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Referat: 
Adipositas und die mit ihr assoziierten Erkrankungen bleiben vor allem in den Industrie-
Ländern, eine nicht zu unterschätzende gesellschaftliche und ökonomische Belastung. 
In den letzten Jahren konnte gezeigt werden, dass verschiedene Adipozyten- und 
Hepatozyten-sezernierte Proteine Mediatoren von Insulinresistenz darstellen. Kürzlich 
wurde Chemerin als ein neues proinflammatorisches Hepatoadipokin vorgestellt, welches 
die Adipogenese reguliert und potenziell zur Induktion von Insulinresistenz führt.  
Bislang existierten nur wenige Studien über die Auswirkungen von Sport-Intervention 
und gewichtsreduktiven Maßnahmen auf die Chemerinkonzentration und -expression. 
  
In der vorliegenden Arbeit wurden die Unterschiede im zirkulierenden Chemerin in den 
verschiedenen Stadien von Adipositas und Insulinresistenz untersucht. Weiterhin wurde 
die Expression von Chemerin in subkutanem und viszeralem Fettgewebe und die 
Expression von CMKLR1 bei Adipositas analysiert. In zusätzlichen Untersuchungen 
wurden die Auswirkungen von drei verschiedenen Interventionen auf das zirkulierende 
Chemerin untersucht, hierfür folgten 60 Patienten einem Trainingsprogramm für 12 
Wochen, 19 Patienten führten 6 Monate lang eine hypokalorische Diät und 32 Patienten 
unterzogen sich einer bariatrischen chirurgischen Operation.  
In den vorgelegten Studien konnte gezeigt werden, dass Chemerin mRNA im Fettgewebe 
von Patienten mit Typ 2 Diabetes im Vergleich zu normal Glukose-toleranten Probanden 
(NGT) signifikant erhöht exprimiert ist und mit zirkulierendem Chemerin korreliert. 
Auch korreliert sie mit dem Body-Mass Index (BMI), dem Körperfettanteil und CRP 
sowie HOMA-IR (Index für Insulinresistenz) und der Glukoseaufnahmerate in 
euglykämischen – hyperinsulinämischen Clamp Studien. Chemerin ist zudem bei 
Adipositas signifikant erhöht. Ein Unterschied in der Expression von Chemerin zwischen 
subkutanem und viszeralem Fettgewebe zeigte sich lediglich bei Typ 2 Diabetiker.  
Alle Interventionen führten zu einem Abfall des zirkulierenden Chemerins. Hier konnte 
erstmalig gezeigt werden, dass eine hypokalorische Diät zu einer signifikanten Abnahme 
des zirkulierenden Chemerins führt. Bariatrische Chirurgie bewirkte nach einem Jahr 
einen signifikanten Abfall der Chemerinexpression in viszeralem und subkutanem 
Fettgewebe. Sowohl Insulinresistenz als auch Inflammation scheinen BMI-unabhängige 
Prädiktoren für erhöhtes zirkulierendes Chemerin zu sein.  
Die vorgestellten Daten weisen darauf hin, dass Chemerin möglicherweise eine wichtige 
Rolle in der Initiierung der Inflammation und Dysfunktion im Fettgewebe spielt und 
somit zur Entwicklung der assoziierten kardiovaskulären Begleiterkrankungen beitragen 
könnte. Auch scheint eine Verminderung der Chemerinexpression im Fettgewebe 
basierend auf Gewichtsreduktion zu einer Verbesserung der Glukosetoleranz zu führen.  
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1. Introduction 

1.1 The Skinny on Fat: Obesity and associated diseases, a threat on 
the rise 
 
Obesity, derived from the Latin term “Obesus” meaning plump, is characterized by an 

accumulation of excess fat tissue within the body. Obesity is a prevalent condition, which 

is often stigmatized. The health risk of obesity is largely a consequence of the diseases 

associated with it within the frame of the metabolic syndrome, such as diabetes, 

hypertension, hyperlipidemia, and cardiac disease. Moreover, the rising risk of type 2 

diabetes is the result of the growing obesity epidemic and the increase in mean fat mass 

in the individual.1 

Obesity has been shown to increase the risk of cardiovascular disease and premature 

death. Adipose tissue releases a large number of mediators, which influence body weight 

homeostasis as well as insulin sensitivity and lead to alterations in lipids, blood pressure, 

coagulation, fibrinolysis and inflammation.2  

 

Although there is a strong relationship between obesity and insulin resistance, about 15% 

of obese individuals seem to be protected against diabetes at higher weight, and therefore 

might not reduce their risk for diabetes or coronary heart disease through weight loss.3  

 

Recent research has shown that independent of total fat mass, increased visceral fat 

accumulation and adipose tissue dysfunction are associated with insulin resistant obesity, 

suggesting that mechanisms such as inflammation and adipokine release, related to 

changes in adipose tissue biology, determine the pathological metabolic consequences in 

patients with obesity beyond positive caloric balance.  

 

White adipose tissue (WAT), long being considered a mere storage compartment for 

excess fat, has been the subject of intensive research, abolishing every doubt that it 

constitutes indeed a major active endocrine secretory organ, in addition to playing a 

metabolic key role.  

 

WAT secretes a number of signaling peptides with different biological functions among 

them: hormone-like adipokines such as leptin, resistin, adiponectin, apelin, visfatin, 

hepcidine, omentin, vaspin, adipsin and angiopoietin; inflammatory cytokines among 

such as interferons like IFNβ and IFNγ, interleukins such as IL-1 and IL-6, growth 

factors such as TNFα and chemokines such as IL-8, IL-10, RANTES and MCP1. Anti-

inflammatory factors are also secreted by the WAT including the anti-inflammatory 

factors IL-4, IL-10, TGFβ, receptor antagonist IL-1Ra, soluble receptors IL-1RII, sTNFR 

and also sIL-1R.4 

To make matters all the more complex, the different fat depots in the body play distinct 
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roles, secreting different sets of adipokines.5  

The secretion or serum level of many adipokines is profoundly affected by the degree of 

obesity.6 

 

Various adipocyte-secreted factors have been described to affect insulin sensitivity 

profoundly and may potentially link obesity, insulin resistance and cardiovascular 

disease. Among those, adiponectin for example appears as an insulin-sensitizing 

adipocytokine, whereas TNFα, IL-6, resistin, PAI-1 and others induce insulin resistance. 

 

Increased macrophage infiltration into omental adipose tissue appears to be the most 

prominent characteristic, which distinguishes adipose tissue of insulin-resistant from 

insulin-sensitive obese individuals. It has also been shown that the primary signal causing 

adipose tissue dysfunction and insulin-resistant obesity can be linked to the size of the 

adipocyte, as hypertrophic adipocytes are more insulin resistant and they produce a 

largely pro-inflammatory adipokine pattern. In other words, adipose tissue dysfunction 

characterized by increased visceral fat accumulation, increased adipocyte size and higher 

macrophage infiltration into omental fat is associated with insulin-resistant morbid 

obesity, making it a main contributor to a proinflammatory, atherogenic and diabetogenic 

state.7  

 

Growing evidence suggests that obesity, insulin resistance and type 2 diabetes (T2D) are 

accompanied by a state of subclinical inflammation8 leading to the hypothesis that, in 

obesity, dysregulation in the secretion pattern of adipokines may serve as a pathogenic 

link between obesity, T2D and cardiovascular disease. Therefore, identifying the 

molecular targets of these adipokines will allow us to break this link and be able to 

develop treatment strategies for obesity and its related and/or derived diseases.9 

 

1.2 Chemerin 
 
Five years ago, Goralski et al identified the chemoattractant protein chemerin as a novel 

adipokine, which plays a key role in the regulation of adipogenesis and adipocyte 

metabolism.10 

Up until then, chemerin was identified as the major serum agonist for chemokine-like 

receptor (CMKLR) and the sole known ligand for CMKLR1. CMKL-Receptors are 

localized on plasmacytoid dendritic cells, which are key producers of type 1 IFNs, which 

in return can directly block viral replication and stimulate the adaptive immune response, 

giving chemerin a key role in the regulation of the adaptive immune response.  

Chemerin expression was found to mark early psoriatic skin lesions and to correlate with 

plasmacytoid dendritic cell recruitment.11, 12 

Circulating levels of chemerin were found to be upregulated in psoriasis13, 14, 15and to 

normalize after successful treatment.16 Since then, we witnessed an explosion in clinical 
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studies and research investigating chemerin in the frame of a multitude of diseases 

ranging from obesity, diabetes, the metabolic syndrome, to psoriasis and Crohn’s disease.  

