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Abstract

Epidemiological studies pointed out to a strong association between vitamin D deficiency

and type 2 diabetes prevalence. However, the role of vitamin D supplementation in the skel-

etal muscle, a tissue that play a crucial role in the maintenance of glucose homeostasis, has

been scarcely investigated so far. On this basis, this study aimed to evaluate the effect of

vitamin D supplementation in a murine model of diet-induced insulin resistance with particu-

lar attention to the effects evoked on the skeletal muscle. Male C57BL/6J mice (n = 40) were

fed with a control or a High Fat-High Sugar (HFHS) diet for 4 months. Subsets of animals

were treated for 2 months with vitamin D (7 μg�kg-1, i.p. three times/week). HFHS diet

induced body weight increase, hyperglycemia and impaired glucose tolerance. HFHS ani-

mals showed an impaired insulin signaling and a marked fat accumulation in the skeletal

muscle. Vitamin D reduced body weight and improved systemic glucose tolerance. In addi-

tion, vitamin D restored the impaired muscle insulin signaling and reverted myosteatosis

evoked by the diet. These effects were associated to decreased activation of NF-κB and

lower levels of TNF-alpha. Consistently, a significantly decreased activation of the SCAP/

SREBP lipogenic pathway and lower levels of CML protein adducts and RAGE expression

were observed in skeletal muscle of animals treated with vitamin D.

Collectively, these data indicate that vitamin D-induced selective inhibition of signaling

pathways (including NF-κB, SCAP/SREBP and CML/RAGE cascades) within the skeletal

muscle significantly contributed to the beneficial effects of vitamin D supplementation

against diet-induced metabolic derangements.

Introduction

Vitamin D is a prohormon with multiple functions that extend beyond the regulation of the

intestinal calcium absorption. In recent years, a large number of studies investigated the asso-

ciation between vitamin D status (and/or supplementation) and health [1, 2].
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In particular, epidemiological studies pointed out to a strong association between vitamin

D deficiency and type 2 diabetes (T2DM) prevalence [3–6]. Consistently, serum 25-hydroxyvi-

tamin D concentrations were negatively associated with body mass index [7, 8], insulin resis-

tance and β-cell dysfunction [9–11].

Moreover, results from preclinical studies showed that vitamin D (or calcitriol) administra-

tion reduced the levels of blood glucose and improved insulin sensitivity in diabetic mice [12],

attenuated the fibrosis and the increased expression of the receptor for advanced glycation end

products (RAGE) in hearts of diabetic rats, and improved high fat diet-induced metabolic syn-

drome and reduced hepatic steatosis in rats [13, 14]. We previously found that mice fed an

high-fat-high sugar diet developed intra-muscular accumulation of both fat and advanced gly-

cations end products (AGEs) in association with metabolic abnormalities [15]. Although the

factors leading to accumulation of intra- and intermuscular fat, a phenomenon known as

myosteatosis (or ectopic skeletal muscle adiposity), are not well understood, we suggested that

the accumulation of AGEs is the possible molecular mechanism linking the impairment of

insulin sensitivity to activation of lipogenesis (leading to myosteatosis) and to changes in mus-

cle fiber size and composition that occur in diet-induced obese mouse skeletal muscle [15, 16].

Consistently, recent evidence from human studies also indicated that myosteatosis is linked to

reduced insulin sensitivity and loss of muscle performance [17, 18]. Therefore, it may be

hypothesized that the improvement of skeletal muscle insulin sensitivity induced by vitamin D

can be paralleled by a reduction of diet-induced myosteatosis. The aim of the present study

was to investigate whether vitamin D administration improves skeletal muscle insulin sensitiv-

ity and metabolic profile of diet-induced obese mice and whether these improvements could

be associated to reduction of myosteatosis.

Materials andmethods

Animals and experimental procedures

Four-week-old male C57BL/6J mice (n = 40, provided by Charles River, Lecco, Italy) were

housed in a controlled environment at 25±2˚C with alternating 12-h light and dark cycles and

fed normal diet during a 1 week adaptation period. The animals were then randomly allocated

to two experimental groups: mice fed a control diet or an High Fat-High Sugar (HFHS) diet

(ssniff Spezialdiäten GmbH, Ferdinand-Gabriel-Weg, Germany) for 16 weeks. The HFHS diet

contained 45% kcal fat (lard and soybean oil), 20% protein (casein), 35% carbohydrate. The

diet sugar component, a well known source of AGEs, was represented by fructose 55% and glu-

cose 45%. Diet compositions are detailed in the Supplementary Materials (S1 Table). The ani-

mal protocol (n. DGSAF0021253-A-07/11/2013) was approved by the local ‘Animal Use and

Care Committee’ (Comitato di Bioetica di Ateneo, University of Turin) and it was in accor-

dance with the European Directive 2010/63/EU on the protection of animals used for scientific

purposes.

