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Abstract

Weighted essentially non-oscillatory (WENO) simulations of the reshocked two-
dimensional single-mode Richtmyer-Meshkov instability using third-, fifth- and ninth-
order spatial flux reconstruction and uniform grid resolutions corresponding to 128,
256 and 512 points per initial perturbation wavelength are presented. The depen-
dence of the density, vorticity, simulated density Schlieren and baroclinic produc-
tion fields, mixing layer width, circulation deposition, mixing profiles, production
and mixing fractions, energy spectra, statistics, probability distribution functions,
numerical turbulent kinetic energy and enstrophy production/dissipation rates, nu-
merical Reynolds numbers, and numerical viscosity on the order and resolution is
investigated to long evolution times. The results are interpreted using the implicit
numerical dissipation in the characteristic projection-based, finite-difference WENO
method. It is shown that higher order higher resolution simulations have lower nu-
merical dissipation. The sensitivity of the quantities considered to the order and
resolution is further amplified following reshock, when the energy deposition by the
second shock-interface interaction induces the formation of small-scale structures.
Lower-order lower-resolution simulations preserve large-scale structures and flow
symmetry to late times, while higher-order higher-resolution simulations exhibit
fragmentation of the structures, symmetry breaking and increased mixing. Similar
flow features are qualitatively and quantitatively captured by either approximately
doubling the order or the resolution. Additionally, the computational scaling shows
that increasing the order is more advantageous than increasing the resolution for
the flow considered here. The present investigation suggests that the ninth-order
WENO method is well-suited for the simulation and analysis of complex multi-scale
flows and mixing generated by shock-induced hydrodynamic instabilities.
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1 Introduction

The Richtmyer-Meshkov instability is a fundamental fluid instability that de-
velops when perturbations on an interface separating gases with different prop-
erties grow following the passage of a shock. This instability is typically studied
in shock tube experiments, in which an incident shock passes through an ini-
tially perturbed interface separating the gases. Following the passage of the
shock, the interface is set in motion along the direction of shock propagation
and a transmitted shock enters the second gas. The misalignment of ∇ρ and
∇p causes a deposition of vorticity ω ≡ ∇ × u on the interface through
baroclinic vorticity production P ≡ (∇ρ × ∇p)/ρ2: in two dimensions

dω

dt
= P − ω ∇ · u , (1)

where d/dt ≡ ∂/∂t+u ·∇ is the convective derivative. The vorticity deposited
on the interface by the shock drives the instability, resulting in interpenetrat-
ing bubbles and spikes. Complex roll-ups and vorticity with strong cores later
form. The transmitted shock reflects from the shock tube end wall and in-
teracts with the evolving interface during reshock, further contributing to the
appearance of complex interacting fluid and wave structures.

In the present work, the formally high-order accurate weighted essentially
non-oscillatory (WENO) shock-capturing method using a third-order total-
variation diminishing (TVD) Runge-Kutta time-evolution scheme ([1] and
references therein) is applied to the reshocked two-dimensional single-mode
Richtmyer-Meshkov instability for long evolution times. The initial conditions
and computational domain are modeled [2] after the single-mode, Mach 1.21
air(acetone)/SF6 shock tube experiment of Collins and Jacobs [3]. As the
Richtmyer-Meshkov instability-induced flow contains shock waves, a direct nu-
merical simulation (DNS) is not possible due to the prohibitively small scales
needed to resolve the complex interactions of the shock with the density in-
terfaces and the shocks themselves. As a result, numerical investigations of
this instability typically utilize conservative Eulerian shock-capturing meth-
ods that do not resolve all of the spatial scales and small-scale interactions,
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but instead ensure that fundamental quantities are conserved across a shock
and that the shock speed is accurately captured. As numerical results from
such simulations are used to interpret and to better understand the physical
mechanisms in the evolution of the Richtmyer-Meshkov instability, it is essen-
tial to ascertain how such results depend on the numerical algorithm (e.g., the
order of flux reconstruction and resolution in the present study).

This study systematically and self-consistently explores and quantifies the
sensitivity of a broad array of quantities characterizing single-mode reshocked
Richtmyer-Meshkov instability-induced mixing on the order of WENO flux re-
construction (third, fifth and ninth) and on the grid resolution (128, 256 and
512 points per initial perturbation wavelength). Most of these quantities were
previously considered in the description of amplitude growth [2] and of the
physics of reshock [4]. Here, the density, vorticity, simulated density Schlieren
and baroclinic vorticity production fields are qualitatively compared from the
simulations. Also compared are the mixing layer widths, circulation, mixing
profiles, production and mixing fractions, energy spectra, statistics, probabil-
ity distribution functions, numerical turbulent kinetic energy and enstrophy
production/dissipation rates, numerical Reynolds numbers and numerical vis-
cosities. As the results were obtained for a two-dimensional Euler flow, the
differences in these quantities depend solely on the numerical dissipation and
not on molecular dissipation and diffusion, or on physics due to vortex stretch-
ing present in three dimensions. Most studies based on the solution of the
Euler equations have focused on the numerical ‘convergence’ of some small
set of quantities, such as the perturbation amplitude or mixing layer width in
the Rayleigh-Taylor instability [5–7] and Richtmyer-Meshkov instability [8–
10], over limited evolution times with respect to grid refinement. The present
work is conducted in the spirit of the two-dimensional investigation of double
Mach reflection and single-mode Rayleigh-Taylor instability [11], which em-
phasized the computational advantage of higher order (ninth) WENO schemes
over lower order (fifth) schemes for complex flows. The present study is both
quantitative and qualitative, and examines to what extent different orders
of reconstruction and resolutions capture physical quantities characterizing
Richtmyer-Meshkov instability-induced mixing. The WENO method is well-
suited for such an investigation, as it is possible to perform simulations iden-
tical in every other respect except for the reconstruction order, allowing a
self-consistent study distinct from utilizing entirely different numerical meth-
ods with different formal orders of spatial and temporal accuracy [12].

This paper is organized as follows. The numerical method and the set of simu-
lations of the two-dimensional reshocked Richtmyer-Meshkov instability using
different orders of WENO reconstruction and grid resolutions are summarized
in Sec. 2, including a discussion of the benefits of formally high-order (high-
resolution) methods for investigating complex flows with shocks. The effects
of order and resolution on the density, vorticity, simulated density Schlieren
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and baroclinic vorticity production fields are discussed in Sec. 3. The effects of
order and resolution on the mixing layer width and circulation deposition are
discussed in Sec. 4. The effects of order and resolution on the mixing profiles,
production and mixing fractions, energy spectra, statistics, and probability
distribution functions are discussed in Sec. 5. As the results depend on the
intrinsic numerical dissipation, a quantitative estimate of this dissipation is
presented in Sec. 6. Finally, conclusions, including a discussion of the relative
computational cost of the simulations, are presented in Sec. 7.

2 The WENO method and two-dimensional simulations of reshocked
single-mode Richtmyer-Meshkov instability

The WENO reconstruction in the conservative finite-difference shock-capturing
method used in the present study is briefly described, and its benefits for
investigating complex hydrodynamic flows with shocks are discussed here.
In particular, as shown later, formally higher-order reconstructions are less
dissipative and have greater resolving power than lower-order ones [13]: this
demonstrates that high-order WENO methods are suitable for investigating
multi-dimensional shock-driven flows in which the dynamics of a wide range of
scales and complex wave structures must be characterized with high fidelity.

2.1 Equations solved and description of the WENO algorithm

In the present simulations, the Euler equations augmented by the mass fraction
conservation equation for the second gas (used here to determine the mixing
layer width and to quantitatively assess various mixing properties)

∂φ

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (2)

are solved, where the conservative variables, φ, and inviscid fluxes, F and G,
are

φ = (ρ, ρ u, ρ v, ρ e, ρ m)T , (3)

F =
(
ρ u, ρ u2 + p, ρ u v, (ρ e + p) u, ρ m u

)T
, (4)

G =
(
ρ v, ρ u v, ρ v2 + p, (ρ e + p) v, ρ m v

)T
. (5)

Here, ρ is the density, u = (u, v) is the velocity, p is the pressure, e =
(u2 + v2)/2 + p/ (γ − 1) is the total energy per unit mass, m is the mass
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fraction (here of the denser sulfur hexafluoride gas, SF6) and p = ρRT is the
ideal gamma law gas pressure (R is the gas constant).

