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[1] A two-phase model is implemented to study the effects of wave shape on the transport
of coarse-grained sediment in the sheet flow regime. The model is based on balance
equations for the average mass, momentum, and fluctuation energy for both the fluid and
sediment phases. Model simulations indicate that the responses of the sheet flow, such as
the velocity profiles, the instantaneous bed shear stress, the sediment flux, and the
total amount of the mobilized sediment, cannot be fully parameterized by quasi-steady
free-stream velocity and may be correlated with the magnitude of local horizontal pressure
gradient (or free-stream acceleration). A net sediment flux in the direction of wave
advance is obtained for both skewed and saw-tooth wave shapes typical of shoaled and
breaking waves. The model further suggests that at critical values of the horizontal
pressure gradient, there is a failure event within the bed that mobilizes more sediment into
the mobile sheet and enhances the sediment flux. Preliminary attempts to parameterize
the total bed shear stress and the total sediment flux appear promising. INDEX TERMS:

4558 Oceanography: Physical: Sediment transport; 4546 Oceanography: Physical: Nearshore processes; 3022
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1. Introduction

[2] One of the most important but relatively unknown
aspects of wave-induced sediment transport and cross-shore
profile evolution is the mechanism through which waves
transport sediment onshore to counteract the effects of
gravity. A key parameter for cross-shore sediment transport
under breaking and near-breaking waves is the shape of the
near-bed wave orbital velocity. It is generally believed that a
skewed velocity field can cause a net cross-shore transport
of sediment without a net transport of water, though the
detailed mechanics of this process are not well understood.
From a parameterization point of view, there is significant
experimental evidence that flow acceleration, which serves
as a proxy for horizontal pressure gradient in coastal bottom
boundary layer, has an effect on sediment transport. This
evidence derives from U-tube experiments [e.g., King,
1990] and field measurements in the surf zone [e.g., Hanes
and Huntley, 1986; Gallagher et al., 1998] and in the swash
[e.g., Butt and Russell, 1999; Puleo et al., 2003]. Motivated
in part by King’s [1990] measured sediment transport rates

under saw-tooth shaped waves, Nielsen [1992] proposed an
empirical formula that estimates the Shields parameter
based on both flow velocity and acceleration. More recently,
Nielsen [2002] and Nielsen and Callaghan [2003] imple-
mented a modified version of the formula for the Shields
parameter proposed by Nielsen [1992] and applied it to
predict sediment transport rate measurements in the swash
zone [Masselink and Hughes, 1998] and to measurements of
sheet flow in a large-scale wave flume under non-breaking
waves [Dohmen-Janssen and Hanes, 2002]. Although the
formula proposed by Nielsen and his colleagues has
achieved a certain degree of success in predicting the
sediment transport rate under unsteady conditions, a more
complete theoretical background for the unsteady effect on
bed shear stress and corresponding sediment transport is
warranted.
[3] Numerical simulations of bedload sediment transport

have also indicated that the sediment flux is influenced by
flow acceleration. Drake and Calantoni [2001] proposed a
parameterization of acceleration effects based upon discrete
element simulations. Recently, Hoefel and Elgar [2003] use
the acceleration skewness parameterization suggested by
Drake and Calantoni [2001] in combination with the
commonly used energetics-based total load formula of
Bailard [1981]. They are able to predict the beach profile
evolution, including both onshore and offshore sandbar
migrations, over a 45-day period during the Duck94 experi-
ments [Elgar et al., 2001].
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[4] On the contrary, recent laboratory measurements of
sediment transport under sheet flow condition in U-tubes or
under nonbreaking waves suggest that most of the transport
occurs in the concentrated region near the bed where the
time evolution of sediment concentration responses directly
to the free-stream velocity [e.g., Ribberink, 1998; Dohmen-
Janssen and Hanes, 2002]. In this paper, we examine the
responses of sheet flow sediment transport under unsteady
forcing using a two-phase sheet flow model [Hsu et al.,
2004]. We demonstrate that whether the sediment transport
rate can be successfully parameterized by solely the mag-
nitude of free-stream velocity strongly depends on the wave
shape. We find that in general the time-dependent sediment
transport is highly coherent with the corresponding instan-
taneous bed shear stress. However, for certain wave shapes,
the time evolution of bed shear stress cannot be parameter-
ized by the instantaneous free-stream velocity in a quasi-
steady sense.
[5] After a brief description of the model, supplementary

model validations on the temporal variation of sediment
transport rate are presented. To demonstrate that the sedi-
ment transport process sometimes cannot be fully described
by solely the magnitude of free-stream velocity, we first use
the model to examine sheet flow under a prescribed free-
stream velocity time history of a saw-tooth shape. These
results are further interpreted through an examination of the
sediment-phase momentum equations to study the relevant
physical mechanisms responsible for our observation and to
emphasize the effect of horizontal pressure gradient in
modeling unsteady sediment dynamics. We then investigate
skewed waves typical in shallow water outside the surf
zone. To further explore and quantify the relation between
bed failure and sediment transport, the sediment transport is
next forced by using a free-stream velocity time history
shaped like a ramp, which drives the flow with a constant
acceleration between two steady state conditions. Finally,
motivated by the results of the two-phase model, we suggest
new directions toward an improved parameterization for
nearshore sediment transport under sheet flow conditions.

2. Model Description

2.1. Two-Phase Equations

[6] The two-phase model of Hsu et al. [2004] will be
briefly summarized here for the convenience of the reader.
We treat the mixture of grains and water as a two-phase
mixture where each phase obeys the basic conservation of
mass, momentum, and energy. The fluid phase is treated as
an incompressible liquid with mass density r f, and the
particle phase is treated as identical spheres with diameter
d and mass density rs. The overall combined sheet flow is
considered as that in a U-tube, in which the flow is assumed
to be uniform in the flow direction and driven by a
prescribed time history of free-stream velocity through the
horizontal pressure gradient.
[7] The dynamics of the 1-dimensional fluid-granular

flow under consideration are assumed to be governed by
the two-phase conservation equations of fluid and sediment.
The fluid and sediment phase continuity equations are

@r f 1� �cð Þ
@t

þ @r f 1� �cð Þ~wf

@z
¼ 0 ð1Þ

@rs�c
@t

þ @rs�c~ws

@z
¼ 0; ð2Þ

where z is normal to the channel bottom and ~w f and ~ws are,
respectively, the z-components of the fluid and particle
velocities.
[8] The horizontal (x) and vertical (z) components of the

fluid-phase momentum equations can be expressed as

@r f 1� �cð Þ~u f

@t
¼� @r f 1� �cð Þ~u f ~wf

@z
� 1� �cð Þ @

�Pf
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@z
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� �
ð3Þ
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� 1� �cð Þ @

�P f
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zz

@z

þ r f 1� �cð Þg � b�c ~wf � ~ws
� �

þ bnft
@�c

@z
; ð4Þ

where ~uf and ~us are, respectively, the x-components of the
fluid and particle velocities, �P f is the fluid pressure, txz

f and
tzz
f are fluid phase stresses, including the fluid viscous stress

and the fluid Reynolds stresses, and g = �9.8 (m/s2) is the
gravitational acceleration. The last two terms in equation (4)
are the Favre-averaged [e.g., Drew, 1976] drag force with b
defined as

b ¼ r f Ur

d

18:0

Rep
þ 0:3

� �
1

1� �cð Þn ; ð5Þ

in which

Ur ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~u f � ~usð Þ2þ ~wf � ~wsð Þ2

q
ð6Þ

is the magnitude of the relative velocity between the fluid
and sediment phase, and Rep = r fUrd/mf is the particle
Reynolds number, with mf the fluid viscosity. In equation (5)
the experimental results of Richardson and Zaki [1954] are
adopted to incorporate the effect of sediment concentration
on the drag force, with n a coefficient depending on the
particle Reynolds number,

n ¼ 4:45Re�0:1
p � 1; 1 � Rep < 500:

The last term in equation (4) is the modeled form for fluid
turbulent suspension based on gradient transport, with nft
the fluid eddy viscosity.
[9] The x and z components of the sediment-phase

momentum equations are

@rs�c~us

@t
¼ � @rs�c~us~ws

@z
� �c

@�P f

@x
þ @tsxz

@z
þ b�c ~u f � ~us

� �
ð7Þ

@rs�c~ws

@t
¼� @r s�c~ws~ws

@z
� �c

@�P f

@z
þ @t s

zz

@z

þ rs�cg þ b�c ~wf � ~ws
� �

� bnft
@�c

@z
; ð8Þ

where txz
s and tzz

s are the stresses of the sediment phase,
including the small-scale particle (intergranular) stresses
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and the Reynolds stresses of the Favre-averaged particle
velocities. Note that fluid and sediment phases exchange
momentum with each other through the equal and
oppositely signed drag terms, and overall momentum is
conserved.

