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Tunneling energy splittings of vibrationally excited states are calculated quantum mechanically
using several models of two-dimensional symmetric double well potentials. Various effects of
vibrational excitation on tunneling are found to appear, depending on the topography of potential
energy surface; the symmetry of the mode coupling plays an essential role. Especially, oscillation of
tunneling splitting with respect to vibrational quantum number can occur and is interpreted by a
clear physical picture based on the semiclassical theory formulated recently@Takada and Nakamura,
J. Chem. Phys.100, 98 ~1994!#. Themixed tunnelingin the C region found there allows the wave
functions to have nodal lines in classically inaccessible region and can cause the suppression of the
tunneling. The above analysis is followed by the interpretation of recent experiments of proton
tunneling in tropolone.Ab initiomolecular orbital calculations are carried out for the electronically
ground state. A simple three-dimensional model potential is constructed and employed to analyze
the proton tunneling dynamics. Some of the experimentally observed intriguing features can be
explained by the typical mechanisms discussed above. ©1995 American Institute of Physics.
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I. INTRODUCTION

Multidimensionality of quantum mechanical tunneling
has been well recognized to be important and has attrac
much attention in various fields of science.1–15Recently, we
have developed a general Wentzel–Kramers–Brillou
~WKB! theory of multidimensional tunneling for energy
splitting in double well potential and have found the follow
ing interesting features.16,17 ~1! There exist two types of tun-
neling ~pure tunneling and mixed tunneling!. ~2! No tunnel-
ing path can be defined in the case of mixed tunneling.~3!
Vibrational excitation can suppress tunneling because of t
mixed tunneling. The mixed tunneling is such a tunnelin
that classical motion is allowed in one or more directions
the multidimensional space. The tunneling which usually o
curs to our minds is the pure tunneling in which classic
motion is not allowed in any direction. It should be note
that the wave functions in the case of mixed tunneling ha
nodal structures in the classically inaccessible regions.

One typical example of multidimensional tunneling
studied so far is the proton tunneling in malonaldehyde.18–21

Two or three relevant coordinates are chosen intuitively
derive the reaction surface Hamiltonian, and the reliableab
initio molecular orbital~MO! calculations have been carried
out. The energy splittingE0 calculated based on this Hamil-
tonian agrees reasonably well with experiment.21 Using the
three-dimensional reaction surface Hamiltonian, Shidaet al.
obtained 9 cm21 for the vibrationally ground state energy
splitting,19 which is about 40% of the experimental value
Taking account of the accuracy of the potential energy su
face ~PES!, we believe this to be quite satisfactory. On th
other hand, one-dimensional models both along the intrins
reaction coordinate~IRC! and along the straight line path
underestimateDE0 by orders of magnitude.

In contrast to the case of malonaldehyde, tropolone pr
sents a more interesting, but more complicated problem
sociated with the mixed tunneling mentioned above. Prot
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tunneling of tropolone has been investigated extensively as
typical interesting system of multidimensional
tunneling,22–35 although the data are still not enough to
clarify the mechanisms. As is shown in Fig. 1, tropolone has
two equivalent potential minima, between which the proton
tunneling occurs. In particular, for the electronically first ex-
cited stateÃ 1B2 ,

22–29the tunneling energy splittingsDEn of
vibrationally excited states~n represents vibrational quantum
numbers collectively! have been measured by Tomioka
et al.,24 Redingtonet al.,25 and Sekiyaet al.27 The most in-
teresting finding among them is that there are the following
three kinds of vibrational modes with respect to the effects o
the excitation on tunneling;~1! those which do not affect the
tunneling, ~2! those which promote the tunneling, and~3!
those which suppress the tunneling. Needless to say, if the
is no coupling between the tunneling coordinate and the co
ordinate transversal to it, the vibrational excitation in the
latter does not affect energy splitting. This corresponds to th
first type. When there is a coupling between the two coordi
nates, it is natural to expect from the analogy with the one
dimensional case that the vibrational excitation promotes th
tunneling. However, the experimental findings clearly show
that the real proton tunneling is not so simple. This fact
nicely exemplifies the complexity of multidimensional tun-
neling. The following interesting questions arise: Under wha
conditions does vibrational excitation suppress the tunne
ing? What can we learn about the PES from data on tunne
ing splittings? Can we observe themixed tunneling. A main
purpose of this paper is to answer these questions.

Our present strategy to investigate these problems is a
follows. We first investigate the tunneling energy splittings
of vibrationally excited states using several typical mode
potentials. Both the exact quantum mechanical calculation
and the calculations based on the adiabatic and sudden a
proximations are carried out. Depending on the topograph
3977977/16/$6.00 © 1995 American Institute of Physicso¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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3978 S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
of PES, vibrational excitation was found to either promote o
suppress the tunneling. Semiclassical theory turns out
nicely interpret these numerical results. Basically, the mixe
tunneling plays an essential role in suppression and osci
tion of energy splitting against vibrational excitation. Fur
thermore, the mechanism of the monotonic decrease of
ergy splitting is made clear. Second, theab initio MO
calculations have been carried out to clarify which kind o
model PES actually corresponds to the proton tunneling
tropolone. This MO study does not aim at obtaining the a
curate quantitative description of PES but at acquiring som
information on the topography of PES. On the basis of the
results, many of the available experimental data on tropolo
are interpreted finally. It becomes clear that the symmetry
the coupling is one of the most important factors.

Since it is not easy to understand the characteristics
multidimensionality only by the quantum mechanical calcu
lations, semiclassical theory is relied on to elucidate th
physical picture of multidimensional tunneling. Our newly
developed WKB theory mentioned above can be usefu
utilized to analyze the numerical results obtained in th
present work. For instance, this theory can predict oscillato
change of energy splitting with respect to vibrational qua
tum number, which has never been observed to the autho
knowledge. Thus, it is an especially interesting questio
whether this oscillation coming from mixed tunneling isob-
servableor not in real molecules. Finally, it should be note
that this WKB theory can be applied equally to the tunnelin
of vibrationally excited states; the famous instanton theory
applicable only to the ground state,4,5,15 although there is a
trial to use the instantonlike treatment for vibrationally ex
cited states.36

This paper is organized as follows. The general WK
theory of multidimensional tunneling and the adiabatic an
sudden approximations used in the subsequent sections
briefly outlined in Sec. II. In Sec. III, the tunneling energy
splittings of vibrationally excited states are numerically est
mated with use of several typical model potentials and a
analyzed by the WKB theory and the adiabatic and sudd

FIG. 1. Tropolone molecule and its schematic potential curve.
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approximations. Section IV discusses proton tunneling of
tropolone:~1! The ab initio MO calculations are performed
for the electronically ground state of tropolone, and~2! with
use of these calculations and the model studies of Sec. III,
the experimentally observed interesting features are qualita-
tively interpreted. Concluding remarks are given in Sec. V.

II. THEORY OF MULTIDIMENSIONAL TUNNELING

For later convenience, we give a brief overview of the
recently formulated general WKB theory,16,17 and the adia-
batic and sudden approximations. Here we confine ourselves
for simplicity, to the tunneling in two-dimensional symmetric
double well potential~SDWP!.

The Hamiltonian is assumed to be

H~x,y!52
\2

2 S ]2

]x2
1

]2

]y2D1V~x,y!, ~1!

where the mass-scaled coordinates~x and y! are used. The
tunneling energy splittingDE in SDWP can be calculated by
using Herring’s formula37,16

DE5\2E
S
ds@CL¹CR2CR¹CL#, ~2!

where the surfaceS divides the whole space into two equiva-
lent regions andCL(CR) is the wave function localized in
the left ~right! well defined by the symmetric~antisymmet-
ric! linear combination of the quasidegenerate eigenstates
This formula gives a useful framework to calculate the en-
ergy splitting. For example, in the case of one-dimensional
SDWP, the splitting can be expressed explicitly under the
WKB approximation as,38

DE5
\v

p
e2Q, ~3!

wherev is the frequency at local minima and the Gamow
factorQ is defined by

Q5
1

\ U E
x2

x1

pdxU. ~4!

Herex6 represent the classical turning points on the poten-
tial barrier and p is the momentum defined by
A2@E2V(x)#.

A. General WKB theory

Recently, we have developed a WKB theory of multidi-
mensional tunneling,16,17 which can provide us with a clear
conceptual understanding of the multidimensionality. The
theory was formulated by solving the following basic prob-
lems: ~i! construction of the semiclassical eigenfunction in
classically allowed region according to the Maslov theory,39

~ii ! its connection to the wave function in the classically
inaccessible region, and~iii ! propagation of the latter into the
deep tunneling region. It became clear that there exist two
distinct tunneling regions: C region where action is complex
and I region where action is pure imaginary.40 Tunneling in
these regions is qualitatively quite different from each other;
in the I region the tunneling path can be defined by a certain
, No. 10, 8 March 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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3979S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
classical trajectory on the inverted potential, while in the
region there is no unique path and the Huygens type wa
propagation should be applied.

