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Abstract: Oxidative stress is implicated in the pathogenesis of diabetic complications, and 

can be increased by diet like white rice (WR). Though brown rice (BR) and germinated 

brown rice (GBR) have high antioxidant potentials as a result of their bioactive 

compounds, reports of their effects on oxidative stress-related conditions such as type 2 

diabetes are lacking. We hypothesized therefore that if BR and GBR were to improve 

antioxidant status, they would be better for rice consuming populations instead of the 

commonly consumed WR that is known to promote oxidative stress. This will then provide 

further reasons why less consumption of WR should be encouraged. We studied the effects 

of GBR on antioxidant status in type 2 diabetic rats, induced using a high-fat diet and 

streptozotocin injection, and also evaluated the effects of WR, BR and GBR on catalase 

and superoxide dismutase genes. As dietary components, BR and GBR improved glycemia 

and kidney hydroxyl radical scavenging activities, and prevented the deterioration of total 

antioxidant status in type 2 diabetic rats. Similarly, GBR preserved liver enzymes, as well 

as serum creatinine. There seem to be evidence that upregulation of superoxide dismutase 

gene may likely be an underlying mechanism for antioxidant effects of BR and GBR. Our 

results provide insight into the effects of different rice types on antioxidant status in type 2 

diabetes. The results also suggest that WR consumption, contrary to BR and GBR, may 

worsen antioxidant status that may lead to more damage by free radicals. From the data so 

far, the antioxidant effects of BR and GBR are worth studying further especially on a long 
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term to determine their effects on development of oxidative stress-related problems, which 

WR consumption predisposes to. 

Keywords: antioxidants; diabetes; electron spin resonance; germinated brown rice;  

white rice; nutrigenomics 

 

1. Introduction 

Chronic hyperglycemia in type 2 diabetes promotes oxidative stress and diabetic complications [1], 

and may even be involved in pathogenesis of the disease [2]. It causes diabetic retinopathy, 

neuropathy, nephropathy, and cardiovascular disease [1,3]. These microvascular and macrovascular 

complications cause severe morbidity and significant mortality and could potentially be prevented if 

oxidative stress is reduced or reversed in type 2 diabetes. Already, 346 million people were reported to 

be diabetic as of 2011 and this is projected to double by 2030 [4]. Urgent action is therefore needed to 

reduce the burden of this disease, especially in developing countries where the increase in its 

prevalence is expected. Alleviating oxidative stress is one way of lowering the risk of complications in 

diabetics. In this way, the burden of the disease may be reduced. 

Diet promotes oxidative stress in diabetes [5], and it is a challenge to prevent diet-induced oxidative 

stress [6] because food consumption is necessary for survival. White rice (WR) has a high glycemic 

index [7] and may result in high oxidative stress and other health risks. Recently, it has been shown to 

increase the risk of type 2 diabetes [8]. However, it is widely consumed as the staple diet by half the 

world’s population [9]. An alternative to WR would be to consume brown rice (BR) since it lowers 

insulin and glycemic indices [10], and may confer other health benefits. As BR is difficult to chew, 

germinating it may improve texture, palatability and the amount of the bioactive molecules [11]. 

Germinated brown rice (GBR) is reported to have glucose- and cholesterol-lowering properties [11–14]. 

Consumption of this rice product instead of WR would provide enormous benefits since it will not 

have the same health risks as WR, but rather will promote health and reduce disease burden [11]. 

There are reports of bioactive molecules in BR and GBR having antioxidant potential [15,16], and 

we hypothesized that BR and GBR as dietary components may improve the antioxidant status in type 2 

diabetes. Our aim was to show that the commonly consumed WR may worsen antioxidant status, the 

consequences of which may be promotion of oxidative stress-related complications in type 2 diabetes, 

and also show that BR and GBR may not worsen antioxidant status as much as WR. Since overall 

metabolism is perturbed in type 2 diabetes, we also aimed to study the effects of these rice types on 

expression of antioxidant genes. 

