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Abstract Due to wavelength-dependent optical attenuation in the skin, the local fluence at a 

subcutaneous vessel varies with the optical wavelength in a spectral measurement. Hence 

compensation for such a spectral attenuation is necessary in quantitative measurements of the 

oxygen saturation of hemoglobin (sO2) in blood vessels in vivo using photoacoustic (PA) 

imaging. Here, by employing a simplified double-layer skin model, we find that although the 

absolute value of sO2 in a vessel is seriously affected by the volume fraction of blood and the 

spatially averaged sO2 in the dermis, the difference of sO2 between neighboring vessels is 

minimally affected. Based on in vivo experiments, we demonstrate that the difference in sO2 

between a typical artery and a typical vein is conserved before and after an experimentally 

acquired spectral compensation. This conservation holds regardless of the animal’s systemic 

physiological state. 
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Introduction 

Photoacoustic (PA) imaging is based on the detection of the laser induced ultrasonic waves, 

which are resulted from optical absorption and thermoelastic expansion. The PA images, either 

reconstructed in photoacoustic tomography (PAT) [1-5] or acquired directly in photoacoustic 

microscopy (PAM) [6-8], describes the internal distribution of the optical energy deposition, 

which is the product of the local fluence and the tissues’ optical absorption coefficient. Therefore, 

PA images are well suited to reveal optical absorption contrast but, at the same time, can be 

biased in depicting tissue’s optical absorption coefficient distribution if there is a large variation 

in local fluence. Besides optical heterogeneity, local fluence also varies with optical wavelengths 

due to the wavelength-dependent optical absorption coefficient and reduced optical scattering 

coefficient in the surrounding tissues, such as skin. To minimize the variations in local fluence, 

one can choose a spectral range where optical attenuation in skin is low, i.e. between 650 nm and 

850 nm. However, within this spectral range, only a low signal-to-noise ratio can be achieved 

since the optical absorption of the targeted structure also decreased. Hence, quantitative imaging 

of functional parameters, such as hemoglobin oxygen saturation (sO2), especially with high 

spatial resolution, is quite challenging. 

 

In PA imaging of sO2 in subcutaneous vessels, spectral measurement is employed to extract the 

relative concentration of the oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) based on their 

distinctive optical distinction coefficient spectra. Therefore compensating for the spectral 

variation in local fluence is required. A straightforward method to achieve this compensation is 

to employ a skin model and an independent optical measurement so that the optical properties in 
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skin can be measured and, thus, the spatial and spectral variation of local fluence can be 

estimated. However, an independent optical measurement requires simultaneous implementation 

of two different experimental techniques, and is technically challenging and has not yet been 

reported. Moreover, accuracy of a pure optical measurement of bulk tissue optical properties is 

still questionable [9].  

 

Several methods have been developed to measure sO2 in both in vitro and in vivo samples based 

on PA measurements only. In [10] and [11], the sO2 in blood samples in a cuvette-type phantom 

is quantified by fitting the exponential rise in the detected PA signals. The advantage of this 

approach is that it is self-calibrated because it deals with the relative change in the amplitude of 

PA signals rather than the absolute values. However, this method relies on a large ultrasonic 

bandwidth, and requires that the surrounding tissues have a simple geometry and is optically 

homogeneous. Thus, it has limited applicability to in vivo imaging. To measure sO2 in vivo in 

small vessels with band-limited ultrasonic transducers, one has to develop a method to extract 

quantitative functional information from other features of PA signals. 

 

In [12] and [13], in vivo two-dimensional mapping of sO2 in both brain cortical vessels and 

subcutaneous vessels have been reported based on the peak values of the detected PA signals 

which can be unambiguously attributed to different internal structures and are separable in the 

time domain. The smallest diameter of the imaged vessels is less then 50 µm. The advantage of 

this method is that band-limited ultrasonic transducers can be employed given that the ultrasonic 

center frequency satisfies the requirement of optical penetration depth in blood [14]. In [12] and 
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[13], invasive methods have been employed to measure the wavelength-dependent optical 

attenuation in skin. This invasive method can be either measuring light transmission through an 

exercised skin piece or measuring PA spectrum of a subcutaneously inserted light absorbing 

target in vivo. The assumptions of these two methods were that the skin layer is homogeneous 

and the vessels locate within a short depth range from the skin surface. However, a noninvasive 

technique is required in clinical applications, which makes these methods impractical. 