The simulations were performed using the finite-difference WENO shock-
capturing method [1]. The eigensystem of fluxes in the Euler equations is
obtained from the Jacobian of the Roe-averaged fluxes in each spatial dimen-
sion. The eigenvalues and eigenvectors are obtained via the linearized Roe
Riemann solver [14]. Lax-Friedrichs flux-splitting is used to split the original
fluxes into their positive and negative components (with additional artificial
dissipation to obtain smoother fluxes [1]). The positive and negative flux com-
ponents are then projected in the characteristic fields using the left eigenvec-
tors to form the positive and negative characteristic fields at each cell center.
A piecewise-polynomial of degree r is used to reconstruct the projected fluxes
at the cell boundaries with high-order of accuracy: a weighted convex combi-
nation of all possible rth-degree piecewise-polynomial approximations (r = 2,
3 and 5 for third-, fifth- and ninth-order, respectively) of the characteristic
fields using the neighboring cell-centered values is constructed and evaluated
at the boundaries of a given cell. For a given reconstruction order, there are r
possible rth-degree piecewise-polynomials, with properties depending on the
smoothness of the underlying solution. As the polynomials may use stencils
containing discontinuities (and, thus, induce Gibbs oscillations), a weighted
average of all of the possible polynomial reconstructions at a point is com-
puted. The weights of the r possible stencils around a given cell center are
computed from the projected flux via a divided difference. Essentially zero
weights are assigned to polynomials crossing discontinuities and nearly-equal
weights are assigned to polynomials over smooth regions. The formal order
of accuracy for the derivative of the flux is 2r − 1 in smooth flow regions. In
the present study, the semi-discrete equations are evolved in time using the
third-order total variation diminishing (TVD) Runge-Kutta method [1].

The conservative finite-difference discretization of the Euler equations with
WENO flux reconstruction contains implicit truncation errors that can be
regarded as a nonlinear, adaptive numerical dissipation. The present simula-
tions can be interpreted as a class of implicit large-eddy simulations (ILES)
[15–18], in which the equations are implicitly filtered by the discretization
and the numerical dissipation is a surrogate for a dissipation provided by an
explicit subgrid-scale model. As the non-dissipative compressible fluid dynam-
ics equations are formally ill-posed, this numerical dissipation regularizes the
method. As a result, quantities obtained from such simulations depend on the
resolution and cannot be regarded as fully resolved. ILES methods typically
dissipate velocity and scalar fluctuations approximately in the same manner
numerically: the numerical Schmidt number is of O(1), which may provide a
reasonable model for the mixing of ideal gases. In principle, the reduced nu-
merical dissipation of high-order WENO schemes can be coupled with explicit
subgrid-scale models to perform conventional large-eddy simulations.
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2.2 Benefits of the WENO method for simulating complex shocked flows

Formally high-order methods better resolve complex flow features at long evo-
lution times than second- and third-order methods. Higher order methods are
also more computationally efficient than lower order methods for the same
accuracy [19,20]. In particular, sufficiently high order WENO methods are
well-suited for the simulation of complex, compressible evolving flows con-
taining shocks and structures having a wide range of scales. For example, the
interaction of a shock and a bubble was simulated using the fifth-order finite-
difference WENO method with two gammas [21]. The advantage of WENO
methods is realized in complex multi-dimensional flows, as demonstrated here
for the reshocked Richtmyer-Meshkov instability.

Upwinding in the WENO method leads to large numerical dissipation in rela-
tively smooth flow regions away from shocks. This dissipation can be reduced
by hybridizing the WENO method with a high-order scheme, and the resolv-
ing power can be improved by optimizing the stencil with a compact central-
difference scheme in smooth flow regions [22]. Mapped WENO schemes were
developed to improve the accuracy at critical points where derivatives vanish
[23]. A hybrid fifth-order compact upwind-WENO scheme was developed for
shock-turbulence interaction [24]. A hybrid scheme based on the weighted
average of a compact scheme [24] and the fifth-order WENO scheme was
subsequently developed [25] using a weight function that avoids an abrupt
transition from one scheme to the other. High-order accurate, hybrid central-
WENO schemes [26,27] and a hybrid spectral-WENO scheme [28] were also
recently developed. In the present work, higher-order (ninth-order) WENO
reconstruction is used instead to achieve lower numerical dissipation.

The code used presently provides an MPI parallel framework for one-, two-
or three-dimensional simulations of the fully-nonlinear evolution of hydrody-
namic instabilities and late-time mixing generated by single- or multi-mode
Richtmyer-Meshkov and Rayleigh-Taylor instabilities. The ratio of specific
heats is constant for both gases in the currently implemented single-gamma
algorithm, so that some properties of the flow may not be predicted very ac-
curately (i.e., transmitted and reflected shock speeds, time of reshock, initial
interface velocity), but the mixing properties are not expected to be strongly
affected by the single-gamma formulation, as the flow is nearly incompressible
over most of the evolution for the Mach number considered [29,30].
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Coarse (128) Medium (256) Fine (512)

Ninth-order WENO9C WENO9M WENO9F

Fifth-order WENO5C WENO5M WENO5F

Third-order WENO3C WENO3M WENO3F

Table 1
Keys used to denote simulations with different order of WENO flux reconstruction
and grid resolution. The number in parentheses is the number of grid points per
initial perturbation wavelength λ.

2.3 Simulations of reshocked single-mode Richtmyer-Meshkov instability

Two-dimensional simulations of the reshocked Richtmyer-Meshkov instability
modeled after the Mach 1.21 experiment of Collins and Jacobs [2,3] are pre-
sented and analyzed in the present work. The simulations are summarized in
Table 1, where WENONX indicates the order N = 3, 5 or 9 with optional
resolution X = C, M or F (coarse, medium and fine grid resolution, respec-
tively), e.g., WENO5M is the fifth-order WENO method with 256 points per
initial perturbation wavelength. Order and resolution always refer to the order
of WENO flux reconstruction and to the spatial grid resolution, respectively.
The simulations were run to a late time of 18 ms to determine the effects of the
interaction of the reflected rarefaction wave with the layer, and to investigate
the late-time decay of the flow. The results presented in a separate study [2,4]
were obtained using WENO5M and WENO9M.

The initial conditions for the numerical simulations [2] were adapted from the
Mach 1.21 air(acetone)/SF6 experimental shock tube configuration of Collins
and Jacobs [3]. As the current simulations use a single-gamma formulation,
the experimental upstream conditions were matched. The adiabatic exponent
γ = 1.24815 corresponding to an air(acetone) mixture was used. The pre-shock

Atwood number was A− =
(
ρ−

SF6
− ρ−

aa

)
/
(
ρ−

SF6
+ ρ−

aa

)
= 0.605. To match the

dimensions of the shock tube test section, the computational domain had
streamwise and spanwise length Lx = 78 cm and Ly = 8.9 cm, respectively,
with the centerline of the perturbed initial interface located at xs = 3 cm
from the edge of the domain (the physical spanwise domain was 17.8 cm, and
symmetry was used in the y-direction). An adaptive domain capability in the
code allows the initial domain in x to be much smaller than Lx: the initial
value Lx = 9.3 cm was chosen in the present simulations. The computational
domain in the x direction was elongated in 3 cm increments until a total
length of 78 cm was attained. A CFL number of 0.45 was used in all of the
simulations. The initial sinusoidal interface η(y) = a−

0 sin (2πy/λ) had pre-
shock amplitude a−

0 = 0.2 cm and wavelength λ = 5.9333 cm. An initial
diffusion layer thickness of δ = 0.5 cm was used, where the thickness function
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y

x

Fig. 1. The incident shock and the initial density field, including the diffuse interface
separating the air(acetone) (blue) and the SF6 (red), obtained using Eq. (6).

(multiplying the density) is

S(x, y) =





1 d ≤ 0

exp (−α |d| 8) 0 < d < 1

0 d ≥ 1

, (6)

d = [xs + η(y) + δ − x]/(2δ), and α = − ln β (β is machine zero). The initial
density is shown in Fig. 1.

The following boundary conditions were used: (1) inflow at the test section
entrance in the streamwise (x) direction; (2) reflecting at the end wall of the
test section in the streamwise direction, and; (3) symmetric in the spanwise (y)
direction corresponding to the cross-section of the test section. The reflecting
boundary condition is implemented by reversing the normal component of the
velocity vector: u(x, t) = −u(x, t) at x = Lx and at the ghost points, which is
exact and does not generate spurious noise.

3 The effects of order and resolution on the density, vorticity, simu-
lated density Schlieren and baroclinic vorticity production fields

As the Richtmyer-Meshkov instability develops, bubbles of air(acetone) ‘rise’
into the SF6 and spikes of SF6 ‘fall’ into the air(acetone). Following this ini-
tial growth, the spikes form roll-ups that develop the characteristic mushroom
shape of the instability. The density and vorticity fields ρ(x, y) and ω(x, y)
at 6 ms are shown in Fig. 2, before the reflected shock from the end wall
reshocks the interface. The images were obtained by rotating the density and
vorticity fields from the simulations 90◦ counterclockwise. The spike of SF6

(red) rolls up and the bubble of air(acetone) (blue) ‘rises’. The vorticity shows
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Fig. 2. The density and vorticity fields at 6 ms (before reshock) from the third-,
fifth- and ninth-order simulations on the coarse, medium and fine grids.

the strong positive core rotating counter-clockwise (red) and the strong neg-
ative core rotating clockwise (blue), corresponding to the centers of the roll-
ups. As the order and resolution increase, the roll-up becomes better defined
and sharper, smaller-scale features appear within, and the vorticity exhibits
more concentrated, smaller cores. The roll-up in the WENO5M, WENO5F and
WENO9 simulations contains a vortex bilayer with strong negative vorticity
surrounded by a small layer of positive vorticity and vice versa: this bilayer
becomes sharper as the order and resolution increase, and additional complex
structures form within the roll-up in the WENO9F simulation. Such struc-
tures have also been seen in piecewise-parabolic method simulations [31,32],
and is apparently a manifestation of a physical process observed in experi-

9



coarse medium fine
n
in

th
-o

rd
er

ρ
ω

fi
ft

h
-o

rd
er

ρ
ω

th
ir

d
-o

rd
er

ρ
ω

Fig. 3. The density and vorticity fields at 7 ms (after reshock) from the third-, fifth-
and ninth-order simulations on the coarse, medium and fine grids.

ments [3,33–35]. A qualitative correspondence in both ρ and ω can be seen
between simulations along a diagonal, so that doubling the resolution approx-
imately corresponds to doubling the order (as also found in Rayleigh-Taylor
instability and double Mach reflection simulations [11]).

