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Methods for evaluating activation energies and escape frequency factors from glow curves by the use 
of various heating rates are discussed. For first-order peaks, the method of finding the glow parameters 
by measuring the shift of the maximum temperature with changing heating rate is generalized. This method, 
known to be true for linear and exponential heating rates, is shown in the present paper to hold true for 
any monotonically increasing heating function. The method using the variations in the maximum intensity 
with changing heating rates, previously known to apply for certain thermally stimulated current peaks 
is proved to be true for all first-order peaks. Analogous methods are found for general-order peaks, an im
portant special case of which are the second-order peaks. Computer calculations as well as experimental 
results in ZnS :Er3+ samples are given as a check. These methods are of special value when the peaks are 
not "clean" since the quantities used are measured only at the maximum point. 

1. INTRODUCTION 

A rather general equation governing the behavior of 
glow curves [thermoluminescence (TL),t thermally 
stimulated current (TSC),2 or thermally stimulated 
electron emission (TSE) 3J is the rate equation 

1= -dn/dt= s'nz exp( -E/kT), (1) 

where I is the glow intensity, s' is the pre-exponential 
constant (cm3(z-l) sec1), n is the concentration of 
trapped carriers (cm-3), 1 is the order of the kinetics, 
E is the activation energy (e V), T is the absolute 
temperature (OK), k is the Boltzmann constant (e V / 
OK), and t is the time (sec). Two well-investigated 
cases of Eq. (1) are those with 1= 1 (first-order kinet
ics) 1 and l= 2 (second-order kinetics).4 N oninteger val
ues of 1 were shown to occur for certain cases5,6 which 
have since been investigated theoretically.7 

For 1= 1, s' has the units of sec1 and is identical 
with the "frequency factor".1 The solution of Eq. (1) 
for this case assuming a constant heating rate {3 is 

I=sno exp (~:) exp [ - (s/{3) .( exp (;T~) dT'], 

(2) 

where no is the initial concentration of trapped carriers 
and To the initial temperature. By equating the deriva
tive of Eq. (2) to zero the condition for the maximum 
is found to be 

(3) 

where T m is the temperature at the maximum. This 
equation can be used for finding the activation energy 
only if s is known. Booth,S Bohun,9 and ParfianovitchlO 

suggested the use of two heating rates fJl and fJ2, thus 
providing two equations which may be solved simul
taneously to find both the values of E and s. The 
formula for E is given by 

E= [k Tim T2m/ (T1m- T2m)] In[(fJI/{32) (Tzm/T1m)2], 

where Tim and T 2m are the temperatures at the maxima 
of the curves associated with fJl and (32, respectively. 
Once E is found, s can be calculated by Eq. (3) in a 
straightforward manner. 

Hoogenstraatenll suggested the use of several (linear) 
heating rates and a plot of In(Tm2/{3) vs l/Tm which, 
according to Eq. (3), should yield a straight line from 
whose slope E/k, E is found. Extrapolation to ljTm=O 
gives a value of In (sk/ E) from which s is calculated by 
insertion of the E/ k value found from the slope. Osada12 

proved that Eq. (3) is true for an exponential heating 
function, namely, T= Too - ( Too - To) exp ( - at), where 
a is a constant (sec1), and Too is the final temperature 
reached asymptotically with time. The linear heating 
rate fJ should here be replaced by the instantaneous 
heating rate (3m at T m. This leads directly to the validity 
of Eq. (4) for exponential heating functions as well as 
to the method of Hoogenstraaten. The use of this 
heating rate is convenient for experimental reasons. 12 

Haering and Adams13 have shown, for two extreme 
cases of TSC peaks, namely, cases of slow and fast 
retrapping, that the maximum intensity is propor
tional to exp ( - E/ k T m). Thus, plotting Inurn as a 
function of 1/ T m should give a straight line with slope 
- E/ k. Another approximate method using various 
linear heating rates should be mentioned here. Ac
cording to this methodl4 ,15 a plot of In (1/ fJ) vs (1/ T m) 
should yield a straight line whose slope is E/ k, 

For the case of general order I (including l= 2) it is 
convenient to use the parameter s= s'no l - I , having 
units of (secl). The solution of Eq. (1) is now7 