2. Results and Discussion 

2.1. Gamma-Aminobutyric Acid (GABA) and Total Phenolic Contents, and Antioxidant Potentials 

GABA was undetected in WR while its content in BR was 0.09 ± 0.02 mg/g of BR. Our GBR 

variety was found to have high GABA content (0.36 ± 0.04 mg/g of GBR). Additionally, GBR had 
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four-fold higher total phenolic content (TPC) compared to BR and its antioxidant assays showed better 

results than both WR and BR (Table 1). 

Table 1. Total phenolic content, DPPH and ABTS antioxidant assays for germinated 

brown rice (GBR), brown rice (BR) and white rice (WR) extracts. 

Extract  

(70% ethanolic) 

TPC  

(mg GAE/g extract) # 

ABTS scavenging activity  

(mg TEAC/g extract) # 

DPPH free radical 

scavenging assay *,# 

WR 0.60 ± 0.45 a 1.78 ± 0.44 a 18.41 ± 0.46 a 

BR 3.17 ± 1.68 b 2.67 ± 0.24 b 6.82 ± 0.23 b 

GBR 12.01 ± 0.2 c 6.31 ± 0.57 c 5.27 ± 0.17 c 

* Expressed as IC50 (mg/mL), calculated from Trolox standard curve (y = 0.0087x + 4.587, r2 = 0.9957)  

in which a lower value suggests a higher scavenging potential. # Values expressed as mean ± standard 

deviation. Values with different letters in a column indicate statistical significance at p < 0.05. TPC,  

total phenolic content; ABTS, 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulphonic acid]; DPPH,  

di[phenyl]-[2,4,6-trinitrophenyl]iminoazanium. 

It is established that BR has bioactive compounds in its bran layer that confer its functionality. GBR 

has even higher amounts of the bioactive molecules. However, those responsible for the functional 

properties of BR and GBR are still the subject of debate, though synergy may play a role. The GABA 

content of our GBR variety significantly improved, and was higher than that which Roohinejad et al. [17] 

reported for the same rice variety and other varieties germinated over the same 24 h period. Similarly, 

our results showed higher GABA content than that which Charoenthaikij et al. [18] reported, 

suggesting that our method of germination improved GABA tremendously. GABA is an inhibitory 

neurotransmitter that normally regulates a wide variety of brain functions [19], and it is likely that  

it is responsible for other functional roles as suggested by Roohinejad et al. [17]. Higher GABA 

content was associated with better hypocholesterolemic effect of GBR in their study [14]. Also,  

Nakagawa et al. reported that GABA protected the liver and kidneys from oxidative damage in type 2 

diabetes and hence could reduce the risks of developing diabetic complications from oxidative  

stress [20]. Higher GABA content in our GBR variety would be expected to confer higher antioxidant 

properties than its BR or WR counterparts. 

Phenolic content has been linked to antioxidant effects of foods [21]. In his review,  

Burton-Freeman argued that phenolic-rich foods have high antioxidant potentials and could 

counterbalance negative effects of pro-inflammatory and pro-oxidative foods. Since high phenolic 

content in foods will improve antioxidant status, higher phenolic content in BR and GBR coupled with 

higher antioxidant potential than WR, as suggested by our results, means the likely benefits to be 

derived from BR and GBR would be more than WR. During polishing of BR, the removal of bran 

layer means that beneficial effects of BR are lost together with the bran, and WR consumption may not 

confer the same benefits as would be expected of BR considering its high antioxidant potentials. 

Interestingly, GBR has higher potentials than BR, and may provide the highest antioxidant effects. 
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2.2. Food Consumption and Glucose Analysis 

Table 2 shows baseline parameters including food consumption for each group. Although food 

consumption was similar for all groups, changes in plasma glucose reflected the effects of the different 

dietary components given to the different rat groups. Progressive elevation of plasma glucose among 

diabetic controls possibly reflected the natural history of the type 2 diabetes without any form of 

treatment. On the other hand, normal rats maintained normal glycemic level throughout the period of 

intervention and as shown on Figure 1, the area under the curve (AUC) for fasting plasma glucose 

(FPG) in the normal group was the lowest over a 28-day period of intervention, while WR had the 

highest and BR and GBR produced lower AUCs than WR. By the end of the experiment, WR group 

had the highest total AUC (Figure 2), suggesting that high glycemic index of WR maintained an 

elevated FPG more than all groups including the untreated controls. The total AUC over 28 days for 

metformin was similar to BR. 

