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Abstract  1 

Wild-living animals are subject to weather variability that may cause the generation of 2 

reactive oxygen species, resulting in oxidative stress and tissue damage, potentially driving 3 

demographic responses. Our three-year field study investigated the effects of seasonal 4 

weather conditions on biomarkers for oxidative stress, oxidative damage and antioxidant 5 

defence in the European badger (Meles meles). We found age-class effects: cubs were more 6 

susceptible to oxidative stress and oxidative damage than adults, especially very young cubs 7 

in the spring, when they also exhibited lower antioxidant biomarkers than adults. Although 8 

previous studies have found that intermediate spring and summer rainfall and warmer 9 

temperatures favor cub survival, counter-intuitively these conditions were associated with 10 

more severe oxidative damage. Oxidative damage was high in cubs even when antioxidant 11 

biomarkers were high. In contrast, adult responses accorded with previous survival analyses. 12 

Wetter spring and summer conditions were associated with higher oxidative damage, but also 13 

with higher antioxidant biomarkers. Autumnal weather did not vary substantially from 14 

normative values and thus effects were muted. Winter carry over effects were partially 15 

evident, with drier and milder conditions associated with greater oxidative damage in the 16 

following spring, but also with higher antioxidant capacity. Plausibly warmer conditions 17 

promoted more badger activity, with associated metabolic costs at a time of year when food 18 

supply is limited.  Modeling biomarkers against projected climate change scenarios predicted 19 

greater future risks of oxidative damage, although not necessarily exceeding antioxidant 20 

capacity. This interdisciplinary approach demonstrates that individual adaptive physiological 21 

responses are associated with variation in natural environmental conditions.  22 

Key Words: Antioxidant, Climate Change, Eco-physiology, Reactive Oxygen Species, 23 

Oxidative Damage, Oxidative Stress, Weather Conditions. 24 
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Introduction 26 

When wild animals experience low food availability or disease, changes in their energetic or 27 

immune activity can lead to increased metabolic stress, promoting the generation of reactive 28 

oxygen species (ROS) (Leeuwenburgh and Heinecke 2001). Although animals produce 29 

endogenous antioxidant molecules (e.g. glutathione), or enzymes (e.g. peroxidases; 30 

supplemented by their consumption of exogenous dietary antioxidants) to neutralize the 31 

unpaired electron in ROS, oxidative stress (OS) and oxidative damage (OD) can occur if 32 

antioxidant defences are exceeded (Matés et al. 2002). Consequently, when evolutionarily 33 

novel stressors arise from Human Induced Rapid Environmental Change (HIREC; Sih 2013), 34 

these can further exacerbate the physiological burden wild-living animals must cope with 35 

(Sies 1997), potentially compromising their defence systems.  36 

  Weather conditions are often intrinsically linked to food availability, foraging 37 

success, thermoregulatory costs and metabolic rates (Kronfeld-Schor and Dayan 2013); 38 

conditions likely to influence OS and OD. Furthermore, there can be cumulative ‘carry-over 39 

effects’ (COE; Harrison et al. 2011), where weather conditions in one season affect an 40 

individual’s subsequent performance, provided it continues to survive. Consequently, if 41 

weather becomes increasingly unseasonable, variable and extreme, as predicted under climate 42 

change scenarios (Allen et al. (IPCC), 2014; see also Parmesan, Root and Willig 2000), this 43 

may exceed species’ coping capacities (Smit et al. 2000), with implications for fitness and 44 

survival (White 2008).  45 

Here, we undertake an inter-disciplinary approach (White & Ward 2011), using a 46 

medium-sized generalist carnivore, the European badger (henceforth ‘badger’) to explore 47 

how OS may operate mechanistically as the currency (sensu, Metcalfe and Alonso-Alvarez 48 

2010) through which weather stress can affect eco-physiology (Costantini et al. 2010).  We 49 

exam how seasonal weather conditions interact with OS (using the ability of red blood cells 50 



  3 

(RBCs) to survive a free radical attack ex vivo; Kurata et al. 1993; Bize et al. 2008), OD (using 51 

lipid peroxidation, Mylonas and Kouretas 1998; via plasma malondialdehyde, MDA, Nielsen 52 

et al. 1997), antioxidant capacity (AOX) and enzymatic antioxidant capacity (peroxidise, 53 

PER; see Somogyi et al. 2007). This expands on previous research identifying weather-54 

induced macro-demographic responses for this species (inter alia), as-well-as individual 55 

declines in body-condition and reproductive success (Newman et al. 2017; for broader 56 

discussion see Newman and Macdonald 2015). Specifically, badgers provide an informative 57 

model for studying responses to weather conditions because they preferentially forage for 58 

earthworms (Lumbricus spp.; see Newman et al. 2017), the availability of which is tied 59 

tightly to soil microclimate and prevailing weather (Curry 2004). However, badgers reside in 60 

communal burrows (termed setts) and, provided they have sufficient body-fat reserves, they 61 

can stay underground during periods of inclement weather and/or poor foraging conditions to 62 

mitigate net energy loss (Noonan et al. 2014; 2015). Consequently badgers undergo frequent 63 

short-term periodic swings in foraging activity, foraging success and body-condition, 64 

ultimately attempting to replenish depleted somatic reserves (Newman et al. 2011). This high 65 

metabolic turn-over, linked directly to variation in weather, is likely to generate ROS 66 

(Leeuwenburgh and Heinecke 2001). Under net-negative foraging conditions, when badgers 67 

do not meet their immediate energetic needs, they catabolize fat reserves (Domingo-Roura et 68 

al. 2001; Newman et al. 2011). Generally fat catabolism generates ROS (Morales et al. 2004) 69 

and causes redox imbalance, leading to increased levels of OD, despite upregulation of 70 

antioxidant enzymes (Vijayakumar et al. 2004). Once fat reserves are depleted, catabolizing 71 

muscle (protein) can further increase OS (Eisler et al. 2004; Finn and Dice 2006). Certainly, 72 

body-fat depletion adversely affects badger health (Domingo-Roura et al. 2001), over-winter 73 

survival (Macdonald and Newman 2002) and embryonic implantation (Woodroffe 1995; 74 

Macdonald et al. 2015).  75 
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Winter weather is especially critical for badgers, with frost making earthworms 76 

unavailable (Newman et al. 2017) and badgers use periods of torpor to mitigate food scarcity 77 

(Newman et al. 2011). Such scarcity has been linked with lower over-winter survival rates 78 

(Macdonald and Newman 2002), as-well-as lower cub recruitment into the adult population 79 

(Nouvellet et al. 2013). This leads us to predict that: (i) biomarkers of OS/OD and antioxidant 80 

capacity may be associated seasonal weather variation; (ii) individuals in poorer body-81 

condition might exhibit higher OS/OD biomarker levels; and (iii) winter weather COE may 82 

affect individual OS/OD and antioxidant levels in the following spring. We consider, 83 

however, that OS/OD could occur even without apparent loss of body-condition over a 84 

season, due to the effective compensation of fat reserves. 85 

Previous work in this same badger population by Macdonald and Newman (2002) 86 

identified that spring rainfall was critical to cub survival, with drought conditions leading to 87 

higher mortality rates (see also Macdonald et al. 2010). Building on this, Nouvellet et al. 88 

(2013) found distinct age-class specific responses, where cub survival probability was highest 89 

in years with intermediate annual rainfall (neither too wet nor too dry; a negative quadratic 90 

relationship) and intermediate temperature; whereas adult survival probability was greater in 91 

wetter years. These leads to a series of age-related  predictions, positing that (iv) cubs and 92 

elderly badgers may be more vulnerable to OS/OD than prime-age adults, whereas (v) adults 93 

may benefit from more rainfall if weather interactions with OS/ OD biomarkers follow 94 

similar patterns to mortality effects. Furthermore, (vi) cub may experience more severe 95 

OS/OD effects in years with more extreme weather. Linked to this, we further predict that 96 

(vii) different OS phenotypes may be favoured under different weather conditions in different 97 

years (sensu Metcalfe and Alonso-Alvarez 2010).  98 

Finally, we use emergent interactions between these biomarkers and weather 99 

conditions to parameterize simulations of how future weather conditions, according to the 100 
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IPCCs SRES climate change emissions scenarios (Murphy et al. 2009), might affect OS and 101 