(-E)[(I-l)S rT (-E) J-I/(Z-I) 
I=snoexp kT --fJ-1Toexp kT' dT'+l , 

(5) 
and the maximum condition 

(l-l)SjTm (-E), (SlkTm2) (-E) -- exp -- dl+1= -- exp - . 
fJ To kT fJE kTm 

(6) 
(4) The purposes of the present paper are: 
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(1) to prove that Eqs. (3), (4), and Hoogenstraaten's 
method are true for any general monotonically in
creasing heating function; 

(2) to generalize Haering and Adams' method for 
all first-order peaks; 

(3) to develop similar methods for general-order 
peaks (including second order); 

(4) to include temperature-dependent frequency 
factors in these methods; 

(5) to present a related method for a constant heating 
rate and various initial concentration (no) for non
first-order peaks. 

Investigation of the methods for calculating the 
activation energies, as developed herein, were con
ducted along two paths: (1) Mathematical approxi
mations were examined by comparing final formulas 
with numerically calculated glow durves. (2) Meas
urements of TL in ZnS: Er3+ samples were done at 
various linear and nonlinear heating rates and a com
parison was made between results predicted herein 
and those found by previous methods. 16 

II. FIRST-ORDER PEAKS AND GENERAL 
HEATING FUNCTION 

The integration of Eq. (1) for 1= 1 and T= T(l), 
T(t) being any monotonically increasing function, 
yields 

1= noS exp (-E) exp [-s JT ( 1 ) 
kT To (dT'/ dt) 

Xexp (;T~) dT']. (7) 

Equating to zero the derivative of (7) with respect to T 
results in Eq. (3) with {3m= (dT/dt)m replacing {3. As a 
result, Eq. (4) which allows for the calculation of E 
without previous knowledge of s, applies for these 
general heating functions as well. The linear, exponen
tial, and hyperbolicl7 heating rate equations are seen 
to be special cases of the general one. Moreover, 
Hoogenstraaten's method of using several linear 
heating rates is now extended to nonlinear heating 
functions. The clear advantage of the fact that general 
heating rates can be used is that devices for keeping 
a specific heating rate are not necessary as long as 
this method is used. The only difference is that here 
{3m (the instantaneous heating rate at the maximum) 
is used. 

III. GENERALIZATION OF THE 
HAERING-ADAMS METHOD 

The integral in Eq. (2) can be approximatedl8 as 
follows i: exp (~:,) dT'= e;2) exp (~:) (1-~), (8) 

where A= 2kT/ E. (A is known to be usually of the 
order of 0.1.) By inserting Eq. (8) into Eq. (2) one has 

1= sno exp ( - E/ k T) 

Xexp[ -(skP/{3E) exp(-E/kT)(1-A)]' (9) 

This equation applies to all values of T including T m. 

By inserting the maximum condition (3), we have 
for 1m 

Im=snoexp(-E/kTm ) exp[ -(1-Am)] 

= (sno/e) exp( -E/kTm ) exp(Am) 

""'(sno/e) exp( -E/kTm)(1+~m), (10) 

where Am= 2kT m/ E. Even with extreme variations of 
(3, T m changes only by a few percent and therefore so 
does Am; thus (1+l:..m) changes only by a few tenths 
of a percent. The result is that for all practical purposes, 
one can assume that Ima: exp( -E/kTm) while 
(sno/e) (1+Am) is considered to be constant. The plot 
of In (I m) vs 1/ T m for various heating rates should 
yield a straight line, the slope of which (-E/ k) can be 
used for finding E. This is a generalization of the Haer
ing-Adamsl3 method, which included only two certain 
cases of TSC peaks. whereas here, the result is general 
for all first-order peaks (TL, TSC, and TSE). Al
though the method is based on the use of various 
heating rates, we do not have to measure or know the 
rates explicitly. It is important to mention that this 
method was proved here to hold true only for linear 
heating rates since the evaluation of the integral is 
given by Eq. (8) only for this case. 