1.2.1 Chemerin Expression and secretion 
Chemerin was found to be widely expressed and circulates in plasma in an inactive 

state.17 In humans the estimated concentration of active chemerin in plasma and serum, 

respectively, was 3.0 and 4.4 nm.18 

Chemerin was been found to be abundant in ascites fluid from ovarian cancer patients 

and synovial fluids from patients with arthritis.19  

It is most abundant in the liver and placenta, followed by WAT and an intermediate 

expression in the ovary. 

Its receptor (CMKLR1) on the other hand was expressed highest in white adipose tissue, 

followed by intermediate levels in the lung, heart and placenta. In white adipose tissue, 

chemerin was predominantly expressed by preadipocytes and mature adipocytes, whereas 

CMKLR1 was expressed in both adipocytes and stromal-vascular cells.20 

 

Fig.1. Chemerin and CMKLR1 mRNA are highly expressed in white adipose tissue 

 
Adapted from Goralski K B et al. J. Biol. Chem. 2007;282:28175-28188 
 
 
Chemerin is synthesized as a secreted precursor, prochemerin, a 18-kDa inactive pro-

protein, but converted into a full agonist of the chemerin receptor (chemerinR) by 

proteolytic removal of the last six amino acids of the C-terminal portion of the protein, 

generating the 16-kDa active chemerin.21 Prochemerin itself is the result of cleavage of 
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preprochemerin, a 163 amino acid protein with an N-terminal signal sequence (20 amino 

acid (aa)), which is cleaved prior to the secretion of prochemerin (Chem-163).22 

Only active chemerin was found to be involved in the recruitment of antigen presenting 

cells (APC), which suggested its presence and activation in early inflammatory stages. 

That said, serine proteases factor XIIa and plasmin of the coagulation and fibrinolytic 

cascades, elastase and cathepsin G released from activated neutrophil granules and mast 

cell tryptase were shown to be all potent activators of chemerin through cleavage of the 

labile carboxyl terminus at any of several different sites.23  All in all though, chemerin 

seems to be prevalent in a variety of different isoforms, which differ in length and 

biological activity, and can in turn be processed into more or less biologically active 

isoforms. Some isoforms can also act as antagonists in the presence of highly active 

chemerin isoforms suggesting that the ratio between active and inactive isoforms is 

crucial in determining the bioactivity of chemerin. In vivo differential patterns of 

chemerin isoforms production in multiple bodily fluids also indicate that complex 

prochemerin processing also occurs in vivo.24 

 

Fig.2. Sources of chemerin isoforms 

Biological source Identified isoforms 
Ascites Chem-157 
Cerebrospinal fluid Chem-158 
Hemofiltrate Chem-154 
Plasma Chem-155,-157,-158,-163 
Synovial fluid Chem-158 
Rourke, J L, H J Dranse, and C J Sinal. “Towards an Integrative Approach to 
Understanding the Role of Chemerin in Human Health and Disease.” Obesity Reviews: 

An Official Journal of the International Association for the Study of Obesity 14, no. 3 
(March 2013): 245–262. doi:10.1111/obr.12009. 
 

1.2.2 Chemerin signaling and receptors 
Chemerin was found to bind the G protein-coupled receptor (GPCR) chemokine like 

Receptor 1 CKMLR1 (also known as ChemR23) and was later found to bind also other 

ligands, like the chemokine (CC motif) receptor like 2 (CCRL2), as well as G protein-

coupled receptor 1 (GPR1). ChemerinR, was isolated and found to be an orphan GPCR 

that had been referred to as GPCR-DEZ in mice, and ChemR23 in humans.25 The 

expression of these receptors seems to differ among tissues. Even though chemerin binds 

CKMLR1 and GPR1 with the same affinity26, very little is known about its function 

especially in mammals and virtually nothing is known regarding the signal transduction 

pathways coupled to it.  

On the other hand, the activation of chemerin with CMKLR1 was observed to induce 

migration of macrophages and dendritic cells (DCs) in vitro and was found to be 

prevalent therefore with a proinflammatory state. However, in vivo studies using 

CMKLR-deficient mice suggest the recruitment of tolerogenic plasmacytoid DCs and 
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thereby possibly an anti-inflammatory function. Chemerin/CMKLR1 interaction was 

further shown to promote adipogenesis and angiogenesis27 as well as adipogenesis and 

osteoblastogenesis of bone marrow-derived precursor cells.28 CMKLR1 was also found 

to bind the anti-inflammatory lipid mediator E1, suggesting that CMKLR1 is a 

multifunctional receptor.   

CCLR2 also binds with many chemokines (CCL5 and CCL19) but on the other hand, it 

does not signal but constitutively recycles, changing the concentrations of chemokines in 

the tissue and therefore influencing subsequent immune responses. CCRL2 was found to 

bind chemerin and increase local chemerin concentration to efficiently present it to 

CMKLR1 on nearby cells, providing a link between CCRL2 and CMKLR1.29 Further 

studies elucidating the overlapping and differential signaling pathways of different 

chemerin receptors as well as unique activation or inactivation by specific chemerin 

isoforms and the effects on the systems biology are still missing.  

1.2.3 Chemerin and inflammation 
The generation of active chemerin by neutrophils, its presence in inflammatory tissues 

and its chemotactic properties on APCs strongly supported the hypothesis that this novel 

mediator constitutes an important link between innate and adaptive immunity and plays a 

central role in the initiation of immune responses.  

An elevation in circulating chemerin levels was associated with chronic inflammation in 

several diseases such as Crohn’s disease, ulcerative colitis 30  as well as chronic 

pancreatitis, polycystic ovarian syndrome and liver disease.31  

The increase in chemerin serum levels correlated positively with circulating 

inflammatory markers such as CRP, TNFα and IL-632 as well as proinflammatory 

adipokines such as resistin.33 Consistent with these results, in vitro studies demonstrate 

enhanced secretion of proinflammatory cytokines such as IL-6, IL-8, TNFα and IL1-ß.34. 

All these findings suggest that chemerin produced in response to inflammation may also 

contribute to the inflammatory response through enhanced secretion of proinflammatory 

molecules in the sense of a positive feedback and through modulation of immune cell 

recruitment as mentioned above. 

Other studies suggest an anti-inflammatory role for chemerin either through its effects on 

non-leukocyte cells such as endothelial cells by reducing monocyte adhesion or through a 

group of anti-inflammatory mediators termed resolvins.35 That said, other research groups 

have failed to verify these results. It remains to be fully investigated whether chemerin 

plays a protective or pathologic role in inflammatory disease states, although evidence is 

leaning more toward the former than the latter. Moreover, chemerin most likely plays a 

different role depending on which populations of cells are activated in circumstances of 

disease. 
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1.2.4 Role of chemerin in metabolism  

1.2.4.1	  Chemerin	  in	  fat	  tissue	  and	  obesity	  

As mentioned earlier, high-level expression of chemerin and its cognate receptor 

CMKLR1 were found in mouse and human adipocytes. Chemerin and CMKLR1 were 

expressed to a similar degree in epididymal, perirenal and mesenteric (visceral), as well 

as inguinal (subcutaneous) white adipose tissue depots and only at minimal levels in 

brown fat tissue. This lead early on to the hypothesis, that white adipose tissue is both a 

source and target of chemerin. 

Being also a secreted protein, the hypothesis that chemerin was an adipokine was soon to 

follow. 

Serum chemerin concentrations are elevated in obese animal models such as leptin 

deficient (ob/ob) and leptin receptor deficient (db/db) mice, obese rats but also in diet 

induced obesity.36 

 

Many population based studies have shown that chemerin was elevated in young and 

adult obese patients and correlated positively with body mass index (BMI) and measures 

of central obesity such as waist to hip ratio (WHR) and visceral adipose tissue mass.37 

An interesting observation was that fat explants from obese subjects secreted more 

chemerin that those isolated from lean individuals and this secretion correlated with 

increased BMI, WHR as well as fat cell volume suggesting that although many organs 

most notably the liver produced chemerin, white adipose tissue makes the greatest 

contribution.38 

 

In considering the development of obesity, adipose tissue expansion is characterized by 

many processes like the enlargement of preexisting adipocytes (hypertrophy) as well as 

an increase in adipocyte numbers (hyperplasia).  