Figure 3 continues the comparison of ρ and ω following reshock (which occurs
at ≈ 6.4 ms) at 7 ms, with the bubble transforming into a spike and vice
versa through inversion due to the deposition of vorticity of opposite sign
during reshock. The SF6 spike penetrates into the air(acetone) and becomes
narrower as it transforms into a bubble. As the order and resolution increase,
additional finer-scale complex structures appear. This is also reflected in ω,
which shows that strong positive and negative cores transition into vortex
bilayers, and then into fragmented cores.

Following reshock, a transmitted shock enters the air(acetone) and a reflected
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Fig. 4. The simulated density Schlieren fields at 7 ms (after reshock) from the third-,
fifth- and ninth-order simulations on the coarse, medium and fine grids.

rarefaction enters the SF6, resulting in a complex system of reflected and
transmitted waves that further contribute to the development of the instability
and to mixing. To visualize these waves, as well as the complex structures on
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the interface, the simulated density Schlieren fields [21]

Φ(x, y, t) = exp

[
−α(m)

|∇ρ|

max |∇ρ|

]
, α(m) =





20 if m > m∗

100 if m < m∗
, (7)

where m is the mass fraction of SF6 and m∗ = 0.25 is the threshold, are
shown in Fig. 4 at 7 ms. A complex system of curved intersecting waves exists
in the SF6 gas, corresponding to the reflected rarefaction, together with fine-
scale structure surrounding the spike. As the order and resolution increase,
the waves become sharper and additional structures appear on the interface.
Shock focusing on the reshocked spike can also be seen.

The density at 12 ms in Fig. 5 shows the evolution of the main spike, which
develops several roll-ups and additional complex structure. The difference
among the orders and resolutions is now significant. In particular, the WENO3
and WENO5C simulations retain significant coherency and symmetry, with a
clearly identifiable dominant structure. Beginning with the WENO5M simu-
lation, a progressive loss of symmetry occurs, together with the development
of increasingly finer-scale structure. This is also reflected in ω, in which large-
scale organized strong cores are replaced by progressively fragmented and more
concentrated cores. The vorticity dynamics is in qualitative agreement with
two-dimensional turbulence phenomenology [4]. As the order and resolution
are increased, more fragmented, smaller-scale structures form. By contrast,
as the resolution is decreased, large persistent vortical structures form. The
WENO3 results are characteristic of simulations with large numerical diffu-
sion, as well as of simulations that are spatially underresolved. Instead, the
fifth- and ninth-order simulations exhibit symmetry breaking (also reported
in other simulations with reshock using lower order methods [10,36] and in
Rayleigh-Taylor instability simulations using the ninth-order WENO method
[11]), which can be attributed to numerical instabilities not damped by the
intrinsic dissipation in the WENO method.

Figure 6 illustrates the reshock process, showing the development of complex
structures during the spike roll-up at 6, 6.6, 6.8 and 7 ms from the fine grid
simulations. Prior to reshock at 6 ms, the WENO9 simulations exhibit com-
plex structures within the roll-up: such structures are also visible in the inner
core of the WENO5 simulations and are absent in the WENO3 simulations.
During reshock, the roll-up is compressed at 6.6 ms and forms complex struc-
tures later. The WENO3 and WENO5 simulations retain a single dominant
structure, while the WENO9 simulations exhibit fragmentation.

The dynamics during reshock can be further elucidated by considering the
vorticity field ω(x, y) and the baroclinic vorticity production P(x, y) during
reshock, which are shown in Fig. 7 at the same times as the density fields in
Fig. 6. At 6 ms, the WENO5F and WENO9F vorticities exhibit complex roll
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Fig. 5. The density and vorticity fields at 12 ms (late time following reshock) from
the third-, fifth- and ninth-order simulations on the coarse, medium and fine grids.

ups with regions of negative vorticity surrounded by positive vorticity forming
a vortex bilayer. This generation of positive vorticity is due to baroclinic vor-
ticity production. The WENO3 simulations only show a strong negative core,
and the baroclinic production does not exhibit the complex features in the
WENO5 and WENO9 simulations. Just after reshock at 6.6 ms, the strong
negative core is significantly weakened and a layer of positive vorticity is de-
posited on the tip of the spike: this layer is particularly evident in the WENO3
and WENO5 simulations, and is thinner in the WENO9 simulations. The vor-
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Fig. 6. Details of the roll-up in the density field from the ninth-, fifth- and third-order
fine grid simulations at 6, 6.6, 6.8 and 7 ms.

ticity forms cores at 6.8 and 7 ms, with the WENO9 cores more spatially
compact than those in the other simulations. The baroclinic vorticity pro-
duction is also fragmented in the WENO9 simulations. These fields illustrate
the significant difference in the vorticity dynamics for simulations including
reshock performed using different orders and resolutions.

4 The effects of order and resolution on the mixing layer width
and circulation deposition

The effects of order and resolution on the mixing layer width and the circula-
tion deposition are considered in this section. It is shown that the dependence
on order and resolution is most pronounced following reshock, with the differ-
ences among the simulations increasing with time.
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Fig. 7. Details of the roll-up in the vorticity and in the baroclinic vorticity production
fields from the ninth-, fifth- and third-order fine grid simulations at 6, 6.6, 6.8 and
7 ms.
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Fig. 8. Comparison of the time-evolution of the mixing layer width when the order
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WENO9F simulation are also shown (right). Quantities obtained using the WENO3,
WENO5 and WENO9 simulations are shown in green, red and blue, respectively;
quantities obtained on the fine, medium and coarse grid are shown using a solid,
dashed and dash-dot line, respectively.

4.1 The mixing layer width

To determine the mixing layer width, consider the mole fraction X(x, y, t) =
m(x, y, t)M1/{[1 − m(x, y, t)] M2 + m(x, y, t)M1}, where m is the mass frac-
tion of SF6 and M1 and M2 are the constant molecular weights of air(acetone)
and SF6, respectively. Spatially-averaging X in the y-direction gives

X(x, t) =
1

Ly

∫ Ly

0
X(x, y, t) dy , (8)

where Ly is the spanwise width of the domain. The spike and bubble locations,
ℓs(t) and ℓb(t), are defined as the x position where X ≥ ǫ and X ≤ 1 − ǫ,
respectively, with ǫ = 0.01 in the present investigation. The total mixing
layer width is the difference between the bubble and spike positions, h(t) =
ℓb(t) − ℓs(t).

The dependence of the mixing layer width h(t) on the order and resolution
is shown in Fig. 8 up to 18 ms (left). Also shown are the widths normalized
by the WENO9F width (right). Prior to reshock, h(t) weakly depends on the
order and resolution: the flow is dominated by a single, large-scale bubble or
spike, the front of which is not significantly affected by dissipation. The depen-
dence on order and resolution becomes significant following reshock, with h(t)
decreasing for lower orders and resolutions. Prior to the arrival of the reflected
rarefaction at ≈ 11 ms, the widths become closer as the order and resolution
increase. The differences are further amplified by the arrival of the reflected
rarefaction and increase later in time. At late times, the WENO3 widths differ
by as much as ≈ 5 cm as the grid is refined. By contrast, the WENO5 and
WENO9 widths differ by ≈ 1 cm. The normalized widths exhibit evidence for
‘convergence’ as the ratios approach unity for the WENO9 simulations.
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Fig. 9. Comparison of the time-evolution of the positive circulation Γ+ before
reshock (left) and after reshock (right) when the order and resolution are varied.
See Fig. 8 for the legend.