In order to check the validity of the method, the 
values of 1m for given values of E and s and for various 
values of {3 have been calculated. This was done by 
taking several termsl9 in the asymptotic series while 
representing the value of the integral in Eq. (7) more 
accurately than Eq. (8). Curve (b) in Fig. 1 gives the 
values of 1m as a function of 1000/ T m for E= 0.4 e V, 
s= 1010 sec I and for values of {3 from 0.2°K/sec to 
51.2°K/sec. The activation energy calculated from 
the slope is 0.402 eV, which is in very good agreement 
with the given value. For comparison, curve (a) gives 
the values of (3/ T m2 as a function of 1000/ T m and the 
two straight lines are practically parallel. Curve (b) 
serves thus as a proof that the two approximations, 
namely, the assumption that 1+Am can be regarded as 
constant and the use of Eq. (8), do not introduce any 
serious error into the results. 

IV. GENERAL-ORDER PEAKS AT VARIOUS 
HEATING RATES 

An expression for the maximum intensity 1m for a 
general value of 1 is found by inserting Eq. (6) into 
Eq. (5), 

Im=sno exp( -E/kTm ) 

X[(slkTm2/{3E) exp(-E/kTm)]-I/CI-I); (11) 
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EFFECTS OF HEATING RATES ON GLOW CURVES 5229 

then by rearrangement, one has 

1mH (T m2//3) z= (sno)-l( noE/lk) Z exp(E/kTm). (12) 

A change in the heating rate creates a change in the 
values of T m and 1m. Plotting In[ImH ( T m2/ /3) z] as a 
function of 1/ T m should yield a straight line whose 
slope is E/ k. In order to use this method one should 
know the value of 1 beforehand.7 It can easily be shown 
that the same result would be found for nonlinear 
heating rates when /3 is replaced by /3m in Eq. (12). 
For the extensively investigated second-order case 
(l=2), one would plot In[Im(Tm2//3)2] as a function of 
l/Tm• It should be noted that Eq. (3) results directly 
from Eq. (12) for the first-order case (l= 1). As a 
by-product of the derivation of this method, we can 
derive here a method based on the shift of nonfirst
order peaks as a function of the initial concentration 
of trapped carriers. The right-hand side of Eq. (12) 
can be written as ( 1/ s')( E/ lk ) Z exp (E/ k T), where 
s= s'noz- l and s' is a constant. One can therefore plot 
In[ImH (Tm2//3)z] vs 1/Tm for various initial concen
trations and get a straight line with slope E/k. This 
would be appreciable for either constant or varying 
heating rates. For a constant heating rate, the method 
is useful only when 1 is appreciably different from unity 
since for 1= 1, T m is independent of the initial concen
tration no and for 1~1 the dependence is weak. It is 

(b) 
(a) 

(a) 
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0; j .... 
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FIG. 1. Maximum intensity 1m for a first-order peak at various 
heating rates vs lOOO/T m [curve (b)]. For comparison, fJ/T m2 vs 
lOOOjT m [curve (a) ] (both calculated). 
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FIG. 2. ImT ",4 VS lOOO/T m for various initial concentrations 
no calculated for second-order peak. (b) is a continuation 
of (a). 

also to be noted that the values of no do not have to be 
known for this purpose. In this case, /3z may be in
cluded in the constant and thus In[ImHT m 21] should 
be plotted vs 1/T m. For the second-order case In[ImT m4

] 

should be plotted vs 1/ T m. Figure 2 gives such a plot 
for calculated second-order curves; the values of no 
are given. The scale on the left-hand side corresponds 
to part (a) of the curve and that on the right-hand 
side to part (b). The inserted value of the activation 
energy was 0.4 eV whereas the value calculated by 
the slope is 0.398 eV. 