2.2. Closure of Stresses

[10] The closures of the fluid Reynolds stresses and the
sediment stresses are the essential components of the
present two-phase sheet flow model. The fluid Reynolds
stresses are calculated by the eddy viscosity, which is
further calculated by the fluid turbulence kinetic energy kf
and its dissipation rate �f. The balance equations of kf and �f
are derived from the two-phase theory that incorporates
essential influences from the sediment phase. Because the
present kf -�f formulations are already presented in detail by
Hsu et al. [2003, 2004], they are not repeated here.
[11] To calculate the sediment stress, a measure of the

strength of the particle velocity fluctuations,

Ks ¼
1

2�c
cDusiDu

s
i ; ð9Þ

the particle fluctuation energy, is introduced. This term is
the particle phase analog to turbulent kinetic energy in the
fluid phase. The particle fluctuation energy is then
calculated by its balance equation,

rs
@�cKs

@t
þ @�cKs~w

s

@z

� �
¼ tsxz

@~us

@z
þ tszz

@~ws

@z
� @Q

@z
� g

þ 2b�c akf � Ks

� �
; ð10Þ

with Q as the flux of the fluctuation energy and g as the rate
of dissipation. The last term in equation (10) represents the
effect of the drag force, with a representing the degree of
correlation between the fluid velocity fluctuations and
particle velocity fluctuations,

a ¼ 1

1þ Tp=min TL;Tcð Þ ; ð11Þ

with TL = 0.165 kf /�f the fluid turbulence timescale
[Elghobashi and Abou-Arab, 1983] and Tp = rs/b the
particle response time [Drew, 1976], which measures the
time to accelerate a single particle from rest to the velocity
of surrounding fluid. The time between collisions Tc = lc/Ks

1/2

is estimated based on the strength Ks
1/2 of sediment velocity

fluctuations and the mean free path lc =
ffiffi
p

p
d

24�cg0 �cð Þ of colliding
particles. Here g0(�c) is the contact value of the radial
distribution function [Torquato, 1995; Hsu et al., 2004]. To
solve equation (10), we need to further incorporate closures
for sediment stresses txz

s and tzz
s , the flux of fluctuation

energy Q, and the rate of dissipation g.
[12] Because the governing equations for sheet flow are

obtained from two averaging processes at different scales
[e.g., Hsu et al., 2003], the closures in equation (10) must
incorporate intergranular components due to particle-parti-
cle interactions and large-scale components of particle
velocity fluctuations induced by fluid turbulence [Young
and Leeming, 1997]. Following Jenkins and Hanes [1998],
the intergranular interactions are assumed to be dominated
by particle collisions and a closure based on kinetic theory

of collisional granular flow [e.g., Jenkins and Savage, 1983]
is implemented. On the other hand, since the large-scale
sediment stress is influenced by fluid turbulence, we adopt a
closure similar to the one-equation fluid turbulence model.
For the detailed mathematical representations of the clo-
sures on txz

s , tzz
s , Q and g, the readers are referred to Hsu et

al. [2004].
[13] In the highly concentrated region nearest and

within the stationary bed, where the sediment concentra-
tion is greater than the random loose-packing (c* = 57%),
particles are in relatively long-term enduring contact.
Since the fundamental assumption in the kinetic theory
requires that the duration of contact between particles
must be much smaller than the time between collisions,
we need to modify the kinetic theory when modeling
sediment stress in the region where sediment concentra-
tion is between random loose-packing and random close-
packing (c* = 63.5%).
[14] For the particle shear stress, we modify the colli-

sional viscosity in the kinetic theory appropriate to the
glass transition and adopt the experimental results of
Bocquet et al. [2002], which suggest a much larger value
of collisional viscosity than that in the kinetic theory
when the sediment concentration is greater than random
loose-packing. Hence the particle shear stress in the
region of enduring contact is modeled as an extremely
viscous granular continuum.
[15] For particle normal stress, an additional component

tzz
se due to enduring contact is incorporated into tzz

s when the
sediment concentration is greater than random loose-pack-
ing. We use the closure for tzz

se suggested by Jenkins et al.
[1989], who analyzed homogeneously packed, identical
spheres in Herzian contact. They proposed a formula for
particle normal stress phrased in terms of the average
compressive volume strain raised to the 3/2 power. Because
the volume strain is not determined in the present model, we
need to modify the formula of Jenkins et al. [1989] in terms
of sediment concentration,

tsezz ¼
0; �c < c*
m
pd2 K �cð Þ�c �c� c*

� �c
c* � �c � c*;

�
ð12Þ

where m depends on material properties given in terms of
shear modulus and Poisson ratio of the granular material
and K(�c) is the coordination number, a function of sediment
concentration, representing average numbers of particles
with which a particle is in contact. The specific mathemat-
ical formulae of m and K(�c) are given by Hsu et al. [2004],
and are not repeated here. The power c is considered to be a
numerical coefficient in the model. Since c is strongly
related to the boundary conditions at bed, its value shall be
given in the next section.

2.3. Boundary Conditions

[16] The present model simulates sediment transport
processes spanning the entire region from the stationary,
porous sediment bed, where sediment particles are immo-
bile, through the slowly shearing region of enduring particle
contact, to the rapid flow region of intense particle colli-
sions, and finally to turbulent suspension. A description of
the instantaneous (vertical) location of the bed (ILB), which
changes in time according to the external flow forcing, must
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be incorporated. We determine the movement of ILB by
incorporating the Coulomb failure criterion,

tsxz ¼ tszz tanf; ð13Þ

where f is the friction angle of the sediment [see Hanes
and Inman, 1985a, 1985b]. We note that through
modifying the collisional viscosity to the glass transition,
the total bed shear stress becomes part of the solution of
the model that must respond to the unsteady forcing. By
applying equations (12) and (13) at the stationary bed
interface with the known bed shear stress, the corre-
sponding concentration at the bed, which we denote as
failure concentration ĉ, can be calculated. Since the
sediment concentration just above the immobile bed must
be equal to ĉ, the location of ILB can then be determined
so that the total amount of mobilized sediment is adjusted
to satisfy the governing equations of the whole transient
two-phase system. In addition, because the value of ĉ
must be close to but not greater than the random close-
packing, an appropriate numerical value for c can be
calibrated. In the present model, c is set to be 5.5, which
gives ĉ of about 62% to 63%. Within the porous
immobile bed, the sediment mean velocity and fluctuation
energy must vanish, and no-slip boundary conditions are
specified.
[17] The proposed model is solved numerically with a

finite difference scheme. To drive the model with oscillatory
flow by a prescribed time history of free stream velocity
u0(t), the horizontal pressure gradient is specified according
to the acceleration of the free stream velocity,

1

rf
@�Pf

@x
¼ � duo tð Þ

dt
: ð14Þ

2.4. Model Validation

[18] Hsu et al. [2004] validate the model with detailed
velocity and concentration profiles from laboratory experi-
ments of Sumer et al. [1996] for steady flow and Asano
[1995] for oscillatory flow. In this paper, we are interested
in the temporal variation of the volume sediment transport
rate,

qs tð Þ ¼
Z h

0

�c tð Þ~us tð Þdz; ð15Þ

calculated by integrating the horizontal sediment flux across
the water depth h with z = 0 located below the lowest
moving grains. Therefore we present comparisons between
the calculated qs, with that of Asano [1995] (Figure 1),
under the prescribed free-stream velocity time history of a
sinusoidal wave,

u0 tð Þ ¼ U01 sin
2p
T

t

� �
; ð16Þ

where U01 is the velocity amplitude and T is the oscillatory
period. The predicted instantaneous sediment transport rates
agree fairly well with the measured data. We note here that
no specific adjustments of the model parameters are
conducted to fit the measured data set. Slightly larger
discrepancies can be observed during the settling phase
(t/T = 0.22 to 0.4) for case C1 and C2, which is due to the
overprediction of sediment velocity. More detailed com-
parisons for sediment concentration and velocity at various
phases are presented by Hsu et al. [2004].