4.2 The interfacial circulation deposition

The vorticity deposited by the shock on the interface and by baroclinic vortic-
ity production, can be quantified using the positive and negative circulation.
As the vorticity field and the outward area element are parallel, the positive
and negative circulations Γ± can be approximated on the rectangular grid with
spacing ∆x and ∆y over U+ = {λ/2 < yj ≤ λ} and U− = {0 < yj ≤ λ/2} [4]:

Γ±(t) =
Nx∑

i=1

Ny∑

j=1

ω(xi, yj, t)|yj∈U± ∆x ∆y . (9)

Before reshock, the positive circulations Γ+ in Fig. 9 are similar, increasing
steadily due to baroclinic vorticity production. As the spike rolls up and vor-
ticity of opposite sign is created within the roll ups, Γ+ stops increasing and a
slight decrease is observed in the WENO9F simulation. Instead, the WENO3C
circulation is nearly constant across the layer, as the baroclinic vorticity pro-
duction is small. A sharp increase in Γ+ occurs at reshock, corresponding to
the rapid deposition of additional vorticity on the interface. Following reshock
and prior to the arrival of the reflected rarefaction at ≈ 11 ms, Γ+ from all
of the simulations are qualitatively similar, exhibiting a steady increase due
to the additional vorticity deposition. After the arrival of the reflected rar-
efaction, symmetry breaks and the regions U± no longer contain vorticity of
a single sign, resulting in large differences in Γ+ for t > 11 ms.
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5 The effects of order and resolution on mixing profiles, production
and mixing fractions, energy spectra, statistics and probability
distribution functions

The effects of order and resolution on mixing profiles, production and mixing
fractions, energy spectra, statistics and probability distribution functions are
quantified in this section. The comparisons of these quantities are conducted
at 6 ms immediately before reshock, at 7 ms immediately after reshock, and
at 18 ms at late times following reshock. To facilitate the comparison of the
mixing profiles, and the production and mixing fractions, the streamwise co-
ordinate is recentered by the midpoint xmid(t) between the bubble and spike
position, and normalized by the mixing layer width h(t). Most of the effects
on the quantities considered can be interpreted in terms of the relative nu-
merical dissipation, with increasing order and increasing resolution associated
with decreasing dissipation. The results demonstrate that different character-
izations of mixing are possible depending on the order and resolution: caution
must be exercised when interpreting the results of Richtmyer-Meshkov insta-
bility simulations as described by the Euler equations.

5.1 The mixing profiles

Up to 7 ms, the mole fraction profiles X(x, t) in Fig. 10 agree at sufficiently
high resolution. A more disordered structure is observed at late times: as X
measures the distribution of mass across the mixing layer, the differences at
18 ms are due to different mass distributions among the different simulations.
On average, X approaches a nearly linear profile at late times.

Figure 10 also shows the molecular mixing profile [37,38]

θ(x, t) =
f1f2

f1 f2

where f1(x, y, t) ≡

m(x,y,t)
ρ1

m(x,y,t)
ρ1

+ 1−m(x,y,t)
ρ2

(10)

and f2 = 1 − f1 are the volume fractions of fluid 1 [air(acetone)] and fluid 2
(SF6), and φ signifies the spatial average of φ(x, y, t) over the y-direction [see
Eq. (8)]. The molecular mixing profile θ(x, t) is highly sensitivity to the order
and resolution. The large peak on the air(acetone) side at 6 ms corresponds to
the spike roll-up: all of the simulations approximately capture this effect. In
the regions near the stem of the spike, the WENO9 simulations yield larger θ
and a sharper transition near the boundaries than the WENO3 and WENO5
simulations, consistent with higher-order simulations having sharper interfaces
and less numerical diffusion. Compression caused by reshock increases θ at 7
ms. The profile is shifted toward the air(acetone), corresponding to enhanced

18



6 ms 7 ms 18 ms

X

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1
θ

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

X
p

−0.4 −0.2 0 0.2 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

−0.4 −0.2 0 0.2 0.4
0

0.1

0.2

0.3

0.4

0.5

−0.4 −0.2 0 0.2 0.4

0

0.2

0.4

0.6

0.8

X
p
(X

)

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

[x − xmid(t)] /h(t) [x − xmid(t)] /h(t) [x − xmid(t)] /h(t)

Fig. 10. Comparison of the averaged mole fraction profile X, molecular mixing profile
θ, averaged product mole fraction profile Xp and maximum product mole fraction
profile Xp(X) across the layer at 6, 7 and 18 ms when the order and resolution are
varied. See Fig. 8 for the legend.

mixing near the spike, while less mixing occurs as the new spike of SF6 emerges
due to the inversion process. The effects of the different mass distribution and
mixing across the layer among the simulations are evident at 18 ms, with
θ ∼ 0.75–0.8 on average for the WENO9 simulations.

A quantitative measure of mixing can be defined as follows. Suppose that
the two fluids undergo a fast kinetic reaction, so that the amount of product
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produced is [39,40]

Xp(x, y, t) =





X(x,y,t)
Xs

if X ≤ Xs
1−X(x,y,t)

1−Xs
if X > Xs

(11)

with Xs = 1/2, indicating that the product is composed of one mole of each
‘reactant’ (heavy or light fluid), and is limited by the amount of reactant.
The averaged product mole fraction profile Xp(x, t), which measures how well
mixed the two ‘reactants’ are, is shown in Fig. 10. Values near unity indi-
cate that complete mixing has occurred, resulting in the formation of prod-
uct, while values near zero correspond to little mixing and product formation
(here, numerically-induced mixing is a surrogate for chemical reactions). At
6 ms, Xp is strongly peaked, corresponding to the spike roll-up. The magni-
tude of the peak shows that the WENO9, WENO5 and WENO3 simulations
correspond to progressively increased mixing in the roll-up. Similar behav-
ior is also observed along the stem of the spike and at the tip of the bubble
and spike. These results are consistent with reduced numerical diffusion and
diffusion-induced mixing in the WENO9 simulations. At 7 ms, Xp is peaked
near the air(acetone) (corresponding to the compressed spike roll-up) with a
smaller value near the SF6 (corresponding to the emergence of the spike due
to inversion). At 18 ms, the variations in Xp across the layer are associated
with the different underlying small-scale structures at late times.

Also shown in Fig. 10 is the maximum product mole fraction profile Xp(X),
which corresponds to the total amount of product obtained if both fluids were
homogeneously mixed. At 6 ms, Xp(X) exhibits large peaks near the bubble
and spike tips, corresponding to the small diffusive mixing in these locations.
A small peak corresponding to the center of the roll-up is captured by all of
the simulations, with the exception of the WENO9F simulation, which results
from the additional structure within the roll-ups. At 7 ms, all of the profiles
are very similar and have a large peak close to the SF6 side, corresponding to
the emergence of the spike. The oscillatory profiles at 18 ms result from the
underlying small-scale structure within the mixing layer.

5.2 The production and mixing fractions

Using Eq. (11), the total chemical product Pt(t), maximum chemical product
Pm(t), and mixing fractions Ξ(t) and Θ(t) are defined as
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Fig. 11. Comparison of the time-evolution of the production and mixing fractions,
Pt(t), Pm(t), Ξ(t) and Θ(t), when the order and resolution are varied. See Fig. 8 for
the legend.

Pt(t) =
1

h(t)

∫ ℓb(t)

ℓs(t)
Xp dx , Pm(t) =

1

h(t)

∫ ℓb(t)

ℓs(t)
Xp(X) dx , (12)

Ξ(t) =
Pt(t)

Pm(t)
, Θ(t) =

∫ ℓb(t)
ℓs(t)

f1 f2 dx
∫ ℓb(t)
ℓs(t)

f1 f2 dx
; (13)

Pm(t) > Pt(t) is the amount of product obtained if both ‘reactants’ were
homogeneously mixed. Values near unity correspond to complete mixing for
both Ξ and Θ, while values near zero correspond to little mixing.

The total chemical product Pt(t) in Fig. 11 exhibits a rapid decrease following
the initial passage of the shock, followed by a steady increase. Reshock causes
a sharp increase followed by a rapid decrease. A steady increase subsequently
occurs, with a small decrease corresponding to the arrival of the reflected rar-
efaction at ≈ 11 ms, which stretches the interface but does not contribute to
mixing. Consequently, Xp decreases due to the arrival of the reflected rarefac-
tion, resulting in smaller Pt. All of the simulations exhibit similar qualitative
behavior, with the WENO3, WENO5 and WENO9 simulations giving pro-
gressively smaller values resulting from the correspondingly smaller Xp.

The maximum chemical product, Pm(t), in Fig. 11 exhibits different behavior
than Pt(t). The passage of the incident shock causes a rapid increase followed
by a steady decrease caused by the formation of the spike, which effectively
“demixes” the interface. Reshock causes a rapid decrease, followed by a rapid
increase. Following reshock, the values are quite different. The WENO3 simu-
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lations show a rapid increase followed by a steady decrease. The WENO5C and
WENO5M simulations show an increase until ≈ 11 ms, followed by a decrease;
the WENO5F and WENO9 simulations show a steady decrease. This behavior
is a consequence of the different structures in the mixing layer following the
passage of the shock. In particular, the WENO9 simulations show features
in largely unmixed regions, while the WENO3 simulations show significant
mixing at all times.

The mixing fractions Ξ(t) and Θ(t) are also shown in Fig. 11. Although both
quantities provide similar information concerning the mixedness of the fluids,
Ξ(t) and Θ(t) obtained using different orders and resolutions exhibit signifi-
cant differences. First, Ξ rapidly decreases following passage of the incident
shock, and then steadily increases. Reshock causes a rapid increase followed
by a rapid decrease, and then a steady increase indicating increased mixing
near the interface. The values of Ξ can be interpreted in terms of the be-
havior of the total and maximum chemical product, Pt and Pm. By contrast,
following the passage of the shock, Θ rapidly decays and then increases. The
WENO9F simulation exhibits quite different behavior, as Θ is influenced by
the structures within the roll-ups. Reshock rapidly increases Θ, followed by
a rapid decrease in the WENO3 and WENO5 simulations. The decrease is
not as large in the WENO9 simulations. A steady increase in Θ then follows.
These results are again a consequence of the different small-scale structures
in the flow following reshock. In particular, the large unmixed regions in the
WENO9 simulations result in larger Θ.