Table 2. Baseline parameters for rat groups just after induction of diabetes. 

Parameter 

Rat group 

Normal 

Control 

(untreated 

diabetic) 

Metformin WR BR GBR 

Glucose (mmol/L) Baseline 4.6 ± 0.5 a 14.9 ± 2.2 b 14.7 ± 4.1 b 19.1 ± 2 b 18.4 ± 2.8 b 17.3 ± 2.5 b 

Food consumption 

(kcal/100 g body 

weight/day) * 

Baseline 30.5 ± 3.7 a 34.0 ± 6.0 a 30.7 ± 6.0 a 33.2 ± 8.3 a 30.5 ± 6.7 a 33.2 ± 8.3 a 

ALT (U/l) * 
Baseline 58.32 ± 1.03 a 61.52 ± 2.17 a 61.36 ± 2.47 a 61.52 ± 6.05 a 60.36 ± 4.09 a 58.91 ± 1.34 a

Final 54.82 ± 1.44 a 62.44 ± 1.75 b 68.11 ± 1.55 c 67.76 ± 2.54 c 71.83 ± 2.58 c 54.20 ± 1.43 a 

AST (U/l) * 
Baseline 77.22 ± 3.29 a 77.7 ± 2.51 a 75.07 ± 2.35 a 76.64 ± 1.75 a 72.97 ± 3.49 a 74.00 ± 3.38 a

Final 77.37 ± 1.16 a 84. 69 ± 2.54 b 75.30 ± 2.26 a 81.94 ± 1.23 b 74.21± 2.23 a,c 70.82 ± 2.13 c 

GGT (U/l) * 
Baseline 2.18 ± 0.43 a 2.70 ± 0.03 b 2.68 ± 0.08 b 3.00 ± 0.38 b 2.83 ± 0.20 b 2.78 ± 0.06 b 

Final 1.92 ± 0.12 a 2.94 ± 0.18 b 2.64 ± 0.16 b 3.24 ± 0.20 c 2.69 ± 0.16 b 2.61 ± 0.16 b 

Urea (mmol/L) 
Baseline 5.14 ± 0.04 a 5.54 ± 0.45 a 5.32 ± 0.17 a 5.37 ± 0.27 a 5.21 ± 0.43 a 5.23 ± 0.21 a 

Final 5.31 ± 0.06 a 8.42 ± 0.34 b 7.82 ± 0.16 c 9.77 ± 0.39 d 8.18 ± 0.65 b,c 9.20 ± 0.74 b,d 

Creatinine 

(μmol/L) 

Baseline 53.86 ± 0.84 a 57. 78 ± 1.26 b 58.55 ± 1.32 b 60.83 ± 5.06 b 58.25 ± 1.67 b 58.32 ± 1.89 b

Final 53.80 ± 1.20 a 59.92 ± 0.36 b 60.42 ± 0.41 b 62.96 ± 0.78 c 60.76 ± 0.86 b 57.56 ± 0.45 d 

TAS (mmol/L) 
Baseline 2.12 ± 0.12 a 2.22 ± 0.04 a 2.18 ± 0.04 a 2.14 ± 0.03 a 2.23 ± 0.09 a 2.09 ± 0.09 a 

Final 2.13 ± 0.04 a 1.84 ± 0.02 b 2.03 ± 0.02 c 2.05 ± 0.02 c 2.22 ± 0.01 d 2.10 ± 0.02 a 

* Values represent mean ± SEM (n = 5). Values with the same letter in any given row are not statistically different  

(p > 0.05). ALT: Alanine transaminase; GGT: γ-glutamyltranspeptidase; AST: Aspartate transaminase; TAS: total antioxidant 

status. Control and normal groups received high-fat diet (HFD) and normal rat chow respectively while the metformin group 

received HFD + 300 mg/kg metformin. White rice (WR), brown rice (BR) and germinated brown rice (GBR) groups received 

HFD in which 50% of the semi-purified diet used to formulate the pellets was substituted with 50% of the respective rice types. 
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Figure 1. Area under the curve (AUC) for fasting plasma glucose (FPG) over four weeks 

of intervention; figure shows effect of germinated brown rice (GBR) on AUC of FPG 

(mmol × d/L) during four weeks of intervention, compared to brown rice (BR), white rice 

(WR) and metformin (n = 5). Groupings are the same as in Table 1. 