3. Asymmetric Saw-Tooth Wave Forcing

[19] The measured time histories of near-bed flow veloc-
ity under broken waves often follows a saw-tooth shape
[e.g., Elgar and Guza, 1985]. The time history of the saw-
tooth wave velocity can be described as [e.g., Drake and
Calantoni, 2001]

u0 tð Þ ¼ U0s

X5
n¼1

1

2n�1
sin n

2p
T

t þ n� 1ð Þp

 �

; ð17Þ

with U0s the velocity amplitude of the saw-tooth wave. The
saw-tooth wave exhibits the following important features:
(1) Both the mean and skewness of the saw-tooth wave
induced velocity are zero; (2) the flow acceleration is
asymmetric with respect to the positive and negative phases
(see Figures 2a and 2b), with large accelerations between
trough and crest, and relatively smaller decelerations
between crest and trough. Whereas, for a single sinusoidal
wave of free-stream velocity (equation (16)), the flow
acceleration is symmetric. If sediment transport processes
were only dependent on free-stream flow velocity, the
magnitude of the sediment transport at the velocity extrema
of the saw-tooth wave would be equivalent (though in
opposite directions).
[20] The transport of coarse sand of diameter d = 1.1 mm

and specific gravity s = 2.65 driven by saw-tooth wave
forcing (equation (17)) with wave period T = 6.0 s and
amplitude U0s = 1.0 m/s is calculated by the two-phase sheet

Figure 1. Comparisons of time histories of total sediment
transport rate between calculated results (solid curves) and
the measured data (symbols) of Asano [1995] using
particles of diameter d = 4.17 mm and specific gravity s =
1.24. The corresponding time histories of free-stream
velocity are shown in the dashed curve; (a) case C1,
U01 = 0.926 m/s, T = 4.64 s; (b) case C2, U01 = 0.85 m/s,
T = 4.64 s; and (3) case C4, U01 = 0.637 m/s, T = 4.28 s.
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flow model. The sediment concentration and horizontal
sediment flux �c~us at the instant of maximum positive free-
stream velocity and that of maximum negative velocity are
presented in Figures 2c, 2d and 2e, 2f, respectively. The
corresponding time history of the saw-tooth free-stream
velocity and acceleration are also shown in Figures 2a
and 2b for reference. It is evident that even though the
magnitudes of the maximum positive and maximum nega-
tive free-stream velocity are identical, and the accelerations
are both zero, the corresponding sediment concentration
profiles are quite different. Specifically, the calculated
horizontal sediment flux at the instant of maximum positive
free-stream velocity is significantly larger (Figure 2d) than
that of the maximum negative (Figure 2f ). According to the
calculated instantaneous location of the bed, marked by the
dashed lines in Figures 2c, 2d and 2e, 2f, the bed is lower
under maximum positive velocity, suggesting that more
sediment is mobilized under the wave crest than under the
wave trough. Here, we further utilize the erosion depth lE
[e.g., Zala Flores and Sleath, 1998], defined as the distance
between the initially undisturbed bed level and the instan-
taneous location of the interface between the moving and

stationary grains in the bed, to quantify the amount of
mobilized sediment. Because the large sediment transport
under the wave crest occurs shortly after a duration of
large free-stream acceleration, it seems that the transport
processes, including the erosion depth, may be correlated to
the flow acceleration, though not instantaneously.
[21] Similarly, the calculated sediment concentration and

horizontal sediment volume flux at the two instants of flow
reversal are shown in Figures 3c, 3d and 3e, 3f. Even when
the free-stream velocity vanishes at these two instants, some
of the sediment remains mobile. In addition, there is
significantly more sediment at the instant of crosses, the
time of peak acceleration, than that at the inverted triangles,
the time of peak deceleration (which is lower in magnitude).
This observation seems to be related to the differences in the
duration of the settling phase as well as any mobilizing
forces present during this phase (such as the pressure
gradient) associated with the instant of the crosses and the
inverted triangles. During the settling phase, the magnitude
of the flow velocity decreases, the fluid and particle induced
suspension mechanisms become weaker, and sediment
particles tend to settle toward the bed. It takes some time
for both the flow turbulence and intergranular collisions to
be completely dissipated and the sediment to entirely settle

Figure 2. Snapshots of sediment concentration and
horizontal volume flux under saw-tooth wave of wave
period T = 6.0 s at the instant of maximum positive free-
stream velocity (inverted triangle), and maximum negative
velocity (cross). (a) Prescribed free-stream velocity, (b) free-
stream acceleration, (c) sediment concentration, and
(d) horizontal volume flux at the inverted triangles;
(e) sediment concentration and (f ) horizontal volume flux
at the crosses.

Figure 3. Snapshots of sediment concentration and
horizontal volume flux under saw-tooth wave of wave period
T = 6.0 s at two instants of flow reversal. (a) Prescribed
free-streamvelocity, (b) free-streamacceleration, (c) sediment
concentration and (d) horizontal volume flux at the triangles;
(e) sediment concentration and (f ) horizontal volume flux
at the crosses.
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into the bed. The amount of residual sediment that remains
mobilized is less under a shorter duration of the settling
phase.
[22] The calculated sediment transport rate under the saw-

tooth forcing (solid curves), is shown in Figure 4c along
with that under single sinusoidal forcing (i.e., equation (16),
denoted by the dashed curves) with the same magnitude of
RMS velocity and period. The calculated nondimensional
volume sediment transport rate is defined as

� tð Þ ¼ qs tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 1ð Þgd3

p : ð18Þ

In sinusoidal forcing, because both the time history of flow
velocity and acceleration are symmetric with respect to the
positive and negative phase, the net sediment transport rate
is zero, even though the sediment transport rate for each
single positive phase or negative phase remains significant.
On the other hand, under the saw-tooth forcing, the
calculated sediment transport rates for the positive and
negative phases are quite different and their magnitudes are
not correlated with that of the corresponding free-stream
velocity. In fact, their magnitudes are approximately
correlated with the corresponding magnitude of free-stream
acceleration. This observation is consistent with the results
obtained in Figure 2. In particular, the model predicts a
sediment transport rate under the positive phase (associated
with large acceleration) 2.1 times greater than that under the
negative phase (associated with the small acceleration) and
a net sediment transport in the positive phase direction is
obtained.
[23] The effects of wave period are further investigated by

comparing a case of T = 12 s with the previous results for
T = 6 s. Figure 5b indicates that longer wave period has a
smaller magnitude free-stream acceleration. In Figure 5c, as
the overall magnitude of acceleration becomes smaller, the
corresponding time history of sediment transport rate asso-

ciated with the positive and negative phase becomes more
symmetric. This reinforces the speculation that under the
saw-tooth wave shape, the flow acceleration is a better
parameter (than the flow velocity) for the asymmetric
sediment transport rate.
[24] The present results are qualitatively consistent with

the discrete element model of Drake and Calantoni [2001],
and the hypothesis proposed by Elgar et al. [2001] to
explain the observed onshore sandbar migration under
near-breaking waves [see also Hoefel and Elgar, 2003].
Because the magnitudes of sediment transport rate cannot
be fully explained by the corresponding magnitudes of free-
stream velocity under saw-tooth waves, we shall further
explain the physical mechanisms responsible for this
phenomenon next.
[25] In the two-phase theory, the mechanics of sediment

transport can be analyzed based on the horizontal sediment
flux �c~us using the horizontal momentum equation of the
sediment phase (equation (7)). According to the right-hand
side of equation (7), several mechanisms contribute to the
temporal variations in the horizontal sediment flux. They
are: the convection, the horizontal pressure gradient (equiv-
alent to the free-stream acceleration in the present model),
the vertical gradient of the particle shear stress, and the drag
from the fluid phase. A qualitative picture of horizontal
sediment flux can be described as follows.
[26] In a fully developed flow, the horizontal particle

motion results from several forces. The fluid pressure
applies a net force to the sediment particles. This mecha-
nism is represented by the horizontal pressure gradient term
in equation (7). In addition, the fluid drag force, represented
by the last term in equation (7), contributes to sediment
particle motion. Furthermore, due to the presence of sta-
tionary bed and the no-slip boundary condition of the
particle velocity there, the particle horizontal motion is
retarded by the vertical gradient of particle shear stress
(the third term in equation (7)) that results from particle-

Figure 4. Sediment transport under saw-tooth forcing
(solid curve) and single sinusoidal forcing (dashed curve) of
wave periods T = 6.0 s. (a) Prescribed free-stream velocity,
(b) free-stream acceleration, and (c) nondimensional sedi-
ment transport rate.