Hyperplasia is caused by the increased differentiation and proliferation of preadipocytes 

into adipocytes. Goralski et al were able to show that chemerin produced in cultured 3T3-

L1 adipocytes triggered CMKLR1 signaling in adipocytes and other cell types and 

stimulated chemotaxis of CMKLR1-expressing cells 39 . Chemerin levels increased 

dramatically with adipocyte differentiation and adenoviral small hairpin RNA targeted 

knockdown of chemerin or CMKLR1 expression lead to an impaired differentiation of 

3T3-L1 cells into adipocytes and reduced the expression of adipocyte genes involved in 

glucose and lipid homeostasis altering metabolic functions in mature adipocytes and 

leading to the conclusion that chemerin is a adipose-derived signaling molecule that 

regulates adipogenesis and adipocyte metabolism via its own receptor.40 

 

Consistent with these results, the loss of CMKLR1 in vivo is associated with reduced 

obesity and a resistance to diet induced obesity41. 
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In order for hyperplasia and hypertrophy to occur, increased blood flow and dilatation of 

existing capillary networks are required to supply the increasing needs in expanding 

adipose tissue. Chemerin treatment was shown to activate angiogenesis cascades and 

induce proliferation and migration of human endothelial cells.42 

Adiposity is characterized by increased secretion of adipokines such as TNFα and IL-6 

and the recruitment and infiltration of WAT with macrophages, T-cells and NK cells as 

well as immature dendritic cells. Consistent with the established role of chemerin as a 

chemoattractant adipokine, elevated serum chemerin concentrations were shown to 

correlate with a greater percentage of NK cells as well as immune active CMKLR1-

exhibiting cells in WAT. CMKLR1 knockout mice showed a reduced macrophage 

infiltration of WAT.43  

Chemerin levels appear to be closely linked to adipose tissue, CRP expression and WAT 

expansion as well as subclinical inflammation linking chemerin to the development of 

obesity itself and associated metabolic diseases as will be discussed below. 

 

1.2.4.2 Chemerin levels in T2D and Metabolic Syndrome (MetS)  

There is ample evidence suggesting the influence of chemerin on glucose tolerance 

especially in mice. The data from these studies seem to suggest that both reduction and 

augmentation of chemerin signaling may cause impaired glucose tolerance possibly 

through impaired glucose sensitive insulin secretion by possible regulation of ß-

pancreatic cells.44 

In euglycemic hyperinsulinemic clamps, chemerin knockout (KO) mice and CKMLR1-

KO mice show normal insulin sensitivity. Interestingly chemerin KO mice exhibit 

impaired insulin signaling in fat tissue and enhanced insulin signaling in the liver.45 

Experiments with human skeletal cells are consistent with a role for chemerin signaling 

in inducing insulin resistance and negatively modulating glucose uptake.46 

 

The cluster of metabolic disturbances displayed in the metabolic syndrome including 

impaired glucose homeostasis, high blood pressure as well as central obesity and elevated 

lipoproteins are among the most prevalent comorbidities in obesity.  

Some studies suggests that circulating and adipose tissue expressed chemerin are 

independent markers for the MetS and predictive for MetS severity.47 

Strong correlations with age and gender were observed due to higher chemerin levels in 

females compared with males and older compared with younger individuals. Plasma 

chemerin levels were not significantly different between the normal glucose tolerant 

(NGT) and T2D groups. After adjusting for age and gender, chemerin levels were 

significantly associated with measures of body fat (BMI, fat mass, weight, and WHR) 

and metabolic syndrome-related phenotypes (fasting glucose, fasting insulin, plasma 

triglycerides, and blood pressure) in NGT subjects. After further adjustment for BMI, 
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plasma chemerin levels were still independently associated with metabolic syndrome-

related phenotypes, but not measures of insulin sensitivity or glucose homeostasis.48  

The regulatory mechanisms supporting the relationship between chemerin and the 

development of T2D as well as metabolic syndrome are yet to be elucidated. It will be 

very interesting to know how inflammation contributes to the development of the 

metabolic syndrome and whether chemerin acts as a molecular link between the presence 

of these perturbations and the risk for T2D or as a mere indicator for severity. 

 

In this study we investigated the differences in chemerin secretion in obese patients and 

patients with insulin resistant and inflammatory states as compared to healthy controls. 

We also investigated the role of subcutaneous and visceral fat tissue expression as well as 

CMKLR1 messenger RNA (mRNA) expression in human obesity. These investigations 

were done in steady states of metabolism. We also investigated the dynamic changes of 

chemerin in 3 different weight loss intervention studies in relationship to markers of 

obesity and insulin sensitivity.  
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2. Material and Methods 

2.1 Study design 
 
The study included 5 cohorts and a total number of 740 individuals. Cohorts 1 and 2 

included individuals for a cross sectional analysis. Cohorts 3, 4 and 5 included patients 

with a predefined intervention.  

In the first cohort we examined chemerin serum concentrations in relation to obesity and 

measures of glucose metabolism (n=468). 

In the second cohort we investigated chemerin mRNA expression in paired omental and 

subcutaneous adipose tissue samples in addition to chemerin serum concentrations 

(n=161). 

In the last 3 cohorts we examined the effects of a 6 months calorie restriction diet (n=19), 

a 12-week intensive exercise intervention (n=60) and bariatric surgery 6 months post 

intervention on circulating chemerin (n=32). 

 

Inclusion criteria: 

(1) Absence of any acute or chronic inflammatory disease as determined by a leukocyte 

count greater than 7.0 × 109 cells/L, CRP greater than 5.0 mg/dL, or clinical signs of 

infection 

(2) Undetectable antibodies against glutamic acid decarboxylase 

(3) No medical history of hypertension, that is, systolic blood pressure was less than 140 

mmHg and diastolic blood pressure was less than 85 mmHg 

(4) No clinical evidence of either cardiovascular or peripheral artery disease 

(5) No thyroid dysfunction 

(6) No alcohol or drug abuse 

(7) No pregnancy 

 

Ethics statement: 

The ethics committee of the University of Leipzig approved all studies and all subjects 

gave written informed consent before taking part in the study. 

2.2. Subjects 

2.2.1. Cohort 1 
Chemerin serum concentrations in relation to measures of obesity and glucose 

metabolism 

 A total of 468 white men (n = 220) and women (n = 248) have been consecutively 

recruited in the context of a study on insulin resistance at the Department of Medicine, 

University of Leipzig, to represent a wide range of obesity, insulin sensitivity, and 

glucose tolerance. The age ranged from 19 to 80 years, and BMI was from 17.1 to 79.1 

kg/m2. The study included 290 patients with type 2 diabetes mellitus (T2D) and 178 NGT 
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controls. From these individuals, we selected 58 age, sex, and BMI matched subjects that 

were divided into subgroups of NGT and T2D.  

 

Table 1.  Anthropometric and metabolic characteristics of Cohort 1. 

 

 NGT  
(n=178) 

 T2D 
(n=190) 

 

 Male 
(n=93) 

Female  
(n=85) 

Male 
(n=127) 

Female 
(n=163) 

Age (Years) 55.5 ± 13 53.8 ± 14 59.8 ± 9 56.7 ± 10 
BMI (kg/m²) 28.4 ± 5.2 29.3 ± 6.5 34.3 ± 6.6 a 35.7 ± 6.1a 
Body fat (%) 22.2 ± 7.1 28.6 ± 12 b 29.1 ± 6.4 a 36.9 ± 8.9 a,b 
Fasting Plasma 
Glucose (mmol/l) 

5.37 ± 1.4 5.41 ± 1.9 6.93 ± 1.6 a 6.72 ± 1.7 a 

Fasting Plasma 
Insulin (pmol/l) 

72.4 ± 52 81 ± 47 167 ± 143 a 187 ± 155 a 

HbA1c (%) 5.49 ± 0.4 5.52 ± 0.3 6.49 ± 1.1 a 6.58 ± 0.9 a 
Triglycerides 
(mmol/l) 

1.59 ± 0.9 1.63 ± 1 1.87 ± 1.1 a 1.97 ± 1.1 a 

Total Cholesterol 
(mmol/l) 

4.65 ± 1.2 5.43 ± 1.1 b 4.82 ± 1.1 5.58 ± 1.1 b 

HDL-Cholesterol 
(mmol/l) 

1.2 ± 0.3 1.67 ± 0.6 b 1.15 ± 0.3 1.38 ± 0.4 a,b 

LDL-Cholesterol 
(mmol/l) 

3.26 ± 0.8 3.52 ± 1.1 b 3.42 ± 1  3.49 ± 0.9 

Leptin (pg/ml) 13.8 ± 10 21.4 ± 12 b 17.4 ± 13 26.3 ± 16 b 
Adiponectin 
(pg/ml) 

6.21 ± 1.7 8.9 ± 3.2 b 4.1 ± 2.8  6.9 ±3.7 b 

hsCRP (ng/ml) 0.37 ± 0.2 0.39 ± 0.3 0.45 ± 0.3 0.41 ± 0.4 
a , p<0.05 for patients with type 2 diabetes (T2D) versus normal glucose tolerant individuals (NGT) within 
each gender. b, p<0.05 for difference between males and females within the NGT or T2D group. Data are 
given as mean ± SD. BMI=body mass index, HbA1c=long term blood glucose parameter, HDL=high 
density lipoprotein, LDL=low density lipoprotein, hsCRP= high sensitivity C-reactive protein 

 
Within Cohort 1 significant differences could be found between Typ 2 Diabetics and 

NGT for parameters like BMI, Body fat, Fasting Plasma Glucose, HbA1c, Triglycerides 

and HDL-Cholesterol. 