OD. Herein we propose that this approach could provide a new tool for anticipating the 102 

effects of climate change on wildlife more broadly, better enabling appropriate and effective 103 

conservation action (Beaulieu et al. 2013).  104 
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Methods  105 

Trapping and sampling 106 

Badgers are highly tractable, enabling frequent recapture and large enough to yield sufficient 107 

blood volumes, also for repeat sampling. For this study, a total of 220 unique individuals 108 

were caught as part of ongoing socio-ecological  population monitoring in Wytham Woods, 109 

UK (see Macdonald et al. 2015). Briefly, marked (tattooed) individuals were captured 110 

seasonally (spring (end of May – start of June) 2012-14, summer (end of August) 2012-14, 111 

autumn (mid-November) 2012-13) sedated, measured and blood sampled, then given 112 

sufficient time to recover from sedation prior to release back at their sett of capture; for full 113 

handling protocol see Sun et al. (2015). Over the study period, these 220 individuals were 114 

sampled between 1 and 11 times (median = 2), yielding a total of 564 unique capture records 115 

and blood samples (Table 1). A body condition index (BCI) was calculated as: 116 

log(weight)/log(length) (following Noonan et al. 2014). Age was known from year of birth 117 

and divided into classes: Cubs <1 yr; prime adults 1-5 yr; old adults ≥ 6. Sex was also 118 

recorded. 119 

 120 

Oxidative stress assays 121 

For details of assay methodologies, see Supporting on-line information, Appendix 1, but 122 

briefly: Total antioxidant capacity (AOX) was measured as non-enzymatic plasma 123 

antioxidant capacity (STA-360, Cell Biolabs, San Diego, USA) and enzymatic antioxidant 124 

capacity via peroxidase (PER; STA-344, Cell Biolabs, San Diego). As a biomarker of OD, 125 

lipid peroxidation (LP) was measured as malondialdehyde accumulation in plasma (STA-126 

330, Cell Biolabs, San Diego, USA) and red blood cell ½-life (RBC ½-life) was used as a 127 
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biomarker indicating resistance to OS, calculated as the time it took 50% of RBCs to lyze in 128 

the presence of an oxidant (Kirial, Courernon, France). 129 

 130 

Weather data 131 

Freely available weather records were obtained from the University of Oxford's Radcliffe 132 

Meteorological Station. Metrics of rainfall (total mm/month); minimum temperature 133 

(monthly mean daily minimum temperatures, in degrees Celsius); maximum temperature 134 

(monthly mean daily maximum temperatures, in degrees Celsius); and frost (number of days 135 

of frost/month) were extracted from this dataset. Mean weather conditions, used to analyze 136 

corresponding seasonal trapping sessions, were defined as: Winter: December – February 137 

(i.e. December 2011 to February 2012, inclusive, defines winter 2012); Spring: March – 138 

May; Summer: June-August; Autumn: September – November. Details of how weather in 139 

these seasons compared to 30 year average conditions are presented in Table 2. 140 

 141 

Principal weather components  142 

We used principal component analyses (PCA), conducted with scaling, to control for 143 

collinearity between weather metrics (for details see Appendix 2). This resulted in the 144 

retention of two principal components (PC) as predictive weather variables. For the PCA 145 

pertaining to seasonal analyses, factor loadings for temperature were the most influential 146 

contributors to the PC1 axis. Loadings were positive, thus higher values of PC1 correspond to 147 

higher temperatures. PC2 had a positive rainfall loading, where higher values correspond to 148 

wetter conditions. These components are henceforth referred to as PCtemp and PCrain. 149 

For our COE analyses, PC1 factor loadings (PCtemp) included maximum 150 

temperature, minimum temperature and number of days of frost over the winter, such that 151 
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higher values of PC1 correspond to lower temperatures and more frost. PC2 (PCrain) had a 152 

negative rainfall loading where higher values correspond to drier weather.  153 

 154 

Modeling seasonal weather effects on OS, OD and antioxidant defences 155 

To identify predictors of variance in biomarkers, we built four global models that included 156 

these principal components, along with season, BCI, age-class and sex as fixed effects: 157 

AOX = ƒ(Age-class*PCrain*Season+Age-class*PCtemp*Season+Sex+BCI) 158 

log(LP) = ƒ(Age-class*PCrain*Season+Age-class*PCtemp*Season+Sex+BCI) 159 

PER = ƒ(Age-class*PCrain*Season+Age-class*PCtemp*Season+Sex+BCI) 160 

RBC ½-life = ƒ(Age-class*PCrain*Season+Age-class*PCtemp*Season+Sex+BCI) 161 

To account for repeat sampling of individuals, badger ID was included as a random effect. 162 

We note that while our fixed effects were subject to temporal autocorrelation, the coarse scale 163 

at which these were measured did not result in any significant violation of the assumption of 164 

independence (see Appendix 2). LP values were log transformed to correct for 165 

heteroscedasticity. From these global models, we specified subsets of candidate models 166 

comprised of all possible combinations of fixed effects, both with and without interaction 167 

terms. We then used small sample size corrected Akaike’s information criterion (AICc), to 168 

rank these candidates according to their statistical support (Burnham et al. 2011), additionally 169 

calculating the delta AICc (Δi), in relation to the highest-ranking model and the Akaike (or 170 

model) weight (w) for each model using the R package MuMIn (v. 1.15.6; Barton 2016).  171 

Following Anderson (2008), rather than using Δi cut-off values, we applied weight-172 

based averaging over all candidate models. From this, we derived averaged parameter 173 

estimates (), calculated by averaging their values over all candidate models that included the 174 



  9 

parameter of interest, weighted by w, and their 95% confidence intervals (CI). We also 175 

calculated the ‘relative influence’ (RI) of each variable as the summation of w across all 176 

models that included the variable of interest (Burnham & Anderson, 2002).  177 

 178 

Modeling winter weather COE on OS and antioxidant defences 179 

Badgers were not trapped during winter due to a legal closed season to avoid stressing 180 

pregnant females (Protection of Badgers Act 1992). Instead we modeled the COE of winter 181 

weather on OS measurements in following the spring. Similar models were built to examine 182 

the COE of winter weather on spring OS measurements in adults (including cubs recruited 183 

from the previous year). Badger ID and age class were included as random effects to account 184 

for repeat sampling and for any differences between age classes (prime vs old), and AICc was 185 

derived for each model along with relative model weight (W).  186 

AOX = ƒ (PCrain+ PCtemp +Sex+BCI) 187 

log(LP) = ƒ (PCrain+ PCtemp +Sex+BCI) 188 

PER = ƒ (PCrain+ PCtemp +Sex+BCI) 189 

RBC ½-life = ƒ (PCrain+ PCtemp +Sex+BCI) 190 

Model selection and averaging was then applied as described above. Note, cubs that survived 191 

the winter into the spring of the following were then included here as adults – age >1 year. 192 

 193 

Climate change projections 194 

We used these predictive models to parameterize simulations of how future climate change 195 

might affect OS, OD and AOX. Using the UK Climate Projections 2009 web interface 196 

(UKCP09; Murphy et al. 2009), we simulated 1000 projections of future seasonal weather 197 
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conditions for the 25 km2 area around Wytham Woods into the years 2070-2099. UKCP09 198 

projections were based on the IPCCs SRES low emissions (i.e., the B1 scenario, which 199 

predicts 500 to 600 ppm CO2, a 1.1 to 2.9 °C rise in mean temperature and no significant 200 

trends in precipitation) and high emissions scenarios (i.e., the A1F1 scenario, which predicts 201 

550 to 750 ppm CO2, a 2.4 to 6.4 °C rise in mean temperature and no significant trends in 202 

precipitation; Nakicenovic and Swart, 2005). We note that although more recent 203 

‘representative concentration pathway’ (RCP) models have since replaced the SRES 204 

emissions scenarios (Moss et al. 2010), recent analyses have demonstrated how the 205 

UKCP09 projections still provide reliable projections (Sexton et al. 2016). Using each of 206 

these weather projections and our predictive models, we estimated 1000 potential biomarker 207 

responses using the predict() function in the R environment (v. 3.3.2; R Core Team 2016). 208 