Figure 2 schematically shows the physical picture of tu
neling obtained by the above general theory. The classi
trajectories comprising a quantum eigenstate are confin
within the distorted rectangular region~called R region here-
after!, although the much wider region is energetically a
lowed ~see the oval region bounded byV5E in Fig. 2!.
Tunneling proceeds first to the C region where the motion
j direction is nonclassical~tunneling!, while the motion inh
direction is still classical. Thus, we call this type of tunnelin
‘‘mixed tunneling.’’ At the boundary between the C region
and I region, part of the tunneling wave enters into the
region where no classical motion is allowed in any directio
This conventional type of tunneling is called ‘‘pure tunnel-
ing.’’ One of the most outstanding differences between on
dimensional and multidimensional tunneling is the existen
of mixed tunneling. Table I summarizes the characteristics
the tunneling in each region. It should be noted that the wa
function in the C region has nodal lines, but that in the
region does not. This plays an important role in the effects
vibrational excitation on tunneling, as is discussed later.

Global feature of multidimensional tunneling is deter
mined by the relative location of the two wells. Figures
illustrates two typical cases. Figure 3~a! depicts the case that

FIG. 2. Schematic picture of tunneling region around a well.
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after a short journey in the C region the wave propagates int
the I region and the overall tunneling is characterized by th
pure tunneling along the path running fromx0

L to x0
R. To

obtain the energy splitting, the Gamow factor is calculated
first along the caustics from HUL to x0

L, then along the tun-
neling path fromx0

L to x0
R, and finally along the caustics from

x0
R to HUR. See Eq.~4.14! of paper I, for instance. On the
other hand, in Fig. 3~b! tunneling mainly proceeds through
the C region and no tunneling path can be defined. See als

FIG. 3. Schematic picture of tunneling regions in the case of antisymmetri
mode coupling.~a! Case of modestvy andg, in which I region plays the
essential role.x0 are the points for the tunneling path~solid line! depart from
the caustic curve.~b! Case of small coupling, in which C region plays a key
role. Tunneling path cannot be defined.
TABLE I. Characteristics of multidimensional tunneling obtained by the WKB theory~Ref. 16!.

WKB wave function Characteristics

R Cn5Sn51
4 ~rn!

1/2 exp[(i /\)Wn] Classically allowed
Nodal pattern

C Cn5S6~r6!1/2 exp[(i /\)(6WR1 iWI)] Mixed tunneling

STunneling in j direction
Classical inh direction D
No tunneling path
Nodal lines

I Cn5r1/2 exp@2~1/\!WI# Pure tunneling
~No classical motion!
Tunneling path
5Classical traj. on2V(x)
No nodal line
, No. 10, 8 March 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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3980 S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
Figs. 6 of paper I. We can straightforwardly generalize th
concept to the case of more than two dimensions. The
naturally appear many different kinds of C regions.

B. Adiabatic approximation

In the study of multidimensional tunneling, many ver
sions of adiabatic approximation have been proposed6–8,10

such as the slow flip approximation6 and Marcus–Coltrin’s
path.10

For the moment let us focus our attention on the tunne
ing in a two-dimensional SDWP like the one shown in Fig. 4
The Hamiltonian is taken to be the same as Eq.~1!. If we can
assume that the frequencyvx in x direction near the potential
minimum is much smaller than that~vy! in y direction, then
the total wave function can be expressed as,

C6,nxny
~x,y!5f6,nxny

~x!xny
~y;x!, ~5!

where 6 specifies the parity with respect toy axis. The
adiabatic basesxny

are the solutions of

F2
\2

2

]2

]y2
1V~x,y!Gxny

~y;x!5eny~x!xny
~y;x!. ~6!

Inserting Eq.~5! into the Schro¨dinger equation and neglect-
ing the derivative ofxny

with respect tox, we obtain

F2
\2

2

]2

]x2
1eny~x!Gf6,nxny

~x!5E6,nxny
~x!f6,nxny

~x!.

~7!

Since this is a one-dimensional Schro¨dinger equation, the
expression for energy splitting can be obtained as

DEnxny
5DEnx

1D@eny~x!#, ~8!

whereDEnx
1D@eny(x)# is the one-dimensional formula of en-

ergy splitting given by Eq.~3!, in which the potentialV(x) is
replaced by the renormalized potentialeny(x).

FIG. 4. Contours of the symmetric mode coupling~SMC! potential @Eq.
~19!# for the parameters~vy ,a!5~0.5,1!. The interval of contours is 0.02 and
the contours with the energy higher than 0.28 are omitted.
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It should be noted that this treatment depends on th
coordinate system and cannot be very legitimate. In chemic
problems the intrinsic reaction coordinate~IRC!41 is often
employed as the adiabatic coordinate and the one
dimensional problem along IRC with the potential renormal
ized by the transversal vibrational energy is dealt with. Thi
does not cause a serious difference from the above treatme
at least in qualitative arguments, we simply use Eq.~8! as the
adiabatic approximation in this paper.

C. Sudden approximation

We consider again the two-dimensional SDWP like the
one shown in Fig. 4. The Hamiltonian is the same as Eq.~1!
but now we assume that the frequencyvy is much smaller
thanvx . Then, the eigenfunction can be written as

C6,nxny
~x,y!5f6,nxny

~y!x6,nx
~x;y!, ~9!

where the adiabatic basesj6,nx
and the coefficient functions

f6,nx ,ny
are defined in the analogous way to the previou

subsection by,

S 2
\2

2

]2

]x2
1V~x,y! Dx6,nx

~x;y!5e6,nx
~y!x6,nx

~x;y!,

~10!

S 2
\2

2

]2

]y2
1e6,nx

~y! Df6,nxny
~y!5E6,nxny

~y!f6,nxny
~y!.

~11!

Sincef is not directly related to tunneling, we may approxi-
mate Eq.~11! by the separable equation,

S 2
\2

2

]2

]y2
1V~xmin ,y! Dfny

~y!5Eny
8 ~y!fny

~y!, ~12!

wherexmin is x coordinate of the potential minimum. Taking
symmetric and antisymmetric linear combinations o
C6,nx ,ny

we can obtain the localized wave functions as

Cnxny
L ~x,y!5fny

~y!xnx
L ~x;y! ~13!

and

Cnxny
R ~x,y!5fny

~y!xnx
R ~x;y!. ~14!

Inserting these into Herring’s formula~2!, we obtain the final
expression,

DEnxny
5E

x50
dyfny

2 ~y!F\2S xnx
L ~x;y!

]xnx
R ~x;y!

]x

2xnx
R ~x;y!

]xnx
L ~x;y!

]x
D G

5E dyfny
2 ~y!DEnx

1D~y!. ~15!

This is similar to the Franck–Condon approximation: Tun
neling inx direction occurs at each fixed value ofy, creating
No. 10, 8 March 1995o¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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3981S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
the energy splittingDEnx
1D(y). The total energy splitting is

obtained by averagingDEnx
1D(y) over y with the weight fac-

tor fny
2 (y). It should be noted that this expression also d

pends on the definition of coordinate system. Several diffe
ent kinds of formulations based on the same idea have be
proposed so far in various fields of science.7,11–13

III. PROMOTION AND SUPPRESSION OF
TUNNELING—TYPICAL MODELS

In this section, several typical model potentials are intro
duced to elucidate the mechanisms of promotion and su
pression of tunneling by vibrational excitation. The tunnelin
energy splittings of vibrationally excited states are calculat
not only exactly, but also approximately using the adiabat
and sudden approximations. The WKB theory summarized
the previous section can be usefully utilized to interpret th
results. The model potential systems chosen so as to rep
sent typical cases can actually be classified by their symm
tries with respect to the coupling between the tunneling c
ordinate and the transversal coordinate. As will be show
useful information on PES can be extracted from the expe
mental data with use of this symmetry consideration.

Exact quantum mechanical calculations have been c
ried out by using the discrete variable representation~DVR!
method42 with 70370 grids. Results given here were con
firmed to be accurate~at least! up to the figures given in the
tables.

A. Case of symmetric mode coupling

Let us start with the Hamiltonian,

H̃52
\2

2mx

]2

] x̃2
2

\2

2my

]2

] ỹ2
1
mxṽx

2

8x̃0
2 ~ x̃2 x̃0!