5.3 The energy spectra

The effects of order and resolution on the distribution of energy among dif-
ferent scales can be quantified by energy spectra associated with fluctua-
tions. Let φ(x, t) denote an instantaneous average of a field φ(x, y, t) over the
symmetric (spanwise) direction y with length Ly. Define the corresponding
fluctuating field φ(x, y, t)′ ≡ φ(x, y, t) − φ(x, t). Introduce the instantaneous
density-weighted average φ̃(x, t) ≡ ρφ/ρ and the corresponding fluctuating
field φ(x, y, t)′′ ≡ φ(x, y, t) − φ̃(x, t). The energy associated with each Fourier
mode k is obtained by averaging over the extent of the mixing layer to obtain
the one-dimensional energy spectrum of φ,

Eφφ(k, t) =
1

2 h(t)

∫ ℓb(t)

ℓs(t)

∣∣∣φ̂(k, x, t)
∣∣∣
2

dx , (14)

where φ̂(k, x, t) = 1
2π

∫
∞

−∞
φ(x, y, t) exp (−iky) dy is the Fourier coefficient of

the 2π-periodic function φ(x, y, t) in the y direction. Numerically, the discrete
(sine) cosine transform is used to compute the Fourier coefficients using the
(anti-) symmetry property of the underlying data in the spanwise direction.
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Fig. 12. Comparison of the streamwise and spanwise turbulent kinetic energy spectra
Eu′′u′′(k, t) and Ev′′v′′(k, t) and turbulent kinetic energy spectrum E(k, t) at 6, 7 and
18 ms when the order and resolution are varied. See Fig. 8 for the legend.

The streamwise and spanwise turbulent kinetic energy spectra, Eu′′u′′(k, t)
and Ev′′v′′(k, t), in Fig. 12 both depend on the order and resolution. The
large-scale (small k) spectra are very similar across the simulations. The vari-
ations in the spectra decrease at later times, and at 18 ms the spectra are
smooth. Higher-order higher-resolution spectra have increased energy content
at intermediate k. The WENO5F and WENO9M spectra are nearly the same,
consistent with the fact that approximately doubling the order or doubling
the resolution yields very similar flow features. The turbulent kinetic energy
spectrum, E(k, t) = Eu′′u′′(k, t) + Ev′′v′′(k, t), is also shown, the behavior of
which is dominated by the streamwise component at 6 and 7 ms.

The turbulent enstrophy spectrum Eω′′ω′′(k, t) in Fig. 13 is much more sen-
sitive than E(k, t): as the order and the resolution increase, the turbulent
enstrophy content of all scales increases. The WENO9F turbulent enstrophy
spectrum differs from the WENO3C spectrum by an order of magnitude in the
large scales and by several orders of magnitude in the intermediate and small
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Fig. 13. Comparison of the turbulent enstrophy spectrum Eω′′ω′′(k, t), density vari-
ance spectrum Eρ′ρ′(k, t), pressure variance spectrum Ep′p′(k, t), and baroclinic vor-
ticity production variance spectrum EPP(k, t) at 6, 7 and 18 ms when the order and
resolution are varied. See Fig. 8 for the legend.

scales. As shown in Fig. 5, the vorticity corresponding to higher orders and
higher resolutions increases in magnitude and is more localized, resulting in
the increased spectra. At 18 ms, the oscillatory modes have been damped out
and the spectra begin to decay. The lower-order lower-resolution spectra are
much steeper than the higher-order higher-resolution spectra. As the vorticity
is constructed from the difference of the velocity gradients, ∂u/∂y and ∂v/∂x,
its large k modes are more sensitive to numerical damping than are primitive
fields such as the velocity: this sensitivity is amplified quadratically, as the
enstrophy is proportional to ω2.
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The density variance spectra in Fig. 13 are similar at small k. A steep decrease
occurs at progressively larger k as the order and resolution increase. This is
particularly evident at 18 ms when all oscillatory modes have been damped
out. By contrast, the pressure variance spectrum Ep′p′(k, t) in Fig. 13 exhibits
differences even in the small k range, with higher order and resolution resulting
in increased values. The steep decline in the intermediate- to large-k spectra
can be related to the numerical dissipation, which smooths out fluctuations at
large k. The lower-order lower-resolution spectra are steeper than the higher-
order higher-resolution spectra.

The baroclinic vorticity production variance spectra EPP(k, t) in Fig. 13 have
nearly constant values over a large range of k. The spectra decrease rapidly
at large k. Higher-order higher-resolution spectra remain nearly constant over
a larger extent of scales, and are larger in magnitude. By contrast, lower-
order lower-resolution spectra decay very rapidly with increasing k, and have
smaller values. These results are consistent with the vorticity and baroclinic
vorticity production evolution shown in Fig. 7, where P(x, y, t) from higher-
order high-resolution simulations exhibits fragmentation into regions of large
positive and negative values. This, in turn, generates vorticity of opposite
sign on the interface which contributes to mixing and to a mixing layer with
complex structure: increased baroclinic vorticity production in higher-order
higher-resolution simulations is correlated with increased mixing and prolifer-
ation of complex structures within the layer. As the baroclinic vorticity pro-
duction variance is proportional to (∇ρ × ∇p)2, the large wavenumber modes
of its spectrum are highly sensitive to numerical damping.

5.4 The statistics

The effects of order and resolution on the statistics

Eφφ(t) =
∫ kmax

0
Eφφ(k, t) dk , (15)

including the streamwise and spanwise turbulent kinetic energy and the total
turbulent kinetic energy are shown in Fig. 14 as a function of time. The turbu-
lent enstrophy, the density and pressure variance, and the baroclinic vorticity
production variance are shown in Fig. 15 as a function of time.

The streamwise turbulent kinetic energy Eu′′u′′(t) = ũ′′2/2 decreases prior to
reshock, corresponding to the evolution of the roll-up on the spike. As the
order and resolution increase, larger energies are obtained. Reshock causes a
rapid decrease, followed by a much slower decrease, with all of the simula-
tions giving similar values. Following the arrival of the reflected rarefaction at
≈ 11 ms, the lower-order simulations have larger energies. By contrast, the
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spanwise turbulent kinetic energy Ev′′v′′(t) = ṽ′′2/2 increases prior to reshock,
corresponding to the development of the roll-up. The increase is more pro-
nounced in the higher-order higher-resolution simulations as the roll-up de-
velops complex structures. The energy increases rapidly at reshock and then
decays, with a faster decay for the lower-order lower-resolution simulations.
The turbulent kinetic energy E(t) =

(
ũ′′2 + ṽ′′2

)
/2 behaves similarly to its

dominant streamwise component Eu′′u′′(t).

The turbulent enstrophy Eω′′ω′′(t) = ω̃′′2/2 in Fig. 15 exhibits significant sen-
sitivity to the order and resolution. The turbulent enstrophy decreases prior to
reshock, with a faster decrease for the lower-order lower-resolution simulations.
The higher-order higher-resolution simulations exhibit a smaller decrease, as
additional vorticity is deposited in the roll-up by baroclinic production, which
creates the vortex bilayers in Fig. 7. Reshock causes a rapid increase, followed
by a steady decrease. Large differences are also observed following reshock, as
the rapid increase in Eω′′ω′′(t) caused by reshock is smaller in the lower-order
lower-resolution simulations. As vorticity fluctuations are responsible for the
kinetic energy dissipation and the transfer of energy to smaller scales, a larger
enstrophy from higher-order higher-resolution simulations is associated with
the presence of additional small-scale structures.

The density variance Eρ′ρ′(t) = ρ′2/2 in Fig. 15 is sensitive to the order
and resolution, particularly at late times. Prior to reshock, lower-order lower-
resolution simulations have smaller values, consistent with the suppression of
small scales by increased numerical dissipation. A rapid increase after reshock
is followed by a slow decrease, which becomes more pronounced following
the arrival of the reflected rarefaction at ≈ 11 ms, amplifying the difference
in Eρ′ρ′(t) across orders. The WENO3C and WENO3M density variance is
rapidly damped, resulting in a rapid decrease. The pressure variance Ep′p′(t)
exhibits little sensitivity to the order and resolution, prior to and following
reshock, and at late times.

The baroclinic vorticity production variance EPP(t) in Fig. 15 is highly sensi-
tive to the order and resolution, increasing prior to reshock in the WENO9M
and WENO9F simulations and decreasing in all of the other simulations. The
increase in the WENO9 simulations is due to the secondary baroclinic vortic-
ity deposition in the roll-up, resulting in the formation of complex structures
shown in Fig. 6. These structures are not captured in the other simulations.
Reshock strongly increases EPP(t), which is followed by a decay. The arrival
of the reflected rarefaction at ≈ 11 ms further increases EPP(t). Following
reshock, the EPP(t) from the WENO5F and WENO9M simulations are very
similar. Prior to reshock, a distinct difference is found between the WENO5
and WENO9 simulations.
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Fig. 14. Comparison of the time-evolution of the streamwise turbulent kinetic energy,
spanwise turbulent kinetic energy and total kinetic energy, Eu′′u′′(t), Ev′′v′′(t) and
E(t), when the order and resolution are varied. See Fig. 8 for the legend.
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5.5 The probability distribution functions

A novel quantitative measure of the effects of order and resolution on prim-
itive, fluctuating and derived scalar fields represented on the computational
grid is provided by the probability distribution. The probability with which a
particular value of a scalar field occurs at a particular time during the evolution
of the instability can be quantified using the probability distribution function
(PDF) P (φ, t). Consider the field φ(x, y, t) within the mixing layer (x, y) ∈
[ℓs, ℓb]×[0, Ly] discretized by Nx×Ny points. Divide the range [min(φ), max(φ)]
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into M =
√

NxNy/2 (an integer) equal bins ∆φ ≡ [max(φ) − min(φ)] /M .