Vitamin D administration

After the initial period of 8 weeks of dietary manipulation (control diet or HFHS diet), the ani-

mals were randomly allocated to four groups for the following 8 weeks: Control group (Con-

trol, n = 10), Control group+vitamin D (Control+vit D, n = 6), HFHS group (HFHS, n = 10),

HFHS+vitamin D (HFHS+vit D, n = 14).

The active form of Vitamin D (1,25-dihydroxycholecalciferol) was administered at the dose

of 7 μg/kg i.p. three times/week. The dose was chosen according to a previous studies demon-

strating that vitamin D supplementation had a positive effect on glucose homeostasis and

reduced diet-induced hepatic steatosis [12, 19].

Vitamin D reverses metabolic injury
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Oral glucose tolerance test (OGTT)

The day of the sacrifice, the OGTT was performed after a fasting period of 16 hours. Once

before glucose administration (2 g/kg by oral gavage) and 15, 30, 60 and 120 minutes after-

wards, blood samples were obtained from the saphenous vein puncture, and glucose concen-

tration was determined with a conventional Glucometer (Glucomen LX Plus, A. Menarini

Diagnostics, Florence, Italy).

Procedures and analyses

Body weight was recorded weekly. At the end of the study (week 16), after 16 h fasting period,

the mice were anesthetized using isoflurane via an anesthesia machine (IsoFlo, Abbott Labora-

tories) and sacrificed by cardiac puncture/exsanguination. Blood was collected for biochemical

analyses and the gastrocnemii were rapidly removed, frozen in N2 and stored at −80˚C. Plasma

serum 25-OH vitamin D level was measured using enzyme-linked immunosorbent assay

(ELISA) kit (ab213966 25-OH Vitamin D ELISA kit, Abcam, Cambridge, UK). Glycemia was

measured using the GlucoMen LX kit. Plasma lipid profile was determined by measuring the

content of triglycerides (TGs), total cholesterol, high-density-lipoprotein (HDL) cholesterol by

using commercial reagent kits (Hospitex diagnostics, Florence, Italy). Low-density-lipoprotein

(LDL) cholesterol was determined by the following calculation [LDL = total cholesterol–(HDL

+ TG/5)]. Plasma insulin was measured using enzyme-linked immunosorbent assay (ELISA)

kits (Mercodia Insulin ELISA). The homeostasis model assessment of insulin resistance

(HOMA-IR) was determined by the following calculation [HOMA-IR = (fasting plasma glu-

cose [mmol/l] � fasting plasma insulin [μUI/ml]) /22.5][20].

Tissue extracts and analyses

Gastrocnemious extracts were prepared as previously described [21]. Briefly, tissues were

homogenized and centrifuged. Supernatants were removed and the protein content was deter-

mined using a BCA protein assay following the manufacturer’s instructions (Pierce Biotech-

nology Inc. Rockford, IL, USA).

About 50 μg of total proteins were loaded for Western blot experiments as previously

described [21, 22]. After blocking, the PVDF membranes were incubated at 4˚C overnight

with antibodies against ph- Insulin Receptor Substrate 1 (ph-IRS-1, 1:1000, Cell Signaling

Technology, #2381), IRS-1 (1:1000, Cell Signaling Technology, #3196), ph- Protein kinase B,

also referred to as Akt (1:1000, Cell Signaling Technology, #4051), Akt (1:1000, Cell Signaling

Technology, #9272), ph- Glycogen Synthase Kinase-3β (ph-GSK-3β, 1:1000, Cell Signaling
Technology, #9322), GSK-3β (1:1000, Cell Signaling Technology, #9315), Nuclear Factor

Kappa-light-chain-enhancer of activated B cells (NF-κB) p65 (1:1000, Cell Signaling Technol-
ogy, #8242), Sterol Regulatory Element-Binding Protein (SREBP)-1c (1:500, Abcam Cam-

bridge, UK, ab44153), SREBP Cleavage-Activating Protein (SCAP, 1:500, Abcam, ab125186),