 

Figure 2. Total area under the curve (AUC) for fasting plasma glucose (FPG) over four 

weeks of intervention; figure shows effect of germinated brown rice (GBR) on total AUC 

of FPG (mmol × 28 d/L) over four weeks of intervention, compared to brown rice (BR), 

white rice (WR) and metformin (n = 5). Data used represents mean ± SEM. Groupings are 

the same as in Table 1. 
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Chronic sustained hyperglycemia as a hallmark of type 2 diabetes will continue to worsen without 

treatment as reflected by AUC of FPG for untreated diabetic (control) group from our study. 

Worsening hyperglycemia is known to be the primary underlying factor responsible for diabetic 

symptoms and complications [22]. High glycemic index of WR [7] could have been responsible for the 

WR group having the highest total AUC throughout the intervention period in the current study. BR 

has been shown to be a better type of rice due to bioactive compounds, which may lower glycemic and 

insulin indices compared to WR [12], and as our data suggest, GBR produces an even better effect on 

glycemic control. 

In the current study, we showed that high glycemic index of WR worsened glycemic control in  

type 2 diabetic rats while BR and GBR produced better glycemic levels. Though a standard 

hypoglycemic agent [23], metformin produced the same glycemic effect as BR. Our data therefore 

shows that GBR could produce significant glycemic control, in support of earlier reports [11], better 

than WR, BR and metformin. 

2.3. Liver Enzymes, Urea, and Creatinine 

At baseline, just after induction of diabetes, creatinine and γ-glutamyltranspeptidase (GGT) were 

significantly higher in diabetic groups than normal, but other parameters (urea, total antioxidant status 

(TAS), alanine aminotransferase (ALT) and aspartate transaminase (AST) were not significantly 

different between groups (Table 2). Elevated creatinine levels among diabetic control, metformin, WR, 

and BR groups likely suggested ongoing damage to the kidneys. The GBR group, however, did not 

have as much serum creatinine after 28 days as the other diabetic groups. 

At the end of four weeks of intervention, control group had significantly increased serum urea 

compared to normal rats (p < 0.05), while WR had the highest elevation among all groups (Table 2). 

Metformin group did not have as much serum urea as the untreated group, and BR and GBR groups 

had similar serum urea elevations to diabetic controls. However, there was no statistically significant 

difference between WR and GBR groups. 

Liver enzymes (AST, ALT, and GGT) in the control group were significantly elevated more than 

normal group (p < 0.05), which were either maintained (AST) or reduced (ALT and GGT). The 

enzymes were also elevated in WR group. Pattern of liver enzyme changes in the metformin and BR 

groups were similar, with elevations in both ALT and AST and reductions in GGT. The GBR group 

had a reduction in liver enzymes. 

The liver and kidneys play crucial metabolic roles in the body and are often the targets of insults in 

type 2 diabetes. Derangements in their function are detrimental to overall functioning of the body. 

Liver enzymes and serum urea and creatinine are good markers for liver and kidney functions, and 

suggest the state of these organs. In our study, just after induction of diabetes, biochemical markers 

(except creatinine and GGT) were not different between diabetic and normal groups suggesting that 

soon after induction of the disease, the insult to the liver and kidneys may not have been profound 

enough to produce severe damage. High reserve potentials of liver, and functional versatility of 

kidneys, may have been responsible for this [24,25], but as diabetes progressed, deterioration in their 

functions was reflected by our data (Table 2). Higher levels of liver enzymes and serum urea and 

creatinine were indicative of liver and kidney damage in control and WR groups. Also, metformin and 
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BR were not very effective in preventing the deterioration of kidney and liver function as suggested by 

the rising biochemical parameters. The reduced liver enzymes in the GBR group, however, may have 

been indicative of hepatocytes’ protection and/or regeneration. Usuki et al. [26] reported that GBR—as 

a result of its steryl glucoside content—could cause regeneration of sodium potassium adenosine 

triphosphatase (Na+/K+ ATPase) and homocysteine thiolactonase (HTase) enzymes in type 2 diabetes, 

potentially reversing neuropathy and oxidative changes on biomolecules. Our results also indicate that 