For linear heating functions, an easier method using 
various heating rates can be given for general-order 
kinetics. Inserting the approximation (8) in the 
maximum condition (6) we have 

[(l-1)s//3](kTm2/ E) exp( -E/kTm ) (l-dm)+l 

= (slkTm2//3E) exp(-E/kTm) (13) 

and, by rearrangement, 

/3/Tm2= (sk/E)[l+(l-l)~] exp( -E/kTm). (14) 

Since (l-1) is always smaller than 2, the expression 
1 + (l-1) dm can be considered constant, the explana
tion being the same as was given for Eq. (10). Figure 3, 
curve (b) gives calculated points of /3/T m2 as a function 
of 1000/Tm for second-order kinetics (l=2) for values 
of /3 between 0.20 and 51.2°K/sec. E was chosen to 
be 0.4 eV and s= 1013 sec-I. The activation energy 
calculated from the slope is 0.407 eV, in good agree
ment with the given value. The slight disagreement 
seems to be due to the approximations used in the 
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FIG. 3. ImTm'/(32 [curve (c)] and (3/T",2 [curve (b)] vs 
1000/T m for second-order peak. The initial concentration remains 
constant. 

derivation. Curve (a) gives the values of I mTm4/(32 
vs 1000/T m. The activation energy found from this 
line is 0.401 eV. This is in better agreement with the 
given value, as might be expected from the fact that 
this method was proved to hold true in a rigorous way. 

V. INCLUSION OF TEMPERATURE-DEPENDENT 
FREQUENCY FACTORS 

The frequency factor was shown18 ,20-22 in certain 
cases to depend on temperature as s= s"T", where s" 
is a constant and -2:::;a:::;2. The expression for the 
intensity is now 

1 = nos'lra exp( - E/kT) 

Xexp [ -s" l: c~/rl Tla exp C:') dTIJ . (15) 

The equation for the maximum would be found by 
equating the derivative to zero and rearranging so that 

(3/Tma+2= {s"k/[E(l+!a.lm)]1 exp(-E/kTm). (16) 

Since a/2 can not exceed unity, 1+!a.lm can be re
garded as a constant by an argument already dis· 
cussed. An equation derived by SchOn23 results di
rectly when Eq. (16) is used for two heating rates 
(31 and (32 for the special case of a =!. E is given for 
this case by 

E= [kTrT2/ (Tr- T2 )] In ((31 T27/2/(32 T17/2) . (17) 

In the general case, and when a is known by some 

independent measurement, a plot of In((3m/Tm"+2) \'s 
1/ T m should yield a straight line, from whose slope E 
is found. It is clear that Eq. (16) reduces to Eq. (3) 
for a= O. For the nonfirst-order cases, a similar treat
ment would show that In[ImHTm21+a/(3I] plotted 
against l/T m should yield a straight line with the slope 
E/ K. This last general expression reduces to the pre
vious one for 1 = 1. 

VI. EXPERIMENTAL RESULTS 

:Measurements have been done on two ZnS:ErH 

powder samples mixed in water glass and spread on 
aluminum platelets. The preparation of the samples 
and the experimental technique are the same as 
described by Halperin et al. I6 Sample 1 contains addi
tional NH4F and sample 2 contains NaC!. The main 
TL peaks in these samples were reported16 to be at 
",,260 and ""23S oK, respectively. The peaks in both 
cases are known to be of second-order kinetics,I6 and 
both are known not to be clean peaks. Various linear 
and nonlinear heating rates have been used. The 
linearity was achieved by a rotating cam that changed 
the heating power during the experiment in a pre
determined way so that the heating rate was kept 
constant. ;\leasurements were also carried out with 
nonlinear heating rates. This was done most con
veniently by applying a constant power to the heater. 

Figure 4 shows 1m [curve (a)], (3m/Tm2 [curve (b)] 
and ImTm4/(32 [curve (c)] vs 1000/Tm for the 2600 K 
peak in sample 1. The points for linear and nonlinear 
heating rates are marked accordingly (see figure 
caption). The points for both the linear and nonlinear 
cases fall on the same lines. The activation energy 
found from the slopes is ",,0.43 eV as compared to 
",,0.41 eV found by the initial rise4 method. Figure 5 
gives similar results for the 23S oK peak in sample 2. 

o 

o 

(0)- 1m 

(bl-ilm/Tm' 
{c)-1m T ~/f3m2 (el 

(01 

(bl 

'3.70 3.80 3.90 400 4.10 4.20 4.30 4.40 
---1000/Tm(oK-I) 