Each discrete value of φ(xi, yj, t) is distributed in the bins, yielding the fre-
quency Nk, so that the PDF is defined as

Pk(φ, t) =
Nk

∆φNx Ny

, (16)

satisfying
∑M

k=1 Pk(φ, t)∆φ = 1 (
∫
∞

−∞
P (φ, t)dφ = 1 in the continuum limit).

At 6 ms, the density PDF P (ρ) in Fig. 16 has peaks corresponding to the
density of air(acetone) (left peak) and SF6 (right peak). As the order and
resolution increase (with a decrease in numerical dissipation and numerically-
induced mixing), the magnitude of the PDF between the peaks decreases.
At 7 ms, the PDF has a smoother peak in the SF6, corresponding to the
reflected rarefaction creating a wider range of scales, whereas the peak in the
air(acetone) is compressed by the passage of the transmitted shock, creating a
narrower range of scales. The PDF at 7 ms exhibits greater sensitivity to the
order and resolution. By contrast, the layer is nearly uniformly mixed at 18 ms
and P (ρ) shows less sensitivity at high order and resolution. The pressure PDF
P (p) at 6 ms has a single peak corresponding to the pressure following shock
passage. At 7 ms, the pressure peak is broadened by the reflected rarefaction,
and further narrows at 18 ms. Higher-order higher-resolution PDFs have longer
tails, indicating the presence of additional smaller scales.

Figure 16 also shows the PDFs of the components of the density and pres-
sure gradients in the streamwise direction P (∂ρ/∂x) and P (∂p/∂x), which
exhibit increased sensitivity to the order and resolution. Higher-order higher-
resolution simulations exhibit a wider range of scales, reflected in broader
PDFs. The components of the density and pressure gradients form the baro-
clinic vorticity production P : higher-order higher-resolution simulations yield
larger values of the baroclinic vorticity production, as shown by the PDF of
P in Fig. 18. The PDFs of the density and pressure gradients in the spanwise
direction are similar to those in the streamwise direction and are not shown.

At 6 ms the PDF of the streamwise velocity fluctuation P (u′′) in Fig. 17 ex-
hibits several peaks corresponding to the different roll-up regions. At 7 ms,
two peaks corresponding to the rapid expansion (in both directions) of the
mixing layer form. A single symmetric peak at late times corresponds to a
decaying mixing layer. All of the simulations capture the shapes and values
of the peaks, with higher-order higher-resolution simulations exhibiting wider
PDFs corresponding to larger positive and negative values of the fluctua-
tions. The PDF of the spanwise velocity fluctuation P (v′′) exhibits a single
slightly asymmetric peak at 6 and 7 ms (corresponding to the roll-ups) and
becomes symmetric at 18 ms. As in the case of the streamwise component,
all of the simulations capture the peak and have similar widths, with higher-
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Fig. 16. Comparison of the PDFs of the density and pressure, P (ρ) and P (p), and of
the components of the density and pressure gradients in the streamwise direction,
P (∂ρ/∂x) and P (∂p/∂x), at 6, 7 and 18 ms when the order and the grid resolution
are varied. See Fig. 8 for the legend.
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Fig. 17. Comparison of the PDFs of the streamwise and spanwise velocity fluctuation
P (u′′) and P (v′′) and fluctuating kinetic energy P (E′′) at 6, 7 and 18 ms when the
order and resolution are varied. See Fig. 8 for the legend.

order higher-resolution PDFs exhibiting additional scales at larger values of
the fluctuations. The PDF of the fluctuating kinetic energy per unit mass
P (E ′′), where E ′′ = (u′′2 + v′′2)/2, indicates that all simulations have similar
distributions at small values. The lower-order lower-resolution PDFs rapidly
decrease, corresponding to numerically damped smaller-scale fluctuations.

The PDF of the vorticity P (ω) in Fig. 18 has a single symmetric peak at
all times. Higher-order higher-resolution P (ω) have broader peaks, consistent
with more localized and larger vorticity. The peak is particularly broad fol-
lowing reshock at 7 ms. As shown in Fig. 6, the higher-order simulations
exhibit additional structures on the roll-up that contribute to increased vor-
ticity deposition on the interface. The differences in the P (ω) among orders
and resolutions decrease at late times. The PDF of the baroclinic vorticity
production P (P) is also shown (with the values on the horizontal axis on
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Fig. 18. Comparison of the PDFs of the vorticity P (ω), baroclinic vorticity produc-
tion P (P), and fluctuating enstrophy P (Ω′′) at 6, 7 and 18 ms when the order and
resolution are varied. See Fig. 8 for the legend.

a logarithmic scale), indicating that lower-order lower-resolution simulations
have higher probability of production at smaller values. By contrast, higher-
order higher-resolution simulations exhibit larger values of the PDFs, which
can be explained by the broader PDFs of the density and pressure gradient
components shown in Fig. 16. The PDFs of the fluctuating enstrophy per
unit mass P (Ω′′), where Ω′′ = ω′′2/2, from lower-order lower-resolution simu-
lations exhibit a higher probability of smaller values of the enstrophy, whereas
higher-order higher-resolution simulations exhibit a broader range of values.
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6 Quantification of numerical dissipation: numerical turbulent ki-
netic energy and enstrophy production/dissipation rates, Reynolds
numbers and viscosity

The dependence of the results in Secs. 3–5 on the order and resolution is in-
terpreted here by computing the implicit numerical dissipation of the WENO
method using the numerical turbulent kinetic energy and enstrophy produc-
tion/dissipation rates, Reynolds numbers and viscosity.

6.1 The numerical turbulent kinetic energy and enstrophy production/dissipation
rates

Here the numerical turbulent kinetic energy production/dissipation rate ǫ̃′′(t)
is computed from the simulations using two different expressions. In the case
of an Euler simulation of the reshocked Richtmyer-Meshkov instability, the
turbulent kinetic energy is dissipated by numerical mechanisms after the shock
has passed through the interface. The interaction of the shock with the mixing
layer imparts kinetic energy into the flow (production). As ǫ̃′′ is not uniquely
defined, two independent expressions for this quantity are used and compared.
The numerical turbulent enstrophy production/dissipation rate ǫ̃′′ω(t) can also
be computed from the simulations. As in the case of the turbulent kinetic
energy, the turbulent enstrophy is dissipated by numerical mechanisms after
the shock has passed through the interface.

The first method to quantify ǫ̃′′(t) over the flow evolution entails computing
the negative of the time-rate-of-change of the turbulent kinetic energy [41],

ǫ̃′′(t) = −
dE(t)

dt
. (17)

Another estimate of ǫ̃′′ is given by turbulent transport phenomenology [42]

ǫ̃′′(t) = E(t)
√

2 Eω′′ω′′(t) , (18)

where Eω′′ω′′(t) = ω̃′′2/2 is the turbulent enstrophy per unit mass. The negative
of the time-rate-of-change of ǫ̃′′ω(t) provides a direct measure of the produc-
tion/dissipation rate:

ǫ̃′′ω(t) = −
dEω′′ω′′(t)

dt
. (19)

Both formulations of ǫ̃′′ shown in Fig. 19 are qualitatively similar. In particular,
ǫ̃′′ peaks following the passage of the initial incident shock and then decreases.
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Fig. 19. Comparison of the time-evolution of the numerical turbulent kinetic energy
production/dissipation rate ǫ̃′′(t), computed using Eqs. (17) and (18), respectively,
when the order and resolution are varied; ǫ̃′′(t) is computed from Eq. (17) by taking
the five-point average of E(t) prior to differentiation. Also shown is a comparison
of the time-evolution of the numerical turbulent enstrophy production/dissipation
rate ǫ̃′′ω(t), when the order and resolution are varied. See Fig. 8 for the legend.

Reshock rapidly deposits energy into the layer and sharply increases ǫ̃′′ by
four to five orders of magnitude. Following reshock, ǫ̃′′ decreases rapidly. The
WENO9F simulation yields the largest ǫ̃′′ based on Eq. (18), as the increased
kinetic energy of higher-order higher-resolution simulations corresponds to
larger ǫ̃′′. Similarly, the WENO3C simulation has the smallest ǫ̃′′, as the corre-
sponding kinetic energy content is lower. While both values of ǫ̃′′ are affected
by the arrival of the reflected rarefaction at ≈ 11 ms, that based on Eq. (17)
is affected more strongly. The interaction of the shock with the interface (or
mixing layer) deposits vorticity and, therefore, increases Eω′′ω′′(t) and ǫ̃′′ω(t).
The turbulent enstrophy production/dissipation rate ǫ̃′′ω(t) in Fig. 19 exhibits
a qualitative behavior similar to that of ǫ̃′′(t) in Fig. 19. Reshock further in-
creases ǫ̃′′ω by three to four orders of magnitude, followed by a rapid decrease.
The WENO9 ǫ̃′′ω are the largest, indicating that the enstrophy is produced and
dissipated at a faster rate in higher-order higher-resolution simulations.