GBR reverses and/or prevents elevations of serum creatinine that is normally seen in diabetic kidney 

damage, suggesting it could restore function towards normal or protect the kidneys from damage. Not 

surprisingly, our data show that WR, which has low antioxidant potentials (Table 1) does not prevent 

the deterioration of kidney and liver functions in type 2 diabetes while GBR produces improvements to 

varying degrees and BR produces only a modest improvement with better outcome than WR. Higher 

phenolic and GABA contents, and higher antioxidant potentials of our GBR variety over the WR or 

BR varieties may have been responsible for the better outcomes recorded for the GBR group for both 

liver and kidney function parameters. Synergy as a result of several bioactive compounds may also 

have been involved.  

2.4. Plasma Total Antioxidant Status 

Baseline and final measurements for TAS are shown on Table 2, and Figure 3 shows its changes 

over four weeks of intervention. The TAS for control group was increased while those for control, 

WR, and metformin groups were reduced. The TAS for the BR and GBR groups did not show much 

perturbation, and were significantly better than the control, metformin and WR groups (p < 0.05). The 

higher values for BR group over GBR may have been due to higher baseline values, and as the change 

in TAS suggests, both BR and GBR were able to stabilize their TAS values, with evidence of 

downward and upward trends for BR and GBR, respectively (Figure 3). As previous data showed, WR 

caused a significant reduction in TAS compared to BR and GBR, consistently suggesting that WR 

produces worse metabolic outcomes than both BR and GBR. 

Oxidative stress plays significant role in the development and progression of diabetes as well as its 

complications [1,2], and antioxidants may reduce its level, potentially preventing or decreasing the 

burden of diabetes. Diet-induced oxidative stress secondary to high glycemic load [6] may have a role 

in lowering antioxidant status in diabetes as shown from our results for diabetic controls. Also, modest 

improvements in glycemic control may reduce oxidative stress in diabetes as suggested by TAS in the 

metformin group. Lowering glycemia may have improved the ability of the rats to produce more 

antioxidants that removed excess free radicals. For the same reason, WR was expected to show marked 

reduction in TAS. The fact that WR did not produce as much reduction as expected (Figure 3), 

suggests the TAS for WR could have been influenced by a number of adaptive mechanisms such as 

mitochondrial homeostasis [27], leading to a temporary boost in endogenous antioxidant production. 

Maintenance of TAS by BR and GBR suggests that the 2 rice types were able to replenish the supply 

of antioxidants that maintained the TAS and/or prevented its deterioration unlike in the case of WR. 

This effect of BR and GBR in comparison to WR on TAS may have been as a result of the higher 

antioxidant potentials of BR and GBR. Put together, our findings indicate that better antioxidant status 
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in type 2 diabetic rats may accompany improved glycemic control, and potentially reduce the risks of 

developing oxidative stress-related diseases. 

As can be recalled, WR worsened liver enzymes more than BR and GBR. The liver, as the main 

“biochemical factory” of the body, is largely responsible for a major aspect of intermediary 

metabolism and many other functions. The ability of liver to function properly is gradually 

compromised as type 2 diabetes worsens, and deterioration in TAS for the WR group is indicative that 

derangement in liver function may have been responsible for the liver’s inability to continue producing 

endogenous antioxidants. Less damage to the liver due to BR or GBR was likely responsible for their 

better outcomes. 

Figure 3. Changes in plasma total antioxidant status (TAS) after four weeks; figure shows 

effect of germinated brown rice (GBR) on TAS in type 2 diabetic rats after four weeks of 

intervention, compared to brown rice (BR), white rice (WR) and metformin (n = 5). Data 

used represents mean ± SEM for each group. Bars with different letters are significantly 

different (p < 0.05). Groupings are the same as in Table 1. 

 

2.5. Hydroxyl Radical Scavenging Capacity of Liver and Kidneys 

The liver hydroxyl radical (OH•) scavenging capacity of the control group (33.8 mM DMSO 

equivalent) was lower than that of the normal group (79.8 mM DMSO equivalent) (Table 3). 