 

Although the wavelength-dependent fluence attenuation in skin can be roughly compensated for 

using above invasive measurements, such measurements can only performed at limited locations 

while skin optical properties can vary from depending on location and physiological state. Hence 

the final measured sO2 values can still be inaccurate depending on the spectral compensation 

factors involved. However, if the interest is in the difference of sO2 between vessels, rather than 

the absolute of sO2 in each vessel, the measure can be accurate regardless of the spectral 

compensation. Here, we demonstrate numerically that the difference of sO2 between 

subcutaneous vessels is minimally affected by the wavelength dependent optical attenuation in 

skin and present in vivo PAM experimental results which confirms our findings.  

Experimental setup 

The PAM system used to acquire in vivo data has been described in details previously 

[6,7]. Molar extinction coefficients of HbO2 and HbR were taken from literatures [15,16]. The 

effect of transducer focal position on the sO2 measurements was found to be relatively small [14]. 
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In in vitro studies, the PA peak amplitude has been demonstrated a linear dependence with the 

optical absorption coefficient ( aµ ) within the realm of 1<Λaµ , where Λ is central frequency of 

the ultrasonic transducer [14]. In phantoms made from bovine blood filled cylindrical tubes, sO2 

has been quantitatively measured with a high accuracy and sensitivity [13]. 

 

In this study, in vivo experiments were were carried out in Sprague Dawley rats (~200 g, Charles 

River Breeding Laboratories, MA). The laboratory animal protocol for this work was approved 

by the Animal Studies Committee of Washington University at Saint Louis and all experimental 

animal procedures were carried out in conformity with the guidelines of the National Institutes of 

Health [17]. Change of systemic physiological states were involved in the experiments and were 

achieved by varying the oxygenation concentration of the inhalation anesthetic gas mixture as 

described in [13]. 

 

Model 

The peak voltage A  of the PA signal generated from a blood vessel at an optical 

wavelength λ  is determined by the local optical fluence and several blood properties (pα). Such 

properties include blood oxigenation )/(
222 HbOHbRHbO CCCsO += and 

2HbOHbRHb CCC += , 

where HbC  is the total hemoglobin concentration in blood; 
2HbOC  and HbRC  are the concentrations 

of HbO2 and HbR in blood vessel, respectively. If A  can be theoretically calculated from known 

αp  at kλ , the determination of sO2 from the measured PA spectrum becomes a standard 

maximum likelihood parameter estimate problem. In fact, A  also depends on other parameters 
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such as vessel geometry, ultrasonic bandwidth, etc. However, it has been shown that within the 

spectral range of 550 nm and 650 nm, A  can be approximately considered a function of only the 

local optical fluence, sO2, and HbC  for the purpose of sO2 measurements [14]. 

 

Unfortunately, optical fluence can only be measured at the skin surface. Inside skin, the fluence 

has a depth dependent distribution due to optical scattering and light absorption by melanin in 

epidermis and hemoglobin in capillary network in epidermis and dermis. The fluence distribution 

is wavelength dependent and changes with anatomical locations and physiological states. To 

relate optical fluence on skin surface to local fluence on vessel a skin model should be employed, 

which adds more unknown parameters for skin properties to the multiple parameter inversion 

depending on the complexity of the skin model. 

 

Figure 1. Schematic diagram of the skin model used in this work 
 

In this work, a simplified skin model as shown in Figure 1 [18,19], which contains only two 

layers: epidermis and dermis, is used. Each layer is treated as microscopically homogeneous 

layer and is described by its layer thickness and effective optical attenuation coefficient 

)(3 asaeff µµµµ +′= . The optical fluence of an incident collimated light beam is considered to 

attenuate exponentially after light propagating through the skin and can be expressed as 
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 ))()(exp()( 0 λµλµλ d
effd

e
effe zzFF −−= ,  (1) 

where 0F  is the optical fluence on the skin surface; ez  and dz  are the layer thickness of the 

epidermis and dermis, respectively; and e
effµ  and d

effµ  are the effective optical attenuation in 

epidermis and dermis, respectively. Although crude, this model gives reasonable approximation 

of optical fluence at depths larger than a few hundred micrometers [11]. 

 

The reduced optical scattering coefficients in both layers are assumed identical, which is 

expressed as 22.0412 7.73101.1 −− ⋅+⋅=′ λλµs  [20]. The optical absorption coefficient in epidermal 

layer e
aµ  is expressed as 255.3733.311 1084.7)1(106.6 −− ×−+×= λλµ mm

e
a CC , where mC  is the 

volume fraction of melanosome, which varies from 1.3% to 43% depending on skin color [15]. 