6.2 The numerical Reynolds numbers

Another quantification of implicit dissipation is given by computing a numeri-
cal Reynolds number. In the present simulations based on the Euler equations,
there is no unique definition of the Reynolds number, so that two different ex-
pressions are compared. The first was used in blast wave simulations [43]

Reh(t) =

[
h(t)

∆x

]4/3

, (20)
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Fig. 20. Comparison of the compensated turbulent kinetic energy spectra k3E(k)
at 18 ms when the order and resolution are varied. Quantities obtained on the
fine, medium and coarse grids are shown using a solid, dashed and dash-dot line,
respectively.

where h(t) is the mixing layer width and ∆x is the grid spacing. This Reynolds
number is based on the largest scale in the flow given by h(t). Note that each
doubling of the resolution contributes to an increase of 24/3 ≈ 2.5 in Reh. A
second definition of the Reynolds number was used in two-mode Richtmyer-
Meshkov instability simulations [10]:

Reℓ(t) =

[
ℓ(t)

ℓd

]4/3

, (21)

where

ℓ(t) =
3 π

4

∫ kmax

0
E(k,t)

k
dk

∫ kmax

0 E(k, t) dk
(22)

is the integral length scale [44] and ℓd = 2π/kd is the Kolmogorov length scale.
The Kolmogorov wavenumber can be estimated as kd = 50kν [45], where the
dissipation wavenumber kν is the value of k at which the turbulent kinetic
energy spectrum E(k, t) begins to steepen from the −3 law expected for two-
dimensional turbulent flows exhibiting an inertial subrange [4]. The Reynolds
number given by Eq. (21) is based on ℓ(t), which is related to the energy
content of the largest scales. Thus, the Reynolds numbers behave differently
as they are based on different length scales. Both Reynolds numbers were used
in three-dimensional simulations: as the estimates are obtained from the range
of scales along a single spatial direction, these definitions are also appropriate
for the present simulations.

First, the values of kν are determined by plotting the compensated turbulent
kinetic energy spectra k3E(k) shown in Fig. 20, where the WENO9, WENO5
and WENO3 results are shown for each of the grid resolutions considered: kν

corresponds to the wavenumber where the spectrum is no longer horizontal,
which is estimated visually. The compensated spectra are shown at 18 ms,
but kν changes very little when the spectra are considered at 6, 7 and 12 ms
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Fig. 21. Comparison of the time-evolution of the integral length scale ℓ(t) when the
order and resolution are varied (left). The integral length scales normalized by that
from the WENO9F simulation is also shown (right). See Fig. 8 for the legend.

instead. As the resolution increases for a given order, the compensated spectra
broaden and increase in magnitude. At small k, the compensated spectra are
nearly the same. As the order increases for a given resolution, the compensated
spectra become flatter and also broaden.

Prior to reshock, the integral length scale ℓ(t) in Fig. 21 increases and very
weakly depends on the order and resolution. Following reshock ℓ(t) decreases
with increased sensitivity to the order and resolution. Higher-order higher-
resolution simulations yield smaller ℓ(t). The agreement in ℓ(t) prior to reshock
indicates similar energy content in the largest scales. The arrival of the re-
flected rarefaction at ≈ 11 ms deposits energy, which slows the decrease of
ℓ(t). Up to the arrival of the reflected rarefaction, the ℓ(t) are within 10% of
one another. Note that ℓ(t) > h(t) up to reshock. Also, ℓ(t) grows linearly
prior to reshock and decays linearly after reshock, prior to the arrival of the
reflected rarefaction.

Both numerical Reynolds numbers in Fig. 22 increase prior to reshock. How-
ever, the Reh(t) are grouped by the resolution (as shown by the ratio of the
Reynolds numbers), while the Reℓ are grouped by the order and resolution.
After reshock, the Reynolds numbers behave entirely differently: Reh(t) de-
creases due to the compression of the mixing layer caused by reshock, while
Reℓ(t) peaks at reshock due to the large energy deposition during reshock.
Following reshock, Reh(t) increases while Reℓ(t) decreases. Note that Reℓ(t)
peaks at a value ∼ 1.1× 106 at reshock in the WENO9F simulation, with the
peaks from all other simulations considerably lower.

6.3 The numerical viscosity

Assuming a correspondence between molecular and numerical dissipation,
a numerical viscosity can be dimensionally computed from the Kolmogorov
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length scale and the turbulent kinetic energy production/dissipation rate,

νnum(t) = ℓ
4/3
d ǫ̃′′(t)1/3 . (23)

Two numerical viscosities can be computed using ǫ̃′′(t) given by Eqs. (17)
and (18). This determination of νnum(t) is different from that in [13], where
one-dimensional solutions of the Euler equations were ‘matched’ to converged
solutions of the Navier-Stokes equations with different Reynolds numbers using
the fifth-order WENO method. The numerical viscosity was then estimated
to be similar to the physical viscosity of the matched solutions.

Figure 22 shows the numerical viscosities νnum(t) as the order and resolution
are varied, using ǫ̃′′(t) given by Eqs. (17) and (18). Increasing the order and
resolution corresponds to simulations with decreasing numerical dissipation.
The numerical viscosity increases at reshock, corresponding to additional en-
ergy deposition into the mixing layer, followed by a decrease at later times.
The extreme cases correspond to a difference of one order of magnitude or
greater in the value of νnum(t) at any given time: the ratios of the numerical
viscosities to that from the WENO9F simulation indicate that increasing the
order from fifth to ninth constitutes a ≈ 2.5-fold decrease in νnum(t), while
doubling the resolution results in only a ≈ 1.5-fold decrease. Similar trends
are found when the order is changed from third to fifth and the resolution is
doubled. These findings are also generally consistent with those in [13].
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Fig. 23. Comparison of the time-evolution of the numerical viscosity νnum(t) ob-
tained using the turbulent kinetic energy production/dissipation rate of Eq. (18)
(top left) and Eq. (17) (bottom left) when the order and resolution are varied. The
numerical viscosity computed using ǫ̃′′(t) given by Eq. (17) shows additional noise.
The numerical viscosities normalized by that from the WENO9F simulation are also
shown (right column). See Fig. 8 for the legend.

7 Discussion and conclusions

Simulations of the two-dimensional reshocked single-mode Richtmyer-Meshkov
instability were performed using third-, fifth- and ninth-order WENO flux re-
construction and uniform spatial grid resolutions of 128, 256 and 512 points
per initial perturbation wavelength to investigate the dependence of the follow-
ing quantities on the order and resolution: (1) the density, vorticity, simulated
density Schlieren, and the baroclinic vorticity production fields; (2) the mix-
ing layer width; (3) the circulation; (4) mixing profiles; (5) production and
mixing fractions; (6) energy spectra; (7) statistics; (8) probability distribution
functions (PDFs); (9) the turbulent kinetic energy and turbulent enstrophy
production/dissipation rates; (10) numerical Reynolds numbers, and; (11) the
numerical viscosity. To our knowledge, this is the first systematic investiga-
tion of the predictions of the WENO method applied to such a broad array of
quantities as a function of order and resolution in the case of the reshocked
Richtmyer-Meshkov instability. This broad range of quantities includes large-
scale dominated quantities (e.g., the mixing layer width), primitive fields (e.g.,
the density), derived fields (e.g., the vorticity and the density and pressure gra-
dients), spatially-averaged quantities (mixing profiles), quantities characteriz-
ing the distribution of fluctuations across scales (spectra), global quantities
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(statistics), and quantities characterizing the range of values (PDFs).

The density, vorticity, baroclinic vorticity production, and simulated density
Schlieren fields were compared before and after reshock. Prior to reshock, the
higher-order higher-resolution densities exhibited additional finer-scale struc-
ture in the roll-up. The formation of this additional structure was under-
stood by considering the vorticity and baroclinic vorticity production fields.
The higher-order higher-resolution vorticities exhibited strong localized cores
surrounded by a vortex bilayer with vorticity of opposite sign, followed by
late-time fragmentation of the roll-up. Such fragmentation does not occur in
the lower-order lower-resolution simulations. The simulated density Schlieren
fields were used to visualize the transmitted and reflected waves at reshock.
The lower-order lower-resolution Schlierens exhibited thicker waves, while the
higher-order higher-resolution Schlierens exhibited sharper small-scale waves.
Numerical dissipation damps the high-frequency components, smearing the
waves in the lower-order lower-resolution simulations. The higher-order higher-
resolution densities exhibited symmetry breaking and the formation of com-
plex small-scale structures; similarly, the vorticities fragmented and formed
localized cores. In contrast, the lower-order lower-resolution densities exhib-
ited symmetric large-scale structures and vorticities with more diffuse cores.