2~ x̃1 x̃0!
2

1 1
2myṽy

2@ ỹ1ã~ x̃22 x̃0
2!#2, ~16!

wheremx , my , ṽx , ṽy , 2x̃0, andã are mass inx direction,
mass iny direction, frequency inx direction, frequency iny
direction, distance between two minima, and couplin
strength, respectively. Without loss of generality, the Schr¨-
dinger equation

~H̃2Ẽ!C̃50 ~17!

can be scaled in such a way that all quantities become
mensionless. Introducing the following dimensionless qua
tities:

x5
x̃

x̃0
,

y5
ỹ

x̃0
Amx

my
,

vy5
myṽy

mxṽx
,

~18!

g5
\

myṽxx̃0
2 ,
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E~and H !5
Ẽ~and H̃ !

mxṽx
2x̃0

2 ,

a5ã x̃0Amx

my
,

we obtain the symmetric mode coupling~SMC! Hamil-
tonian,

HSMC5T1VSMC52
g2

2 S ]2

]x2
1

]2

]y2D1
1

8
~x21!2

3~x11!21
vy
2

2
@y1a~x221!#2, ~19!

whereg plays the role of\. This model has two minima at
(x,y)5~61,0! and one saddle point at~0,a!; the y coordi-
nates of the two minima are the same and are shifted from
the coordinate of the saddle point. The barrier height, i.e., th
potential difference between the saddle point and th
minima, is normalized to be 1/850.125. The frequency iny
direction is always~]2VSMC/]y

2!1/25vy , while that inx di-
rection at the minima is normalized to unity. The potential
contour is depicted in Fig. 4 for~vy ,a!5~0.5,1!. This model
has been used as a typical example of multidimensional tun
neling in many fields.20,7Especially, in the case of the proton
tunneling in malonaldehyde, the coordinatex mainly repre-
sents the motion of the hydrogen atom transferring from O to
O, while y roughly represents the scissors like motion of the
O–C–C–C–Oframe @see Fig. 5~a!#. Since the mutual ap-
proach of the two oxygen atoms makes tunneling more prob
able, the saddle point~0,a! is located not aty50, but at
positivey. The parameters of malonaldehyde determined b
Boschet al.20 are (vy ,a,g)5~0.48,1.7,0.10! in the present
notations. For a general case that thea1 symmetric mode~as
a nonrigid molecule!25 couples to the tunneling coordinate to
assist the hydrogen tunneling, Eq.~19! gives one of the sim-
plest models among those which keep the symmetry of th
system.

Although the SMC model is already quite simple, some-
times it is more convenient to use the following simpler
model~V-parabola model! which has the similar characteris-

FIG. 5. Various modes coupled to the hydrogen tunneling mode in the cas
of malonaldehyde.~a! In-plane scissors like mode corresponding to the
SMC model,~b! in-plane antisymmetric C–O stretching mode correspond-
ing to the ASMC model,~c! out-of-plane wagging motion corresponding to
the Sqz model.
No. 10, 8 March 1995o¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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3982 S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
tics of potential topography to that of SMC. This is parabo
both in the left-~x,0! and in the right-hand~x.0! side,

HVP5T1VVP ~20!

with

VVP~x,y!5 1
2vs

2s21 1
2l
2,

where the kinetic energy operatorT is the same as Eq.~19!
and

S sl D5S cosu 2sin u
sin u cosu D S x61

y D . ~21!

Here, the sign1~2! is taken in the left-~right-hand! side.
Roughly speaking, the parameteru plays the same role as th
coupling strengtha in the SMC model. Since this potential
separable in each side, we can easily analyze the chara
istics of tunneling. We should remember, however, that t
potential has a cusp alongy axis and thus is a little bit patho
logical. The essential conclusions are not affected, thoug

First, with use of the SMC model~19!, quantum me-
chanical calculations of tunneling energy splitting have be
carried out for a variety of parameters. Here, only the f
lowing two representative examples are shown~see Table II!:
~1! the intermediate coupling case where tunneling mai
goes through the I region@Fig. 6~a! of the paper I# and~2! the
weak coupling case where tunneling mainly goes through
C region@Fig. 6~b! of the paper I#. In the first example~left-
hand column!, vibrational excitation promotes the tunnelin
very much. This can be simply attributed to the decrease
the Gamow factorU in the WKB theory@see Eqs.~3! and
~4!#. As mentioned before, this is not a surprising but a co
mon phenomenon just like in the one-dimensional case.
right-hand column shows that the tunneling through the
region is also promoted by the vibrational excitation. T
promotion is weak, simply because the coupling is we
Namely, no qualitative difference between the tunnelin
through the I region and C region region can be found in
SMC model.

The similar feature can be seen in Fig. 6, in which t
energy splittings~in logarithmic scale! for vibrationally
ground and excited states of the V-parabola model are plo
as a function ofu. In both ends ofu~;0° and;90°!, mixed
tunneling contributes mainly, while pure tunneling domina
in the middle. In either case, however, tunneling is found

TABLE II. Energy splittings of the symmetric mode coupling~19! calcu-
lated quantum mechanically for vibrationally excited states. Parameterg is
equal to 0.04.

~vy ,a! ~0.8,1.0! ~0.3,0.22222!

DE0,0
a 4.6~29!b 2.33~28!

DE0,1 122.8~29! 3.07~28!
DE0,2 1671.1~29! 3.93~28!
DE0,3 15301.1~29! 4.93~28!

Tunneling regions I – I C–C

aDE0,n indicates the energy splitting for the state in which the vibratio
motions are in the ground and thenth excited levels for the tunneling
direction and the direction transversal to it, respectively.
bFigures in parentheses are the power of ten by which the entry is t
multiplied.
J. Chem. Phys., Vol. 10Downloaded¬13¬Feb¬2001¬to¬133.30.52.73.¬Redistribution¬subject¬
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be promoted by vibrational excitation. Another interestin
feature seen from Fig. 6 is mode specificity of tunneling: T
energy splitting is not necessarily a monotonically increasi
function of the total excitation energy~the numbers in the
square brackets in Fig. 6 represent the order in total exc
tion energy!. In the left-hand side, and excitation innl mode
is more effective than that inns mode. This is because the
former coincides with the tunneling direction. The oppos
tendency is seen in the right-hand side as can be easily c
jectured from Eq.~21!.

It is of great interest to see how the tunneling path
affected by vibrational excitation when the tunneling main

FIG. 7. Tunneling paths for several vibrationally excited states in the cas
the V-parabola model ~20!. Parameters are chosen to b
(vs ,u,g)5~0.42,30°,0.04!. (nl ,ns) specifies the vibrational quantum num
bers ofl ands modes.

al

be

FIG. 6. Tunneling energy splitting~in logarithmic scale! of the V-parabola
model~20! by the exact quantum mechanical calculation as a function of
coupling parameteru. Parameters (vs ,g) are equal to~0.7,0.06!.
2, No. 10, 8 March 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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3983S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
goes through the I region. Figure 7 shows this for seve
vibrational states in the case of the V-parabola model w
parameters (vs ,u,g)5~0.42,30°,0.04!. As is seen from Fig.
7, the tunneling paths are strongly dependent on vibratio
state. The numbers in the parenthesis (nl ,ns) on each path
represent the vibrational quantum numbers in thel and s
mode, respectively. All the tunneling paths take shortc
compared to the IRC. More important, vibrational excitatio
in thes mode makes tunneling path closer to the IRC, wh
that in thel mode shifts it inward: the two modes have op
posite effects in a sense. This kind of significant mode spe
ficity of tunneling can be understood naturally, but is foun
for the first time in this calculation as far as the autho
know. This is in nice contrast to Fig. 7 of Ref. 15, where th
instanton path is not state specific and changes in a mo
tonic way as a function of temperature.

Finally, let us investigate the validity of the adiabatic an
sudden approximations. If we apply the adiabatic approxim
tion Eq.~8! to the SMC model, the energy splitting becom
independent of the vibrational quantum numberny , what-
evervy is: The adiabatic potential has the same shape as
of ny50, since the frequency iny direction is constant. This
is not in agreement with the exact quantum results exc
when the couplinga is zero. Table III compares the energ
splittings calculated by the sudden approximation with t
exact results. In the sudden approximation,DEnx

1D(y) in Eq.

~15! is calculated by the WKB formula Eq.~3!. We notice
that the energy splitting by the sudden approximation d
creases with vibrational excitation, while the exact one
creases. Thus, neither the adiabatic nor the sudden app
mation is reliable for investigating the tunneling in excite
states of the SMC model.

B. Case of antisymmetric mode coupling

The antisymmetric mode coupling~ASMC! Hamiltonian
is defined by

HASMC5T1VASMC52
g2

2 S ]2

]x2
1

]2

]y2D1
1

8
~x21!2

3~x11!21
vy
2

2
~y2bx!2, ~22!

where g and vy have the same meanings as those of t
SMC model~19! andb represents the coupling strength. Th
can be obtained by scaling all the quantities in the same w
as in the SMC model. A potential contour map is given
Fig. 7 of paper I~g there is equal tog5vy

2b!. There are two

TABLE III. Energy splittings of the symmetric mode coupling~19!. Left-
~right!-hand column is the result by exact quantum mechanical calcula
@by the sudden approximation~15!#. Parameters (vy ,a,g) are equal to
~0.2,0.25,0.04!.