Figure 5. Sediment transport under saw-tooth forcing with
T = 12.0 s (solid curve), and T = 6.0 s (dashed curve).
(a) Prescribed time history of free-stream velocity, (b) free-
stream acceleration, and (c) nondimensional sediment
transport rate.
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particle interactions (e.g., collisions). Finally, the vertical
motion of particles also induces exchange of horizontal
momentum through vertical convection (the first term in
equation (7)).
[27] It is not difficult to carry out an order-of-magnitude

estimate on the relative magnitude of these effects in
equation (7). On the basis of a first-order boundary layer
approximation, the convection term can be neglected. Since
the drag (quadratic) term is proportional to the area of the
particle (�d2) while the pressure gradient term is propor-
tional to the volume of the particle (�d3), the magnitude of
the drag force shall be significantly larger than that of the
horizontal pressure gradient force for typical sediment sizes.
Nevertheless, the pressure gradient term may still be im-
portant during a short interval near flow reversal when the
flow velocity vanishes. Therefore, despite the fact that the
particle stress in the present problem cannot be simply
estimated using dimensional considerations, one may con-
clude that the flow acceleration associated with the hori-
zontal pressure gradient force will be, in general, not as
important as that associated with the drag force.
[28] To understand the role of particle stress in equation (7)

and further estimate its magnitude, we utilize the detailed
descriptions in sheet flow model. Figure 6c presents the
time history of the horizontal pressure gradient term, the
particle stress term, and the drag term associated with
equation (7) at the initially undisturbed bed level (i.e.,
zb/d = 0) under the saw-tooth wave forcing. Since the
magnitude of convection term is indeed small, it is not
shown here for convenience. Notice that the location zb =
0 evaluated in Figure 6c corresponds to the concentrated

region of the sheet where the sediment concentration is no
less than 30% during the entire wave. Comparing the
horizontal pressure gradient (solid curve) and the drag
(dash-dotted curve), the magnitude of the pressure gradient
term is generally smaller than that of the drag term and is
only important during a short instant of flow reversal. This
is consistent with the previous order-of-magnitude estimate.
However, comparing the drag (dash-dotted curve) and the
particle stress (dashed curve), the magnitude of particle
stress term is comparable to that of the drag term but
opposite in sign. In other words, the particle stress term is
effectively balancing the drag term over the entire wave
cycle. To further demonstrate this feature, Figure 6d
presents the sum of the particle stress term and the drag
term, represented by the dashed curve. The corresponding
pressure gradient term (solid curve) is shown again for
reference. Although the individual magnitudes of the
pressure gradient term may not be significant compared
with the drag term, nevertheless, the presence of the particle
stress term due to particle intergranular interactions balances
with the drag. Consequently, the horizontal pressure gradi-
ent remains important in equation (7). Moreover, examining
the drag term itself, because the relative difference between
the fluid velocity and particle velocity becomes larger
during the phase of large flow acceleration near flow
reversal, the magnitude of the drag term is enhanced and
causes the sum of the particle stress and drag terms (dashed
curve in Figure 6d) to have two peaks of the same sign as
the horizontal pressure gradient term.
[29] Figure 7 presents the time history of the horizontal

sediment momentum equation budget at five grain diame-
ters above the initially undisturbed bed level (i.e., zb/d = 5).

Figure 6. Horizontal sediment momentum equation bud-
get under saw-tooth wave of T = 6.0 s at initially
undisturbed bed level. (a) Free-stream velocity, (b) free-
stream acceleration, and (c) horizontal pressure gradient
(solid curve), drag (dash-dotted curve), vertical gradient of
particle stress (dashed curve). (d) Sum of drag and vertical
gradient of particle stress (dashed curve) versus horizontal
pressure gradient (solid curve).

Figure 7. Horizontal sediment momentum equation budget
under saw-tooth wave of T = 6.0 s at zb/d = 5. (a) Free-stream
velocity, (b) free-stream acceleration, and (c) horizontal
pressure gradient (solid curve), drag (dash-dotted curve),
vertical gradient of particle stress (dashed curve). (d) Sum of
drag and vertical gradient of particle stress (dashed curve)
versus horizontal pressure gradient (solid curve).
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Since the sediment concentration at this location is much
less than that of Figure 5 (no more than 15% during an entire
wave), the overall magnitude of the terms in equation (7) are
also smaller. Here we start to notice some imbalance
between the particle stress and drag. In Figure 7d, the direct
effect of horizontal pressure gradient is less significant than
in the more concentrated region. Two peaks (dashed curve)
still appear during the flow reversal; it seems that the effect
of the larger velocity difference between the two phases
during the flow reversal becomes relatively more important.
[30] Because the balance between the vertical gradient of

particle stress and the drag determines a major part of the
mechanics in the concentrated sheet, further investigation
on this feature is warranted. In a steady, fully developed
sheet flow, the mean vertical particle velocity vanishes and
equation (7) can be further simplified into

��c @
�Pf

@x
þ @tsxz

@z
þ b�c ~uf � ~us

� �

 

 ¼ 0: ð19Þ

To estimate the magnitude of the horizontal pressure
gradient in a steady state condition, we rephrase the
horizontal pressure gradient in terms of the friction velocity,
u*, and an equivalent water depth, h,

@�P f

@x
¼

r f u2
*

h
:

By further assuming that the difference between the fluid
velocity and particle velocity is on the order of the friction
velocity, the relative magnitude between the horizontal
pressure gradient and the drag in equation (19) can be
estimated as

�c @�Pf=@x


 


b�c ~uf � ~usð Þj j 


Tpu*
sh

[31] For sand of diameter 1.1 mm, the particle response
time, Tp = rs/b, is on the order of 0.01 s. In a typical open
channel flow, the ratio between the friction velocity and
water depth is smaller than order 1. Therefore the magnitude
of the horizontal pressure gradient shall be in general much
smaller than that of the drag, and the equilibrium in
equation (19) must be established under the condition that
the particle stress is approximately balanced with the drag.
[32] Next, consider the equilibrium to be destroyed due to

a sudden acceleration of the flow. The timescales of both the
drag and particle stress to adjust to the perturbation need to
be estimated. For the drag term, this timescale is simply the
particle response time Tp. The timescale for particle stress
term is estimated from the diffusion process based on the
kinetic theory of collisional grain flow. Since the magnitude
of the sediment diffusivity is in general very large due to the
high collisional frequency in the concentrated region (i.e.,
proportional to the contact value of the radial distribution
function), the diffusion timescale of particle stress is
expected to be very small in the concentrated sheet. On
the other hand, the timescale of the free-stream forcing (e.g.,
the wave period) is in general much larger than either the
particle response time or diffusion timescale of particle
stress. Consequently, the drag term and particle stress term
in equation (19) will adjust themselves almost immediately

to the free-stream forcing and remain in balance with each
other, approximately. This provides a qualitative explana-
tion for the reason for the approximate balance between the
gradient of the particle stress and drag even under unsteady
conditions.
[33] In summary, by considering the particle intergranular

interactions and fluid-particle momentum transfer using
two-phase theory, the particle stress and drag dominate
but also counteract each other in the overall horizontal
sediment momentum budget. This provides a plausible
explanation for why horizontal pressure gradient, or equiv-
alently, flow acceleration has a demonstrable effect on the
sediment-phase dynamics under conditions considered here.