We acknowledge, however, that although trends in responses can be considered as robust, 209 

both our parameter estimates and climate predictions are subject to modeling error and 210 

therefore interpretations should be made cautiously. 211 

  212 
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Results 213 

Short-term observational studies of natural weather effects are always hostage to fortune, 214 

because substantial variation may not occur within the study period, nevertheless our study 215 

years included sufficient weather deviation from long-term normative values to show 216 

meaningful effects on biomarkers (Table 2).  217 

 218 

Analysis of seasonal weather effects on OS, OD and AOX 219 

Yearly cub survival rate 220 

Summary statistics for weather conditions are presented in Table 2 and for biomarkers in 221 

Table 3. The three study years included substantially different cub cohort sizes with different 222 

survival rates. In 2012, a total of 41 cubs were caught, of which 20 (49%) survived to 223 

adulthood. This was despite spring and summer weather both being considerably wetter than 224 

the long-term mean (1.45× and 2.15× greater rainfall respectively). Subsequently, in 2013, 225 

the winter was cold, with twice the normal number of frost days (50 vs the long-term mean of 226 

26), followed by a cool spring (only 0.75× the long-term mean) and a drought summer that 227 

received only half of the normal rainfall. In this more challenging year, year only 28 cubs 228 

were caught, with 12 (43%) surviving to adulthood. In 2014, the winter was mild (just 5 frost 229 

days) and very wet, with twice the normal rainfall and although 60 cubs were caught, only 22 230 

(37%) survived to adulthood, despite normative weather conditions throughout the rest of that 231 

year.  232 

Antioxidant capacity – AOX  233 

Of the modeled parameters, PCtemp, season, age-class*PCrain, PCrain*season, age-234 

class*PCrain*season and age-class* PCtemp*Season all contributed significantly to variation 235 
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in AOX (Table 4). Sex had no distinct effect on AOX, or indeed on any other biomarker. For 236 

cubs, AOX was lower when spring rainfall deviated from the long-term mean in either 237 

direction and with cooler temperatures (Figure 1); conditions also associated with less inter-238 

individual variation. This occurred although we observed only modest spring rainfall 239 

variation from the long-term mean (with 2012 wettest, at 1.45× the rainfall of long-term 240 

mean), with no substantial variation in spring temperature. Cub AOX showed no significant 241 

associations with summer weather (see top row of Figure 1), despite very wet summer 242 

conditions in 2012 (2.15× the mean rainfall) and drought in 2013 (only 0.2× the mean 243 

rainfall); albeit that the least inter-individual variability occurred when rainfall was abnormal.  244 

Our dataset included minimal autumn weather variation, with only 2012 deviating 245 

substantially from normative rainfall (1.41× the rainfall of long-term mean) and no 246 

substantial temperature deviation; these conditions were associated with relatively low 247 

autumnal cub AOX (see Table 3).  248 

Cub AOX was lower than adult AOX in the spring, except in the dry, cold spring of 249 

2013, when cub levels almost equaled adult levels. For prime adults, spring AOX was lowest 250 

in 2013, which had normal rainfall and cooler temperatures; whereas for old adults AOX was 251 

lower in spring 2012, with wetter conditions (1.45× the mean rainfall). Prime- and old- adults 252 

exhibited similar AOX in summer, being lower with drier, warmer conditions. In autumn 253 

AOX was lower with cooler, wetter conditions – although linked to greater inter-individual 254 

variation.  255 

Antioxidant enzymes – peroxidase (PER)  256 

Of the modelled parameters, age-class, PCrain and PCtemp, age-class*season, PCrain* 257 

season and the 3-way interaction PCtemp*age-class*season contributed significantly to 258 

variation in peroxidase (Table 4). In spring, cub and adult PER tended to be lower with less 259 
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rainfall (Figure 1, second row). Inter-individual variability (Table 3) was greatest for cubs in 260 

the wettest year (2012); whereas inter-individual variability for both adult age-classes tended 261 

to be lower with drier conditions. 262 

 In summer, cubs exhibited similar mean PER levels between years, but with higher 263 

inter-individual variation with intermediate rainfall; whereas PER was highest for adults in 264 

the wettest summer (2012; 2.15× the mean rainfall). Low inter-individual variation was also 265 

associated with lower PER. In autumn, cubs and adults again showed similar responses, with 266 

lower PER occurring with slightly wetter, cooler conditions. For adults, high inter-individual 267 

variability was again associated with high PER.  268 

Oxidative damage – lipid peroxidation (LP)  269 

Of the modeled parameters, age-class, PCrain, PCtemp, season, PCrain*season, 270 

PCtemp*season contributed significantly to variation in LP (Table 4). Spring LP levels were 271 

higher for cubs than for adults. LP was highest in 2014, which had the warmest minimum 272 

temperature among study years (1.12× warmer than the long-term mean; 1.07× warmer than 273 

the long-term mean maximum temperature), but with typical rainfall (Figure 1, third row). 274 

Peak inter-individual variability also occurred with these conditions. In summer, cub LP was 275 

higher with intermediate rainfall. Similar cub LP levels continued into the autumn, although 276 

greater inter-individual variability was apparent in 2012 across a larger annual cohort, when 277 

rainfall was 1.41× greater than the long-term mean and temperatures were cool.  278 

Prime- and old- adults exhibited similar LP associations with weather. Spring LP 279 

levels were higher with intermediate rainfall and higher temperature. In summer, LP was 280 

again higher with intermediate rainfall, which also associated with the greatest inter-281 
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individual variability. In autumn, inter-individual variability was substantial under all 282 

conditions.  283 

Resistance to oxidative stress – Red Blood Cell half-life (RBC ½-life)  284 

Of the modeled parameters, age class, Age class*PCrain, Age class*PCtemp, Age 285 

class*Season and Age class*PCrain*season contributed significantly to variation in RBC ½-286 

life (Table 4). There was little absolute difference between cub and adult RBC ½-life. For 287 

cubs, spring RBC ½-life was shortest in the coldest year (2012), whereas warmer 288 

temperatures were associated with greater inter-individual variability (Figure 1, fourth row). 289 

In summer, RBC ½-life was shortest for cubs in the driest year (2013), but with no clear 290 

effects in the other two years. In autumn, high RBC ½-life variation precluded any clear 291 

associations from being detected.  292 

 Adults showed no clear pattern with seasonal weather, although prime aged adults 293 

had higher RBC ½-life variability than old individuals.  294 

 295 

Analysis of winter weather COE on OS and antioxidant defences in the following spring 296 

There was substantial potential for COE during our study period: we observed variation in the 297 

number of winter frost days, from 50 in 2013 to just 5 in 2014 (2012 equaled the long-term 298 

average of 26) and winter rainfall in 2014 was twice the long-term average (other years had 299 

normal winter rainfall).  All biomarker responses, below, refer to Figure 2 and Table 5. 300 

Total antioxidant capacity - AOX 301 

Winter PCrain and winter PCtemp had significant effects on badger AOX responses in the 302 

following spring, with 95% CIs not overlapping zero. The negative loadings on PCtemp and 303 
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PCrain indicate that warmer, frost free and drier weather conditions over the winter were 304 

associated with higher spring AOX and greater capacity to mitigate ROS.  305 

Peroxidase – antioxidant enzymes 306 

Only winter PCrain had a significant effect on PER, with 95% CIs not overlapping zero, with 307 

wetter winters associated with higher spring PER and thus greater capacity to cope with ROS.  308 

Oxidative damage - lipid peroxidation 309 

Only winter PCtemp had a significant explanatory relationship with LP, with 95% CIs not 310 

overlapping zero, with milder winters associated with higher oxidative damage.  311 

Resistance to oxidative stress – RBC ½-life 312 

Only PCtemp had a significant effect on RBC resistance to OS, with 95% CIs not 313 

overlapping zero, with longer spring RBC ½-life following warmer winter weather.  314 

 315 

Climate change projections 316 

Although there were differences in predicted responses between the high and low emissions 317 

scenarios, projected climate change scenarios through the 21st Century appeared likely to 318 

drive changes in badgers’ oxidative stress and antioxidant capacity. From our predictive 319 

models, we found that the generally warmer conditions predicted under both scenarios could 320 

promote substantial increases in lipid peroxidation in badgers (Figure 3d-f). Despite the 321 

potential increase in oxidative damage however, badger antioxidant coping capacity may also 322 

increase, as evidenced by the trends for greater AOX (Figure 3a-c) and longer RBC ½-life 323 

(Figure 3j-l), though with multi-directional responses in peroxidase concentrations (Figure 324 

3a-c). Notably, apart from the summer RBC ½-life responses, all projected biomarker 325 
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responses fell within the range of values quantified in the present study, albeit with different 326 

distributions. This suggests that these responses are physiologically possible. 327 