EQM Sudden

DE0,0 2.36~28! 2.18~28!
DE0,1 2.60~28! 1.88~28!
DE0,2 2.85~28! 1.26~28!
DE0,3 3.10~28! 1.00~28!
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minima at (x,y)5~61,6b! and one saddle point at (x,y)
5~0,0!; these two minima are shifted iny direction. The
barrier height is again normalized to be 1/850.125. In the
case of malonaldehyde, the coordinatex again represents the
motion of transferring hydrogen, whiley may represent the
antisymmetric C–O stretching mode@Fig. 5~b!#.

In the same way as in the SMC model, the followin
simpler shifted parabola model is introduced:

ĤSP5T̂1VSP~x,y! ~23!

with

VSP~x,y!5H 1
2~x11!21 1

2vy
2~y1y0!

2 for x,0
1
2~x21!21 1

2vy
2~y2y0!

2 for x>0.

~The potential map is depicted in Fig. 15 of the paper I.! The
parametery0 plays the role of coupling strength.

With use of the ASMC model~22!, the tunneling energy
splittings have been calculated quantum mechanically fo
wide range of parameters. Among them, two distinct cas
with different characteristics of tunneling are found. The nu
merical results are shown in Table IV. The left-hand colum
represents the first case where tunneling mainly pas
through the I region@Fig. 3~a!#, while the right-hand column
corresponds to the other case where tunneling mainly go
through the C region@Fig. 3~b!#. This has essentially the
same feature as in the case of the shifted parabola poten
given in Table 15 of paper I: pure tunneling in the I region
always promoted by vibrational excitation, while mixed tun
neling in the C region is either promoted or suppressed
the excitation. As for the former case, the promotion of tu
neling is attributed to the decrease of the Gamow factor
the same way as in the SMC model.

In the case of mixed tunneling, the energy splitting o
cillates with respect tony and is sensitive to the parameterb.
This is definitely different from the case of SMC. This oscil
latory change occurs because the excited vibrational wa
functions have nodal lines in the C region~nearly parallel to
thex axis! and thus the overlap integral in Herring’s formula
~2! can oscillate due to the phase cancellation. In order
confirm this conjecture, vibrational wave functions are d
picted in Fig. 8 for the parameters~v,b,g!5~0.2,0.3,0.04!.
Here,C(0,5)

L drawn in the negativex side ~C(0,5)
R drawn in

the positivex side! is the wave function localized in the left
~right! half. The nodal lines of the left-hand wave function
are shifted down compared to that of the right-hand wa
function. Actually, the energy splittingDE~0,5! is relatively

tion
TABLE IV. Energy splittings of the antisymmetric mode coupling~22! cal-
culated quantum mechanically. Parameterg is equal to 0.04.

~vy ,b! ~0.5,1! ~0.2,0.3!

DE0,0 1.4~210! 182.1~210!
DE0,1 60.5~210! 5.7~210!
DE0,2 1316.5~210! 85.0~210!
DE0,3 18920.0~210! 117.9~210!
DE0,4 113.9~210!
DE0,5 88.7~210!

Tunneling regions I – I C–C
2, No. 10, 8 March 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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3984 S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
small as is seen in Table IV. The same feature can be see
the model~23!: Fig. 9 shows the energy splittingDE(nx ,ny)

~in logarithmic scale! as a function of the shifty0 for the case
~v,g!5~0.7,0.07!. It should be noted that tunneling occur
mainly through the C region wheny0 < ycr
5 A(2ny11)g/vy ~for instance,ycr50.707 whenny52!,
while through the I region wheny0>ycr . As is seen from
Fig. 9, the energy splitting oscillates as a function ofy0 when
and only when the tunneling goes through the C regio
Moreover, the number of dips is the same as the vibratio
quantum numberny . These results confirm the mechanis
of oscillation in the right-hand column of Table IV.

Finally, we touch upon the adiabatic and sudden appro
mations in the present model. In the same way as in the c
of SMC model, the adiabatic approximation Eq.~8! leads to

FIG. 8. Contour map of the wave functionsC(0,5)
L ~left-half! and C(0,5)

R

~right-half! in the case of the ASMC model~22!. Parameters and interval of
the contours are chosen to be (vy ,b,g)5~0.2,0.3,0.04! and 1.0.

FIG. 9. Tunneling energy splitting~in logarithmic scale! of the shifted pa-
rabola model as a function ofy0. Parameters are chosen to b
(vy ,g)5~0.7,0.07!.
J. Chem. Phys., Vol. 102Downloaded¬13¬Feb¬2001¬to¬133.30.52.73.¬Redistribution¬subject¬
n in

n.
al

xi-
ase

the energy splitting independent ofny . This does not exhibit
any characteristic behavior discussed above and can never
reliable. If we try to apply the sudden approximation Eq.
~15!, we encounter a problem: Since the potential curve inx
direction is not symmetric except wheny is zero. Thus, we
cannot use Eq.~15! directly anymore.

C. Case of squeezed double well potential

As a third example, we consider a model which is sym-
metric with respect tox axis. The squeezed double well
~Sqz! Hamiltonian,

HSqz5T1VSqz52
g2

2 S ]2

]x2
1

]2

]y2D1
1

8
~x21!2

3~x11!21
1

2
@vy

22g~x221!#y2,

~24!

is such an example. Here,g andvy have the same meaning
as those of SMC model~19! andg represents the coupling
strength. Two minima at (x,y)5~61,0! and one saddle point
at (x,y)5~0,0! are located onx axis. The barrier height is
again normalized to be 1/850.125. The local frequency
Vy(x) alongy axis is defined asVy

2(x)5vy
22g(x221) and

thus the coupling parameterg plays a role of squeezing
~positive g! and spreading~negativeg! the potential iny
direction. Figure 10 depicts the potential contour for the cas
~vy ,g!5~1.5,1!. It should be noted that whenvy

2.2g, this
potential has additional saddle points at (6 A11vy

2/g,
6 vy /&ugu) and drops beyond these points. Thus, we can
not take a very large positiveg so as to keep the double well
topography. A typical example of the Sqz potential can be
found also in malonaldehyde, in whichy coordinate now
corresponds to an out-of-plane wagging motion depicte
schematically in Fig. 5~c!. Since the stable structure of mal-
onaldehyde is planar and the out-of-plane deviation make
O–O distance larger, the topography of PES should be rep
resented by the squeezed double well model. It should b
noted that this Sqz model is not the same as that of paper

FIG. 10. Contours of Sqz potential@Eq. ~24!# for the parameters
~vy ,g!5~1.5,1!. The other conditions are the same as in Fig. 4.
, No. 10, 8 March 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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3985S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
Here we have slightly modified the latter which has a bit t
strong coupling near the well and may not be a good mo
for typical molecular vibration.

In the same way as before, the following simpl
squeezed parabola~Sqz-P! potential is introduced:

HSqz-P5T1vSqz-P~x!1
1

2
Vy

2~x!y2 ~25!

with

vSqz-P~x!5H 1
2~x11!2 for x,0
1
2~x21!2 for x>0

,

Vy~x!5 H vy for uxu.X
vSqz for uxu<X.

In this model, the frequency iny direction is switched at
uxu5X to produce the squeezing~when vSqz.vy! or the
spreading effect~whenvSqz,vy!. This can create a strong
squeezing, while, as mentioned above, it cannot be made
the Sqz potential Eq.~24! because of the additional saddl
points.

Exact quantum mechanical calculations have been d
for a wide range of parameters in the case of Sqz poten
Table V shows tunneling energy splittings of vibrational
excited states for a representative parameter. The follow
features can be found in Table V:~i! vibrational excitation in
y direction suppresses tunneling when vibrational quant
number ny is small ~ny<4 in the present case!, ~ii ! the
amount of suppression by the excitation decreases withny ,
and ~iii ! the splitting starts to increase from a certainny
~ny55 in the present case!. In the sudden regimev!1, the
feature~i! can be understood intuitively based on the sudd
approximation~15!: As theny increases, the wave function
fny

(y) spreads and the population near thex axis decreases
On the other hand,DE1D(y) decreases rapidly asuyu in-
creases, since the potential is squeezed iny direction. Thus,
the Franck–Condon integral in Eq.~15! is expected to de-
crease asny increases. Actually, the energy splittings by th
sudden approximation given in the right-hand column
Table V shows the suppression of the tunneling by vib
tional excitation iny direction.

In order to investigate the other features~ii ! and~iii !, we
made quantum mechanical calculations of energy splitt
for the Sqz-P potential. Figure 11 shows the energy splitt
as a function of the squeezed frequencyvSqz. The other pa-
rameters are fixed at (vy ,X,g)5~0.4,0.5,0.07!. At vSqz50.4,

TABLE V. Energy splittings of the Sqz potential~24! calculated with use of
the exact quantum mechanical method~EQM! and the sudden approxima
tion ~sudden!. Parameters (vy ,g,g) are equal to~0.2,0.05,0.05!.