Within the NGT and Typ 2 Diabetes groups following parameters differed significantly 

between males and females: Body fat, total cholesterol, HDL-Cholesterol, Leptin and 

Adiponectin.  

 

2.2.2. Cohort 2 
Investigation of chemerin mRNA expression in paired Omental (OM) and subcutaneous 

(SC) Tissue and chemerin concentrations  

Adipose tissue chemerin and CMKLR1 mRNA expression was investigated in previously 

described 161 donors of paired OM and SC adipose tissue samples who underwent 
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abdominal surgery for cholecystectomy, weight reduction surgery, abdominal injuries, or 

explorative laparotomy. From these individuals, we selected 32 that could be matched for 

age, sex, and BMI into subgroups of NGT and T2D. All subjects had a stable weight, 

defined as the absence of fluctuations of more than 2% of body weight for at least 3 

months before surgery.  

 

2.2.3. Cohort 3 
Chemerin concentration in response to a 12-week intensive exercise intervention  

Sixty subjects were divided into groups of NGT (n=20; 9 male, 11 female), impaired 

glucose tolerance (IGT; n=20; 9 male, 11 female) and T2D (n=20; 11 male, 9 female) on 

the basis of a 75 g oral glucose tolerance test (OGTT) according to the American 

Diabetes Association criteria.  

• Subjects with NGT were defined by fasting plasma glucose less than 6.0 mmol/L 

and 120-minute plasma glucose less than 7.8 mmol/L.  

• Subjects with IGT were defined by fasting plasma glucose less than 6.0 mmol/L, 

and 120-minute plasma glucose greater than 7.8 mmol/L and less than 11.1 

mmol/L.  

• Subjects with T2D were defined by fasting plasma glucose greater than 7.0 

mmol/L and/or 120-minute OGTT glucose greater than 11.1 mmol/L.  

These 60 individuals were enrolled in 60 minutes of supervised physical training sessions 

3 days per week.  

 

2.2.4. Cohort 4 
Six-month hypocaloric diet study 

Nineteen white obese volunteers (15 female, 4 male) attending the obesity outpatient 

clinic at the Medical Department, University of Leipzig were recruited. The patients 

underwent a clinical assessment including medical history, physical examination, dual x-

ray absorptiometry scan analysis, comorbidity evaluation, as well as nutritional 

interviews performed by a multidisciplinary consultation team. In addition to the general 

exclusion criteria, patients with T2D and volunteers with any concomitant medication 

have been excluded from the study. Weight loss was achieved over a period of 6 months 

by a diet providing a daily energy deficit of 1200 kcal. Diet adherence was monitored by 

daily food intake protocols. 

 

2.2.5. Cohort 5 
Bariatric surgery study 

Thirty-two white obese volunteers (22 female, 10 male) participated in a prospective 

weight loss study before and 12 months after gastric sleeve resection or Roux-en-Y 

gastric bypass. In a subgroup of 14 (10 female, 4 male) patients, OM and SC adipose 
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tissue biopsies were obtained in the context of a 2-step bariatric surgery strategy with 

gastric sleeve resection as the first step and a Roux-en-Y gastric bypass as second-step 

operation. The baseline BMI in this subgroup was 64.1 ± 9.5 kg/m2, and the BMI 12 

months after bariatric surgery was 48.3 ± 7.3 kg/m2. 

	  

2.3. Methods 

2.3.1. Measurement of body fat content, glucose metabolism, and insulin 
sensitivity 
Body mass index was calculated as weight divided by squared height and hip 

circumference was measured over the buttocks. Waist circumference was measured at the 

midpoint between the lower ribs and iliac crest. Percentage body fat was determined by 

dual x-ray absorptiometry.  

In Cohort 2, abdominal visceral and SC fat areas were calculated using computed 

tomography (CT) scans at the level of L4-L5 in the cohort of paired visceral and SC 

adipose tissue donors. Three days before the OGTT, patients documented a high-

carbohydrate diet in diet protocols. The OGTT was performed after an overnight fast with 

75 g standardized glucose solution (Glucodex Solution 75 g; Merieux, Montreal, 

Canada). Venous blood samples were taken at 0, 60, and 120 minutes for measurements 

of plasma glucose concentrations. Insulin sensitivity was assessed using the homeostasis 

model assessment of insulin resistance (HOMA-IR) index or with the euglycemic-

hyperinsulinemic clamp (insulin sensitivity was measured using the euglycemic-

hyperinsulinemic clamp method, with an insulin infusion rate of 20 mIU/kg/min, as 

described49. The glucose disposal rate was defined as the glucose infusion rate during the 

last 30 min of the study. The maximal glucose infusion rate was capped at 99 

µmol/kg/min in insulin-sensitive subjects.) 

 

2.3.2. Analyses of blood samples 
All baseline blood samples were collected between 8:00 am and 10:00 am after an 

overnight fast. Plasma insulin was measured with an enzyme immunometric assay for the 

IMMULITE automated analyzer (Diagnostic Products, Los Angeles, CA).  

Serum high-sensitive CRP was measured by immunonephelometry (Dade-Behring, 

Milan, Italy). Serum total HDL-cholesterol, LDL-cholesterol, triglycerides, free fatty 

acids, total adiponectin (ELISA; Linco, St. Charles, MO), leptin, interleukin-6 (IL-6) 

also. Serum monocyte chemoattractant protein-1 (MCP-1) concentrations were measured 

by immunoassay system (Quantikine human MCP-1 Immunoassay; R & D Systems, 

Minneapolis, MN). 

Serum chemerin was measured by an enzyme-linked immunosorbent assay (Biovendor, 

Heidelberg, Germany). 
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2.3.3. Chemerin and CMKLR1 mRNA Expression Studies 
Human chemerin and CMKLR1 mRNA Expression was measured by qPCR in a 

fluorescent temperature cycler using the TaqMan Assay and Fluorescence was detected 

on an ABI Prism 7000 Sequence detector. (Applied Biosystems, Darmstadt, Germany).  

Total RNA was isolated using TRIzol (Life technologies, Grand Island, NY), and 1 µg 

RNA was then reversed transcribed with standard reagents (Life Technologies).  

From each PCR, 2 µl were amplified in a 26 µl PCR using the Brilliant SYBR Green 

QPCR Core Reagent Kit from Strategene (La Jolla, USA).  

 
Primers Used: 

Gene direction Primers 

Chemerin forward 5’-GGAAGAAACCCGAGTGCAAG-3’ 

reverse 5’-TGATGCAGGCCAGGCATT- 3’ 

CMKLR1 forward 5’-CTCCCAATCCATATCACCTA-3’ 

reverse 5’-GCAGAGGAAGAAGGTAATGA-3’ 

 

qPCR- Protocol: 

Procedure Temperature Time 

Initial Denaturation 95 °C 10 minutes 

 

40 cycles 

95 °C 15 seconds 

60 °C 1 minute 

72 °C 1 minute 

 
SYBR Green fluorescence emissions were monitored after each cycle. Human chemerin 

and CMKLR1 mRNA expression was calculated relative to the mRNA expression of 18s 

ribosomal RNA (rRNA), determined by premixed assay on demand for 18s rRNA 

(Applied Biosystems). Amplification of specific transcripts was confirmed by melting 

curve profiles at the end of each PCR. The specificity of the PCR was further verified by 

subjecting the amplification products to agarose gel electrophoresis.  

 

2.3.4. Histologic analyses and measurement of macrophage count in 
adipose tissue (Cohort 2) 
SC and OM adipose tissue samples were immediately frozen in liquid nitrogen after 

explantation.  