4. Skewed Wave Forcing

[34] A typical shoaled but unbroken wave in the near-
shore exhibits skewness, with the crest exhibiting a greater
amplitude and shorter duration than the trough. For conve-
nience, we choose the time history of the skewed wave free-
stream velocity prescribed by that of the Stokes 2nd order
wave,

u0 tð Þ ¼ U01 sin
2p
T

t

� �
þ U02 sin

4p
T

t

� �
; ð20Þ

with U01 and U02 the velocity amplitude associated with the
first and the second harmonics of the wave. In the skewed
wave, because both the flow velocity and flow acceleration
under the positive phase are significantly larger than that
under the negative phase, a net sediment transport to the
positive wave direction is expected.
[35] The calculated sediment concentration and horizontal

sediment volume flux �c~us at the instant of maximum
positive free-stream velocity and that at the maximum
negative velocity for the same sediment considered earlier
are presented in Figure 8. To match the same magnitude of
the RMS velocity to that of the saw-tooth wave presented in
the previous section, U01 = 1.12 m/s, U02 = 0.28 m/s, and
T = 6.0 s are specified. The resulting velocity time history
has a velocity skewness of 0.48, which is high but not
unreasonable compared to field observations [e.g., Doering
et al., 2000]. In Figures 8c and 8d, it is evident that under
the maximum positive phase, a significant amount of
sediment is transported. In contrast, under the maximum
negative phase (see Figures 8e and 8f ), a significantly
smaller amount of sediment remains mobile, and the erosion
depth lE is only about five grain diameters.
[36] In Figure 9, the calculated sediment concentration

and sediment volume flux at the two instants of flow
reversal are shown. Again, a noticeable amount of sediment
remains mobile when the free-stream velocity vanishes. In
addition, comparing between Figures 9d and 9f, unlike the
corresponding results (Figure 3) for the saw-tooth wave
condition, the magnitude of the sediment flux at the two
instants of flow reversal are quite close in magnitude,
though oppositely directed.
[37] The calculated time history of the sediment transport

rate (Figure 10, solid curve) indicates that total sediment
transport rate under the positive phase of the skewed wave
is 1.4 times larger than that under negative phase. A case of
single sinusoidal forcing of the same magnitude of RMS
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velocity is also plotted here for reference. From a parame-
terization point of view, under the present skewed wave
shape, the net sediment transport rate may be plausibly
described by the free-stream flow velocity. However, on the
basis of the shape of the sediment transport rate time history,
we observe that within the positive or negative phase, a
larger magnitude of sediment transport tends to bulge
toward the times of larger magnitude of accelerations. This
is especially obvious during the negative phase where the
magnitude of flow velocity is relatively small for the
skewed wave. For example, in Figure 10c, the peak mag-
nitude of negative sediment transport occurs at about t/T =
0.81, while the peak magnitude of free-stream velocity and
free-stream acceleration in the negative phase occurs at t/T =
1.0 and t/T = 0.67, respectively; suggesting that sediment
transport is influenced by flow acceleration. Despite the
detailed instantaneous variation, the overall feature in the
skewed wave is that the magnitudes of free-stream velocity
and corresponding acceleration are well correlated (i.e., the
times of large velocity are close to the times of large
acceleration and vise versa.). Therefore it has been reported
that the sediment transport rate under skewed waves can be

successfully parameterized by the third moment of free-
stream velocity [e.g., Ribberink, 1998].

5. Step Acceleration Forcing

[38] Various sediment responses between two steady
states using a prescribed free stream velocity of a ramp
shape are now investigated to further examine the flow
acceleration (or equivalently, the horizontal pressure gradi-
ent) effect. First, we investigate the transient response
between two steady state conditions, where the mixture
boundary layer flow slowly adjusts itself from a lower free-
stream velocity to a higher free-stream velocity due to an
instantaneous jump in the pressure gradient applied to force
the system. Next, a large pressure gradient is prescribed
during a finite interval between the two steady states such
that a constant acceleration of the free stream velocity is
established during the transient.
[39] Figure 11 illustrates the transport of coarse sand

(diameter d = 1.1 mm, specific gravity s = 2.65) during
the transient between a low free-stream velocity of 1.02 m/s
to a high free-stream velocity of 2.18 m/s due to an
instantaneous increase in the pressure gradient applied at
t = 0. In Figure 11a the flow has already achieved the first
steady state of free-stream velocity 1.02 m/s before t = 0 s

Figure 8. Snapshots of sediment concentration and
horizontal volume flux under Stokes second-order wave
of wave period T = 6.0 s at the instant of maximum positive
free-stream velocity (inverted triangles), and maximum
negative velocity (crosses). (a) Prescribed free-stream
velocity, (b) free-stream acceleration, (c) sediment concen-
tration, and (d) horizontal volume flux at the inverted
triangles; (e) sediment concentration and (f ) horizontal
volume flux at the crosses.

Figure 9. Snapshots of sediment concentration and
horizontal volume flux under Stokes second-order wave
of wave period T = 6.0 s at two instants of flow reversal.
(a) Prescribed free-stream velocity, (b) free-stream accelera-
tion, (c) sediment concentration, and (d) horizontal volume
flux at the inverted triangles; (e) sediment concentration and
(f ) horizontal volume flux at the crosses.
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due to a lower horizontal pressure gradient. A higher
horizontal pressure gradient is imposed after t = 0 s, and
the flow adjusts itself to a second steady state of free-stream
velocity 2.18 m/s. In terms of the free-stream velocity and
nondimensional total sediment transport rate (Figures 11a
and 11b), it takes about 150 s for the entire flow (both the
fluid and sediment phase) to adjust to the next steady
state. On the other hand, according to the erosion depth lE
(Figure 11c), it only takes about 10 s for the bed to reach the
location of the next steady state. Therefore the response
time for bed failure and sediment entrainment is much
shorter than that of the entire boundary layer flow. The
bed responds to the variation of the external forcing quickly
because the failure/entrainment process occurs very near
the bed where sediment concentration is large, particle
intergranular interaction dominates, and the diffusion of
momentum becomes very efficient. On the contrary, the
total sediment transport rate, including some transport
through fluid turbulent suspension, must adjust to the
external forcing according to the turbulence timescale of
the entire flow domain.
[40] Two cases for the transport of coarse sand undergo-

ing a constant acceleration between the two steady states
are presented in Figure 12. Between Figures 12b and 12c,
the flow is accelerated with a constant flow acceleration
of 2.37 m/s2 from the low free-stream velocity stage of
1.02 m/s to the high free-stream velocity stage of 2.18 m/s
within duration of Dt = 0.49 s. Between Figures 12b and
12d, the flow is accelerated between the same limiting
velocities within a duration of Dt = 1.22 s due to a lower
constant acceleration of 0.95 m/s2. Figures 12b and 12c
show snapshots of the sediment concentration, horizontal
sediment flux, and particle and fluid velocity fluctuation
intensities under acceleration of 2.37 m/s2 at the beginning
of the acceleration, denoted by the circle, and at the end of
the acceleration, denoted by the asterisk, respectively. The
dashed curve in Figure 12c corresponds to the results of a

steady state case of free stream velocity of 2.18 m/s.
Comparison between the dashed curve and the solid curve
illustrates the effect of flow acceleration on sediment
transport at the same free-stream velocity. From the sedi-
ment flux in snapshots b-2 and c-2, it is evident that within
the short duration of 0.49 s, more sediment is mobilized due
to higher magnitude of the flow. Specifically, comparing
the solid curve and the dashed curve in snapshot c-2, the
immobile bed location is significantly lower under large
acceleration than that of no acceleration. The flow acceler-
ation considerably enhances the bed failure and mobilizes
more sediment. An interesting feature of the newly failed
region is that although it is mobile, the sediment concen-
tration remains very large and its vertical distribution is very
close to that of the steady state condition. This region could
be identified as a highly concentrated plug flow [Sleath,
1999; Foster et al., 2002]. Moreover, from snapshots c-3
and c-4, noticeable particle fluctuations in the newly failed
region are observed while the fluid turbulence remains
negligible due to high sediment concentration. Snapshots
d-1 to d-4 show the corresponding snapshots for the case of
lower constant acceleration of 0.95 m/s2. On the basis of
sediment concentration and horizontal flux shown in snap-
shots d-1 and d-2, the differences are less significant
between the case of acceleration of 0.95 m/s2 and that of
no acceleration. The bed locations between these two
conditions become very close, suggesting that a flow
acceleration of 0.95 m/s2 cannot cause significant bed
failure for the present particles.
[41] It appears that bed failure is responsible for a major

part of the excessive sediment transport under large accel-
erations. We next conduct further investigations on the
relation between the flow acceleration, the bed failure,
and the corresponding sediment transport rate using a series
of step acceleration forcings. Figure 13 shows the results

Figure 10. Sediment transport under skewed forcing
(solid curve) and single sinusoidal forcing (dashed curve)
of wave period T = 6.0 s. (a) Prescribed free-stream velocity,
(b) free-stream acceleration, and (c) nondimensional sedi-
ment transport rate.