CarboxyMethyl Lysine (CML, R&D System, Minneapolis, MN, USA, #MAB3247), Receptor

for Advanced Glycation End products(RAGE, 1:500, Abcam, ab78022). The membranes were

stripped and incubated with GlycerAldehyde 3-Phosphate DeHydrogenase antibody

(GAPDH, 1:1000, Abcam ab9485) or histone H3 antibody (1:200, Santa Cruz Biotechnology,

sc10809) to assess gel-loading homogeneity. Proteins of interest were detected with horserad-

ish peroxidase-conjugated secondary antibody (1:5000, Cell Signaling Technology) for 1 h at

room Temperature. The results were quantified using ImageJ software.

Gastrocnemious TNF-alpha levels were measured by ELISA (Quantikine ELISA Kit, R&D

Systems).
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Gastrocnemious intramyocellular lipid accumulation was evaluated by Oil Red O staining

on 10 μm cryostatic sections. Stained tissues were viewed under an Olympus Bx4I microscope

(40x magnification) with an AxioCamMR5 photographic attachment (Zeiss, Göttingen,

Germany).

Unless otherwise stated, all compounds were purchased from the Sigma-Aldrich Company

Ltd. (St. Louis, Missouri, USA). PVDF was fromMillipore Corporation (Bedford, MA, USA).

Primary and secondary antibodies were from Cell-Signaling Technology (Beverly, MA, USA)

and Luminol ECL from PerkinElmer (Waltham, MA, USA).

Statistical analysis

One-way or Two-way analysis of variance with Bonferroni’s post-hoc test were adopted for

analysis of normally distributed data and the results are expressed as mean±S.E.M. The Krus-

kal–Wallis Anova followed by Dunn’s post hoc test were adopted for analysis of non-normally

distributed data and results are expressed by median and interquartile range (and represented

as Box andWhiskers plots). The analyses were performed by using the GraphPad Prism ver-

sion 5.0 for Windows (GraphPad Software, San Diego, California, USA), and p values<0.05

were considered as significant.

Results

Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation
on mice body weight

As shown in Fig 1, the HFHS diet dramatically increased mice body weight, with a significant

effect already after the first week of diet manipulation (p<0.001 HFHS vs control from week 1

to week 16, the relative symbols are not reported in the Figure).

Vitamin D supplementation (weeks 8–16) did not affect the average body weight of control

animals (average body weight at week 16: 24.85±0.24 g for Control group and 24.08±0.48 g for

Fig 1. Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation onmice body weight.
Values are means ± S.E.M. of 6–14 animals per group. Statistical analysis was performed with Two-way
analysis of variance with Bonferroni’s post-hoc test. ###p<0.001 vs HFHS. p<0.001 HFHS groups vsControl
groups from week 1, symbol are not reported in the figure.

https://doi.org/10.1371/journal.pone.0189707.g001
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Control+vit D group), but was associated with a significant body weight reduction of animals

fed HSHS diet (average body weight at week 16: 31.82±1.04 g for HFHS group and 27.57±0.56

g for Control+vit D group; p<0.001 vsHFHS). This effect became statistically significant after

2 weeks of vitamin D supplementation (at the week 10) and is well evident when the body

weight gain during the treatment period (weeks 8–16) is evaluated (ΔBWweeks 8–16 = Control

3.33±0.18 g; Control+vit D 2.4±0.31 g; HFHS 5.16±0.51 g; HFHS+vit D 1.51 ±0.16 g. HFHS

+vit D vsHFHS: p<0.001).

Moreover, the administration of vitamin D significantly blunted the diet-induced increase

of gastrocnemious weight (Control 0.13±0.004 g; Control+vit D 0.13±0.008 g; HFHS 0.16

±0.004 g; HFHS+vit D 0.14 ±0.002g. HFHS+vit D vsHFHS: p<0.001).