In our calculation, we used 5 % as Sprague Dawley rats have low melanosome concentration. 

Here, wavelength is in nm, length is in cm, and optical absorption coefficient and scattering 

coefficient are in cm-1. The optical absorption coefficient in dermal layer is expressed as  

 BBB
d
a CC ⋅+×−= − )(1084.7)1( 255.37 λµλµ , (2) 

where BC  is the mean volume fraction of blood in dermis; )(λµB  is the optical absorption 

coefficient of blood. It is defined as HbHbR
d

HbRHbOB C⋅+⋅−= ))(sO))()((( 22
λελελεµ , where 

2HbOε and HbRε  is the molar extinction coefficients of HbO2 and HbR, respectively; d
2sO  is the 

spatially averaged blood oxygenation in dermis; and HbC  is the hemoglobin concentration in 

blood. In human skins, the typical value of BC  is about 0.2%. As a result, the optical absorption 

coefficient in dermis is related to BC , d
2sO , 

2HbOε , and HbRε . 
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The amplitude of the PA signal generation from the vessel located at depth de zz +  can therefore 

be expressed as: 

 ))()(exp())(sO))()((()( 022
λµλµλελελελ d

effd
e
effeHbRHbRHbOHb zzFKCA −−⋅+⋅−= , (3) 

where K is a proportional coefficient, which is related to the transducer sensitivity, ultrasound 

attenuation, detection geometry, and the Grüneisen coefficient [4]. From (3), it can be seen that 

the only relative changes in CHb can be calculated quantitatively because KF0 and CHb are 

inseparable.  

 

The parameters discussed above are estimated by minimizing the difference between the 

experimental PA values ( )(e
kA  measured at kλ ) and the theoretical calculation ( )( αpAk ) in the 

least squares sense. That is, the “true” values of the parameters are those who minimize the 

dimensionless relative error E2: 

 
( )

2)(

2)(

2

)(

)(

∑

∑ −
=

k

e
k

k
k

e
k

A

pAA
E

α

. (4) 

Let’s assume that experimental measurements have wavelength-independent normally 

distributed additive measurement errors, )(e
kAδ . The relation of covariance of the parameters αp , 

ααδ pp / to the experimental errors is given by [14]: 
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where 
∑∂

∂=
k

k

k
k

A

p

p

A
S

2/12 )(
α

α
α  is the sensitivity of the PA amplitude at wavelength k to the 

parameter αp , E  is the residual value of E at convergence, )1(
,

γ
ηη

−
−nF  is a constant of the order of unity 

which is an F-ratio distribution with ηη −n, degrees of freedom for a given confidence level, γ; [21], n 

is the number of wavelengths used and η  is the number of independent parameters. Equation (5) 

defines an ellipsoidal surface in αp space projection of which on Αp  axes defines normalized 

variance bound of a single parameter ΑΑ∆ pp / . The ratio of the αα pp /∆  to error E is defined by 

the theoretical model used to calculate the PA signal and gives a priori estimate of  error 

propagation from error in measurement propagates on error in parameter (so called the error 

propagation factor or EPF). The optimal choice of optical wavelengths used in experiment is 

defined by condition of minimal error in 2sO within limitations of the maximum tunable range of 

the dye laser. Number of used wavelength should also be relatively small to keep data-

acquisition time reasonably short.  

 

EPF for 2sO  in four parameters inversion ( 2sO , dsO2 , BC  and HbKCF0 ) using 8 equally spaced by 

3 nm wavelengths, and that for two parameter inversion with dsO2 and BC  fixed at 0.8 and 0.04 

using only 4 equally spaced by 6 nm wavelengths is shown in Fig. 1 as a function of optical 

wavelength. EPF minimum for four parameters inversion is about 7 while that for two 

parameters inversion is about one. In both cases minima occur in wavelength range of about 

570 nm=590 nm which was chosen for in vivo experiment.  
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Results and discussion In our model, the
2HbOε , HbRε , and mC  are taken from literature values 

and only the BC  and dsO2  need to be estimated. To acquire a meaningful values for BC  and dsO2 , 

we fit (1) against experimental data for spectral dependence of fluence decay in rat skin. 

Experimental data were acquired using an invasive PA measurement. A 2 mm × 3 mm 

rectangular piece of a 25 µm thick black polyethylene film was inserted under the rat skin 

beneath the dermis as described in [14]. By fitting the PA spectrum from the black film insert 

with (4), we found out that this simplified skin model described the behaviors of the skin under 

different optical wavelengths fairly well. However, even for very simple case of black-insert 

both residual error (error in model are bias) and standard deviation (random error) are about 5%. 