Discussion  328 

In support of our primary prediction, we identified a range of associations between weather 329 

conditions likely to stress wild badger biology and biomarkers of OS, OD and AOX. Notably, 330 

the values for LP (indicating OD) that we observed (2.33 µM; SD 0.87 for males; 2.33 µM; 331 

SD 0.76 for females) were higher than typical values for domestic dogs (1.70µM for male; 332 

1.5µM for females: Todorova et al. 2005), as a lab animal analogue. This is congruent with 333 

expectations that wild-living animals will experience higher oxidative stress than domestic 334 

animals. We also emphasize that we used metrics of both enzymatic and non-enzymatic 335 

antioxidant capacity here, where many previous studies have focused solely on antioxidant 336 

defences, erroneously assuming that this will indicate levels of OS. Absolute antioxidant 337 

levels are, in fact, only informative if the levels of ROS or OD are also known (see 338 

Monaghan et al. 2009). 339 

Curiously, with regard to our second prediction, we found no evidence that 340 

individuals in good or bad body condition (BCI) showed different levels of OD or antioxidant 341 

defences (but see Montes et al. 2011). This suggests that any OS / OD arising was not due to 342 

weather-related effects of food supply, expenditure and starvation per se, but likely due to 343 

repeated short-term cycles of weight / loss gain, where cubs are known to have a lower 344 

tolerance for enduring and remediating periods of food scarcity (Newman et al. 2011; 345 

Macdonald and Johnson 2015). Sex also had no distinct effect on OS biomarkers, implying 346 

that the different life-history stressors affecting males and females caused similar levels of 347 

OS / OD.  348 
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 In support of our third prediction, carry-over effects (COE) were apparent at the 349 

ensuing spring trapping, where our study coincided with critical variation in winter 350 

temperature, linked to substantial differences in number of frost days and double typical 351 

precipitation in the mild year (2014; Table 2). Drier and milder winter conditions were 352 

associated with higher LP, but also with longer RBC ½-life and higher AOX in the following 353 

spring. In the UK, badgers do not truly hibernate (i.e., conserve protein catabolism, see 354 

Newman et al. 2011), but undergo varying extents of torpor, dropping their activity levels and 355 

basal metabolic rate with colder winter conditions (Noonan et al. 2014; McClune et al. 2015). 356 

Exercise induces OS (Alessio 1993; Radak et al. 2008), conversely reduced activity and 357 

metabolic rate during torpor tends to lessen the risk of oxidative damage (Heldmaier and Ruf 358 

1992). Reinforcing this proposition, wetter, less frosty winters (promoting earthworm 359 

availability) were associated with higher PER – plausibly linked to ROS generated by the 360 

metabolic cost of warmer conditions promoting higher activity rates (Noonan et al. 2014) at a 361 

time of year when thermoregulation (De Quiroga 1992) is expensive and food is scarce.  362 

Our forth prediction, that badger cubs would be more susceptible to OS than adults, 363 

was largely supported. This was especially so when they were very young in the spring, when 364 

cubs were more prone to OD and suffered greater LP than adults; although both cubs and 365 

adults had similar RBC ½-life. Due to the scaling of metabolic rate to mass (McClune et al. 366 

2015), cubs, initially in the 1.7 -3.0 kg range in early spring (vs adults ranging 7-9kg; 367 

Macdonald et al. 2015), would be expected to generate proportionately more ROS than 368 

adults. Badger cubs grow rapidly in the spring and faster juvenile growth-rate can confer an 369 

early survival advantage in badgers (Newman et al. 2001) and generally (Taborsky 2006; 370 

Dmitriew 2011). Growth rate and growth hormones are generally linked to higher ROS 371 

production, via metabolic activity (Holzenberger et al. 2003), potentially exacerbating OD, as 372 

seen in birds (e.g., Alonso-Alvarez et al. 2007; Kim et al. 2011). 373 
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Nevertheless, cubs concurrently also exhibited generally lower AOX than adults – 374 

except in 2013, which was particularly cool and dry, when they matched adults. Potentially 375 

badger cubs can only attempt to mitigate the ROS generated by growth when rainfall is not 376 

too extreme – although they still fail to do so effectively because LP was consistently high 377 

under these weather conditions. PER was similar between age-classes, except in the spring of 378 

2012, when cubs had lower PER than adults. Cub RBC ½-life was shortest with the 379 

abnormally dry conditions of 2013. Drought impacts badger foraging success (Macdonald 380 

and Newman 2002) and exacerbates the morbidity caused by pandemic coccidiosis in badger 381 

cubs (Newman et al. 2001) – potentially further exacerbating OS.  382 

Higher cub LP actually arose with intermediate rainfall and warmer temperatures, but 383 

higher rainfall resulted in more inter-individual variation. Similarly, wetter spring conditions 384 

were associated with longer cub RBC ½-life, i.e., less OD; although longer adult RBC ½-life 385 

was associated with warmer conditions and intermediate rainfall, more congruent with 386 

weather effects on adult survival rate. High mean badger cub OS was also linked to greater 387 

inter-individual variation, although variability decreased as seasons progressed within each 388 

year, possibly due to selective mortality of mal-adapted individuals (Penteriani et al. 2009; 389 

Gaillard and Yoccoz, 2003). 390 

Interestingly, however, and contrary to our initial position, weather effects on OS / 391 

OD biomarkers largely did not correspond with the negative quadratic weather effects on cub 392 

mortality that Nouvellet et al. (2013) found in a more extensive and purely actuarial study of 393 

this same population. Conforming with our fifth prediction, however, adult biomarkers were 394 

more in accord with adult survival dynamics, with wetter (and slightly cooler) conditions 395 

associated with higher AOX and PER, indicative of a greater ability to resist OS. This implies 396 

that any mechanistic relationship between drivers of OS /OD and absolute mortality 397 

outcomes in badgers is also influenced by other co-factors, at least for cubs.  398 
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 In terms of cohort effects, our sixth prediction; minimum inter-individual variation 399 

was observed in the harshest year (2013), which supported that ‘poor-quality’ cubs may have 400 

died before the earliest opportunity to sample them in the spring (post-weaning). Conversely, 401 

in milder years, when higher numbers of cubs survived until the spring trapping (2012 and 402 

especially 2014), there was considerable inter-individual variation in OS measurements, but 403 

along a continuum rather than according to distinct phenotypes – refuting prediction seven. 404 

This suggests that individuals may follow trade-off strategies, investing differentially in 405 

mitigating OS /OD versus other developmental traits, which might have a selective advantage 406 

only under stressful weather conditions (Metcalfe and Alonso-Alvarez 2010; Bilham et al. 407 

2013). For instance, in this same badger population Annavi et al. (2014) found advantages of 408 

paternal heterozygosity on cub survival rates only in years with benign weather; in harsh 409 

years all individuals were similarly prone to mortality, irrespective of subtle genetic 410 

advantages.  411 

 412 

Conclusions 413 

Identifying that distinct OS, OD and AOX biomarker responses were associated with 414 

prevailing and carry-over weather conditions, led us to consider how these biomarkers might 415 

be affected by climate change projections for the UK (Murphy et al. 2009). While our models 416 

suggest future conditions could lead to substantial increases in lipid peroxidation, badgers 417 

may well have the adaptability to cope with warmer conditions because simultaneously their 418 

antioxidant coping capacity was also predicted to increase. Indeed, this would be congruent 419 

with the European badgers’ wide bioclimatic niche, spread from the Mediterranean to the 420 

Arctic (Johnson et al. 2002).  421 
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Schloss et al. (2012) predict that, for the western hemisphere, an average of 9.2% of 422 

mammals at any given location will be unable to respond to climate change adequately and in 423 

some regions up to 39% may be unable to keep pace. Berteaux et al. (2006) identify a lack of 424 

understanding on proximate causality as one of the main constraints when projecting the 425 

effects of climate change on mammals. Therefore, identifying mechanistic eco-physiological 426 

associations with climate change is broadly relevant (e.g., Helmuth et al. 2005), beyond 427 

badgers and may well provide an additional tool with which to assess climate change 428 

vulnerabilities.   429 
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 Table 1 Summary of the individuals sampled in the study. Age was known from year of 614 

birth, and individuals were classified as Cub <1 yr; prime adult 1-5 yrs; old adult ≥ 6yrs. 615 