Figure 11. Transport of coarse sand during the transient
between a low free-stream velocity of 1.02 m/s to a high
free-stream velocity of 2.18 m/s. (a) Time history of free-
stream velocity, (b) nondimensional sediment transport
rate, and (c) nondimensional erosion depth.
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obtained after forcing the free-stream flow from a low
velocity (1.02 m/s) to a high velocity (either 1.5 or
2.18 m/s) at various constant accelerations. The sediment
transport rates obtained upon just reaching the high free-
stream velocity of 2.18 m/s, normalized by its steady state
value, are plotted in the solid curve of Figure 13a. The
acceleration does not seem to noticeably enhance sediment
transport until its magnitude is greater than about 0.25 m/s2.
Within the range of acceleration between 0.25 m/s2 and
1.0 m/s2, the enhanced sediment transport rate gradually
increases but remains within 10% of that under the steady
state condition. In contrast, as the acceleration becomes
greater than about 1.0 m/s2, the corresponding sediment
transport rate increases abruptly to about 30% more. The
major reason for the sudden increase of sediment transport
rate is revealed by examining the erosion depth lE. In the
solid curve of Figure 13b, the erosion depth is made

nondimensional by the grain diameter and plotted against
the acceleration. Evidently, as the acceleration becomes
greater than about 1.0 m/s2, lE increases abruptly from
about 10 grain diameters to about 15 grain diameters. This
results in the large sediment transport rate observed in
Figure 13a. Therefore, according to the present model, there
seems to exist a critical acceleration for given sediment
particle properties such that severe failure occurs across a
significant depth of the sediment bed.
[42] Somewhat different behavior is obtained as we

evaluate the sediment transport rate at the instant where
free-stream velocity just reaches a smaller magnitude of
1.5 m/s (dotted curves of Figure 13). Since both the
results in the solid curve and dotted curve series are due
to the same magnitude of low stage free-stream velocity,
evaluating at a lower high free-stream velocity also corre-
sponds to a shorter duration of the constant acceleration.
Nevertheless, because the calculated sediment transport rate
for each case in Figure 13a has already been normalized by
its corresponding sediment transport rate in the steady state,
we believe that the observed differences between the solid
curve series and the dotted curve series are due to the
differing durations of acceleration rather than due to the
different velocities. Specifically, when evaluated at a
smaller high free-stream velocity of 1.5 m/s (dotted curve),
a constant acceleration with a magnitude between 0.1 m/s2

and 2.0 m/s2 causes the corresponding sediment transport
rate to be smaller than that in the steady state (i.e., qs/qs0
smaller than unity). This is because when acceleration is
small, the corresponding horizontal pressure gradient is not
strong enough to cause bed failure (see the erosion depth
plotted in Figure 13b). On the other hand, it takes time for

Figure 12. Snapshots of sediment concentration, sediment
horizontal flux, and intensity of particle and fluid velocity
fluctuations under two constant accelerations of 2.37 m/s2

(solid curve in Figure 12a) and 0.95 m/s2 (dash-dotted curve
in Figure 12a) of step shapes. In Figures 12b–12d, the solid
curves indicate the corresponding results at the circle,
asterisk, and inverted triangle shown in Figure 12a, the
dashed curves indicate steady state results with the same
free-stream velocity of that at the asterisk and inverted
triangle, and the dash-dotted lines represent the location of
bed.

Figure 13. Sediment transport under prescribed step
acceleration forcing. The step has a low free-stream velocity
of 1.02 m/s and high free-stream velocity of 2.18 m/s.
(a) Sediment transport rate under various constant accel-
eration relative to that of their steady state condition and
(b) corresponding nondimensional erosion depth, evaluated
at free-stream velocity of 2.18 m/s (circles) and free-stream
velocity of 1.5 m/s (triangles).
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the mobilized sediment to respond to the changing forcing
conditions. Hence the sediment transport rate under steady
state (i.e., fully saturated) is larger than at the same free
stream velocity under a constant acceleration, where a finite
duration for the development of transport is imposed, and
where the pressure gradient is not sufficient to cause bed
failure. When acceleration becomes greater than about
2.0 m/s2, the effect of bed failure dominates and the
corresponding sediment transport increases.
[43] Notice that the erosion depth and the corresponding

sediment transport rate begin to decrease as the accelera-
tion becomes greater than about 3.0 m/s2. Because an
acceleration of 3.0 m/s2 for these cases corresponds to a
duration of acceleration of only Dt = 0.39 s, the observed
decrease of the erosion depth and sediment transport rate
again suggests a minimum development timescale of
failure for the sediment bed in response to the changing
flow.
[44] Using the step forcing, we have demonstrated that

the bed failure is closely related to flow acceleration/
horizontal pressure gradient. However, it appears to require
some time for both sediment transport and turbulent flow to
adjust to the changing forcing conditions, and it also
requires some shorter amount of time for the bed to
completely fail or yield. We will refer to these two time-
scales as the saturation timescale and yield timescale,
respectively. Because large acceleration often suggests a
shorter duration of forcing, flow acceleration does not
always enhance sediment transport. We believe that for
small accelerations where the bed failure is not significant,
the acceleration may cause a decrease in the sediment
transport rate if the duration of forcing does not exceed
the saturation timescale. On the contrary, when acceleration
is large enough to approach or exceed the critical acceler-
ation for bed failure, enhancing acceleration results in more
severe failure and larger sediment transport. However, even
for large accelerations, if the duration of forcing is shorter
than the yield timescale, enhancing acceleration may again
result in smaller sediment transport rate. Finally, we believe
that the saturation and yield timescales are also functions of
the magnitude of the flow velocity, the flow acceleration,
and the fluid and sediment properties. Further systematic
analysis on these issues and critical experiments are clearly
motivated.
[45] One of the key features of unsteady sheet flows is

that the amount of mobilized sediment and the location of
the bed change with time. Bagnold [1956] argues that for
steady flows the immersed weight of the sheet flow layer is
related to the bed shear stress through a dynamic Coulomb
yield criterion. If for some reason the bed shear stress
increases slowly, then in the quasi-steady Bagnold para-
digm, successive layers of stationary grains would be
entrained into the flow until the newly increased immersed
weight balanced the increase in the bed shear stress.
However, results presented earlier also suggest that under
very high accelerations the bed undergoes a sudden failure,
analogous to the episodic avalanching of sand that is piled
steeper than the critical angle of repose.
[46] Madsen [1974] performs an analysis on the momen-

tary internal failure of sand bed under waves. He demon-
strates that momentary bed failure under waves is more
likely to be initiated by shear failure due to significant

horizontal pressure gradient and less likely to be initiated by
the vertical flow in the porous bed. Moreover, Madsen
introduces a simple formula, based on the properties of
the sand bed, to calculate the critical horizontal pressure
gradient for momentary shear failure. On the basis of the
two-phase equations, the horizontal momentum equation for
the sediment-fluid mixture can be obtained by combining
the horizontal momentum equation of the fluid and sedi-
ment phase. At the stationary bed, because all the particle
motion vanishes and the fluid horizontal velocity can be
also neglected for simplicity, a simplified mixture equation,
similar to that used by Madsen [1974], becomes

�r f
@u0 tð Þ
@t

¼
@ t f

xz þ tsxz
� �

@z
; at zb ¼ �lE: ð21Þ

Note that the horizontal pressure gradient term has been
replaced by the free-stream acceleration. Equation (21)
indicates that the gradient of total shear stress at bed must
respond to the given flow acceleration, a surrogate for
horizontal pressure gradient.
[47] To calculated the right-hand side of equation (21),

Madsen [1974] further adopts the quasi-steady Bagnold
paradigm [Bagnold, 1956], in which the gradient of total
shear stress at bed is related to the normal stress through
Coulomb failure and calculated by the immersed weight of
sediment in fluid,