By analyzing the average food intake (g/die) no differences were observed among the

groups by considering the full length of the experimental protocol (weeks 1–16); whereas by

focusing on the vitamin D treatment period (weeks 8–16), a statistical significant difference

was observed between HFHS and HFHS+vit D (weeks 8–16 [g/die]: 2.6±0.3 Control, 2.3±0.4

Control+vit D, 2.8±0.7 HFHS, 2.3±0.7 HFHS+vit D, p<0.05 HFHS vsHFHS+vit D; week 1–16

[g/die]: 2.5±0.3 Control, 2.4±0.3 Control+vit D, 2.7±0.6 HFHS, 2.5±0.3 HFHS+vit D).

Effect of diet manipulation and 1,25 (OH)2 vitamin D supplementation on
serum 25-OH vitamin D level

Serum level of 25-OH vitamin D, the most stable metabolite, was not affected either by diet

manipulation or by 1,25 (OH)2 vitamin D supplementation. As shown in the Fig 2 no statisti-

cally significant differences were observed among the groups, albeit an upward trend was evi-

dent for the HFHS+vit D group compared to the HFHS group.

Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation
on oral glucose tolerance test, HOMA index and lipid profile

A significant impairment of the glucose tolerance was evident during OGTT in HFHS animals

in comparison with control animals (Fig 3A). Noteworthy, animals treated with vitamin D not

only showed a significant improvement of the glucose tolerance, but were also unable to reach

the glucose plasmatic peak induced by the glucose load. Indeed, in both groups of animals

treated with vitamin D (Control+vit D and HFHS+vit D) the level of glycemia measured after

the glucose load was significantly lower in comparison with the control group (p<0.001).

Accordingly, the HFHS group showed a three-fold (p<0.05) increase in HOMA-IR index

in comparison to the control group, while vitamin D treatment was associated with a signifi-

cant improvement of this parameter (Fig 3B).

Neither HFHS diet neither vitamin D treatment significantly affected the plasma lipid pro-

file (except for LDL cholesterol, HFHS vs Control: p<0.05; LDL cholesterol [mg/dl]: 36.43

±5.51 Control, 43.41±8.20 Control+vit D, 59.11±4.16 HFHS, 49.41±7.19 HFHS+vit D; total

cholesterol [mg/dl]: 98±9.49 Control, 111.97±9.06 Control+vit D, 124.5±4.81 HFHS, 102.8

±11.44 HFHS+vit D; plasma triglycerides [mg/dl]: 51.5±6.71 Control, 52.07±3.04 Control+vit

D, 64.08±3.78 HFHS, 47.27±7.22 HFHS+vit D).

Effects of dietary manipulation and 1,25 (OH)2 vitamin D
supplementation on insulin signaling transduction in the mouse
gastrocnemious

As shown in Fig 4, a significant impairment of the insulin signaling pathway was detected in

the gastrocnemious muscle of animals fed HFHS diet. In fact, a significant increase of Ser307
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phosphorylation of IRS-1 (Panel A) was detected in the HFHS group and this effect was associ-

ated to a decrease of Ser473 phosphorylation of Akt (Panel B), a well known marker of insulin

sensitivity. All these deleterious effects evoked by the diet were modified by vitamin D admin-

istration (HFHS+vit D vsHFHS: p<0.05) that was able to blunt the Ser307 phosphorylation of

IRS-1 and increase the Ser473 phosphorylation of Akt.

In addition, a significant increase of the inactive form of GSK-3β (phosphorylated in Ser9),

a downstream target of Akt insulin signaling, was evident in HFHS animals treated with vita-

min D (Panel C, HFHS+vit D vsHFHS: p<0.01).

Fig 2. Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation on serum 25-OH vitamin
D level. Levels of 25-OH vitamin D were measured by ELISA in the serum of 4–6 randomly selected animals
per group. Data are expressed by medians and interquartile range. Statistical analysis was performed with
Kruskal–Wallis test with Dunn’s post hoc test.

https://doi.org/10.1371/journal.pone.0189707.g002
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Effects of dietary manipulation and 1,25 (OH)2 vitamin D
supplementation on skeletal muscle inflammation

In order to evaluate the effects of vitamin D against diet-induced inflammation, the activation

of NF-κB was assessed in gastrocnemious homogenates (Fig 5).