Year Season Age class n 

2012 Spring Cub 31 

  

Prime adult 31 

  

Old adult 25 

 

Summer Cub 16 

  

Prime adult 37 

  

Old adult 30 

 

Autumn Cub 14 

  

Prime adult 40 

  

Old adult 29 

2013 Spring Cub 23 

  

Prime adult 28 

  

Old adult 21 

 

Summer Cub 9 

  

Prime adult 30 

  

Old adult 24 

 

Autumn Cub 2 

  

Prime adult 25 

  

Old adult 19 

2014 Spring Cub 34 

  

Prime adult 17 

  

Old adult 19 

 

Summer Cub 16 

  

Prime adult 24 

    Old adult 20 

 616 

  617 
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Table 2 Mean weather conditions in Oxford, UK for the three study years. Averages for the 618 

last 30 years are also presented. 619 

Rainfall (mm/month) 30 year mean  2012 2013 2014 

Winter 55.78 42.37 69.73 111.57 

Spring 51.26 74.27 55.87 59.90 

Summer 52.25 112.43 27.43 56.00 

Autumn 62.88 88.36 60.77 - 

Min temperature (°C)     

Winter 2.18 2.63 1.80 3.77 

Spring 5.57 5.97 3.60 6.27 

Summer 12.25 12.60 12.40 12.33 

Autumn 7.75 6.83 7.87  

Max temperature (°C)     

Winter 7.85 8.8 7.07 9.67 

Spring 13.94 14.77 11.70 14.97 

Summer 21.72 20.40 22.63 22.40 

Autumn 14.88 13.97 15.07 - 

Frost (total days)     

Winter 26 26 50 5 

 620 

  621 
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Table 3 Summary statistics of badger (Meles meles) biomarkers in Wytham Woods, UK 622 

throughout the study period. Values presented are means ± standard deviations. Total 623 

antioxidant capacity (AOX) was measured as non-enzymatic plasma antioxidant capacity (in 624 

µM) and enzymatic antioxidant capacity via peroxidase (PER; in mU/ml). As biomarkers of 625 

OD, lipid peroxidation (LP) was measured as malondialdehyde accumulation in plasma (in 626 

µM) and red blood cell ½-life (RBC ½-life) was calculated as the time it took 50% of RBCs 627 

to lyse in the presence of an oxidant (in min). For sample sizes see Table 1. 628 

Season Biomarker Age class 2012 2013 2014 

Spring AOX Cub 160.73 ± 66.02 114.98 ± 57.60  206.71 ± 104.02 

  

Prime Adult 209.2 ± 69.16 121.83 ± 42.80 176.72 ± 82.68 

  

Old Adult 228.96 ± 52.05 127.95 ± 36.11  242.81 ± 105.12 

 

PER Cub 0.45 ± 0.10 0.29 ± 0.05 0.22 ± 0.08 

  

Prime Adult  0.53 ± 0.15 0.34 ± 0.08  0.33 ± 0.13 

  

Old Adult 0.51 ± 0.07 0.33 ± 0.06  0.29 ± 0.12 

 

LP Cub  18.65 ± 14.32 12.36 ± 5.40 59.54 ± 40.82 

  

Prime Adult 8.52 ± 3.55 5.59 ± 2.70  26.43 ± 23.30 

  

Old Adult 8.27 ± 3.88 5.53 ± 2.29  41.11 ± 26.59 

 

RBC ½-life  Cub  71.49 ± 12.62 61.74 ± 5.74  69.88 ± 11.40 

  

Prime Adult 71.24 ± 8.86 62.79 ± 8.89  88.18 ± 17.82 

    Old Adult 66.3 ± 5.03 60.59 ± 4.72  72.25 ± 11.65 

Summer AOX Cub 250.19 ± 61.41 220.02 ± 62.45  226.89 ± 122.70 

  

Prime Adult 255.26 ± 62.91 132.27 ± 84.11 234.58 ± 68.10 

  

Old Adult 266.98 ± 55.39 79.66 ± 55.06 246.92 ± 63.79 

 

PER Cub 0.29 ± 0.07 0.48 ± 0.10 0.4 ± 0.15 

  

Prime Adult 0.46 ± 0.22 0.41 ± 0.07 0.46 ± 0.20 

  

Old Adult 0.71 ± 0.18 0.39 ± 0.06 0.35 ± 0.09 

 

LP Cub 7.94 ± 4.00 9.63 ± 2.74 14.5 ± 4.82 

  

Prime Adult 6.31 ± 2.14 6.26 ± 1.35 12.22 ± 5.02 

  

Old Adult 4.76 ± 3.03 6.4 ± 2.03 11.15 ± 5.43 

 

RBC ½-life  Cub 65.17 ± 6.19 58.91 ± 2.79 64.85 ± 6.56 

  

Prime Adult 64.89 ± 4.41 60.37 ± 4.64 68.86 ± 4.97 

  

Old Adult 65.07 ± 5.16 62.42 ± 5.87 68.42 ± 4.85 

Autumn AOX Cub 169.04 ± 20.43 495.74 ± 21.41 - 

  

Prime Adult 172.79 ± 23.06 452.9 ± 158.30 - 

  

Old Adult 173.01 ± 27.04 475.16 ± 183.21 - 

 

PER Cub 0.23 ± 0.03 0.55 ± 0.14 - 

  

Prime Adult 0.24 ± 0.11 0.51 ± 0.09 - 

  

Old Adult 0.23 ± 0.04 0.48 ± 0.12 - 

 

LP Cub 12.7 ± 5.97 17.09 ± 9.20 - 

  

Prime Adult 9.15 ± 8.77 30.36 ± 14.52 - 

  

Old Adult 8.35 ± 3.10 26.28 ± 12.88 - 

 

RBC ½-life  Cub  78.92 ± 10.14  78.21 ± 20.21 - 

  

Prime Adult 74.69 ± 5.42 68.87 ± 8.67 - 

    Old Adult 73.6 ± 6.95 68.4 ± 9.40 - 
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Table 4 Model averaging for the variables predictive of variation in badger (Meles meles) biomarkers in Wytham Woods, UK. The model-629 

averaged estimates (Ө), 95% confidence intervals (CI), and relative influence (RI) of each parameter are presented. Biomarkers include total 630 

antioxidant capacity (AOX), measured as non-enzymatic plasma antioxidant capacity (in µM); enzymatic antioxidant capacity, measured as 631 

peroxidase concentration (PER; in mU/ml); lipid peroxidation (LP), measured as malondialdehyde accumulation in plasma (in µM) and red 632 

blood cell ½-life (RBC ½-life), calculated as the time it took 50% of RBCs to lyze in the presence of an oxidant (in min). Asterisks denote 633 

coefficient estimates that differed significantly from zero (based on 95% confidence intervals). 634 

   AOX    LP    PER   RBC ½ life 

 Category level RI Ө Lower 

95% CI 

Upper 

95% CI 

RI Ө Lower 

95% CI 

Upper 

95% CI 

RI Ө Lower 

95% CI 

Upper 

95% CI 

RI Ө Lower 

95% CI 

Upper 

95% CI 

Intercept -  266.80* 197.28 336.40  4.08 3.76 4.40  0.33 0.23 0.42  72.67* 65.42 79.92 

Age class Cub 

Prime 

Old 

0.93 - 

-14.94 

67.18 

- 

-107.21 

-25.83 

- 

77.34 

160.20 

1.00 - 

-0.44* 

-0.53* 

- 

-0.71 

-0.80 

- 

-1.56 

-2.72 

1.00 - 

0.15* 

0.10 

- 

0.03 

-0.01 

- 

0.27 

0.22 

1.00 - 

21.25* 

0.18 

- 

11.70 

-9.43 

- 

30.80 

9.78 

BCI - 1.00 -8.48 -2.55 237.97 0.43 0.10 -1.05 1.25 0.32 -0.09 -0.43 0.25 0.97 18.73 -7.36 44.81 

PCrain - 0.99 -72.45 -147.05 4.156 1.00 -1.39* -1.69 -1.10 1.00 0.32* 0.23 0.40 1.00 6.78 -1.12 14.67 

PCtemp - 1.00 101.80* 4.89 154.69 1.00 1.46* 1.24 1.69 0.99 -0.10* -0.17 -0.03 1.00 5.32 -0.12 10.77 