FIG. 4. Experimental results for ZnS: ErH , TL peak at 
~260oK in Sample 1. Plots of 1m [curve (a)] (3/T",' [curve (b)] 
and [m1'",'/(32 [curve (c)] vs 1000/Tm. 0 curves (a), (b), 6 
curve (c)-using linear heating functions. curve (a), (b), I;. 
curve (c)-using nonlinear heating functions. 
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The activation energy found is now ",0.59 e V as 
compared to 0.61 eV revealed by the initial rise method. 
The tact that In (I m) as a function of 1/ T m falls on a 
straight line for these second-order peaks, which was 
not proved theoretically, is quite surprising. The 
possibility of using the plot of In«(:1m/T m2) was proved 
only for linear heating rates but was used here for 
nonlinear rates as well. These two points will be 
discussed in the next paragraph. 

VII. DISCUSSION 

Methods for finding parameters of first- and second
order TL, TSC, and TSE peaks are given. The methods 
for first-order peaks, namely, finding the slopes of 
In«(:1/Tm2) and In(Im) as functions of l/Tm have been 
extended. The former is shown to be correct for general 
heating rates where (:1m, the instantaneous heating rate 
at the maximum, replaces the constant rate (:1. As was 
shown before, the latter is verified for all first-order 
peaks, rather than only for certain special cases. It has 
been established that the activation energy for nonfirst
order peaks can be found by plotting In[ImH ( T m2/,8) I] 
as a function of 1/ T m, for general heating rates or by 
plotting In«(:1/Tm2) vs l/Tm for linear heating rates. 
For the second-order peaks examined experimentally, 
the former method required a plot In[Im( T m2/,8)2] vs 
1/Tm. The facts that 1mTm4/(:12a:exp(E/kTm) (no ap
proximation) and Tm2/(:1a:exp(E/kTm) (to a good 
approximation) imply that 1ma:exp(-E/kTm) to a 
reasonable accuracy. This explains why In(Im) fell on 
a straight line parallel to that of In «(:1/ T m2) in the 
experimental results though it has not been proved for 
second-order peaks. This result is valid for values of 1 

IOOr----------r----------~--------___ 

o 

(a)-1m 
(b)-An/Tm

2 

(e)-lmTm4/.Bm2 

(e) 

Cb) 

(a) 

~~--------~~~--------~4~~--------~~O 
-IOOO/TmI"K'1) 

. FIG. 5. Experimentalresuhs for ZnS: Er3+, TL peak at ,--235°K 
m Sample 2. Plots of 1m (a), {j/T m2 (b), and ImT m4/{j' (c) vs 
l000/T m. Experimental points are marked as in Fig. 4. 

different from 1 or 2 as well. As for~ the surpnsmg 
success of the (:1m/ T m2 method for nonlinear heating 
rates and second-order peaks, the apparent reason is 
that we did not try to make the heating rate drastically 
different from linear. Rather, we checked the method 
for the most convenient heating rate, namely, the 
one obtained while constant heating power is used. 
Although we were not able to specify to what extent a 
heating rate should be "close" to linearity, it seems 
that the method is workable at "normal" heating rates. 
Thus, the method of various heating rates does not 
necessitate the use of linear heating devices. The method 
of plotting In(Im) as a function of l/Tm is of some ad
vantage since 1m is easier to evaluate than ,8/ T m2

• 

This is not so when the heating function is very differ
ent from being linear. 

It should be noted that the main advantage of the 
present methods is that only the quantities at the 
maximum (Tm, 1m, (3m) are needed. Thus, additional 
"satellites" on either side of the maximum would not 
influence the results. In this respect, these methods 
(MVHR) are better than those in which, apart from 
the temperature at the maximum, some other param
eter (the half-width,22 for example) has to be found. 
The present methods are advantageous for low in
tensity peaks as compared to the initial-rise method4 • 

This is due to the fact that the initial-rise region is 
only up to about 5% of the maximum intensity.24 
In many cases the intensity is so low that no informa
tion can be revealed from the initial-rise range. An 
important disadvantage is, of course, the fact that 
several measurements have to be carried out in order 
to find the activation energy while only one measure
ment is sufficient for other methods. 