Fig 3. Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation on oral glucose
tolerance test and HOMA indexmeasured at the end of the experimental protocol (week 16) in fasted
animals. Panel A. Oral glucose tolerance test (OGTT). Values are means ± S.E.M. of 6–10 animals per
group. Statistical analysis was performed with Two-way analysis of variance with Bonferroni’s post-hoc test.
*p<0.05, ***p<0.001 vsControl; #p<0.05, ##p<0.01, ###p<0.001 vsHFHS. Panel B. HOMA index. Data are
expressed by medians and interquartile range of 4–6 animals randomly selected per group. Statistical
analysis was performed with Kruskal–Wallis test with Dunn’s post hoc test. *p<0.05 vs Control; #p<0.05 vs

HFHS.

https://doi.org/10.1371/journal.pone.0189707.g003
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Fig 4. Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation on insulin signaling
transduction in themouse gastrocnemious. The expression of total IRS-1 protein and its Ser307

Vitamin D reverses metabolic injury
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As shown by the immunoblotting analyses, a significant (p<0.05) increase in the transloca-

tion of the NF-κB subunit p65 from the cytosolic to the nuclear fraction of tissue extracts was

detected in the HFHS group compared with control group, while NF-κB activation was signifi-

cantly reduced in HFHS animals treated with vitamin D (p<0.05 vsHFHS).

Accordingly, a marked increase of TNF-alpha, the main pro-inflammatory cytokine

involved in insulin resistance development, was detected in the gastrocnemious of HFHS ani-

mals (p<0.05 vs Control). Vitamin D administration was associated with a weak (although not

significant: p>0.05 vsHFHS) decrease of TNF-alpha level.

Effects of dietary manipulation and 1,25 (OH)2 vitamin D
supplementation on skeletal muscle lipid accumulation

As shown in the representative picture (Fig 6), fat accumulation in skeletal muscle was evident

on gastrocnemious sections of HFHS mice, while a clear reduction was observed in animals

treated with vitamin D (Fig 6). This data suggested that vitamin D administration reduced the

diet-induced myosteatosis in the gastrocnemious muscle of HFHS animals.

In order to identify the source of fat accumulation, the activation of the SCAP/SREBP1c

lipogenic pathway was assessed by immunoblotting on gastrocnemious homogenates from

mice fed a standard or HFHS diet with or without vitamin D treatment (Fig 7).

A three-fold increase of SCAP expression was detected in HFHS animals compared to con-

trol mice (HFHS vs Control: p<0.001). Accordingly, an higher expression of the active form of

SREBP1c was detected in animals fed HFHS diet compared to control mice (HFHS vs Control:

p<0.01). No differences were detected for the inactive form of SREBP1c among the different

groups of animals.

Effects of dietary manipulation and 1,25 (OH)2 vitamin D
supplementation on AGEs accumulation and RAGE expression in the
mouse gastrocnemious

Western blotting analysis of gastrocnemious homogenates from HFHS animals showed

increased levels of proteins modified by CML and increased expression of the AGE receptor,

RAGE, in comparison with control animals. Moreover, the HFHS+vit D group showed levels

of CML protein adducts and RAGE expression significantly lower compared to those of HFHS

mice (Fig 8, HFHS+vit D vsHFHS: p<0.05). Briefly, vitamin D administration reduced the

diet-induced accumulation of AGEs and RAGE (over)expression in the gastrocnemious mus-

cle of HFHS animals.

Discussion

The present study showed that administration of vitamin D to diet-induced obese mice halted

the progression in body weight gain, hyperglycemia and hyperinsulinemia induced by diet. In

keeping with previous studies [23, 24], here we used the active vitamin D form, the 1,25 (OH)2
vitamin D, at the dose of 7 μg/kg i.p. three times/week, which did not affect the serum level of

phosphorylation (panel A), total Akt protein and its Ser473 phosphorylation (panel B), and total GSK-3β protein
and its Ser9 phosphorylation (panel C) were analyzed byWestern blot on gastrocnemious homogenates of
animals fed a control diet or HFHS diet, with or without vitamin D supplementation (7 μg/kg, 3 times per week).
Densitometric analysis of the bands is expressed as relative optical density (O.D.) and normalized using the
related control band. The data are expressed by medians and interquartile range of 5–8 randomly selected
animals per group. Statistical analysis was performed with Kruskal–Wallis test with Dunn’s post hoc test.
*p<0.05, **p<0.01 vsControl; #p<0.05, ##p<0.01 vsHFHS.