Season Spring 

Summer 

Autumn 

1.00 - 

-87.67 

190.70* 

- 

-1.59 

1.05 

- 

1419.24 

276.81 

1.00 - 

-18.79* 

-0.04 

- 

-23.11 

-0.44 

- 

-14.47 

0.35 

1.00 - 

0.70 

0.09 

- 

-0.49 

-0.04 

- 

1.88 

0.22 

1.00 - 

-116.20 

3.54 

- 

-271.92 

-5.35 

- 

39.05 

12.43 

Sex Female 

Male 

1.00 - 

-8.54 

- 

-21.32 

- 

6.15 

0.09 - 

-0.01 

- 

-0.05 

- 

0.04 

0.01 - 

> -0.01 

- 

> -0.01 

- 

< 0.01 

0.46 - 

0.282 

- 

-0.95 

- 

1.46 

Age class*PCrain Cub*PCrain 

Prime*PCrain 

Old*PCrain 

1.00 - 

170.30* 

65.45 

- 

54.31 

-49.53 

- 

286.36 

180.43 

0.03 - 

< 0.01 

> -0.01 

- 

-0.05 

-0.06 

- 

0.05 

0.06 

0.17 - 

0.01 

0.02 

- 

-0.04 

-0.09 

- 

0.06 

0.13 

1.00 - 

-29.99* 

-16.11* 

- 

-41.94 

-27.83 

- 

-18.04 

-4.29 

Age class*PCtemp Cub*PCtemp 

Prime*PCtemp 

1.00 - 

-71.04 

- 

-151.27 

- 

9.19 

0.07 - 

0.01 

- 

-0.10 

- 

0.12 

0.85 - 

0.04 

- 

-0.04 

- 

0.12 

1.00 - 

21.85* 

- 

13.60 

- 

30.11 
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Old*PCtemp 6.56 -74.69 87.80 0.02 -0.14 0.17 0.03 -0.05 0.11 7.23 -1.12 15.56 

Age class*Season Cub/Spring 

Prime*summer 

Old*Summer 

Prime*Autumn 

Old*Autumn 

1.00 - 

-1520.00 

-2749.00* 

-52.78 

-80.53 

- 

-

3388.72 

-

4658.70 

-147.02 

-176.04 

- 

348.10 

-838.51 

41.47 

14.98 

0.17 - 

0.06 

0.01 

0.10 

0.09 

- 

-0.49 

-0.63 

-0.45 

-0.40 

- 

0.60 

0.65 

0.66 

0.57 

0.97 - 

0.43 

1.49* 

-0.23 

-0.26 

- 

-0.13 

0.20 

-0.57 

-0.56 

- 

0.99 

2.79 

0.10 

0.11 

1.00 - 

-109.40 

-37.50 

-18.11* 

-5.68 

- 

-301.73 

-233.82 

-27.92 

-15.58 

- 

83.023 

158.83 

-8.30 

4.19 

PCrain*Season Spring/PCrain 

Summer*PCrain 

Autumn*PCrain 

1.00 - 

85.33 

-186.4* 

- 

-79.30 

-328.62 

- 

249.96 

-44.08 

1.00 - 

2.89* 

1.04* 

- 

2.39 

0.61 

- 

3.40 

1.47 

1.00 - 

-0.43* 

-0.67* 

- 

-0.56 

-0.84 

- 

-0.30 

-0.50 

1.00 - 

4.46 

-2.36 

- 

-12.52 

-17.00 

- 

21.45 

12.26 

PCtemp*Season Spring/PCtemp 

Summer*PCtemp 

Autumn*PCtemp 

1.00 - 

-67.28 

0.00 

- 

-942.82 

-0.036 

- 

808.25 

0.04 

1.00 - 

8.44* 

< 0.01 

- 

5.93 

> -0.01 

- 

10.95 

< 0.01 

0.97 - 

-0.26 

< 0.01 

- 

-0.96 

> -0.01 

- 

0.44 

< 0.01 

1.00 - 

54.05 

<0.01 

- 

-37.09 

> -0.01 

- 

144.17 

< 0.01 

Age class* PCrain*Season Cub/Spring/PCrain 

Prime*Summer*PCrain 

Old*Summer*PCrain 

Prime*Autumn*PCrain 

Old*Autumn*PCrain 

1.00 - 

2.86 

227.00* 

-161.5 

-33.86 

- 

-210.27 

10.51 

-345.22 

-217.53 

- 

215.98 

443.59 

22.21 

149.80 

< 

0.01 

- 

< 0.01 

< 0.01 

< 0.01 

< 0.01 

- 

-0.03 

-0.05 

-0.03 

-0.03 

- 

0.03 

0.05 

0.03 

0.03 

<0.01 - 

<0.01 

<0.01 

<0.01 

<0.01 

- 

-0.01 

-0.01 

-0.01 

-0.01 

- 

0.01 

0.01 

0.01 

0.01 

1.00 - 

37.40* 

18.45 

42.66* 

22.27* 

- 

15.42 

-3.83 

23.69 

3.40 

- 

59.38 

40.74 

61.63 

41.14 

Age class* PCtemp*Season Cub/Spring/PCtemp 

Prime*Summer*PCtemp 

Old*Summer*PCtemp 

Prime*Autumn*PCtemp 

Old*Autumn*PCtemp 

1.00 - 

951.80 

1536.00* 

0.01 

0.01 

- 

-135.63 

423.64 

-4.31 

-3.88 

- 

2039.27 

2648.38 

4.33 

3.89 

0.02 - 

-0.01 

> -0.01 

0.02 

0.02 

- 

-0.29 

-0.34 

-0.37 

-0.34 

- 

0.27 

0.33 

0.41 

0.38 

0.85 - 

-0.35 

-0.89* 

-0.15 

-0.16 

- 

-0.73 

-1.67 

-0.54 

-0.56 

- 

0.03 

-0.11 

0.23 

0.23 

1.00 - 

29.63 

15.00 

-0.02 

-0.01 

- 

-82.26 

-99.26 

-2.26 

-1.50 

- 

141.52 

129.27 

2.22 

1.48 
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Table 5 Model averaging for the variables predictive of carry-over-effects in badger (Meles meles) biomarkers in Wytham Woods, UK. The 636 

model-averaged estimates (Ө), 95% confidence intervals (CI), and relative influence (RI) of each parameter are presented. Biomarkers include 637 

total antioxidant capacity (AOX), measured as non-enzymatic plasma antioxidant capacity (in µM); enzymatic antioxidant capacity, measured as 638 

peroxidase concentration (PER; in mU/ml); lipid peroxidation (LP), measured as malondialdehyde accumulation in plasma (in µM) and red 639 

blood cell ½-life (RBC ½-life), calculated as the time it took 50% of RBCs to lyze in the presence of an oxidant (in min). Asterisks denote 640 

coefficient estimates that differed significantly from zero (based on 95% confidence intervals)  641 

 642 

  AOX  LP  PER   RBC ½ life  

 RI Ө Lower 

95% CI 

Upper 

95% CI 

RI Ө Lower 

95% CI 

Upper 

95% CI 

RI Ө Lower 

95% CI 

Upper 

95% CI 

RI Ө Lower 

95% CI 

Upper 

95% CI 

Intercept  214.68  41.36 387.99  0.61  1.21 3.61  0.08  0.26 0.59  63.88* 35.42 92.34 

BCI 1.00 -68.62  -639.50 502.26 0.68 1.99  -4.53 3.35 0.30 0.26  -0.60 0.44 0.98 13.40 -78.38 105.17 

PCrain 1.00 38.38  25.44 51.31 0.77 0.08  -0.27 0.03 1.00 0.01  0.09 0.13 0.44 -0.14 -1.40 1.12 

PCtemp 1.00 -20.00  -26.67 -13.34 1.00 0.03  -0.42 -0.33 0.01 <0.01 0.01 <0.01 1.00 -3.77* -4.83 -2.71 

Sex – Male 0.95 -13.49  -38.43 11.45 0.27 0.01  -0.25 0.15 0.07 0.01  -0.02 0.02 0.66 0.80 -2.77 4.37 

 643 

  644 
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Figure Legends 645 

Figure 1. Scatter-plots depicting the relationships between biomarkers measured in badgers (Meles meles) in Wytham Woods, UK and 646 

weather variables across all age categories. The left-hand panels depict the biomarkers as a function of seasonal mean weather metrics in the 647 

reduced dimension space of PCrain; in the right-hand panels weather metrics are reduced according to the dimension space of PCtemp. Cubs <1 648 

yr; prime adults 1-5 yr; old adults ≥ 6.  649 

 650 

Figure 2. Scatter-plots depicting the carry-over effect (COE) relationships between biomarkers measured in badgers (Meles meles) in 651 

