0

∫
R+

f I(w, t)dwds = ζ0 − ψ
∫ t

0
I(s)ds, (33)

with ζ0 ∈ [0, 1] indicating the initial efficacy of the vaccine and 0 < ψ ≤ ζ0. This time-
dependence in vaccine coverage describes, in a simplified way, the fact that with more
infected individuals it is more likely to encounter mutations of the original virus, for which
the vaccine is less effective. In the following, we compare the evolution of the wealth
inequalities in the presence of two different values ζ0.
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Figure 5. Test 2. Time evolution of the wealth distribution of the kinetic model (2) in the scaling
ε = 5× 10−2 with vaccine efficacy ζ = 0.55 (left column) or ζ = 0.95 (right column) and with
constant market risk σ2 = 0.02 (top row) or σ2(t), defined in (31) with µ = 50. In all the evolutions
we considered λS = 0.10, λI = 0.07, λV = 0.30 and λR = 0.15. The initial distribution was defined
in (29) and (30). In the left image, we can observe the evolution of the wealth distribution for the
kinetic model (2) in the scaling parameter ε = 5× 10−2 with ζ = 0.95, whereas, in the right image we
have the comparison between the behaviors of the Gini index with vaccine effectiveness, equal to
95% (green line) and 65% (red line). In both images we considered a variable market risk (31) with
σ2

0 = 0.02 and µ = 50 and λS = 0.10, λI = 0.07, λV = 0.30 and λR = 0.15.

Furthermore, to make the modeling more realistic, we assume the loss of immunity of
the agents in the compartment R. To this end, we have to modify the first and last equations
of the model (2) as follows

∂t fS(w, t) = −K( fS, f I)(w, t)− α fS(w, t) + γR fR(w, t) + ∑
J∈{S,I,V,R}

QSJ( fS, f J)(w, t)

∂t fR(w, t) = γI f I(w, t)− γR fR(w, t) + ∑
J∈{S,I,V,R}

QRJ( fR, f J)(w, t),
(34)

where γR ≥ 0 is the rate expressing the loss of immunity of recovered agents. Note that
this latter assumption substantially changes the epidemic dynamics, since asymptotically,
instead of a disease-free scenario, we have the emergence of endemic states [3].
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Figure 6. Test 3. Wealth-dependent contact rate β(w, w∗) of the form (32) with β̄ = 8, c = 7, ν = 2.

4.3.1. Test 3A: γR = 0

First, we consider model (2) without the modified relations (34) (or equivalently, in
the absence of reinfection, i.e., γR = 0) and, as before, a fixed recovery rate γI = 1/12
and a vaccination rate α = 0.005 with the same initial masses as those defined in (30).
Furthermore, we fixed ψ = 0.005. In Figure 7, in the top row, we show the evolution for
the fractions of the population in the case of ζ0 = 0.95 (left) and ζ0 = 0.55 (right). We may
observe how a variable efficacy of the vaccine, affected by epidemic peaks, may strongly
shape the immunity of the population, even in the presence of an initial high efficacy.
Interestingly, in this latter case, a variable efficacy leads to the emergence of secondary
peaks of infection. This is due to the presence of a smaller number of recovered persons
who, unlike vaccinated people, maintain immunity.

In Figure 7, in the bottom-left row, we can observe the evolution of the resulting
vaccine efficacy for ζ0 = 0.95, ζ0 = 0.55 and ψ = 0.005. The vaccine efficacy is degraded by
the epidemic dynamics due to the increasing of the infected compartment, with a slower
efficacy decay for high initial ζ0.

For the same choice of coefficient, in the bottom-right plot of Figure 7, we show
the evolution of the Gini coefficient in the case of variable efficacy as (33). With respect
to a vaccine with constant efficacy, the efficacy decay forces the emergence of sharper
inequalities, which is well evidenced by the evolution of the Gini coefficient.
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Figure 7. Cont.
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Figure 7. Test 3A. Top row: epidemic dynamics with wealth-dependent β(w, w∗), defined in (32) with
β̄ = 8, c = 7, ν = 2, γI = 1/12, α = 0.005 and variable ζ as in (33) with ψ = 0.005. We considered
ζ0 = 0.95 (left) and ζ0 = 0.55 (right). The initial distribution is (29) with mass fractions (30). Bottom
row: decline in vaccine efficacy due to the presence of a high number of infective people (left) and
the evolution of the Gini index (right) for a variable infection rate β(w, w∗) as in (32) and vaccine
effectiveness ζ(t) as in (33). We considered λS = 0.10, λI = 0.07, λV = 0.25, λR = 0.15 and β̄ = 8,
c = 7, ν = 2 and ψ = 0.005.