https://doi.org/10.1371/journal.pone.0189707.g004
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Fig 5. Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation on NF-κB activation
(panel A) and TNF-alpha levels (panel B) in themouse gastrocnemious. (A) Representative western
blotting analysis for the expression of NF-κB p65 subunit. Protein expression was analyzed byWestern blot
on cytosol and nucleus homogenates of gastrocnemious from animals fed a control diet or HFHS diet with or
without vitamin D supplementation (7 μg/kg, 3 times per week). Densitometric analysis of the bands is
expressed as relative optical density (O.D.) corrected for the GADPH (cytosol) or histone (nucleus) contents,
and normalized using the related control band. NF-κB p65 subunit translocation was expressed as nucleus/
cytosol ratio normalized using the related control band. (B) TNF-alpha levels were measured by ELISA in the
mouse gastrocnemious homogenates. The data are expressed by medians and interquartile range) of 5–6
randomly selected animals per group. Statistical analysis was performed with Kruskal–Wallis test with Dunn’s
post hoc test. *p<0.05 vsControl; #p<0.05 vsHFHS.

https://doi.org/10.1371/journal.pone.0189707.g005
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the reservoir form of vitamin D (the 25-OH vitamin D). Besides, the serum level here recorded

was significantly below the threshold of toxicity. In fact, serum levels of 25-OH vitamin D

above 150 ng/ml have been demonstrated to be required to induce hypercalcemia and hyper-

phosphatemia [25].

Although these observations are in keeping with previous studies on the effects of vitamin

D in animals fed with hypercaloric diets [13, 14, 26], much is still unknown about the specific

mechanism(s) that may contribute to the observed beneficial effects.

In keeping with previous studies [27, 28], here we adopted an hypercaloric diet enriched

not only in fats but also in sugars. Indeed, sugar consumption is dramatically increased in the

last years and several epidemiological studies showed a correlation between the increase of

sugar intake and the development of obesity or the onset of metabolic disturbances including,

hyperglycemia, and insulin resistance. In particular, excessive sugar consumption is associated

to an increased ectopic lipid deposition, above all in liver and skeletal muscle [29, 30]. This

effect has been demonstrated to result from the activation of the lipogenesis pathway SCAP-S-

REBP1c [16]. Interestingly, several lines of evidence showed that a crucial role in the SREBP

activation could be attributed to the action of AGEs, of which the sugars represent a substantial

source [31]. Thus, the model herein reported allowed us to better mimic the damage induced

by a typical human hypercaloric diet containing both lipids and sugars and investigate the

mechanism underlying the vitamin effects, especially against AGEs accumulation and

myosteatosis.

The data here reported showed, for the first time, that the protection exerted by vitamin D

against diet-induced metabolic derangements is due, at least in part, to interference with selec-

tive signaling pathways within the skeletal muscle, which is the major site of glucose disposal

and, thus, exerts a key role in regulating whole body glucose homeostasis. Our results demon-

strated that vitamin D significantly improved muscle insulin resistance, one of the main

defects leading to type 2 diabetes mellitus [32], by counteracting the diet-induced reduction in

efficiency of the insulin pathway, shown by the impaired phosphorylation of IRS-1 protein as

Fig 6. Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation on lipid accumulation in
themouse gastrocnemious.Representative photomicrographs (10x, 20x, 40x magnification) of Oil Red
staining on gastrocnemious sections from animals fed a control diet or HFHS diet with or without vitamin D
supplementation (7 μg/kg, 3 times per week).

https://doi.org/10.1371/journal.pone.0189707.g006
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well as of the downstream key insulin signalling molecules, Akt, and the Akt substrate GSK-

3β. This effect is known to be associated with an increased expression and translocation to the

cell membrane of the predominant glucose transporter in the skeletal muscle, the glucose

transporter 4 (GLUT4). Our in vivo data are in keeping with previously published in vitro

results showing that vitamin D improves the insulin signalling pathway [33] and up-regulates

the GLUT4 translocation [34], thus proving that both these effects are essential for mainte-

nance of glucose metabolism.