Wytham Woods, UK in the spring and the previous winter’s weather variables. X-axis depicts extent PCrain and PCtemp axis loadings. All 652 

animals here are classed as adult. 653 

 654 

Figure 3 Density estimates of projected responses of badger (Meles meles) biomarkers in Wytham Woods, UK to future climate projections 655 

under a low (IPCC SRES B1), and high emissions scenario (IPCC SRES A1F1) in relation to the present distributions. The top row (panels a; d; g; and 656 

j) depicts spring responses, the middle row (panels b; e; h; and k) summer responses; and the bottom row (panels c; f; I; and l) autumn responses. We note that 657 

although the negative Red blood cell (RBC) half-lives in panel k) are clearly impossible, these were included to depict the substantial negative trend in this 658 

biomarker predicted under the high emissions scenario. 659 
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This Supplementary Information: 1 

The effects of weather conditions on oxidative stress, oxidative damage and 2 

antioxidant capacity in a wild-living mammal, the European badger (Meles meles) 3 

 4 

Blood sampling 5 

Blood samples were collected from spring 2012 until August 2014, between 8.30 and 11 am, to 6 

minimise circadian variations. Individuals were marked with a temporary livestock marker dye to 7 

identify recaptures within trapping sessions and thus avoid unnecessary re-sampling. 8 

For oxidative stress assays, approximately 12 ml of blood (never more than 5% estimated badger 9 

blood volume by weight) were collected from the jugular vein in heparinised vacutainers (BD 10 

Vacutainer® systems, Plymouth, UK) using 21’G x 1½” needles.  11 

Blood was used in 2 different ways depending on assay: 12 

1) Plasma: Full blood was centrifuged for 10 min at 1500 g (4ºC). The plasma was aliquoted and 13 

frozen on site immediately at -20ºC, before being transferred to -80ºC at the end of each week 14 

of trapping and stored until further analysis. 15 

2) Red blood cells: After removal of the plasma, 10 µl of red blood cells (obtained by 16 

centrifugation) were diluted in 740 µl of ‘KRL mammal assay buffer’ and stored under the 17 

same conditions as (1) until further analysis. 18 

Oxidative stress assays 19 

For all assays, samples were run in duplicate, with appropriate negative and positive controls, and 20 

measurements performed in a 96 well plate spectrophotometer (FLUOstar OMEGA 415-0435, 21 

BMG LABTECH GmbH, Germany). For all absorbance assays, Grainer flat bottomed 96 well 22 

plates were used (Greiner Bio-One Ltd., UK).  23 

Online Materials: Appendix 1
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AOX: Total antioxidant capacity Assay 24 

Following Costantini et al. (2007) and Isaksson et al. (2011), we measured total antioxidant 25 

capacity (AOX) as total, non-enzymatic, circulating antioxidants. We used a commercial kit (STA-26 

360, Cell Biolabs, San Diego, USA) where antioxidants reduce Cu2+ to Cu+, which reacts with 27 

neocuproine to form an orange chromogen measurable at 490 nm. 20 µl of plasma was added to 28 

180 µl of reaction buffer in a 96 well plate. Blank absorbance was measured at 490 nm and 50 µl 29 

of copper ion reagent was added. The plate was incubated on an orbital shaker for 5 min, before the 30 

addition of 50 µl of stop solution. Final absorbance was read at 490 nm. To calculate AOX as uric 31 

acid equivalent units, blank values were subtracted from the final reading and values were 32 

compared to a uric acid standard curve.  33 

Peroxidase (PER) Assay 34 

We measured PER using a fluorometric assay kit (STA-344, Cell Biolabs, San Diego), where 35 

hydrogen peroxide reacts with ADHP in the presence of horseradish peroxidase (HRP) to produce 36 

resorufin, which was measured fluorometrically. 50 µl of plasma was added to 50 µl of reaction 37 

mix containing 100 µM of ADHP and H2O2 (2 mM; for peroxidase assay) in the wells of a black 38 

96 well plate (Nunc, Sigma-Aldrich, Dorset, UK). The plate was then incubated in the dark for 30 39 

min before reading the fluorescence (excitation 530 nm, emission 590 nm). PER content was then 40 

calculated by comparison to a standard curve.  41 

Lipid Peroxidation (LP): Malonaldehyde (MDA) Assay 42 

We measured LP as the amount of MDA present in the sample using a commercial thiobarbituic 43 

acid reactive species (TBARS) assay kit (STA-330, Cell Biolabs, San Diego, USA). The principle 44 

of the assay is that two molecules of thiobarbituric acid react with one molecule of MDA (from the 45 

sample) to produce a pink molecule with a peak absorbance at 532 nm. Butylated hydroxytoluene 46 

(BHT) was then added to samples in a final concentration of 0.05 % to avoid further lipid 47 

peroxidation during the assay (Pikul, Leszczynski and Kummerow 1983). Following the 48 

manufacturer’s protocol for hydrophilic samples, 100 µl of plasma, or standard, was incubated 49 
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with 100 µl of sodium dodecyl sulphate (SDS) lysis solution for 5 minutes. 250 µl of TBA reagent 50 

(pH adjusted to 3.5) was then added and incubated at 95ºC for 60 min. Samples were centrifuged 51 

for 15 min at 3000 g, and the supernatant (300 µl) was re-suspended in 300 µl of N-butanol. This 52 

was vortexed for 2 min, followed by centrifugation at 30,000 g for 5 min. The butanol fractions 53 

were transferred to a 96 well plate and absorbance was measured at 532 nm. Concentrations of 54 

MDA were then calculated by comparisons to a standard curve. 55 

RBC ½ -life: Red blood cell killing assay 56 

We used the a red blood cell (RBC) killing assay, to assess the capacity of RBCs to resist lysis in 57 

the presence of a strong in vitro oxidant (see Bize et al. 2008). 135 µl of 150 mM AAPH (2,2′-58 

Azobis(2-methylpropionamidine) dihydrochloride (Sigma-Aldrich, Dorset, UK) was added to 90 59 

µl of diluted RBC. Absorbance was measured spectrophotometerically at 450 nm, every 2.5 min 60 

for 3 h. The plate was maintained at 37 ºC for the entirety of the reaction, and the machine was 61 

programmed to shake the plate before every measurement to avoid RBC sedimentation. RBC ½ -62 

life was calculated by plotting absorbance values against time, and these data were smoothed using 63 

a quadratic curve (Fox and Weisberg 2010). Half-life was calculated as the time for the initial 64 

absorbance to halve. Mean values were calculated from sample duplicates. Assays were undertaken 65 

within 48 h of blood sample collection.  66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 
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Table S1 Summary of the first two principal components for the seasonal weather analysis. 74 

Variable PC1 PC2 

Eigenvalue 1.972 1.016 

% of variance explained 65.730 33.870 

Cumulative % of variance explained 65.730 99.600 

   

   

Minimum temperature 0.703 0.135 

Maximum temperature 0.709 -0.059 

Rainfall -0.054 0.989 

 75 

 76 

 77 

 78 

 79 

 80 

 81 

 82 

 83 

 84 

 85 

 86 
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Table S2 Summary of the first two principal components of winter weather data for carry-over-87 

effect analyses. 88 

Variable PC1 PC2 

Eigenvalue 3.25 0.75 

% of variance explained 81.24 18.76 

Cumulative % of variance explained 81.24 100 

   

   

Days of frost 0.549 -0.184 

Minimum temperature -0.527  0.364   

Maximum temperature -0.556  0.025 

Rainfall -0.335 -0.913 

 89 

 90 



Appendix 2

Details on the Principal Component Analysis (PCA) of weather
data, and assessment of autocorrelation

In this appendix we first provide details on the PCA used to generate the predictive
weather variables used in our models as a means of accounting for the collinearity in
these data. We then provide details on the assessment of autocorrelation in the fixed
effects in these models.