Method EQM Sudden

DE0,0 6.12~27! 6.01~27!
DE0,1 3.99~27! 4.08~27!
DE0,2 3.31~27! 3.07~27!
DE0,3 3.04~27! 2.49~27!
DE0,4 3.03~27! 2.14~27!
DE0,5 3.09~27! 1.90~27!
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the potential is separable and thus energy splitting is inde
pendent ofny . For a weakly squeezed case~0.4,vSqz,0.7!,
the energy splitting decreases asny increases. On the other
hand, for a strongly squeezed case~vSqz.0.8!, the splitting is
not a monotonic function ofvSqz but changes quite ran-
domly. This irregular behavior starts at smallervSqz for
largerny . Moreover, we confirmed that whenvy is small, the
regular behavior is preserved in wide range ofvSqz. This is
probably because the sudden regime becomes more appr
priate at smallvy . It can also be seen in Fig. 11 that the
energy splitting increases monotonically asny increases in
the case of spread potential~vSqz,0.4!. This is not surprising
and can be understood easily by the sudden approximatio
~15! in the same way as above.

In the adiabatic regime in whichvy is larger than unity,
the same feature as above can be basically found. There h
been found, however, an interesting exception noted below
Table VI gives energy splittings in the Sqz potential for a
small g ~left-hand and central columns! and for a largeg
~right-hand column!. In the case of small couplingg, we
found that the tunneling is, as expected, suppressed by th
vibrational excitation. This can be interpreted if we employ
the adiabatic approximation Eq.~8!: The tunneling dynamics
can be understood in terms of the renormalized potential~see
Fig. 10 of paper I!. From this, we can predict that the energy
splitting is diminished by the vibrational excitation iny di-
rection. Actually, the energy splittings estimated by the adia-
batic approximation~8! ~central column! agree quite well

FIG. 11. Tunneling energy splitting~in logarithmic scale! of the squeezed
parabola model~25! as a function ofvSqz. Parameters are chosen to be
(vy ,X,g)5~0.4,0.5,0.07!.

TABLE VI. Energy splittings of the Sqz potential~24! with largevy . The
parameterg is equal to be 0.05.

~vy ,g!
Method

~1.8,0.1!
~1.5,0.5!
EQMEQM Adiabatic

DE0,0 7.16~27! 6.92~27! 5.57~27!
DE0,1 6.45~27! 6.24~27! 3.01~27!
DE0,2 5.84~27! 5.63~27! 83.7~27!
No. 10, 8 March 1995o¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html
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3986 S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
with those of quantum mechanical calculation~left-hand col-
umn!. As g increases~right-hand column of Table VI!, this
suppression disappears and irregular behavior comes ou
the same way as in the discussions of Fig. 11. Another s
nificantly different feature appears when the Fermi resonan
between the~0,ny! and (nx8 ,ny8) states occurs with nonzero
nx8 : The tunneling splitting itself is found to disappear in thi
case. Since the state with highernx has larger amplitude in
the potential barrier region, an admixture of the sta
(nx8 ,ny8) in the state~0,ny! crucially affects the energy split-
ting of the latter state, even if the admixture is very small.

IV. PROTON TUNNELING IN TROPOLONE

A. Available experimental data

As was mentioned in Sec. I, quite a few experiment
data on tropolone molecule are now available. The electro
cally ground stateX̃ 1A1 has been studied by infrared
spectroscopy,30,31 FT-microwave spectroscopy,35 and single
vibronic level fluorescence~SVLF! spectroscopy.24,32,27 IR
spectra give us information about normal modes. The F
microwave spectroscopy can directly observe the tunneli
energy splitting of theX̃ state. The SVLF spectra provide us
with the relation between the vibronic level in the excite
stateÃ and that in the ground stateX̃. For the first electroni-
cally excited stateÃ 1B2 , the UV absorption spectra22 and
the laser fluorescence excitation spectra23–25,27 have been
measured. The latter have also been measured for
~18O/16O and D/H! isotope substituted tropolone.26,28,29The
data obtained from the laser fluorescence excitation spec
include the main information we are interested in; name
the accurate energy levels of various vibrationally excite
states inÃ.

Theoretical study by theab initio MO method has been
done by Redington and Bock forX̃ state,34 while no data on
the excited state is available. They calculated~1! the opti-
mized geometry and the saddle point geometry by the
stricted Hartree–Fock~RHF! method with 6-31G** basis
set,~2! the energy difference between these two points by t
second-order Mo” ller–Plesset ~MP2! perturbation method
with the 6-31G* basis set, and~3! thirty-nine normal modes
and their frequencies by the RHF method with 6-31G bas
set. Since the level of computation is high enough for th
qualitative understanding, there is little room to doubt th
obtained geometries and characteristics of normal modes,
though the barrier height and the normal mode frequenc
may involve non-negligible errors.

Our main interest consists in the proton tunneling in th
Ã state, because more interesting data on tunneling splittin
have been measured forÃ state. The direct information of
tunneling energy splitting is obtained by combining the las
fluorescence excitation spectroscopy and the FT-microwa
spectroscopy. As is shown in Fig. 1, the laser fluorescen
excitation spectra for jet-cooled tropolone give us the valu
of uDEn8 2 DE09u, where8 and9 represent theÃ andX̃ states,
respectively; for instance,DEn9 is the energy splitting of the
vibrational staten in the electronic stateX̃. Since theDE09 is
determined to be 0.974 cm21 from the FT-microwave
spectra,35 we can have an estimate ofDEn8 . In order to con-
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firm that the splitting in the spectra is really caused by tun-
neling, they measured the temperature dependence of the in
tensity ratio and the effects of isotope substitution on the
splitting.

The vibrational modes in theÃ state can be assigned
indirectly. For the ground stateX̃, using the results of infra-
red spectra and MO calculation, we can assign each vibra-
tional mode. The correspondence between the modes ofX̃
state andÃ state is established by using the SVLF spectra.
Combining these data, we can guess the characteristics of the
vibrational modes in theÃ state. The tunneling energy split-
tings DEn8 observed and assigned in this way are listed in
Table VII, where TRNOH~TRNOD! represents tropolone
~tropolone in which -OH is deuterated to -OD!. Many inter-
esting features can be found:~1! excitation of then128 mode
does not affect significantly the tunneling,~2! excitation of
the moden138 and that ofn148 promote the tunneling,~3!
excitation of the moden258 and that ofn268 suppress the tun-
neling, and so on. The fundamental vibrational frequencies
are shown in Table VIII both for theX̃ and Ã states.

TABLE VII. Observed tunneling energy splittingsDEn8 of tropoloneÃ state.

Band TRNOHa TRNODb Assignment Symmd

00 20 2 Origin
111 14 c C–C stretch a1
121 18 2 CCC bend a1
131 33 3 CC–O/CCC deform a1
141 31 11 in-plane ring deform a1
142 29 13
192 10 c out-of-plane bend a2
252 5 out-of-plane bend b1
262 8 c out-of-plane bend b1
264 6
266 5
268 2
2610 c

2612 c

141262 5 2
251261 c c

aReferences 25, 27, and 35.
bReference 27. Here,DE09 is assumed to be zero.
cUnresolved.
dIrreducible representation ofC2V point group. Tropolone is considered to
be nonrigid. These assignments are due to Ref. 31.

TABLE VIII. Vibrational fundamentals in theX̃ and the Ã states of
tropolone.

Mode Symmetrya X̃b Ãc

11 a1 739 511
12 a1 674 640
13 a1 434 414
14 a1 359 296
19 a2 271 269
25 b1 177 171
26 b1 109 39

aThese assignments are due to Ref. 31.
bData from the SVLF spectra~Ref. 27!.
cData from the laser fluorescence excitation spectra~Ref. 27!.
No. 10, 8 March 1995o¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



3987S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
TABLE IX. ~A! Optimized geometries~in Å! of both the stable structure and the saddle point structure of
tropolone inX̃ state by MP2 method with 6-31G** basis set.~B! Bond length~in Å! of both the stable structure
and the saddle point structure of tropolone inX̃ state by MP2 method with 6-31G** basis set in comparison
with the RHF method~Ref. 34!.

~A!

Atom

Stable structure Saddle point

x y z x y z

1 C 21.139 0.141 0.000 0.736 20.814 0.000
2 C 0.000 1.074 0.000 20.736 20.814 0.000
3 C 1.360 0.825 0.000 21.598 0.296 0.000
4 C 2.033 20.410 0.000 21.259 1.644 0.000
5 C 1.510 21.689 0.000 0.000 2.251 0.000
6 C 0.148 22.066 0.000 1.259 1.644 0.000
7 C 20.988 21.288 0.000 1.598 0.296 0.000
8 O 22.276 0.687 0.000 1.153 22.040 0.000
9 O 20.410 2.349 0.000 21.153 22.040 0.000
10 H 21.396 2.247 0.000 0.000 22.461 0.000
11 H 1.972 1.720 0.000 22.651 0.042 0.000
12 H 3.115 20.341 0.000 22.102 2.327 0.000
13 H 2.226 22.501 0.000 0.000 3.335 0.000
14 H 20.033 23.136 0.000 2.102 2.327 0.000
15 H 21.942 21.803 0.000 2.651 0.042 0.000

~B!