Fig 7. Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation on SCAP/SREBP
pathway activation in themouse gastrocnemious. (A) RepresentativeWestern blotting analysis for the
expression of SCAP and active/inactive SREBP1c. Protein expression was evaluated on gastrocnemious
homogenates of animals fed a control diet or HFHS diet with or without vitamin D supplementation (7 μg/kg, 3
times per week). (B) Densitometric analysis of the bands is expressed as relative optical density (O.D.),
corrected for the GADPH contents, and normalized using the related control band. The data are means ± S.E.
M. of 6–8 randomly selected animals per group. Statistical analysis was performed by One-way analysis of
variance with Bonferroni’s post-hoc test. **p<0.01, ***p<0.001 vs Control; ##p<0.01, ###p<0.001 vs HFHS.

https://doi.org/10.1371/journal.pone.0189707.g007
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However, so far, the effects of vitamin D onmolecular mechanism(s) affecting insulin sensi-

tivity have been scarcely investigated in in vivomodels [35]. A previous study demonstrated

that vitamin D treatment enhanced IRS-1 transcription in muscle but not in liver and adipose

tissues of mice exposed to hypercaloric diet [36]. More recently, Chen et al. generated skeletal

muscle specific vitamin D receptor-null mice demonstrating that vitamin D signalling

Fig 8. Effects of diet manipulation and 1,25 (OH)2 vitamin D supplementation on levels of CML protein
adducts and RAGE expression in themouse gastrocnemious. (A) Representative Western blotting
analysis for CML-modified proteins and RAGE expression. Protein expression was evaluated on
gastrocnemious homogenates of animals fed a control diet or HFHS diet with or without vitamin D
supplementation (7 μg/kg, 3 times per week). (B) Densitometric analysis of the bands is expressed as relative
optical density (O.D.), corrected for the GADPH contents, and normalized using the related control band. The
data aremeans ± S.E.M. of 6–9 randomly selected animals per group. Statistical analysis was performed by
One-way analysis of variance with Bonferroni’s post-hoc test. *p<0.05, ***p<0.001 vsControl; #p<0.05 vs

HFHS.

https://doi.org/10.1371/journal.pone.0189707.g008
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deficiency in the skeletal muscle significantly contributed to the development of insulin resis-

tance and glucose intolerance [37]. It is well known that chronic exposure to pro-inflammatory

mediators stimulates the activation of cytokine molecular pathways which ultimately block the

insulin signalling. In particular, TNF-alpha, which is highly expressed in skeletal muscle [38],

adipose tissue [39], and plasma [40], is one of the main mediators of the cross-talk mechanism

linking obesity to insulin resistance [41]. Here we confirmed an overexpression of TNF-alpha

within the skeletal muscle of obese/insulin resistant mice and, most notably, we demonstrated

that vitamin D supplementation reported local TNF-alpha levels back to values similar to

those recorded in control mice. TNF-alpha is a well-known downstream target of the inflam-

matory pathway regulated by NF-κB, which is widely activated in the skeletal muscle of ani-

mals subjected to an hypercaloric diet [42]. Vitamin D has been previously demonstrated to

suppress the NF-κB activation and therefore the transcription of its downstream targets [43–

47] in different cell types, including muscle cells. We, thus, decided to investigate whether or

not the modulation of NF-κB inflammatory pathway is involved in its beneficial effects against

insulin resistance. Here, we show, for the first time, that vitamin D reverted the diet-induced

increase in the nuclear translocation of NF-κB p65 in the mouse gastrocnemious. The reduc-

tion of NF-κB activation by vitamin D most likely accounts for the observed reduction in the

local levels of TNF-alpha, thus resulting in improvement of the insulin signalling pathway. At

the same time, the preserved functionality of the insulin pathway may contribute to further

inhibit the activation of NF-κB. In fact, specific inhibition of GSK-3β has been shown to

directly inhibit NF-κB-dependent gene transcription, probably due to the presence of four
phosphorylation sites for the action of GSK-3β on the p65 subunit of NF-κB [48]. Besides,

genetic deletion of GSK-3β abrogates activation of IkappaBalpha kinase, which is required to

induce NF-κB nuclear translocation [49]. Thus, the vitamin D-induced inhibition of GSK-3β
(here shown in terms of increased Ser9 phosphorylation) is suggestive not only of improved

insulin signalling downstream of IRS-1 but also of reinforced inhibition of NF-κB nuclear

translocation. We may speculate that downregulated GSK-3β activity by vitamin D supple-

mentation could lead to less NF-κB activation, decreasing cytokine production and thus, form-

ing a feed-forward mechanism and further reducing the development of insulin resistance.

The reduction in weight gain exerted by vitamin D supplementation represents another

important effect contributing to preserve local and systemic insulin sensitivity, being obesity a

main causative factor for the development of insulin resistance. Notably, recent experimental

evidence suggested that obesity is not per se the driver of insulin resistance, but rather the accu-

mulation of intracellular lipid metabolites is the key trigger leading to insulin resistance [50].