Additionally, the scavenging potentials of the metformin, WR, and GBR groups were similarly lower 

than the normal group though not significantly different from the control group. Feeding with BR 

reduced the radical scavenging activity unexpectedly lower than WR. Kidney OH• scavenging capacity 

was similarly reduced in the diabetic control group compared to the normal (42.8 mM DMSO 

equivalent compared to 68.8 mM DMSO equivalent). Metformin showed lower scavenging activity 

(16.8 mM DMSO equivalent) while the WR group lost their kidney scavenging activity entirely. The 

BR and GBR groups maintained their radical scavenging activities similar to the normal group. 
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Excess OH• is common in diabetes [1,3] and may damage liver and kidneys, as indicated by the OH• 

scavenging activity in our study. Accumulated radicals overwhelm functioning capacity of the liver 

and kidneys with dire consequences. Improved ability of the kidneys to scavenge free radicals, likely 

due to high amounts of bioactive compounds especially GABA and antioxidant contents, suggests that 

kidney-specific oxidative stress may be reduced by these bioactive compounds, which were found to 

be more in our BR and GBR varieties than their WR counterpart. 

Table 3. Liver and kidney hydroxyl radical scavenging activities in type 2 diabetic rats 

after four weeks of intervention. 

Rat Groups 
Liver Kidney 

Scavenging activity (%) DMSO equivalent Scavenging activity (%) DMSO equivalent 

Normal 44.5 ± 4 a 79.8 ± 1.2 a 39.0 ± 2 a 68.8 ± 5.2 a 

Control 21.5 ± 3 b 33.8 ± 3.2 b 26.0 ± 3 b 42.8 ± 3.2 b 

Metformin 22.0 ± 6 b 34.8 ± 2.8 b 13.0 ± 3 c 16.8 ± 3.2 c 

White rice 20.5 ± 3 b 31.8 ± 3.2 b 0 d 0 d 

Brown rice 13.0 ± 2 c 16.8 ± 5.2 c 39.0 ± 5 a 68.8 ± 0.8 a 

GBR 22.0 ± 2 b 34.8 ± 5.2 b 39.0 ± 3 a 68.8 ± 3.2 a 

*Values are mean ± SEM (n = 5). Values with the same superscript letter in the same column are not significantly 

different (p > 0.05). Hydroxyl radical scavenging activities (%) were calculated using (Io – I/Io × 100%) where Io is the 

control peak/marker value while, I is the peak/marker value for the different rats [28]. Different concentrations (25, 50, 

100, 200, and 400 mM) of standard (DMSO) were plotted against scavenging activities (%) to make the standard curve  

(y = 0.4793x + 4.5652, r2 = 0.9959) used in calculating DMSO equivalent scavenging activity. Groupings are the same as 

in Table 1.  

2.6. HEPG2 Antioxidant mRNA Expression  

The expression of antioxidant genes was also studied using an in vitro model to determine if any 

nutrigenomic mechanisms are involved in BR and GBR’s effects on antioxidant status. The mRNA 

levels of SOD 2 in the untreated and insulin-treated groups were not significantly different (p > 0.05), 

as shown on Figure 4. The figure also shows that expression of the SOD 2 gene in HEPG2 cells treated 

with 50 ppm of ethanolic extract of WR did not produce any significant change. However, 

upregulation of the SOD 2 gene was observed by similar doses of BR and GBR. There was no 

difference between mRNA levels of HEPG2 cells treated with 50 ppm of WR, BR or GBR extracts, 

while insulin treatment upregulated the gene significantly. This data shows that nutrigenomic 

upregulation of the SOD 2 gene may be involved in GBR and BR’s antioxidant effects, and higher 

amounts of GABA and antioxidant potentials may have contributed to this.  

Free radicals generated in biological systems are removed by antioxidants like SOD [29]. It is likely 

that the antioxidant status due to GBR or BR in type 2 diabetic rats was partly contributed by 

upregulation of SOD gene. Bioactive compounds like GABA or phenolics may have been responsible. 