Parameter

Stable structure Saddle point

RHF MP2 RHF MP2

C15O 1.212 1.261 1.263 1.295
C2–O 1.330 1.340 1.263 1.295
O•••O 2.525 2.499 2.252 2.307
OH 0.952 0.991 1.204 1.228
C1C2 1.488 1.473 1.490 1.472
C2C3 1.345 1.383 1.386 1.405
C3C4 1.432 1.407 1.386 1.390
C4C5 1.345 1.382 1.386 1.398
C5C6 1.433 1.413 1.386 1.398
C6C7 1.345 1.377 1.386 1.390
C7C1 1.452 1.437 1.386 1.405
C3H 1.076 1.084 1.075 1.083
C4H 1.077 1.084 1.077 1.085
C5H 1.075 1.083 1.075 1.083
C6H 1.077 1.085 1.077 1.085
C7H 1.075 1.084 1.075 1.083
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B. MO calculation and tunneling dynamics of X̃ state

Although our main interest consists in the proton tunn
ing in Ã state, we start with that inX̃ state because the
accurate information of PES forX̃ can be obtained by theab
initio MO calculation.

We have made a MO calculation of theX̃ state using the
GAUSSIAN 92 program package:43 The MP2 method with
6-31G** basis set is employed to calculate the energy,
fully optimized geometries, thirty-nine normal modes, an
their frequencies both at the stable structure and at the sa
point structure. The energy is also calculated by MP4~SDQ!
method with 6-31G** basis set at the stable and saddle po
structures to get more accurate estimate of the energy bar
Table IX lists the geometries of both the stable structure a
the saddle point structure. Comparing with the geometries
RHF method, we can see that electron correlation length
J. Chem. Phys., Vol. 102Downloaded¬13¬Feb¬2001¬to¬133.30.52.73.¬Redistribution¬subject¬
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the double bonds and shortens the single bonds in the sev
membered ring. The other single bonds become longer th
those of RHF. These are well-known tendencies and can
explained by the fact that electron correlation mixes ant
bonding orbital with bonding orbital and weakens the bond
ing.

Frequencies and characteristics of the normal modes a
summarized in Tables X and Fig. 12. It can be seen fro
Tables X~A! and X~B! that most of the frequencies by the
MP2 method are smaller than those of RHF~see Table IV of
Ref. 34!. This is also well known and comes from the sam
reason as above. For the modes with 1200–1600 cm21, the
correspondences between computed frequencies and m
sured ones are not very clear. Decomposition of the norm
modesn9 at the stable structure in terms of those~n‡! at the
saddle point are given in Table X~C!; Each normal mode
, No. 10, 8 March 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



3988 S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
TABLE X. Computed normal mode frequencies and characteristics in theX̃ state of tropolone.~A! Normal
mode frequencies~cm21! at the stable structure.~B! Normal mode frequencies~cm21! at the saddle point
structure.~C! Decomposition of some representative normal modes at the stable structure in terms of those at
the saddle point structure.

~A!
n9 a Symm Calc Obsb n9 a Symm Calc Obsb

~1! A8 3432 3121 ~21! A8 899 875
~2! A8 3266 3055 11~22! A8 758 741
~3! A8 3259 3055 12~23! A8 706 674
~4! A8 3256 3030 ~24! A8 547 551
~5! A8 3240 3023 13~25! A8 446 434
~6! A8 3231 3006 14~26! A8 370 359
~7! A8 1717 1635 ~27! A8 355 349
~8! A8 1677 1628 ~28! A9 977 1000
~9! A8 1641 1565 ~29! A9 942 983

~10! A8 1597 1522 ~30! A9 914 908
~11! A8 1552 1499 ~31! A9 850 828
~12! A8 1497 1481 ~32! A9 806 774
~13! A8 1474 1470 ~33! A9 757 751
~14! A8 1379 1460 ~34! A9 641 720
~15! A8 1344 1427 ~35! A9 524 676
~16! A8 1302 1412 ~36! A9 385 335
~17! A8 1263 1274 19~37! A9 351 272
~18! A8 1261 1252 25~38! A9 173 177
~19! A8 1094 1146 26~39! A9 105 110
~20! A8 989 952

~B!
n‡ Symmetry Calc n‡ Symmetry Calc

1 a1 3267 21 b2 1444
2 a1 3260 22 b2 1318
3 a1 3232 23 b2 1293
4 a1 2097 24 b2 1120
5 a1 1716 25 b2 778
6 a1 1613 26 b2 568
7 a1 1483 27 b2 365
8 a1 1437 28 a2 970
9 a1 1266 29 a2 842
10 a1 991 30 a2 653
11 a1 897 31 a2 381
12 a1 747 32 a2 147
13 a1 725 33 b1 1240
14 a1 416 34 b1 948
15 b2 1323i 35 b1 919
16 b2 3264 36 b1 758
17 b2 3238 37 b1 530
18 b2 1772 38 b1 378
19 b2 1654 39 b1 171
20 b2 1535

~C!
Mode ~stable! Modes~saddle point! Symmetry

n19(1) 0.69n15
‡ 1 0.65n4

‡ b21a1
n119 (22) 0.96n25

‡ b2
n129 (23) 0.92n13

‡ a1
n139 (25) 0.78n14

‡ 1 0.54n12
‡ a1

n149 (26) 0.66n27
‡ 1 0.49n14

‡ 1 0.49n12
‡ a11b2

n199 (37) 0.84n31
‡ 1 0.53n38

‡ a21b1
n259 (38) 0.96n39

‡ b1
n269 (39) 0.95n32

‡ a2

aFigures in the parentheses are those by Redington and Bock~Ref. 34!.
bData from Refs. 22, 27, 30, 31, and 32.
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vector at then9 is expressed by the linear combination o
those at then‡ and major components are picked up in Tabl
X. It should be noted here that the right-most column show
not the symmetry of the nonrigid molecule but that ofn‡

contributing to the correspondingn9. The following interest-
ing features can be found:~1! Symmetries of then119 and
n269 are b2 and a2, respectively, which are different from
those assigned by experiments. We note that even ifn119 is b2
like mode~as a rigid molecule!, a pair of eigenstates splitted
by the tunneling havea1 and b2 symmetries and thus the
selection rule does not change.~2! Modes n19 , n149 , and
n199 are composed ofn‡’s with different symmetries. These
new assignments will be essential for understanding the tu
neling dynamics. Finally, the energy differences between th
stable and the saddle point structures are given in Table
for several different calculation methods.

FIG. 12. Normal modes of tropolone in theX̃ state.

TABLE XI. Energies~kcal mol21! at the saddle point ofX̃ relative to the
energy of the stable structure. The 6-31G** basis set are used for all calcu-
lations.

Calculation No ZPE With ZPEa With ZPE- b

MP2 5.31 7.99 7.96
MP3c 9.22

MP4~DQ!c 9.93
M4~SDQ!c 8.86 11.54 11.51

aAll the zero point energies~ZPE! except for that along the direct tunneling
mode are taken into account.
bAll the ZPE except for those along the direct tunneling mode, then13 mode,
and then26 mode are taken into account.
cGeometry and ZPE are taken from the calculation of the MP2 method.
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On the basis of these calculations, we construct a model
PES for the proton tunneling in theX̃ state. It is natural to
expect that the vibrational modes which largely affect the
tunneling are basically the same for theX̃ andÃ states. Thus,
we choose the direct tunneling mode,n139 mode andn269
mode as relevant coordinates for a three-dimensional model
The other modes are regarded as irrelevant ones although
their zero point energies~ZPE! are added to the model PES.
Sincen139 is assigned toa1 symmetry, the coupling should be
that of the SMC potential. On the other hand,n269 is the
out-of-plane wagging motion and thus the potential in this
direction should be squeezed. On the basis of these consid
erations, we propose the following model PES:

H52
g2

2 S ]2

]x2
1

]2

]y2
1

]2

]z2D1
1

8
~x21!2~x11!2

1
vy
2

2
@y1a~x221!#21

1

2
@vz

22g~x221!#z2, ~26!

where modesx andz represent the direct tunneling mode and
n269 mode, respectively. The modey collectively represents
the coupling ofa1 mode and largely includesn139 mode. We
believe that the essential topography of the relevant part of
PES of tropolone is correctly represented by this simple
model, although the quantitative accuracy may not be
enough.

The parameters in Eq.~26! are determined from the data
obtained above. First of all, we need to remove the transla-
tional and rotational degrees of freedom. To do this, letXP

~P5L, R, C, orS, whereL andR represent the left and right
stable structures, respectively,C is the midpoint ofL andR,
andS is the saddle point structure! be the 3N-dimensional
mass-weighted coordinate vector representingP in xy plane.
First, we take the origin of coordinates at the center of mass.
Second, theR structure~XR! is rotated aroundz axis such
that uXL2XRu becomes minimal. Then, we define
XC[~XL1XR!/2. Finally, theS structure is rotated aroundz
axis such thatuXS2XCu becomes minimal. The potential pa-
rameters are determined as described below.~i! a represents
the distance ratioSC/LC and can be determined straightfor-
wardly. ~ii ! FrequenciesVx in x direction andVy in y direc-
tion can be determined from the expressions,

Vx
25(

i

^LCu i &2n i9
2, ~27!