Principal Component Analysis (PCA) of weather data

The mean seasonal weather data used in our analyses were subject to collinearity. To
account for this we used principal component analyses (PCA), conducted with scaling,
to transform these data into linearly uncorrelated variables. To do this we applied
the prcomp() function from the R environment to our data on minimum temperature;
maximum temperature; and rainfall, with the argument scale = TRUE. The resulting
factor loadings for temperature were the most influential contributors to the PC1 axis
(see Table A2.1). Loadings for temperature variables were positive, thus higher values of
PC1 correspond to higher temperatures. PC2 was dominated by the rainfall data, where
this had a positive loading, such that higher values correspond to wetter conditions. These
components are henceforth referred to as PCtemp and PCrain in the main text. These
two components were retained as the linearly uncorrelated predictive weather variables
in our models.

Table A2.1: Summary of the first two principal components of a PCA on seasonal weather
data in Wytham Woods, UK, over the study period.

Variable PC1 PC2

Eigenvalue 1.972 1.016
% of variance explained 65.73 33.87
Cumulative % of variance explained 65.73 99.6

Minimum temperature 0.703 0.135
Maximum temperature 0.709 -0.059
Rainfall -0.054 0.989

For our analyses on cary over effects (COE) of winter weather on spring biomarkers
of oxidative stress/damage, we conducted a similar PCA, but restricted this to winter
weather data. Here, these data also included the variable ‘days of frost’. PC1 factor
loadings (PCtemp) included maximum temperature, minimum temperature and number
of days of frost over the winter, such that higher values of PC1 correspond to lower
temperatures and more frost (Table A2.2). PC2 (PCrain) had a negative rainfall loading
where higher values correspond to drier weather.

1
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Table A2.2: Summary of the first two principal components of a PCA on winter weather
data in Wytham Woods, UK, over the study period.

Variable PC1 PC2

Eigenvalue 3.25 0.75
% of variance explained 81.24 18.76
Cumulative % of variance explained 81.24 100

Days of frost 0.549 -0.184
Minimum temperature -0.527 0.364
Maximum temperature -0.556 0.025
Rainfall -0.335 -0.913

Assessment of autocorrelation

In addition to issues of collinearity, the fixed effects used in this study (i.e., age class;
body condition; and minimum/maximum temperature; and rainfall) are variables that are
subject to temporal autocorrelation. If sampled finely enough, any significant autocorrelation
in these data would violate the assumption of independence of the linear mixed-effects
models used in our analyses. To test for this we quantified autocorrelation functions
(ACFs) for time series of the means and variances of these data and assessed whether
there was any significant autocorrelation. We did this by first quantifying the means
and variances of each of these parameters at each time step using the mean() and var()

functions in the R environment. We note that because we used mean seasonal weather
metrics, there was no variance in these data, precluding analysis. Using the ts() function
we then converted each of these datasets into a time series and then used the acf()

function to quantify the ACF of each time series (see Figures A2.1 and A2.2). Finally,
we assessed each ACF for significant autocorrelation. Significance was determined by
autocorrelation that exceeded ±2/

√

(T ) where T is the length of the time series (here 8
seasons long).

Notably, because of the coarse temporal scale at which these data were measured,
there was no significant autocorrelation in any of the fixed effects used in our analyses.

2
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Figure A2.1: Time lagged autocorrelation in the means of the fixed effects used in our
linear models. In all panels the blue dashed line depicts the significance threshold.
Notably, there was no significant autocorrelation in any of these data.
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Figure A2.2: Time lagged autocorrelation in the variance of the fixed effects used in
our linear models. In all panels the blue dashed line depicts the significance threshold.
Notably, there was no significant autocorrelation in any of these data.
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Unfortunately, to summarise one biomarker more specifically rather imposes that we should do so 

for all, and this approach instantly takes us over word limits. There is rather a lot to squeeze into the 

Abstract (age, sex, weather, biomarker effect, COE, etc) and so it does inevitable have to skim the 

discoveries made rather superficially, given that we also have to provide a conceptual framework for 

our work. We hope you think the Abstract is adequate. 

 

L68 suggest to change to energetics needs instead of caloric needs 

Done 

 

L80 -96, I think that these are all predictions and not hypotheses because you indicate a direction for 

the response.  

OK changed to ‘we predict’. 
 

L182 should be "in following the spring" in the following spring?  

I think there is perhaps a misunderstanding here. We do indeed mean in the following (ie 

subsequent) spring that follows after the winter – ie the carry over effect of the winter is observed in 

the ‘following spring’. Nothing here ‘follows the spring’. I hope this is clear. 
 

L 186 Is the model weight is the same as the Akaike weight (w) for you calculated using the R 

package MuMIn (v. 1.15.6; Barton 2016)?  

Correct. For complete clarity we have added: “…Akaike (or model) weight (w) for each model…” 

 

Response to Reviewer Comments



 

 

L 249-255: The information is descriptive. Where it is shown (no reference in the text to table or 

figure). Where these changes significant? 

Antioxidant enzymes - peroxidase (PER) - no reference in the text to table or figure and indicate if 

the trend in PER (L259) was significant or not. 

The model was significant, as described under the sub-heading ‘Antioxidant Capacity – AOX’, with 
statistical values given in Table 4, as stated in the text.  

Apologies for oversight on PER, we have added (Table 4) and reference to (Figure 1) for each 

biomarker [all stats outputs are shown in Table 4].  

 

L262- 267: Where it is shown (Table 4?), please refer to the stat.  Where the high and low inter-

individual variation is shown and how do you define high and low?  

The Stat is given in Table 4. Inter-individual variation are depicted by the ± standard deviations 

provided in Table 3 (now specified in the text). 

Note, we do not define inter-individual variation in absolute terms, and therefore not as either ‘high’ 
or ‘low’. Rather we examine inter-individual variation in relative terms, talking about circumstances 

where it is ‘higher’ or ‘lower’.   
 

L278-282: Where it is shown (Table 4?), please refer to the stat. 

Yes – we were remiss in not repeating that each model statistic is presented in Table 4. We have 

added this throughout, as necessary. 

 

L284-290: Where it is shown? 

Table 4 – added. 

 

L291-292 Delete 

Respectfully, we would like to retain the RBC ½-life results for adults, even though there were no 

clear patterns, for consistency of reporting relative to other biomarker sections.  

 

L305-313, Pool the sections to one section and refer to the relevant table or figure. 

Respectfully, we would like to retain this sub-heading format for consistency and easy comparison to 

the preceding section.  

We had mentioned that Figure 2 and Table 5 pertained to these COE results under first subheading 

(AOX), and hoped that it would be clear that the same Figure and Table depicted results from other 

biomarkers (so as not to burden the text). Acknowledging your concern about short segments here, 

rather than add (Figure 2; Table 5) to each biomarker, instead we have specified that all biomarker 

statistics refer to Figure 2 and Table 5 at the start of this section (end of “Analysis of COE…” section). 
 

L348 In support of our third hypothesis, carry-over effects: add (COE) 



 

 

Actually, there seems little point in specifying an acronym and then not using it, and so we 

considered just using COE here; however, because this is the first mention in the Discussion we 

thought it best to write it out in full, but that repeating the already-defined acronym could be 

redundant. Nevertheless, for total clarity, we have added it as you suggest. 

ALSO- with respect to your recommendation in the Into that we should phrase our ‘hypotheses’ as 
‘predictions’, we have also changed phrasing to ‘predictions’ in the Discussion, for consistency. 

 

 

L383 inter-individual variation, see my previous comment. 

See accompanying response. Depicted by the Standard Deviation in Table 3, but we think this is now 

clear from revision to the Results section, without adding table cross-references to the Discussion. 

 

L398, this is your sixth hypothesis: "cub may experience more severe OS/OD effects in years with 

more extreme weather" 

Correct, our 6th ‘prediction’, as stated. 
 

Notice that you may mix between hypothesis and predictions in the discussion. In line 368 you 

mention hypothesis "third hypothesis" and in line 363 you mention prediction. See also my earlier 

comment. 

Noted, and we accept that indeed strictly we do phrase these as predictions, and we have amended 

our phrasing accordingly.     

 

Table 4 and 5: All measured biomarkers should appear in the top line (first line of the table). Right 

now, they are missing from both tables.   

 

Well spotted – thank you. For reasons I don’t understanding, these headings had changed to white 
font on a white background – now restored to default black. 

 

 

 

Reviewer 3 Comments 

 

 

 

My major concerns have been carefully addressed by the authors. The manuscript has been greatly 

improved. 

We are sincerely grateful for your input and for your approval of our revision, which has benefited 

enormously from your advice. 

 



 

 

 

 