4.3.2. Test 3B: γR > 0

Finally, we consider model (2) including the modified Equation (34), with a reinfection
period of 180 days, i.e., γR = 1/180 and, as before, a fixed recovery rate γI = 1/12 and
vaccination rate α = 0.005 with the same initial masses as those defined in (30). In the first
row of Figure 8, we present two epidemic dynamics with nonlinear contact rates (32) and
the time-dependent efficacy ζ(t) defined in (33) with ψ = 1.5× 10−4. In the left plot, we
present the case of strong initial vaccine efficacy ζ0 = 0.95 and in the right plot the case
of mild initial vaccine efficacy ζ0 = 0.45. The macroscopic dynamics present an endemic
equilibrium due to the presence of the reinfection rate γR. Furthermore, in contrast to the
previous case, in the case of reduced initial efficacy of the vaccine, a second infection wave
is seen to emerge.
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Figure 8. Test 3B. Top row: epidemic dynamics with wealth-dependent β(w, w∗), defined in (32) with
β̄ = 8, c = 7, ν = 2, γI = 1/12, γR = 1/180, α = 0.005 and variable ζ as in (33) with ψ = 1.5× 10−4.
We considered ζ0 = 0.95 (left) and ζ0 = 0.55 (right). The initial distribution is (29) with mass
fractions (30). Bottom row: decline in vaccine efficacy due to the presence of a high number of
infected people (left) and evolution of the Gini index (right). We considered λS = 0.10, λI = 0.07,
λV = 0.25, λR = 0.15 and β̄ = 8, c = 7 and ν = 2.

Looking at the bottom-left plot, we can observe that, in the present regime of para-
meters, a strong initial vaccine efficacy is robust with respect to the efficacy decay due
to epidemic waves. On the other hand, mild initial efficacies can dissipate their positive
influence on the evolution of the infection. At the level of the evolution of the Gini index, in
the presence of reinfection, it appears even more evident that inequalities appear for large
times in the presence of mild vaccinations. Nevertheless, in transient regimes, the higher
possibility of investing wealth for vaccinated agents may create temporary inequalities.

5. Conclusions

The widespread vaccination campaign undertaken in Western countries to counteract
the evolution of the COVID-19 epidemic and its economic effects depends in large part
on the efficacy of vaccines. Mathematical models capable of predicting the evolution
of the economy in relation to the effectiveness of the vaccination campaign can play a
fundamental role in configuring possible scenarios and suggesting further measures to be
taken by governments. In this paper we analyzed, at the level of wealth distribution, the
economic improvements induced by the vaccination campaign in terms of its percentage of
effectiveness. Following the ideas developed in [1,8], the interplay between the economic
trend and the pandemic has been evaluated, resorting to a mathematical model combining
a kinetic model for wealth exchanges based on binary interactions with a classical SIR
compartmental epidemic model, including the compartment of vaccinated individuals.
Extensions of the presented methodology are possible to include disease-related mortality
and redistribution operators. Moreover, since a direct comparison of the results of similar
compartmental kinetic models—in the case of social aspects related to the transience of the
epidemic—outlined a good agreement with the actual data [8,38,39], we can assume that
the present approach is able to follow the real evolution of the economic parameters of a
country over a sufficiently long period of time. Indeed, even though the model introduced
here necessarily represents a strong simplification of an extremely complex phenomenon, its
qualitative behavior is capable of describing the essential features of the pandemic’s impact
on individuals’ wealth. A key aspect of the model is, in fact, the possibility of obtaining
explicit configurations of the stationary wealth distributions in the form of inverse Gamma
densities, with the essential parameters depending on the percentage of vaccinated and
recovered individuals, thus relating the effectiveness of the vaccination campaign to the
formation of wealth inequalities. Several numerical experiments have also been conducted
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to quantify how a highly effective vaccination campaign has a direct effect on the decrease
over time of the Gini coefficient, a classic measure of inequality in the distribution of wealth
in Western societies.
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