Vy
25(

i

^SCu i &2n i9
2, ~28!

TABLE XII. Parameters of the three-dimensional model~26! for the
tropoloneX̃ state.

Parameter Value

g 0.0732
vy 0.469
a 1.19
vz 0.0446
g 0.00190
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3990 S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
where^LCu i & (^SCu i &) represents the component of then i9
mode inXLC direction ~that of then i9 mode inXSC direc-
tion!. Frequency ratiovy is then obtained asVy/Vx . ~iii !
Since the normal mode vector ofn269 is almost identical to
that of n32

‡ , we can easily determinevz andg: the n269 fre-
quency~5105.2 cm21! at L and that~5147.2 cm21! at S
correspond tovz andAvz

21g, respectively.~iv! g is deter-
mined such that the energy barrier~511.51 kcal mol21! in-
cluding the ZPE corresponds to 1/8. Parameters determin
in this way are listed in Table XII. We note that no paramete
was fitted to reproduce any energy splitting.

Tunneling energy splitting has been calculated quantu
mechanically with this three-dimensional Hamiltonian~26!
using the DVR method. Numbers of grids used here are 6
40, and 40 forx, y, and z coordinates, respectively. Table
XIII gives the energy splittings for several vibrational state
First, the energy splittingDE0 of the ground state is 1.05
cm21, which is in good agreement with the observed valu
~50.974 cm21!. It may be fair to say that this agreement i
somewhat accidental because the present model is sim
and the tunneling energy splitting is known to be very se
sitive to PES. The more important thing is the dependence
DEn on n. It can be seen that the vibrational excitation inz
direction suppresses the tunneling weakly, while that iny
direction promotes it quite strongly: The modesy andz play
the same role as those in the two-dimensional~2D! SMC and
Sqz models discussed in the previous section. This suppo
the conjecture that the 2D models in the previous secti
may be directly used to understand the effects of vibration
excitation in the case of the dimension higher than 2.

C. Interpretation and discussion on Ã state

On the basis of the numerical analysis done in Sec.
and the previous subsection, here we try to analyze the
perimental data on proton tunneling in theÃ state. As is
clarified in Sec. III, the symmetry of PES is a crucial facto
to understanding the effects of vibrational excitation on tu
neling. In order to know the symmetry of the PES of theÃ
state, information on the stable structure and the characte
tics of normal modes are required. Since no reliableab initio

TABLE XIII. Energy splittings ~cm21! calculated with use of the exact
quantum mechanical method~EQM! for the model potential~26! of
tropolone.

EQM

DE0,0,0
a 1.05

DE0,0,1 0.965
DE0,0,2 0.887
DE0,0,3 0.819
DE0,0,4 0.758
DE0,0,5 0.705
DE0,0,6 0.656
DE0,1,0 7.61
DE0,1,1 7.02

aSubscripts represent vibrational quantum numbers of the direct tunnel
mode,n13 mode~approximately!, andn26 mode.
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MO calculation ofÃ state has been reported so far, we try t
interpret the available experimental data from our prese
knowledge.

Let us first consider the effects ofn138 andn148 . Since the
former hasa1 symmetry, the symmetry of the PES should b
that of the SMC model~19!, in which x andy correspond to
the direct tunneling coordinate andn138 mode, respectively.
According to the numerical results shown in Tables II an
XIII, the excitation of this mode is thus expected to promot
the tunneling. Experimentally, the first excitation ofn138
gives the energy splitting of 33 cm21 ~3 cm21! compared to
the splitting of 20 cm21 ~2 cm21! of the vibrationally ground
state in the case of TRNOH~TRNOD!. Our prediction quali-
tatively agrees with this experimental data. If we assume th
the n148 mode is similar to then149 , it has botha1 and b2
components. The first excitation ofn148 promotes the tunnel-
ing, which can be explained by the SMC model. The excita
tion by two quanta in this mode of TRNOH, however, sup
presses the tunneling slightly from the first excited state. Th
is probably becausen148 has theb2 component and the PES
has coupling of the ASMC type.

If we assume that then118 has the same symmetry~b2! as
the n119 , the symmetry of the PES should be that of th
ASMC model~22!. Thus, the suppression of the tunneling by
the n118 excitation can be understood by the out-of-phas
cancellation in Herring’s formula. Unfortunately, long exci-
tation progression of this mode has not been observed yet.
emphasized in Sec. III, excitation of this mode is expected
give an oscillatory behavior of the energy splitting as a func
tion of the vibrational quantum number. This, if possible, ca
be considered as an experimental observation ofmixed tun-
neling.

In Table VII, the long progression of then268 mode has
been observed and the corresponding energy splitting d
creases monotonically with its excitation. To know the sym
metry of PES, we need information on the normal mode.
has been repeatedly pointed out32,27 that the strong Duschin-
sky effect between then25mode and then26mode is found in
theX̃–Ã electronic spectra. Namely, then268 normal mode of
Ã state mainly consists of the mixture of then259 and the
n269 modes ofX̃ state. Since the reliable MO calculations for
the normal modesn259 andn269 are available~depicted sche-
matically in Fig. 12!, then268 mode can be guessed to include
the antisymmetric wagging motion of two O atoms. There
fore, the deviation of then268 mode from planar structure
makes O–O distance larger and thus makes the barrier hei
of the proton tunneling between the two O atoms larger. Th
clearly indicates the existence of squeezing effect in the PE
If we assume that the stable structure is planar inÃ state, the
PES must be symmetric with respect to the deviation of th
n268 mode. Thus, then268 mode coupled with the tunneling
coordinate may be described by the Sqz or the Sqz-P mod
in which x and y correspond to the direct tunneling mode
and to then268 mode, respectively. It should be noted tha
n268 is the mode with the lowest frequency 39 cm21, while
the direct tunneling mode has the frequency of about 300
cm21. Thus, this case definitely fits to the sudden regime
The numerical results for the Sqz model shown in Table
and the model for theX̃ state@Eq. ~26!# shown in Table XIII

ing
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i

t

m

n

r

d

e

u

a

f

s
t, a

he
d
f

It
vi-
S
f

h-

n

in

al
.

r,

.

3991S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
should qualitatively be in accordance with the experiment
finding. In Table VII, other two modesn198 andn258 with the
symmetries different froma1 have the same tendency as tha
of n268 . This again indicates that the symmetry of coupling
important to clarify the effect of vibrational excitation on
tunneling.

In the above analysis, however, one subtle question h
not been paid attention to. The stable structure of theÃ state
might be bent and thusC2V symmetry group might not be
appropriate. Roughly speaking, the following two opposi
effects compete with each other in determining whether
molecule with conjugatedp electrons prefers planar struc-
ture or not; reduction of the overlap between adjacent ato
makes the structure bent as is seen in the cyclohexane m
ecule, while the conjugatedp electrons prefer planar struc-
ture as is seen in the ground state benzene. As is mentio
above, theab initio MO calculation and x-ray diffraction
data have shown that the structure of theX̃ state is planar.
This is because the effect of conjugatedp electrons is stron-
ger than that of avoiding the overlapping. For thep–p*
excited stateÃ, however, this situation can be different; the
effect of the conjugatedp electrons should become weaker
Unfortunately, however, neither direct observation nor an
MO calculation has been done to answer this question. T
SVLF spectra seem indirectly to support the planar structu
If the stable structure is not planar, we need to consider bo
the squeezing effect and the effect of antisymmetric mo
coupling for clarifying the effect ofn268 .

Redingtonet al.26 interpreted the effect of then268 mode
based on the adiabatic viewpoint. They introduced the~T,t!
two-dimensional PES, in whichT andt represent the direct
tunneling coordinate and an out-of-plane twisting mode, r
spectively. The latter is considered to be responsible for r
organizing then268 mode, since then268 mode need to be
rearranged during the proton transfer. Moreover, they a
sumed that this two-dimensional surfaceVv(T,t) is different
for each vibrational quantum numberv of the n268 mode;
namely they used the adiabatic approximation. As mention
above, however, the frequency of then268 mode is two orders
of magnitude smaller than that of the direct tunneling mod
and thus the adiabatic approximation cannot be allowed.