@ tfxz þ tsxz
� �

@z
¼ rs � rf

� �
�cjgj tanf; at zb ¼ �lE: ð22Þ

Combining equations (21) and (22), and applying typical
values for sediment density, concentration, and internal
friction angle, this analysis suggests that an acceleration of
approximately 0.4 jgj is enough to cause catastrophic failure
within the bed. Strictly speaking, because the closure
presented in equation (22) is only valid in the fully
developed steady state condition, the quasi-steady approach
adopted by Madsen [1974] may be too simple to evaluate
bed failure under highly unsteady conditions. The consti-
tutive relations and closures used in the present two-phase
model embody substantially more physics than Bagnold’s
descriptions. On the basis of numerical experiments of
various step forcing using the sheet flow model (Figure 13),
we also demonstrate that when the flow acceleration/
horizontal pressure gradient exceeds a critical value, rapid
internal bed failure occurs.
[48] Sleath [1999] presents another analysis of the con-

dition for the so-called ‘‘plug’’ formation motivated by his
measured laboratory data [Dick and Sleath, 1991; Zala
Flores and Sleath, 1998]. We note here that the ‘‘plug ’’
that was described by Sleath [1999] is essentially the same
as the bed failure described by Madsen [1974] and the
present paper. On the basis of a somewhat more complicated
quasi-steady analysis than Madsen [1974], Sleath [1999]
introduces another parameter S = U0w/(s � 1) g for the plug
formation with w the radial frequency. On the basis of his
analysis and the measured data using acrylic particles (d =
0.7 mm, s = 1.14), he suggests that the plug may form when
S is greater than a critical value (about 0.37 to 0.76). Since
U0w defined in S is equivalent to an averaged acceleration
under sinusoidal wave forcing, a critical acceleration similar
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to that of Madsen [1974] and the present paper is also
reported by Sleath [1999].
[49] All these models indicate the existence of critical

acceleration/horizontal pressure gradient for bed failure,
although our simulation results suggest failure occurs in
the dynamic system at a somewhat lower threshold accel-
eration than that suggested by the quasi-static analysis.
Notice that Sleath [1999] also observes that the critical
value for S also depends on the degree of compaction of the
sediment. On the basis of our numerical experiments, our
model also indicates that the bed failure or the erosion depth
under unsteady forcing depends on the compaction of the
bed.
[50] In addition to laboratory experiments, recent field

observations of Foster et al. [2002] also suggested the
occurrence of plug flow during flow reversal. Because the
bed failure can be a direct consequence of the large flow
acceleration/horizontal pressure gradient, further measure-
ments toward a better understanding of bed failure are
necessary [e.g., Cox et al. 1991].

6. Toward Parameterization

[51] On the basis of the two-phase model, we demon-
strate that whether the net sediment transport rate can be
plausibly parameterized by the flow velocity depends on
the wave shape. In particular, it is insufficient to simply
use the instantaneous flow velocity to calculate the
corresponding time-dependent sediment transport rate in
a quasi-steady sense. This results from several mecha-
nisms, such as the closures of fluid and sediment stresses,
the effect of pressure gradient on the particles, and bed
failure, that are not incorporated in the quasi-steady

parameterization procedures. Hence our next objective is
to explore a new calculation procedure for the sediment
transport rate that incorporates essential unsteady effects.
[52] The nondimensional bed shear stress, usually called

the Shields parameter,

Q ¼ tb
rs � rfð Þgd ; ð23Þ

is perhaps the most well-accepted parameter in characteriz-
ing sediment transport processes [e.g., Ribberink, 1998]. We
point out here that the location of the bed shear stress is
clearly defined for fixed beds, but that for unsteady sheet
flows the vertical location of the stationary bed changes in
time. In addition, the fluid and granular phase shear stresses
vary with vertical position and time. Since the closures of
both the fluid and particle stresses have been incorporated in
the model, the total shear stress at any level within the sheet,
including the bed shear stress, becomes part of the solution
of the model. Here the term ‘‘bed shear stress’’ is used to
indicate the instantaneous total shear stress at the uppermost
level of the stationary bed. Figure 14c shows the calculated
time history of the nondimensional bed shear stress, which
we shall refer to as q(t), the generalized Shields parameter,
due to the saw-tooth forcing considered earlier. Notice that
unlike the time history of free-stream velocity shown in
Figure 14a, the time history of q(t) is not symmetric with
respect to the positive and negative phase. Therefore a
formula that calculates q(t) solely based on the free-stream
velocity is inappropriate. Moreover, since the shape of q(t)
in Figure 14c is similar to the time history of the sediment
transport rate presented in Figure 14c, we are motivated to
estimate the sediment transport rate by substituting the
generalized Shields parameter, q(t), into the Meyer-Peter
Müller formula,

� tð Þ ¼ 8 q tð Þ � 0:05½ �3=2: ð24Þ

The resulting nondimensional sediment transport rate
(solid curve in Figure 14d) closely resembles the direct
calculations from the sheet flow model (dashed curve).
Therefore the present sheet flow model indicates that it is,
at least qualitatively, reasonable to apply a steady state
formula in a quasi-steady manner to an unsteady
condition as long as the corresponding bed shear stress
can be accurately estimated.
[53] Owing to improved computational power, phase-

resolving models for surfzone hydrodynamics and sediment
transport have become popular in recent years [e.g.,Wei and
Kirby, 1995; Lin and Liu, 1998]. Therefore it would be
extremely useful to develop a reliable and efficient calcu-
lation procedure for instantaneous sediment transport rate
that incorporates essential unsteady effects. On the basis of
the two-phase model, we believe that given the instanta-
neous bed shear stress, a quasi-steady approach may be
applied to estimate the instantaneous sediment transport
rate. However, such calculation procedure must rely on
accurate prediction on instantaneous bed shear stress which
may not be parameterized solely by the flow velocity quasi-
steadily.
[54] For a predictive nearshore morphological model, a

more efficient approach to calculate the bed shear stress

Figure 14. Sediment transport under saw-tooth wave of
wave period T = 6.0 s. (a) Prescribed free-stream velocity,
(b) free-stream acceleration, and (c) nondimensional bed
shear stress. (d) Nondimensional sediment transport rate
using calculated nondimensional bed shear stress and
Meyer-Peter Müller formula (solid curve) and two-phase
sheet flow model (dashed curve).
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than the present two-phase model is necessary. Nielsen
[1992] and Nielsen and Callaghan [2003] propose a
formula to calculate the instantaneous bed shear stress
that explicitly incorporates flow velocity and acceleration.
However, the development of a more physical-based,
yet efficient calculation procedure for instantaneous bed
shear stress is nontrivial [e.g., Grant and Madsen, 1979;
Trowbridge and Madsen, 1984]. Evidently, in a wave
boundary layer flow, the near-bed flow velocity would be
completely in phase with the free-stream velocity if the flow
were inviscid. In other words, an accurate prediction of bed
shear stress must rely on reasonable closure on fluid and
sediment stresses. For this, whether we can cost-effectively
parameterize (or simplify) the vertical distribution of the
fluid turbulence and particle intergranular interactions
across the wave boundary layer becomes crucial and
requires future work.

7. Conclusion

[55] Using a recently developed two-phase model,
we examine in detail the effects of wave shape on
sediment transport. We find that for certain wave shapes,
time-dependent sediment transport cannot be completely
parameterized by the instantaneous free-stream velocity.
Examinations of the sheet flow response to flow forcing
typical of asymmetric and skewed waves indicate a net
sediment transport in the direction of wave propagation.
[56] Using a closure of particle intergranular stress based

on the kinetic theory of granular flow in the two-phase
equations, we examine the role of the particle collisional
stress in the sediment momentum budget. The particle
collisional stress tends to effectively balance the drag
force in the sediment horizontal budget and thus enhance
the relative effect of horizontal pressure gradient on the
sediment dynamics. Moreover, numerical experiments
indicate that catastrophic internal bed failure is a direct
consequence of large horizontal pressure gradient (or large
flow acceleration).
[57] Using the sheet flow model, we demonstrate that

a power law, which can be as simple as the Meyer-
Peter Müller formula, can predict the sediment transport
reasonably well as long as accurate description for the
corresponding instantaneous bed shear stress can be
obtained. We believe these results will provide new guide-
lines toward an improved parameterization for sediment
transport rate under unsteady conditions.
[58] Finally, we note here that all the simulations pre-

sented in this work were for coarse sand with a diameter of
1.1 mm. For such coarse sediment, collisions between
grains are dominated by the grains’ inertia, the fluid plays
a minor role, and the kinetic theory for granular flow
appropriately captures the dominant momentum and energy
pathways. More typical beach sand, of diameter 0.2 mm for
example, may behave differently due to the relatively
greater influence of the interstitial fluid upon the grain-to-
grain interactions. We believe one of the most important
extensions of this and previous work would be to model
sediment transport of fine and medium sands using the two-
phase approach with the closure of particle stresses based
on particle fluctuation energy and concentrated viscous
suspension models.

[59] Acknowledgments. We gratefully acknowledge the financial
supports of the National Ocean Partnership Program and the Department
of Civil and Environmental Engineering, University of Delaware. Numer-
ous discussions with James Jenkins and Philip Liu during the development
of the sheet flow model are appreciated. We also wish to thank James Kirby,
John Warner, Jon Warrick, and Fernanda Hoefel for their useful comments
on earlier versions of this manuscript.