The SC and OM fat samples were fixed at room temperature in 4% formaldehyde and 

embedded in paraffin. Five-micrometer sections were mounted on glass slides, 

deparaffinized in xylol, and stained for CD68 using anti-CD68 monoclonal mouse 

antihuman antibody (Dako, Glostrup, Denmark; close PGM1 M0876, dilution 1:100), 

using standard immunohistochemistry methods. Macrophages were identified in the 
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adipose parenchyma (CD68 within blood vessels were excluded) when cytoplasmic 

staining for CD68 was present along with an identifiable mononuclear nucleus and 

presented as the number per 100 adipocytes (percent macrophages) or as number of cells 

per 12 x 400 fields, as indicated. Counting was performed blinded to sample data and was 

confirmed by a certified pathologist (N.S.-V.).  

  

2.3.5. 12 Week Training (Cohort 3) 
Each training session included 20 minutes of biking or running, 20 minutes of swimming, 

and 20 minutes of warming up/cooling down periods. All subjects completed a graded 

bicycle ergometer test to volitional exhaustion and had maximal oxygen uptake measured 

with an automated open circuit gas analysis system at baseline and after 4 and 12 weeks 

of training. The highest oxygen uptake per minute reached was defined as the maximal 

oxygen uptake, and subjects subsequently trained at their individual submaximal heart 

rate defined as 70% to 80% of the individual maximal heart rate during the bicycle 

ergometer test. At baseline and after 4 and 12 weeks of training (48 hours after the last 

training session), blood samples were obtained in the fasting state; and measurements of 

anthropometric parameters were performed. 

 

2.4. Statistical Analysis 
 Data are shown as mean ± standard deviation (SD) unless stated otherwise. Prior to 

statistical analysis, non-normally distributed parameters were ln-transformed to 

approximate a normal distribution. Differences in mRNA expression between visceral 

and subcutaneous adipose tissue were assessed using the paired Student's t-test. Also 

following statistical tests were used: -Test, and Pearson simple correlation. Linear 

relationships were assessed by least square regression analysis. Statistical Analysis was 

performed using SPSS Version 12.0 (Chicago, IL). P-Values <0.05 were considered to be 

statistically significant.  

3.	  Results	  

 

3.1. Chemerin serum concentration in obesity and T2D 
 
Anthropometric and metabolic characteristics of Cohort 1 are described in the Material 

and Methods – Subjects section.  

Chemerin concentrations were similar between male and female NGTs and T2D 

(Fig.3A). Chemerin serum concentration was significantly higher in individuals with T2D 

as compared to NGT.  In addition, we found significantly increasing chemerin serum 

concentrations from lean to overweight and obese individuals with NGT (Fig. 3B). 
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Fig. 3. Chemerin serum concentration in NGT individuals and patients with T2D 

 
. A, Circulating chemerin in men (n = 93) and women (n = 85) with NGT and in men (n = 127) and women 
(n = 163) with T2D. B, Chemerin serum concentrations in lean (BMI <25 kg/m2; n = 42), overweight (BMI 
>25–29.9 kg/m2; n = 58), and obese (BMI >30 kg/m2; n = 78) NGT subjects. *P < 0.05 adjusted for BMI 
compared with NGT within sexes. #P < 0.05 compared with BMI less than 24.9 kg/m2. §P < 0.05 
compared with BMI 25 to 29.9 kg/m2. 
 

After adjusting for age, sex and BMI, we were still able to confirm that serum 
concentrations of chemerin were significantly higher in T2D vs. NGT (Table 2). 
 
Table 2: Anthropometric and metabolic characteristics of age, gender and BMI 

matched subgroups of NGT and T2D from Cohort 1.  
 

 
NGT  

(n=29) 
T2D  

(n=29) 
Male / Female 17 / 12 17 / 12 
Age (Years) 56.8 ± 1.2 56.9 ± 1.4 
BMI (kg/m²) 32.9 ± 2.1  33.1 ± 1.8 
Body fat (%) 28.4 ± 3.2 28.7 ± 2.9 
Fasting Plasma Glucose (mmol/l) 5.45 ± 0.8 6.23 ± 1.3 a 

Fasting Plasma Insulin (pmol/l) 97 ± 48 124 ± 57 a 

HbA1c (%) 5.56 ± 0.3 6.33 ± 0.5 a 
Triglycerides (mmol/l) 1.64 ± 0.7 1.79 ± 0.9 a 
Total Cholesterol (mmol/l) 5.23 ± 1.4 5.41 ± 1.3 
HDL-Cholesterol (mmol/l) 
Male 
Female 

 
1.24 ± 0.2 
1.62 ± 0.3 

 
1.18 ± 0.3 
1.31 ± 0.2 a 

LDL-Cholesterol (mmol/l) 3.37 ± 0.4 3.41 ± 0.7 
hsCRP (ng/ml) 0.39 ± 0.3 0.42 ± 0.2 
Serum chemerin (ng/ml) 191 ± 27 219 ± 34 a 
a , p<0.05 for patients with type 2 diabetes (T2D) versus normal glucose tolerant individuals (NGT). Data 
are mean ± SD. BMI=bodz mass index , HbA1c=  hemoglobin A1c, HDL= high densitz lipoproteins , 
LDL= low densitz lipoprotein, hsCRP= high sensitivity C-reactive protein 

 
In 740 Patients (representing the baseline chemerin serum concentrations in Cohorts 1-5) 
with a wide range of age, BMI, glucose tolerance and insulin sensitivity, we found 
significant correlations between serum chemerin and age, BMI, percentage body fat, 
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waist and hip circumferences, fasting plasma glucose, HbA1c, fasting plasma insulin, 
insulin sensitivity as determined by HOMA-IR and/or glucose infusion rate (GIR) during 
the steady state of an euglycemic-hyperinsulinemic clamp, triglycerides (TG), C-reactive 
protein (CRP), creatinine, as well as adipocyte size and the number of macrophages in 
visceral adipose tissue. Correlations between chemerin concentrations and age, GIR, 
CRP, creatinine, and parameters of adipose tissue biology remained significant even after 
adjusting for BMI. 

 

3.2. Chemerin and CMKLR1 mRNA expression in OM and SC adipose 
tissue 
 
The 161 patients previously described in Cohort 2 were classified into lean and 

predominately subcutaneously or viscerally obese by means of abdominal visceral and 

subcutaneous fat area measurements using computer tomography (CT) or magnetic 

resonance imaging (MRI) scans at L4-L5 level.  

We then investigated chemerin and CMKLR1 mRNA Expression in both fats deposits in 

parallel with serum chemerin concentrations.  

 

NGT vs. T2D: 

We found chemerin expression of SC and OM fat deposits to be approximately 1.4 fold 

higher in T2Ds compared with NGTs.  

Chemerin expression in SC and OM fat deposits did not differ in NGTs, interestingly, 

chemerin expression was significantly higher in OM fat as compared to SC fat in T2Ds.  

In age-, sex-, and BMI-matched subgroups of NGT (n=16) and T2D (n=16), we 

confirmed significantly higher chemerin mRNA expression in both fat depots in T2Ds. 

 

Lean vs. obese: 

Lean individuals were shown to have significantly lower chemerin expression in OM and 

SC adipose tissue as compared to obese individuals independently of subclass.  

Interestingly, chemerin expression was not different between the 2 obesity subclasses 

(central and subcutaneous).  

Again we were able to show significant correlations of OM and SC chemerin mRNA 

expression with chemerin serum concentrations as well as parameters of obesity, 

glycemic control, insulin sensitivity and inflammation as well as adipose tissue biology.  

 

After adjusting for BMI, OM chemerin mRNA expression still correlated significantly 

with GIR, HOMA-IR, fasting plasma insulin, CRP as well as adipose tissue biology such 

as mean adipocyte size and number of macrophages in adipose tissue. 

On the other hand subcutaneous chemerin mRNA expression only correlated with 

adipocyte size, CRP and TG levels independently of BMI. 
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CMKLR1 Expression 

In contrast to chemerin, CMKLR1 mRNA expression was not significantly different 

between NGTs and T2Ds, nor was it in OM and SC adipose tissue in both NGTs and 

T2Ds. 

CMKLR1 mRNA Expression was not significantly different between lean and obese 

individuals (independently of obesity subclass), nor was it significantly different between 

the 2 subclasses of obesity in OM and SC fat. 

Noteworthy is on the other hand a tendency for lower CMKLR1 mRNA expression in 

OM but not in SC fat depot in obese compared with lean individuals although not 

significant.  