Our results convincingly supported the hypothesis that vitamin D may significantly counteract

the diet-induced myosteatosis. Indeed, we found a significant increase of lipid accumulation in

the skeletal muscle of mice treated for 16 weeks with the hypercaloric diet and this deleterious

effect was reduced by vitamin D supplementation. As we previously demonstrated [15], a

mechanism underlying the increase of muscle lipogenesis is SREBP1c activation, which con-

tributes to myosteatosis development. SREBP1c is a transcription factor that regulates lipid

homeostasis, being a potent activator of the fatty acid synthesis [51]. The primary modulator

of SREBP1c activity is SCAP, which is both an escort for SREBP1c and a sensor of sterols.

When cells need sterols, SCAP transports SREBP1c from the endoplasmic reticulum to the

Golgi apparatus, where it is cleaved by two proteases. The cleaved form of SREBP1c is able to

enter in the nucleus, binds to the sterol-regulatory elements, and increase the transcription of

target genes. Interestingly, we showed that treatment with vitamin D reversed the diet-induced

increase of SCAP and active SREBP1c expression in mouse gastrocnemious, thus demonstrat-

ing, for the first time, that the inhibition of the SREBP1c/SCAP lipogenic pathway is a key

molecular event leading to vitamin D-dependent reduction of myosteatosis. Very recently, we
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also documented that the AGEs accumulation, the co-localisation between AGEs and SCAP-

(hyper)expressing cells (suggestive for SCAP glycosylation) and hyperinsulinemia combine to

cause SREBP1c activation in muscle fibers [15, 16]. Therefore, here we investigated whether or

not the interference with the AGE/RAGE pathway may underlie the vitamin D effects within

the skeletal muscle. Our results convincingly demonstrated that vitamin D administration

evoked a significant reduction of one of the major AGEs, the CML protein adducts. This effect,

likely due to an improvement of insulin sensitivity exerted by vitamin D, could determine a

reduction of SCAP glycosylation and, accordingly, of SREBP1c/SCAP lipogenic pathway, thus

contributing to the beneficial effects evoked by vitamin D against myosteatosis.

Vitamin D supplementation was also associated with a robust decrease in the expression of

the AGEs receptor, RAGE. As the expression of both RAGE and SREBP1c can be regulated by

NF-κB, being NF-κB-like binding sites in their proximal promoters [52, 53], we cannot rule

out the hypothesis that the beneficial effects of vitamin D on these molecular pathways are due

to its interference with NF-κB nuclear translocation.

Overall, our results do not allow us either to speculate on direct effects of vitamin D on

myosteatosis or to identify which factors had the greatest effect on the modulation of the

SREBP1c/SCAP lipogenic pathway. Moreover, our findings could be secondary to vitamin D-

induced changes in other organs, liver included. The liver has been already reported to be a

vitamin D target, with vitamin D ameliorating hepatic glucose and lipid metabolism abnor-

malities [54]. Moreover, 1,25 (OH)2 vitamin D has been demonstrated to prevent liver fibrosis

[55] and to protect the liver structure of mice under high fat diet [56]. However, the hypothesis

of a direct effect of Vitamin D on skeletal muscle is supported by previous studies demonstrat-

ing the expression of vitamin D receptor in the muscle [57]. This finding was also recently con-

firmed by the demonstration of the pleiotropic effects of the vitamin D metabolome on muscle

strength and function [58].

Further investigation would be required to better elucidate the clinical relevance of the

findings here reported on insulin sensitivity. Indeed, despite a large evidence from epidemi-

ological data on a negative relationship between vitamin D levels and insulin sensitivity, so

far it is still unclear whether this association reflects a causal relationship or not. Unfortu-

nately, data obtained from human longitudinal studies on vitamin D supplementation are

contradictory [59–61]. The inconsistent results suggest that the dose, as well as the genetic

background and baseline characteristics of the study population, may affect the efficacy of

vitamin D supplementation. In conclusion, our findings show for the first time that supple-

mentation with vitamin D exerts beneficial effects against the metabolic derangements

induced by an hypercaloric diet through significant improvements of the signalling events

traditionally associated to the development of insulin resistance and myosteatosis within

the skeletal muscle.
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