References
Asano, T. (1995), Sediment transport under sheet-flow conditions,
J. Waterw. Port Coast. Ocean Eng., 121(5), 1–8.

Bagnold, R. A. (1956), The flow of cohesionless grains in fluid, Philos.
Trans. R. Soc. London, Ser. A, 249(964), 235–297.

Bailard, J. (1981), An energetic total load sediment transport model for a
plane sloping beach, J. Geophys. Res., 86, 10,938–10,954.

Bocquet, L., W. Losert, D. Schalk, T. C. Lubensky, and J. P. Gollub (2002),
Granular shear flow dynamics and forces: Experiment and continuum
theory, Phys. Rev. E, 65(1), 011307.

Butt, T., and P. Russell (1999), Suspended sediment transport mechanism in
high-energy swash, Mar. Geol., 161, 361–375.

Cox, D. T., N. Kobayashi, and M. Hajime (1991), Effect of fluid accelera-
tion on sediment transport in surf zone, Coastal Sed., 91, 447–461.

Dick, J. E., and J. F. A. Sleath (1991), Velocities and concentrations in
oscillatory flow over beds of sediment, J. Fluid Mech., 233, 165–196.

Doering, J. C., B. Elfrink, D. M. Hanes, and G. Ruessink (2000),
Parameterization of velocity skewness under waves and its effect on
cross-shore sediment transport, paper presented at 27th Coastal Engineer-
ing Conference, Am. Soc. of Civ. Eng., Reston, Va.

Dohmen-Janssen, C. M., and D. M. Hanes (2002), Sheet flow dynamics
under monochromatic nonbreaking waves, J. Geophys. Res., 107(C10),
3149, doi:1029/2001JC001045.

Drake, T. G., and J. Calantoni (2001), Discrete particle model for sheet flow
sediment transport in the nearshore, J. Geophys. Res., 106(C9), 19,859–
19,868.

Drew, D. A. (1976), Production and dissipation of energy in the turbulent
flow of a particle-fluid mixture, with some results on drag reduction,
J. Appl. Mech., 43, 543–547.

Elgar, S., and R. T. Guza (1985), Observations of bispectra of shoaling
surface gravity waves, J. Fluid Mech., 161, 425–448.

Elgar, S., E. L. Gallagher, and R. T. Guza (2001), Nearshore sandbar
migration, J, Geophy. Res., 106(C6), 11,623–11,627.

Elghobashi, S. E., and T. W. Abou-Arab (1983), A two-equation turbulence
model for two-phase flows, Phys. Fluids, 26(4), 931–938.

Foster, D. L., R. A. Holman, and A. J. Bowen (2002), Field evidence
for plug flow, Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract
OS72C-02.

Gallagher, E. L., S. Elgar, and R. T. Guza (1998), Observations of sand bar
evolution on a natural beach, J. Geophys. Res., 103(C2), 3203–3215.

Grant, W. D., and O. S. Madsen (1979), Combined wave and current
interaction with a rough bottom, J. Geophys. Res., 84(C4), 1797–1808.

Hanes, D. M., and D. A. Huntley (1986), Continuous measurements of
suspended sand concentration in a wave dominated nearshore environ-
ment, Cont. Shelf Res., 6, 585–596.

Hanes, D. M., and D. L. Inman (1985a), Observations of rapidly flowing
granular-fluid materials, J. Fluid Mech., 150, 357–380.

Hanes, D. M., and D. L. Inman (1985b), Experimental evaluation of a
dynamic yield criterion f or gr anular-fluid f low, J. Geophys. Res.,
90(B5), 3670–3674.

Ho efe l , F., and S. E lg ar (200 3), Wave-in duc ed s edim ent t rans por t and
sandbar migration, Science, 299 , 1885 – 1887.

Hsu, T.-J., J. T. Jenkins, and P. L.-F. Liu (2003), On two-phase sediment trans-
port: Dilute flow, J. Geophys. Res., 108(C3), 3057, doi:10.1029/2001JC001276 .

Hsu, T.-J., J. T. Jenkins, and P. L.-F. Liu (2004), On two-phase sediment
transport: Sheet flow of massive particles, Proc. R. Soc. London, Ser. A,
460(2048), doi:10.1098/rspa.2003.1273.

Jenkins, J. T., and D. M. Hanes (1998), Collisional sheet flows of sediment
driven by turbulent fluid, J. Fluid Mech., 370, 29–52.

Jenkins, J. T., and S. B. Savage (1983), A theory for the rapid flow of
identical, smooth, nearly elastic particles, J. Fluid Mech., 370, 29–52.

Jenkins, J. T., P. A. Cundall, and I. Ishibashi (1989), Micromechanics
modeling of granular material, in Powders and Grains, edited by
J. Biarez and R. Gourves, pp. 257–264, A. A. Balkema, Brookfield, Vt.

King, D. B. (1990), Studies in oscillatory flow bed load sediment transport,
Ph.D. thesis, Univ. of Calif., San Diego.

Lin, P., and P. L.-F. Liu (1998), A numerical study of breaking waves in the
surf zone, J. Fluid Mech., 359, 239–264.

Madsen, O. S. (1974), Stability of a sand bed under breaking waves, paper
presented at 14th Coastal Engineering Conference, Am. Soc. of Civ.
Eng., Reston, Va.

C05025 HSU AND HANES: SHEET FLOW UNDER WAVES

14 of 15

C05025



Masselink, G., and M. G. Hughes (1998), Field investigation of sediment
transport in the swash zone, Cont. Shelf Res., 18, 1179–1199.

Nielsen, P. (1992), Coastal Bottom Boundary Layers and Sediment Trans-
port, World Sci., River Edge, N. J.

Nielsen, P. (2002), Shear stress and sediment transport calculations for
swash zone modeling, Coastal Eng., 45, 53–60.

Nielsen, P., and D. P. Callaghan (2003), Shear stress and sediment transport
calculations for sheet flow under waves, Coastal Eng., 47, 347–354.

Puleo, J. A., K. T. Holland, N. G. Plant, D. N. Slinn, and D. M. Hanes
(2003), Fluid acceleration effects on suspended sediment transport in the
swash zone, J. Geophys. Res., 108(C11), 3350, doi:10.1029/
2003JC001943.

Ribberink, J. S. (1998), Bed-load transport for steady flows and unsteady
oscillatory flows, Coastal Eng., 34, 59–82.

Richardson, J. F., and W. N. Zaki (1954), Sedimentation and fluidization:
1, Trans. Inst. Chem. Eng., 32, 35–53.

Sleath, J. F. A. (1999), Conditions for plug formation in oscillatory flow,
Cont. Shelf Res., 19, 1643–1664.

Sumer, B. M., A. Kozakiewicz, J. Fredsøe, and R. Deigaard (1996),
Velocity and concentration profiles in sheet-flow layer of movable bed,
J. Hydrol. Eng., 122(10), 549–558.

Torquato, S. (1995), Nearest-neighbor statistics for packings of hard
spheres and disks, Phys. Rev. E, 51, 3170–3182.

Trowbridge, J., and O. S. Madsen (1984), Turbulent wave boundary layers:
2. Second-order theory and mass transport, J. Geophys. Res., 89(C5),
7999–8007.

Wei, G., and J. T. Kirby (1995), A time-dependent numerical code for
extended Boussinesq equations, J. Waterw. Port Coastal Ocean Eng.,
121, 251–261.

Young, J., and A. Leeming (1997), A theory of particle deposition in
turbulent pipe flow, J. Fluid Mech., 340, 129–159.

Zala Flores, N., and J. F. A. Sleath (1998), Mobile layer in oscillatory sheet
flow, J. Geophys. Res., 103(C6), 12,783–12,793.

�����������������������
D. M. Hanes, Western Coastal and Marine Geology, U.S. Geological

Survey Pacific Science Center, 400 Natural Bridges Drive, Santa Cruz, CA
95060, USA. (hanes@ufl.edu)
T.-J. Hsu, Woods Hole Oceanographic Institution, Applied Ocean

Physics and Engineering Department, MS 11, Woods Hole, MA 02543,
USA. (thsu@whoi.edu)

C05025 HSU AND HANES: SHEET FLOW UNDER WAVES

15 of 15

C05025