 
Table 3. Univariate correlations (Spearman) between chemerin serum concentration 

and chemerin mRNA expression in OM and SC adipose tissue and measures of 

obesity, insulin sensitivity and parameters of inflammation 

 

Cohorts Serum chemerin 

(baseline) 

OM chemerin mRNA SC chemerin 
mRNA 

 Cohorts 1-5 (n=740) Cohort 2 (n=161) Cohort 2 (n=161) 
 r P value r P value r P value 

Serum chemerin 

 

- - 0,33 <0,1 0,16 0,3 

Age 00,3,33 
(0,21) 

<0.0001 
(<0,1) 

0,21 
(0,04) 

<0,1 (NS) 0,12 
(0,06) 

NS (NS) 

       
Sex   0,03 NS 0,06 NS 
BMI 0,35 (-) <0,0001 

(-) 
0,33 (-) <001 (-) 0,24 (-) <0,01 (-) 

% Body fat 0,39 
(0,05) 

<0,0001 
(NS) 

0,25 
(0,13) 

<0,01 (0,06) 0,22 
(0,1) 

<0,01 
(0,09) 

Hip 

circumference 

0,17 
(0,03) 

0,02 (NS) 0,09 
(0,03) 

NS (NS) 0,06 
(0,04) 

NS (NS) 

Waist 

circumference 

0,21 
(0,05) 

0,003(NS) 0,18 
(0,1) 

0,02 (NS) 0,11 
(0,08) 

NS (NS) 

Fasting plasma 

glucose 

0,19 
(0,07) 

0,007 
(NS) 

0,1 
(0,03) 

NS (NS) 0,07 
(0,05) 

NS (NS) 
 

HbA1c 0,14 
(0,05) 

0,009 
(NS) 

0,2 
(0,08) 

0,02 (NS) 0,1 
(0,04) 

NS (NS) 

Fasting plasma 

insulin 

0,2 (0,09) 0,005 
(NS) 

0,38 
(0,19) 

<0,01(<0,05) 0,24 
(0,08) 

<0,01 
(NS) 

HOMA-IR 0,22 
(0,13) 

0,002 
(0,08) 

0,35 
(0,22) 

<0,01 
(<0,01) 

0,19 
(0,09) 

<0,01 
(NS) 

GIR 0,26 
(0,17) 

0,001 
(0,01) 

0,41 
(0,27) 

<0,01 (0,01) 0,26 
(0,11) 

<0,01 
(NS) 

Triglycerides 0,2 (0,05) 0,006 0,1 NS (NS) 0,31 <0m01 
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(NS) (0,02) (0,19) (<0,01) 
hsCRP 0,38 

(0,25) 
<0,0001 
(<0,01) 

0,38 
(0,26) 

<0,01 
(<0,01) 

0,35 
(0,22) 

<0,01 
(<0,01) 

Creatinine 0,25 
(0,16) 

<0,0001 
(0,02) 

0,04 
(0,02) 

NS (NS) 0,01 
(0,01) 

NS (NS) 

Mean 

adipocyte size 

0,18 
(0,15) 

0,008 
(<0,05) 

0,32 
(0,18) 

<0,01 
(<0,05) 

0,27 
(0,15) 

<0,01 
(<0,5) 

%Macrophages 

in adipose 

tissue 

0,15 
(0,14) 

0,03 
(<0,05) 

0,35 
(0,23) 

<0,01 
(<0,01) 

0,07 
(0,02) 

NS (NS) 

In brackets: r and P value adjusted for BMI. r indicates Spearman correlation 

coefficient; NS, not significant 

 

3.3. Changes in chemerin serum concentrations in response to 
different weight loss interventions 
 

To dissect the relationship between chemerin concentrations and obesity as well as 

markers of insulin sensitivity, we investigated changes in chemerin concentrations in 3 

different interventions as stated above. 

We found significantly reduced chemerin concentrations after 6 months of hypocaloric 

diet intervention. As expected, significant changes in BMI, markers of insulin resistance 

and inflammation (CRP) were noted, which, in the multivariate analyses were strong 

predictors for changes in circulation chemerin. Interestingly, both improved GIR and 

CRP were associated with changes in chemerin levels independently of changes in body 

weight.  

 
Table 4.  Effects of weight loss achieved by 6 months hypocaloric diet (Cohort 4) or 

12 months after bariatric surgery (Cohort 5) on anthropometric and metabolic 

parameters.  

 Hypocaloric diet intervention 

Cohort 4 (n=19) 

Bariatric surgery intervention 

 
Cohort 5 (n=32) 

 Baseline 6 m. post Baseline 12 m. post 

Age (years) 49 ± 3 - 45 ± 12 - 

BMI (kg/m²) 36.4 ± 1.2 34.5 ± 1.5* 55.8 ± 7.9 37.1 ± 8.8* 

Body fat (%) 38.0 ± 2.9 35.4 ± 3* 57.1 ± 9.1 39.6 ± 9.2* 

HbA1c (%) 5.7 ± 0.1 5.4 ± 0.1 6.7 ± 0.9 5.9 ± 0.4* 



 22 

FPG (mmol/l) 5.34 ± 0.4 5.36 ± 0.3 6.3 ± 0.8 5.8 ± 0.5* 

FPI (pmol/l) 122 ± 28 89 ± 21 366 ± 187 149 ± 107* 
 
Triglycerides (mmol/l) 1.71 ± 0.2 1.49 ± 0.1 2.24 ± 0.7 1.71 ± 0.5* 
 
HDL-cholesterol 
(mmol/l) 

1.14 ± 0.2 1.21 ± 0.1 0.95 ± 0.3 1.2 ± 0.4* 

hsCrP (mg/l) 2.1 ± 0.7 1.4 ± 0.6* 2.9 ± 0.8 1.5 ± 0.6* 

* p<0.05, ** p<0.01 compared to baseline.  FPG: fasting plasma glucose, FPI=fasting 
plasma insulin, HDL= high density lipoprotein , hsCrP= high sensitive C-reactive protein 
 
 
In order to distinguish the effects of weight loss vs. improved glycaemia on circulation 

chemerin concentrations, we examined changes in chemerin concentrations in the frame 

of a 12-week exercise intervention. For this, 60 men and women were enrolled in a 12-

week exercise intervention after being divided into subjects with NGT (n=20), IGT 

(n=20) and T2D (n=20).  At baseline, chemerin concentrations were significantly higher 

in T2D and IGT patients compared with NGT, but these differences were completely 

explained by significant differences in BMI. After 12 weeks of exercise, minimal changes 

in BMI were noted, as compared to significant changes in chemerin concentrations and in 

markers of glycemia, such as insulin sensitivity, HbA1c as well as inflammatory markers 

such as CRP. A trend towards lower chemerin serum concentrations in response to 

exercise was also noted in the NGT cohort, although not significant. 

 

 

Table 5.  Effects of a standardized 12 weeks training intervention on anthropometric, 

metabolic, and hormonal parameters at baseline and after 12 weeks of intensive physical 

training in subjects with NGT, IGT, and T2D (Cohort 3).  

 

 NGT (n=20) IGT (n=20) 

 

T2D (n=20) 

 Baseline Postintervention Baseline Postintervention Baseline Postintervention 

Male/ female 9/11 
 
9/11 

 
11/9 

Age (years) 33 ±  2.5  56.0 ± 3.6 a 
  

53 ± 1.5 a 

BMI (kg/m²) 24.3 ± 0.3 23.8 ± 0.5  29.8 ± 0.9 a 28.9 ± 1.1 31.4 ± 0.7 a  30.5 ± 1.0 

Fat mass (%) 24.5 ± 0.7  22.8 ± 0.5 34.9 ± 1.9 a 32.6 ± 1.7* 38.2 ± 1.8 a 35.8 ± 0.9* 
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FPG (mmol/l) 5.1 ± 0.1  5.2 ± 0.2 5.6 ± 0.1 5.3 ± 0.2 6.2 ± 0.13 a 5.9 ± 0.2 

FPI (mmol/l) 66 ± 8 52 ± 12 695 ± 110 a 317 ± 59*  319 ± 50 a 218 ± 59* 

WBGU 

(µmol/kg/min) 

76 ± 4 89 ± 9* 19 ± 2 a 41 ± 8* 21 ± 2 a 37 ± 6* 

FFA (mmol/l) 0.41 ± 0.04 0.35 ± 0.04* 0.53 ± 0.06 a 0.45 ± 0.03* 0.56 ± 0.06 a 0.49 ± 0.05 

Data are expressed as mean ± SEM. *p<0.05, ** p<0.01 compared to baseline.  a, p<0.05 
compared to NGT group. NGT= normal glucose tolerant, IGT= impaired glucose tolerant, 
T2D= type 2 Diabetic, FPG=fasting plasma glucose, FPI=fasting plasma insulin, 
WBGU= whole body glucose uptake, FFA= free fatty acids  

 
In a last study, we aimed to analyze changes in both, chemerin serum concentrations and 

adipose tissue mRNA chemerin expression before and 12 months after bariatric surgery. 