From the theoretical viewpoint, the heating rates 
used should be as different as possible from each other. 
This was employed for the "synthetic" glow curves as 
shown in Figs. 1 and 3, but is in practice limited by 
the following experimental considerations: 

(1) At too small heating rates the peaks are broad 
and have relatively low intensity and thus a precise 
evaluation of the peak temperature is difficult. 

(2) At too high heating rates there could be some 
delay between the temperature of the thermometric 
device (thermocouple) and the sample. 

The second is only a mild restriction for samples 
which are good heat conductors (diamonds, for ex
ample) or for powder samples prepared on a metal 
base such as our ZnS samples. 

* Research supported by National Science Foundation Grant 
SDP-GU-1557. 
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Spin-wave resonance (SWR) line half-widths which do not increase with order number have been observed 
in moderately thick Permalloy films. Data from a number of films are presented which indicate that a 
uniform thickness across the plane of the film as well as a sharp dropoff in thickness at the film edge is 
responsible for this behavior. Initially, for example, a rectangular shaped, 2700-A-thick film exhibited 
rather small half-widths at 9.4 GHz of 54, -, 24, 26, 26, 30, 36, -, 68 Oe for n=O, 1, "', 8, respectively, 
where the dashes correspond to those modes whose intensities were unobservable. However, when all of 
the film was etched away except for a small central circular region of approximately 1 mm diam, the half
widths were 54, -, 23, -, 24, -, 21, -, 23 Oe for n=O, 1, "',8, respectively. The SWR parameters of 
another film, 2500-A thick, were measured before and after etching away all of the film but three, ap
proximately circular, spots with apparently slightly different thicknesses. In this case, the higher-order 
lines (n 2:: 3) , which in the as-deposited film were drastically broadened, were transformed into triplets 
with smaller half-widths than those of the total film. In addition, the triplets had resonance field splittings 
which could be described well by Hn(L+ALuJ-H,.(L) = [(2A/M)n21l'2/ L'][2ALl.'; L], where the 
thicknesses of the three parts of the film are L, L+AL1, and L+AL2, and where the other symbols have 
their usual meanings. Finally, a detailed study of the effect of rf nonuniformity on the resonance parameters 
was made by positioning a small film at various locations in the cavity. The half-widths and resonance fields 
were not affected by rf field nonuniformities, although small changes in the line intensities were observed. 

1. INTRODUCTION 

A complete understanding of spin-wave resonance in 
thin ferromagnetic metal films must include an explana
tion of the half-width of the resonance lines. Although 
some researchl- 3 has been concerned with the half
width of the high field line, very little effort has been 
devoted to understanding the increased broadening 
with order number n of the high-order lines. Wigen4 

has accounted for some data by assuming an inhomoge
neity in the magnetization M across the plane of the 
film. With a rather inhomogeneous film, this effect may 
be important. However, for films which are quite 
homogeneous and therefore have a magnetization which 
is uniform across much of the film thickness, there 
appears to be no origin for a large variation in M across 
the film plane. Furthermore, there is no a priori reason 
that spin waves of different wavelengths should have 
different relaxation rates. Nevertheless, the increased 
broadening of the higher-order modes is still seen. 
Phillips and Rosenberg5 have suggested that the thick
ness variation across the film may be a significant 
factor. 

This paper presents SWR spectra for films of moder
ate thicknesses (2700 A) whose half-widths do not 
increase with order number. Several experiments have 
been performed indicating that this behavior of con
stant half-width with order number depends not only 
on a uniform thickness across the film surface but also 
on a relatively rapid decrease of thickness at the edge 
of the film. 

II. EXPERIMENTAL 

The details of the film preparation are the same as 
previously reported6 with a few exceptions. Films with 
compositions of 75% Ni-25% Fe from two sets of 
evaporations were studied. In one set (the Z set), the 
substrate temperature was immediately reduced from 
250°C to room temperature after deposition; in the 
other set (X set) the films were annealed in a planar dc 
field (250e) for 12 h at 250°C after deposition. The 
results were similar for both cases. 

Standard resonance techniques at 9.44 GHz were 
employed with the sample inserted into the center of 
the X-band cavity operating in the TEI02 mode. 
Angular settings of 0.05° about an axis through the 
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