Taken into account that EPF for 2sO in four parameter inversion is bigger then seven, expected 

error in 2sO inversion can exceed 35% which makes simultaneous inversion for all vessel and 

tissue parameters unfeasible. 

E
2

2sO
dsO2

E
2

2sO
dsO2

E
2

2sO d
HbC

E
2

2sO d
HbC

(a) (b)  

Figure 2. Error propagation factors for inversion based on different values of 

(a) dsO2  and (b) d
HbC . 

Since noninvasive absolute value of sO2 in vivo may not be measurable with reasonable accuracy, 

it might be possible to find physiologically meaningful combination of sO2 related values which 

are less dependent on skin optical properties and can be accurately measured in vivo. First, we 
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estimated the influence of dsO2 , and BC  ranging from 0 to 1 (all possible values) and 0 to 1.2 % 

(up to more than twice of the maximum measured value), respectively on 2sO  inversion. For 

2sO  ranging from 30% to 100% we calculate  )( αpAk  at optical wavelengths 578, 584, 590, and 

596 nm according to (4), treat them in as an error free experimental data and plot the result of 

two parameter ( HbKCF0 and 2sO ) inversion for 2sO completely ignoring skin light attenuation in 

Figure 2. As one can see, skin optical attenuation defined by dsO2 , and BC dramatically affect 

inverted 2sO value. However, relationship of the inverted 2sO  values to the exact 2sO  values 

remains relatively linear. Moreover, slope of the curves in Fig. 3a does not change with dsO2 , 

and BC as much as 2sO  percentage value. It indicates that within reasonable bounds, at least 

relative changes in 2sO  can be measured without preliminary knowledge of skin optical 

properties albeit with some bias exist as seen from the change of slope of curves in Figure 2a. 

Taking a reasonable suggestion that 2sO  in arterial blood under hyperoxia is ~100%, bias of two 

parameter 2sO  inversion can thus be decreased to less than ±1% using simple linear empirical 

formula, coefficients of which can depend on chosen optical wavelength range and vessel depth: 

 %)100(1863.1/%))100(82.01( 222
)(

2 sOsOsOsO em −++⋅= . (6) 

Above analysis suggests that the relative changes in sO2 in vessels are minimally affected by 

dsO2  and BC . Such relative changes could be, for example, different in sO2 between two 

neighboring vessels. 
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Figure 3. Calculated sO2 values in arteries (a) and veins (b) before and after 

spectral compensation. 
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Figure 4. sO2 values in arteries (a) and veins (b) before and after spectral 

compensation in three different systemic physiological states. 1: hypoxia, 2: 

normoxia; and 3: hyperoxia. 

To further verify this conclusion, we compared sO2 differences between a typical artery and vein 

at multiple measurement locations before and after spectral compensation of the spectral fluence 

variation at three physiological states in vivo. The calculation of sO2 followed the description in 

[13, 14] and the inverse of the PA spectrum of the black film was used as the spectral 

compensation factor at corresponding optical wavelengths. As previously reported, arteries and 

veins can be separated based on the imaged sO2, we selected one artery and one vein to be our 

target vessels in this work. Ten measurement locations were then selected along each selected 
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vessel. At each measurement location, sO2 values before and after spectral compensation were 

calculated in both vessels. As shown in Figure 3a and Figure 3b, the two sets of inverse 

calculations are parallel to each other in vein and artery, respectively, though the values after 

spectral compensation are much more realistic. Based on the results shown in Figure 3, the 

calculated differences in sO2 (∆sO2) between vein and artery for the 10 measurement show little 

dependence on spectral compensation as well. The variation is ∆sO2 before and after spectral 

compensation is 2.42%±0.58%. Hence, it can be expected that even without a reasonable spectral 

compensation, a reliable estimation of variation of sO2 can be experimental achieved. 

Furthermore, ∆sO2 was shown not to change much under all the three physiological states as 

shown in Figure 4. This observation demonstrates that, functional parameters such as local 

oxygen consumption can be quantified based on only PA measurement noninvasively. Such 

capability shows potential applications in, for example, tumor physiology study where 

consumptions of oxygen by tumor cells at various developing stages can be measured; and 

functional brain imaging, where different levels of neural reactions to external stimulations is 

related to the oxygen consumptions. 
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