At baseline, patients with morbid obesity had significantly higher chemerin 

concentrations than all other investigated subgroups. Bariatric surgery resulted in up to 

25% reduction in chemerin serum concentrations 12 months after intervention. In a 

subgroup undergoing a 2-step approach (n=14) a significant decrease in mRNA chemerin 

expression was observed in both omental and subcutaneous fat, although no significant 

differences were found between the 2 fat compartments at one point in time or the other.  

Again, multivariate regression analyses showed that in analogy with other interventions, 

GIR and CRP were significantly associated with changes in chemerin beyond the effects 

of body weight changes and predicted therefore these changes more accurately. 

 
In Cohort 1 and 3, type 2 diabetes was associated with higher serum concentrations of 

chemerin. After adjusting for BMI, this significant difference in chemerin serum 

concentrations could still be confirmed. In Cohort 3, higher chemerin serum 

concentrations were completely explained by differences in BMI. Interestingly, after 12 

weeks of controlled exercise regimen, chemerin serum concentrations decreased 

significantly. These changes were accompanied with significant decreases in markers of 

glycaemia and insulin resistance as well as inflammatory markers such as hsCRP in the 

absence of significant changes in BMI. We also showed that improved CRP and GIR in 

euglycemic hyperinsulinemic clamps correlated with reduced chemerin concentrations 

despite stabile BMI. 
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4. Discussion 
 

Chemerin is a hepatoadipokine, which induces insulin resistance in skeletal muscle cells 

in vivo and plays an important role in the negative cross talk between adipose tissue, liver 

and muscle.50 

Chemerin serum concentrations correlate with BMI, traits of the metabolic syndrome 

including high plasma glucose and triglycerides as well as low high-density lipoprotein 

cholesterol and increased blood pressure.51 

High serum concentrations were also found in insulin resistant states such as polycystic 

ovary syndrome.52 Baseline chemerin concentrations were also elevated with significant 

activity score for nonalcoholic fatty liver disease, portal inflammation, fibrosis, and 

fibroinflammation in obese patients and decreased significantly after bariatric surgery.53  

Insulin resistant states were found to be associated with increased chemerin levels54,  55 

and treatment with metformin decreased elevated chemerin concentrations.56  

It remained unclear though, whether elevated chemerin concentrations were due to: 

- obesity57  

- insulin resistance58  

- hyperglycemia59or 

- inflammatory response.60 

We addressed this controversy by measuring dynamic changes in chemerin serum 

concentrations in 3 intervention studies.  

 

Across the 5 included cohorts we found significant correlation between chemerin serum 

concentrations and BMI, markers of insulin resistance and inflammation. In weight loss 

intervention studies, significant changes in chemerin levels were accompanied by 

changes in BMI, a shift towards improved glucose tolerance and a decrease in 

inflammatory markers such as hsCRP. 

 

4.1 Chemerin and Obesity 
 
In Cohort 1, chemerin serum concentrations were shown to increase from lean to 

overweight and obese normal glucose tolerant individuals.  

We confirmed that chemerin serum concentrations were elevated in morbidly obese as 

compared to lean individuals.  

We also confirmed that chemerin serum concentrations are elevated in morbidly obese 

patients and significant weight loss as reflected in drastic reduction in BMI after bariatric 

surgery led to a significant decrease in chemerin concentrations.61 

Also we showed for the first time, that moderate weight loss in the frame of a 6 months 

calorie-restricted diet study (Cohort 4) significantly decreases chemerin serum 

concentrations. Interestingly, multivariate linear regression analyses demonstrated that 
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reduced hsCRP serum concentrations and improved insulin sensitivity predicted changes 

in chemerin serum concentrations beyond changes in BMI. 

 

4.2 Chemerin and Diabetes 
 
In Cohort 1 and 3, type 2 diabetic state was associated with higher serum concentrations 

of chemerin. After adjusting for age, sex and BMI, this difference in serum chemerin 

concentrations between T2D and NGTs could still be confirmed.  

 

Lower chemerin concentrations are associated with improved glycaemia 

and inflammation beyond the effects of weight loss as reflected in changes 

in BMI 
In Cohort 3 higher chemerin serum concentrations could be fully explained by 

differences in BMI. After 12 weeks of exercise, chemerin serum concentrations 

decreased significantly. These changes were accompanied by major improvement in 

glycaemia and insulin sensitivity, as well as inflammatory markers such as CRP in the 

absence of significant changes in BMI. We were also able to show that improved CRP 

and GIR in euglycemic hyperinsulinemic clamps correlated with reduced chemerin 

concentrations despite stabile BMI.  

This relationship between chemerin serum concentrations and insulin sensitivity could 

confirm the results of previous studies showing significantly lower chemerin 

concentrations in insulin sensitive compared to insulin resistant obese individuals, who 

were matched for age, sex, BMI and body fat mass.62 As mentioned above very low 

chemerin concentrations were also shown to correlate with insulin resistance as seen with 

high chemerin concentrations in chemerin knockout mice. Our study design does not 

allow us to verify these findings and studies since chemerin gene defects or 

polymorphisms are still lacking.  

 

Chemerin shows a fat deposit specific expression in type 2 diabetes but 

not in obesity 
As for the differences in chemerin serum concentrations in type 2 diabetic subjects and 

NGT individuals, we found that significantly higher chemerin concentrations in type 2 

diabetes remained even after adjusting for age, sex and BMI and could be explained by 

elevated chemerin expression in SC and OM fat deposits. Chemerin expression was 

found to be significantly elevated in omental as compared to subcutaneous fat tissue only 

in Patients with type 2 diabetes, suggesting a fat depot specific contribution to chemerin 

serum concentrations and its regulation. These results closely reflect data obtained in 

polycystic ovary syndrome patients, which show a similar upregulation of omental 
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adipose tissue chemerin expression, whereas healthy controls showed no fat depot 

specific expression of chemerin.63  

When comparing lean and obese individuals we show that chemerin expression was 

elevated in both fat depots in obese as compared to lean subjects, reflecting elevated 

chemerin serum concentrations, but no significant differences were seen between the 2 

fat depots in lean and obese patients.  

 

Omental chemerin correlates significantly with markers of insulin 

resistance and adipose tissue biology  
After adjusting for BMI, OM chemerin mRNA expression still correlated significantly 

with markers of insulin resistance and inflammation as well as adipose tissue biology 

such as mean adipocyte size and numbers of macrophages in adipose tissue. The latter 

finding was described earlier and suggests a direct link between elevated chemerin serum 

concentrations and expression, as well as adipose tissue inflammation and 

dysfunction.64,65 This was supported by the finding that TNFα  significantly increases 

chemerin expression in adipocytes66 and anti-TNFα  therapy reduces serum levels of 

chemerin.67  

The correlation between chemerin expression, serum concentrations and adipocyte size in 

both OM and SC tissue could mechanistically link adipocyte hypertrophy and subsequent 

insulin resistance to increased chemerin serum concentrations. 

 

Changes in adipose tissue function and metabolic state are explained by 

elevated chemerin serum concentrations rather than elevated CKMLR1 

expression 
It is important to mention that CMKLR1 mRNA expression was not significantly 

different between NGTs and T2Ds or lean and obese individuals. We also did not see fat 

depot specific differences in CMKLR1 expression, suggesting that changes in adipose 

tissue function or metabolic state can be explained by changes in serum chemerin 

concentrations rather than CKMLR1 expression. That said we did not perform functional 

studies on CMKLR1.  

 

 

In summary, it is difficult to establish a clear causality chain whether adipocyte 

hypertrophy or adipose tissue inflammation cause increase in chemerin or whether 

increased chemerin expression causes adipose tissue inflammation with subsequent 

insulin resistance.  

 

Although synthetic chemerin derived peptides were shown to suppress inflammation 

through ChemR2368, most publications suggest an important role for chemerin as a potent 
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chemoattractant of antigen presenting cells (APCs) in compartments with inflammation. 

After proteolytic cleavage, chemerin activates CMKLR1 and induces the migration of 

macrophages and dendritic cells.69  

Given the fact that APCs are often preceded by polymorphonuclear neutrophils (PMNs) 

in inflamed tissues, it was hypothesized that PMNs could mediate chemerin generation 

and in fact, it was suggested that bioactive chemerin generation takes place during the 

early stages of inflammation, underscoring the functional contribution of chemerin as a 

bridge between innate and adaptive immunity.70  

Interestingly, chemerin was found to bind CCRL2, thereby increasing its own local 

concentration in order to be efficiently presented to CMKLR1 on nearby cells, therefore 

preserving a proinflammatory state.71  

In addition, chemerin may modulate adipose tissue function directly by regulating 

adipocyte differentiation and expression if adipocyte genes involved in glucose and lipid 

metabolism.72  

In obesity, elevated adipose tissue chemerin as well as circulating chemerin could lead to 

recruitment of CMKLR1-expressing immune cells promoting inflammation and driving 

the alteration in the secretion of adipokines and cytokines leading to the mentioned 

adipose tissue dysfunction. Chemerin’s promotion of angiogenesis involved in the 

hyperplasia of adipose tissue could cause alteration in the function and structure of fat 

tissue. Chemerin is also deeply involved in the modulation of systemic glucose 

regulation. 