V. CONCLUSION

We have investigated the effects of vibrational excitatio
on tunneling using several model systems: Tunneling ener
splittings of excited states are obtained by the exact quant
mechanical calculation and are interpreted by the WK
theory and the sudden and adiabatic approximations. Vario
interesting effects are found:~1! In the case of the SMC
model, vibrational excitation always promotes tunneling.~2!
In the case of ASMC, pure tunneling in I region is promote
by the excitation, while mixed tunneling in C region is eithe
promoted or suppressed. The latter is attributed to the ph
cancellation in the overlap integral of Herring’s formula.~3!
In the case of squeezed potential, vibrational excitation su
presses the tunneling when the squeezing effect is su
ciently weak, while strong squeezing makes the tunnelin
irregular.
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Next, the proton tunneling dynamics of tropolone ha
been studied based on the above numerical analysis. Firs
model PES of the ground stateX̃ has been constructed with
use of the high accuracyab initio MO calculation and the
energy splitting has been calculated on this PES. Then, t
experimentally observed energy splitting of the first excite
stateÃ has been interpreted; promotion by the excitation o
n138 , suppression by the excitation ofn118 , and suppression
by the excitation ofn268 have been explained by the SMC
model, the ASMC model, and the Sqz model, respectively.
has been emphasized that the symmetry of the coupled
brational mode is responsible for the topography of the PE
and the latter plays a key role in the tunneling dynamics o
vibrationally excited states.

Note added in proof.After this paper was accepted for
publication, we received a preprint by Benderskii, Grebens
chikov, and Mil’nikov in which they reproduced oscillatory
behavior of energy splitting in the ASMC case by using a
instantonlike treatment~private communication!.

ACKNOWLEDGMENTS

One of the authors~S.T.! appreciates Dr. Hiroshi Sekiya
~Kyushu Univ.! for answering many questions on the
tropolone experiments. The present work was supported
part by a Grant in Aid for Scientific Research on Priority
Area ‘‘Theory of Chemical Reactions’’ from the Ministry of
Education, Science, and Culture of Japan. Part of numeric
calculations were carried out at the Computer Center of IMS

1Special issue onTunneling in Chemical Reactions, edited by V. A. Bend-
erskii, V. I. Goldanskii, and J. Jortner@Chem. Phys.170, 265 ~1993!#; V.
A. Benderskii, D. E. Makarov and C. A. Wight, Adv. Chem. Phys.88, 1
~1994!; J. Jortner and B. Pullman,Tunneling~Reidel, Dordrecht, 1986!; B.
Chance, D. C. Devault, H. Frauenfelder, R. A. Marcus, J. R. Schrieffe
and N. Sutin,Tunneling in Biological Systems~Academic, New York,
1979!.

2T. Banks, C. M. Bender, and T. T. Wu, Phys. Rev. D8, 3346 ~1973!; T.
Banks and C. M. Bender,ibid. 8, 3366~1973!.

3J. L. Gervais and B. Sakita, Phys. Rev. D16, 3507~1977!.
4S. Coleman, inThe Whys of Subnuclear Physics, edited by A. Zichichi
~Plenum, New York, 1979!.

5C. G. Callan, Jr. and S. Coleman, Phys. Rev. D16, 1762~1977!.
6J. P. Sethna, Phys. Rev. B24, 692 ~1981!.
7A. Auerbach and S. Kivelson, Nucl. Phys. B257 @FS14#, 799 ~1985!.
8N. Takigawa, K. Hagino, M. Abe, and A. B. Balantekin, Phys. Rev. C49,
2636 ~1994!.

9T. F. George and W. H. Miller, J. Chem. Phys.56, 5722~1972!; 57, 2458
~1972!.

10R. A. Marcus and M. E. Coltrin, J. Chem. Phys.67, 2609~1977!.
11M. Ya. Ovchinnikova, Chem. Phys.36, 85 ~1979!.
12V. K. Babamov and R. A. Marcus, J. Chem. Phys.74, 1790 ~1981!; H.
Nakamura and A. Ohsaki,ibid. 83, 1599 ~1985!; H. Nakamura, Chem.
Phys. Lett.141, 77 ~1987!; A. Ohsaki and H. Nakamura,ibid. 142, 37
~1987!.

13B. C. Garrett, D. G. Truhlar, A. F. Wagner, and T. H. Dunning, Jr., J
Chem. Phys.78, 4400~1983!.

14D. G. Truhlar, A. D. Isaacson, and B. C. Garrett,Theory of Chemical
Reaction Dynamics, edited by M. Baer~Chemical Rubber, Boca Raton,
1985!, Vol. 4.

15V. A. Benderskii, D. E. Makarov, and P. G. Grinevich, Chem. Phys.170,
275 ~1993!.

16S. Takada and H. Nakamura, J. Chem. Phys.100, 98 ~1994!, this is re-
ferred to as ‘‘paper I’’ in this article.

17S. Takada and H. Nakamura, Supp. Prog. Theor. Phys.116, 295 ~1994!.
No. 10, 8 March 1995o¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html



m
.

m

.

c

,
,

,
i,
r,

3992 S. Takada and H. Nakamura: Multidimensional tunneling in tropolone
18T. Carrington, Jr. and W. H. Miller, J. Chem. Phys.84, 4364~1986!.
19N. Shida, P. F. Barbara, and J. E. Almlo¨f, J. Chem. Phys.91, 4061~1989!.
20E. Bosch, M. Moreno, J. M. Lluch, and J. Bertra´n, J. Chem. Phys.93,
5685 ~1990!.

21S. L. Baughcum, Z. Smith, E. B. Wilson, and R. W. Duerst, J. Am. Che
Soc. 106, 2260 ~1984!; P. Turner, S. L. Baughcum, S. L. Coy, and Z
Smith, ibid. 106, 2265~1984!.

22A. C. P. Alves and J. M. Hollas, Mol. Phys.23, 927 ~1972!; 25, 1305
~1973!.

23R. Rossetti and L. E. Brus, J. Chem. Phys.73, 1546~1980!.
24Y. Tomioka, M. Ito, and N. Mikami, J. Phys. Chem.87, 4401~1983!.
25R. L. Redington, Y. Chen, G. J. Scherer, and R. W. Field, J. Chem. Ph
88, 627 ~1988!.

26R. L. Redington, T. E. Redington, M. A. Hunter, and R. W. Field, J. Che
Phys.92, 6456~1990!.

27H. Sekiya, Y. Nagashima, and Y. Nishimura, J. Chem. Phys.92, 5761
~1990!; Bull. Chem. Soc. Jpn.62, 3229~1989!.

28H. Sekiya, K. Sasaki, Y. Nishimura, Z. Li, A. Mori, and H. Takeshita
Chem. Phys. Lett.173, 285 ~1990!.

29H. Sekiya, Y. Nagashima, T. Tsuji, Y. Nishimura, A. Mori, and H
Takeshita, J. Phys. Chem.95, 10311~1991!.

30Y. Ikegami, Bull. Chem. Soc. Jpn.34, 94 ~1960!; 36, 1118~1963!.
31R. L. Redington and T. E. Redington, J. Mol. Spectrosc.78, 229 ~1979!.
32A. C. P. Alves, J. M. Hollas, H. Musa, and T. Ridley, J. Mol. Spectros
109, 99 ~1985!.
J. Chem. Phys., Vol. 102Downloaded¬13¬Feb¬2001¬to¬133.30.52.73.¬Redistribution¬subject¬
.

ys.

.

,

.

33R. L. Redington, J. Chem. Phys.92, 6447~1990!.
34R. L. Redington and C. W. Bock, J. Phys. Chem.95, 10284~1991!.
35K. Tanaka, H. Honjyo, T. Tanaka, H. Takaguchi, Y. Ohshima, and Y. Endo
Abstracts of the Meeting of the Molecular Structure, Yokohama, Japan
1991 ~unpublished!, p. 223.

36V. A. Benderskii, S. Yu. Grebenshchikov, E. V. Vetoshkin, G. V. Mil’nikov,
and D. E. Makarov, J. Phys. Chem.98, 3300~1994!; V. A. Benderskii, S.
Yu. Grebenshchikov, G. V. Mil’nikov, and E. V. Vetoshkin, Chem. Phys.
188, 19 ~1994!; V. A. Benderskii, S. Yu. Grebenshchikov, and G. V.
Mil’nikov, ibid. ~submitted!.

37C. Herring, Rev. Mod. Phys.34, 631 ~1962!.
38L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Pergamon, Oxford,
1975!.

39V. P. Maslov and M. V. Fedoriuk,Semi-Classical Approximation in Quan-
tum Mechanics~Reidel, Dordrecht, 1981!.

40M. Wilkinson, Physica. D21, 341 ~1986!.
41K. Fukui, J. Phys. Chem.74, 4161 ~1970!; K. Fukui, S. Kato, and H.
Fujimoto, J. Am. Chem. Soc.97, 1 ~1975!.

42J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys.82, 1400~1985!;
R. M. Whitnell and J. C. Light,ibid. 90, 1774~1989!.

43GAUSSIAN 92, Revision A. M. J. Frisch, G. W. Trucks, M. Head-Gordon, P.
M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel
M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachar
J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Bake
J. J. P. Stewart, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1992.
, No. 10, 8 March 1995to¬AIP¬copyright,¬see¬http://ojps.aip.org/jcpo/jcpcpyrts.html