Prior to reshock, the mixing layer width h(t) exhibited little dependence on
the order and resolution. However, following reshock and particularly follow-
ing the arrival of the reflected rarefaction, the h(t) were significantly different
among the simulations, which can be attributed to the implicit numerical
dissipation suppressing the formation of small-scale structures in low-order
low-resolution simulations and damping velocity fluctuations (particularly the
streamwise fluctuations associated with the mixing layer growth along the
shock propagation direction). Therefore, increased numerical diffusion results
in smaller h(t). As the order and resolution increase, the differences between
the widths decrease, suggesting a trend toward numerical ‘convergence’. In
addition, smaller baroclinic circulation deposition during a wave-interface in-
teraction occurs in simulations with large numerical diffusion compared to the
higher-order higher-resolution simulations, which exhibit fragmentation and
more small-scale structure. The energy deposited into the layer by reshock
generates small-scale structures, which explains the differences in widths as
less energy is deposited in low-order low-resolution simulations.

The mixing profiles showed different degrees of sensitivity to the order and res-
olution. Prior to and immediately following reshock, the differences are due to
the numerical diffusion. The differences in the mixing profiles at late times are
due to significant differences in the underlying flow structure. Higher-order
higher-resolution simulations exhibited fragmented structure with localized
mixed regions, resulting in more pronounced localized peaks in the profiles. In-
stead, lower-order lower-resolution simulations exhibited more coherent large-
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scale structures, resulting in fewer peaks spread over a larger portion of the
layer. As a result, the mole fraction profile X had similar values prior to and
immediately following reshock as the order and resolution increased. However,
the averaged product mole fraction profile Xp exhibited differences prior to
and following reshock.

The production and mixing fractions significantly depend on the order and
resolution, which is related to the small-scale structures within the mixing
layer at late times following reshock. Low-order low-resolution simulations
with increased dissipation resulted in greater numerical mixing as measured
by the production mixing fraction Pt before and after reshock. High-order high-
resolution simulations with less numerical dissipation had smaller Pt. Prior to
reshock, low-order low-resolution simulations had larger mixing fractions Ξ,
consistent with increased mixing due to the larger numerical dissipation. How-
ever, following reshock, Ξ was not very sensitive to the order and resolution.
Similar mechanisms also explain the behavior of the mixing fraction Θ, which
exhibited stronger sensitivity than Ξ to order and resolution.

The energy spectra exhibited different degrees of sensitivity to the order and
resolution. The large-scale kinetic energy and density variance spectra are in-
sensitive to the order and resolution, while the remaining spectra are highly
sensitive to both order and resolution over all scales. Most of the sensitivity
is exhibited at the intermediate and small scales. The turbulent kinetic en-
ergy spectrum E(k, t) exhibited little sensitivity to the order and resolution,
whereas the turbulent enstrophy spectrum Eω′′ω′′(k, t) exhibited significantly
more sensitivity, with higher-order higher-resolution simulations having larger
values over a broader range of scales. The density variance spectrum Eρ′ρ′(k, t)
exhibited sensitivity to the order and resolution at large k. The pressure vari-
ance spectrum Ep′p′(k, t) exhibited sensitivity to order and resolution, both at
small and large k. Higher-order higher-resolution simulations baroclinic vortic-
ity production variance spectra EPP(k, t) remained large over a larger extent of
scales and were larger in magnitude. By contrast, lower-order lower-resolution
spectra decayed rapidly and had smaller values. The WENO9F density and
pressure variance spectra have an apparent inertial subrange over slightly more
than a decade and over approximately one decade in wavenumbers, respec-
tively. The numerical dissipation of lower-order lower-resolution simulations
rapidly damps the small-scale fluctuations in the flow. Spectra corresponding
to derived quantities (i.e., quantities depending on spatial derivatives such as
the vorticity and baroclinic vorticity production) are highly sensitive to the
order and resolution.

The statistics also exhibited sensitivity to order and resolution similar to those
exhibited by the corresponding energy spectra. The turbulent kinetic energy
E(t) exhibited small differences prior to and following reshock, with the dif-
ferences prior to reshock due to the complex structure in the roll-up. A more
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significant difference was observed in the spanwise turbulent kinetic energy
Ev′′v′′(t) prior to and following reshock due to the spanwise fluctuations ex-
cited by the roll-up and the complex structures in the flow. The turbulent
enstrophy Eω′′ω′′(t) and baroclinic vorticity production variance EPP(t) ex-
hibited significant variation over all times. The density and pressure variance
Eρ′ρ′(t) and Ep′p′(t) also exhibited variations prior to and following reshock.

Probability distribution functions (PDFs) were considered to investigate the
distribution of values of various primitive, fluctuating and derived scalar fields
in the flow, and it was found that while the different simulations give similar
predictions of mean values, quantities depending on smaller-scale structures
or with extreme values differ, i.e., the tails of the PDFs corresponding to the
extreme values are broader or narrower, depending on the relative numerical
dissipation. Specifically, higher-order higher-resolution fluctuating field PDFs
are broader, corresponding to a wider range of values. Similarly, higher-order
higher-resolution field gradient PDFs are wider, corresponding to larger abso-
lute values of the gradients. As a result, higher-order higher-resolution vortic-
ity and baroclinic vorticity production fields have increased ranges of values.
This has important implications for using numerical simulation data to assess
turbulent transport or subgrid-scale models, as lower-order lower-resolution
simulations are excessively diffusive and strongly limit the range of values of
quantities supported on a given computational grid.

The sensitivity exhibited by the quantities considered in this study was largely
explained by the different implicit numerical dissipation associated with each
order and resolution. The turbulent kinetic energy production/dissipation rate
ǫ̃′′(t) was computed using two expressions, which were shown to be qualita-
tively similar. Larger turbulent kinetic energy and turbulent enstrophy pro-
duction/dissipation are associated with higher-order higher-resolution simula-
tions, as the kinetic energy and enstrophy in these simulations is larger. The
trends for the turbulent enstrophy production/dissipation rate ǫ̃′′ω(t) were sim-
ilar to those for ǫ̃′′(t). The numerical viscosity νnum(t) computed using ǫ̃′′(t)
and a dissipation length scale confirmed that higher-order higher-resolution
simulations have reduced numerical dissipation. Doubling the resolution cor-
responds to an ≈ 1.5-fold decrease in νnum(t), while approximately doubling
the order corresponds to an ≈ 2.5-fold decrease. Therefore, for the complex
shock-driven flow considered here, approximately doubling the order yields a
larger decrease in the numerical dissipation than doubling the resolution. Fur-
thermore, at least a ninth-order WENO method is recommended if either ex-
plicit molecular dissipation and diffusion, or explicit subgrid-scale or Reynolds-
averaged Navier-Stokes models are included in such simulations.

Two numerical Reynolds numbers were compared: the first, Reh(t), is based
on the range of scales between the grid resolution ∆x and the mixing layer
width h(t), while the second, Reℓ(t), is based on the range of scales between
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Coarse (128) Medium (256) Fine (512)

Ninth-order 0.4 2.3 20.7

Fifth-order 0.2 1.0 9.5

Third-order 0.17 0.8 7.1

Table 2
Ratio of CPU times for advancing the simulations by ∆t = 0.1 ms compared with
the time needed for the fifth-order simulation at medium resolution.

the integral length scale ℓ(t) and the numerical analog of the Kolmogorov
dissipation length scale ℓd; Reh(t) is associated with the largest scales present
in the flow, while Reℓ(t) is associated with turbulent quantities. The WENO9F
simulation attains the largest Reynolds numbers, as this simulation has the
least numerical dissipation. The temporal decay of Reℓ is consistent with a
decaying turbulent flow following reshock of the mixing layer, where the decay
mechanism is due to the numerical dissipation. Larger numerical Reynolds
numbers are attained in high-order high-resolution simulations.

Finally, a note regarding the relative computational cost of the simulations
presented here, which were conducted on the Blue Pacific computer at the
Lawrence Livermore National Laboratory. For each simulation, 32 nodes were
used with a total of 128 processors. The CPU times required to advance the
simulation between 12.5 and 12.6 ms were compared to the time required
for the WENO5M simulation. The ratios of the CPU times to that for the
WENO5M simulation are shown in Table 2, which indicates that increasing
the order requires twice the computational time, whereas doubling the resolu-
tion requires five to eight times more computational time. These findings are
generally consistent with [11].

The reduced numerical dissipation in formally high-order methods, coupled
with consideration of the computational cost, suggests that such methods are
well-suited for simulating complex multi-scale flows with shocks. Lower dis-
sipation simulations preserve additional small-scale structures and provide a
more complete representation of the flow dynamics. Low-order representations
of complex flow physics are considerably different than high-order represen-
tations and, in general, a broad range of quantities should be considered to
differentiate between the predictions of different numerical methods. The use
of formally higher-order methods is also more computationally efficient than
increasing the grid resolution for the two-dimensional Richtmyer-Meshkov in-
stability, leading to a significant advantage in multi-dimensional simulations of
such flows. While definitive experimental data corresponding to the quantities
considered in the present study is required to assess the simulation predictions,
higher-order higher-resolution simulations likely provide higher fidelity data.
The analysis presented here is currently being applied to a three-dimensional
reshocked multi-mode Richtmyer-Meshkov instability-induced flow.
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