It is also noteworthy, that high levels of chemerin can be measured in hepatic venous 

blood, suggesting that chemerin is also released by the liver.73 However, our study design 

does not allow investigating the role of hepatic chemerin secretion in the observed 

correlation between obesity, insulin sensitivity, glucose metabolism and inflammation, 

although it suggests a possible contribution of chemerin to the metabolic facets of liver 

cirrhosis.  

 

In conclusion, we show that impaired insulin sensitivity and circulating parameters of 

inflammation are BMI-independent predictors of elevated chemerin serum concentrations 

in obesity and associated diseases.  

In the light of the role of chemerin in the recruitment of inflammatory cells, our data 

support an important role for chemerin in the initiation of adipose tissue inflammation 

and dysfunction, posing the question of its involvement in the evolution and occurrence 

of cardiovascular disease. It also suggests that reduced adipose chemerin expression may 

contribute to improved insulin sensitivity and subclinical inflammation beyond the effects 

of weight loss.  
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Auch wenn aktuell heiß diskutiert wird, ob Adipositas tatsächlich mit einer erhöhten 

Mortalität durch ihren Beitrag zur Entstehung von kardiovaskulären und metabolischen 

Erkrankungen vergesellschaftet ist, bleibt sie und die mit ihr assoziierten Komorbiditäten 

vor allem in den Industrienationen eine zunehmende gesellschaftliche und ökonomische, 

sowie gesundheitliche Last.  

In den letzten Jahren entfernten wir uns zunehmend vom klassischen Bild des 

Fettgewebes als reines Speichergewebe für überschüssiges Fett hin zum Bild eines der 

größten endokrinen Gewebe des menschlichen Körpers. Viele vom Fettgewebe 

sezernierten Proteine scheinen eine wichtige Rolle als Mediatoren und Regulatoren von 

Insulinresistenz und Dyslipidämie zu spielen. Zusätzlich fungieren sie sowohl autokrin 

als auch parakrin als Modulatoren von physiologischen Regelkreisläufen und 

inflammatorischen Prozessen.  

Kürzlich wurde Chemerin als ein neues proinflammatorisches Hepatoadipokin 

vorgestellt, welches die Adipogenese reguliert und potenziell zur Induktion von 

Insulinresistenz führt.   

Sowohl das im Fettgewebe exprimierte, als auch zirkulierende Chemerin scheinen bei 

adipösen Mausmodellen wie z.B. ob-/ob- und db-/db- Mäusen vielfach erhöht zu sein. 
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Auch populationsbasierte Studien zeigten erhöhte Chemerinkonzentrationen bei adipösen 

Erwachsenen. Interessant war auch, dass explantiertes Fettgewebe von adipösen 

Patienten signifikant mehr Chemerin produzierte. Das erhöhte Chemerin korrelierte mit 

dem BMI und dem Taille-Hüft-Verhältnis sowie dem Fettzellvolumen.  

Zudem ist zirkulierendes Chemerin bei insulinresistenten Stoffwechsellagen wie Diabetes 

mellitus und polyzystisches Ovarien Syndrom aber auch bei inflammatorischen 

Erkrankungen wie Morbus Crohn, chronischer Pankreatitis und Colitis Ulcerosa erhöht. 

Korrespondierend hierzu senkten die anti-inflammatorische Therapie sowie  die Therapie 

mit Metformin das zirkulierende Chemerin.  

Chemerin entwickelt seine Effekte über mehrere Rezeptoren. Dabei scheint lediglich 

CKMLR1 in der Vermittlung von Entzündung und Insulinresistenz in den durchgeführten 

Studien eine Rolle zu spielen.  

Bislang existierten nur wenige Studien über die Auswirkungen von Sport-Intervention 

und gewichtsreduktiven Maßnahmen auf die Chemerinkonzentration und -expression. 

  

In der vorliegenden Arbeit wurden die Unterschiede im zirkulierenden Chemerin in den 

verschiedenen Stadien von Adipositas und Insulinresistenz untersucht. Weiterhin wurde 

die Expression von Chemerin in subkutanem und viszeralem Fettgewebe und die 

Expression von CMKLR1 bei Adipositas analysiert. In zusätzlichen Untersuchungen 

wurden die Auswirkungen von drei verschiedenen Interventionen auf das zirkulierende 

Chemerin untersucht, hierfür folgten 60 Patienten einem Trainingsprogramm für 12 

Wochen, 19 Patienten führten 6 Monate lang eine hypokalorische Diät und 32 Patienten 

unterzogen sich einer bariatrischen chirurgischen Operation.  

In den vorgelegten Studien konnte gezeigt werden, dass Chemerin mRNA im Fettgewebe 

von Patienten mit Typ 2 Diabetes im Vergleich zu normal Glukose-toleranten Probanden 

(NGT) signifikant erhöht exprimiert ist und mit zirkulierendem Chemerin korreliert. 

Auch korreliert sie mit dem Body-Mass Index (BMI), dem Körperfettanteil und CRP 

sowie HOMA-IR (Index für Insulinresistenz) und der Glukoseaufnahmerate in 

euglykämischen – hyperinsulinämischen Clamp Studien. Chemerin ist zudem bei 

Adipositas signifikant erhöht. Ein Unterschied in der Expression von Chemerin zwischen 

subkutanem und viszeralem Fettgewebe zeigte sich lediglich bei Typ 2 Diabetischen 

Probanden.  

Alle Interventionen führten zu einem Abfall des zirkulierenden Chemerins. Hier konnte 

erstmals gezeigt werden, dass eine hypokalorische Diät zu einer signifikanten Abnahme 

des zirkulierenden Chemerins führt. Bariatrische Chirurgie bewirkte nach einem Jahr 

einen signifikanten Abfall der Chemerinexpression in viszeralem und subkutanem 

Fettgewebe.  

Sowohl Insulinresistenz als auch Inflammation scheinen BMI-unabhängige Prädiktoren 

für erhöhtes zirkulierendes Chemerin zu sein.  
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Die vorgestellten Daten weisen darauf hin, dass Chemerin möglicherweise eine wichtige 

Rolle in der Initiierung der Inflammation und Dysfunktion im Fettgewebe spielt und 

somit zur Entwicklung der assoziierten kardiovaskulären Begleiterkrankungen beitragen 

könnte. Auch scheint eine Verminderung der Chemerinexpression im Fettgewebe 

basierend auf Gewichtsreduktion zu einer Verbesserung der Glukosetoleranz zu führen.  

 

Die genauen Signalwege, die zu den beobachteten Effekten von Chemerin führen, 

müssen jedoch weiterhin aufgeschlüsselt werden.  
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6. Abkürzungsverzeichnis 
 
APC  antigen presenting cells 
BMI    body mass index 
CCRL2  chemokine (CC motif) receptor-like 2 

ChemR23  chemerin receptor 23 
CMKLR  chemokine like receptor  
CRP   C-reactive protein 
DC  dendritic cell  
Elisa  enzyme-linked immunosorbent assay 
FPG   fasting plasma glucose 
FPI   fasting plasma insulin 
GPCR  G-Protein coupled receptor 
HDL  high density lipoprotein 

IFN   interferon  
IL   interleukin  
KO mice knockout mice  
LDL  low density lipoprotein 
MCP  monocyte chemoattractant protein 
MetS  metabolic syndrome 
mRNA  messenger ribonucleic acid  
NK cells  natural killer cells 

NGT   normal glucose tolerant 
OGTT  oral glucose tolerance test 
PMN   polymorphonuclear cells 
qPCR  quantitative polymerase chain reaction 
RANTES regulated on activation normal T cell expressed and secreted 
sIL-1R  soluble interleukin-1 receptor 
sTNFR soluble tumor necrosis factor receptor 
T2D   type 2 diabetes  
TNF   Tumor necrosis factor Alpha 

TG  Triglycerides 
TGF  Tumor growth factor  
WAT   white adipose tissue 
WBGU whole body glucose uptake 
WHR   Waist-to-hip ratio 
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