These results support the hypothesis of nutrigenomic interactions between dietary components and 

genes as a basis for some functional effects of bioactive molecules. Kaput and Rodriguez suggested 

that this may even be the focus for future management of diet-related chronic diseases [30]. 
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Figure 4. Changes in expression of catalase and superoxide dismutase genes following 

treatment with ethanolic extracts of germinated brown rice (GBR), brown rice (BR) and 

white rice (WR); figure shows effect of 70% ethanolic extracts of GBR, BR and WR on 

expression of catalase and superoxide dismutase (SOD) 2 genes in HEPG2 cells, compared 

to non-treatment and insulin treatment (n = 4). Data used represents mean ± SEM for  

each group. Bars representing the catalase or SOD2 gene with similar letters are not 

significantly different (p > 0.05). 

 

It is common knowledge that GBR grains have high antioxidant potentials just as our results have 

shown. This potential, hitherto not reported to improve antioxidant status in type 2 diabetes, is shown 

in this study to likely be responsible for improved glycemic control in type 2 diabetes, and this may 

translate into reduced risk of developing diabetic complications. Our findings prove that GBR and BR 

may improve antioxidant status to varying degrees better than WR, which worsens it. The presence of 

bioactive compounds like GABA and phenolics, and higher antioxidant potentials may have been 

responsible for these effects. It can be recalled, however, that BR and GBR produced similar outcomes 

(TAS, kidney hydroxyl radical scavenging activity and expression of catalase gene) in the current 

study despite higher amounts of bioactive compounds and antioxidant potentials in GBR than BR. It is 

likely that BR and GBR bioactive compounds have only an “all-or-none” effect on these parameters 

and others that were similar between the groups. However, it was clear that other efffects of BR and 

GBR bioactives were exponential (glycemic control and expression of SOD 2 gene), suggesting that 

higher amounts of bioactive compounds would likely produce even more of the same effect. Also, 

studies have linked in vivo antioxidant effects of foods to their phenolic content and antioxidant 

potentials, and this study is in support of that. Other bioactive compounds may also contribute  

through synergy. 

In addition to other risks that have been reported for WR [6,7], our data provides yet another reason 

why less consumption of WR should be encouraged especially for the rice-consuming populations that 

use WR as a staple food.  
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3. Experimental Section 

3.1. Chemicals 

All solvents were of analytical grade and were purchased from Merck (Darmstadt, Germany). 

Alanine transaminase (ALT), γ-glutamyltranspeptidase (GGT), aspartate transaminase (AST), glucose, 

total antioxidant status, urea, and creatinine kits were purchased from Randox Laboratories Ltd 

(Crumlin, County Antrim, UK). Ethylenediaminetetraacetic acid (EDTA), Tris-EDTA (TE) buffer 

solution, 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulphonic acid] (ABTS) reagent, di[phenyl]-[2,4,6-

trinitrophenyl]iminoazanium (DPPH) reagent, sodium chloride (NaCl), potassium persulfate (K2S2O8), 

sodium carbonate (Na2CO3), γ-aminobutyric acid (GABA) standard, trolox standard, gallic acid 

standard, Folin–Ciocalteu reagent, and streptozotocin (STZ) were all purchased from Sigma-Aldrich 

(St. Louis, MO, USA). Hydrogen peroxide (H2O2) was from Bendosen Laboratory Chemicals 

(Selangor, Malaysia) and sodium hypochlorite from Dexchem Industries Sdn. Bhd, (Penang, 

Malaysia). Dimethyl sulfoxide (DMSO), 5-dimethyl-1-pyrroline-N-oxide (DMPO) and ferrous sulfate 

(FeSO4) were purchased from Fisher Scientific (Ottawa, Canada), Labotech, Ltd (Tokyo, Japan) and 

BDH Chemicals (Poole, England) respectively. Nestle fortified milk powder was from Nestle 

Manufacturing (Selangor, Malaysia) while fine sugar and starch powder were purchased from R & S 

Marketing Sdn. Bhd. (Selangor, Malaysia). Mazola oil was purchased from Unilever (Malaysia) and 

standard rat chow from Specialty feeds (Glen Forrest, WA, USA). Metformin was purchased from 

Pfizer (New York, NY, USA), RCL2 Solution from Alphelys (Toulouse, France), and GenomeLab™ 

GeXP Start Kit from Beckman Coulter Inc (Miami, FL, USA). 

3.2. Germination of Brown Rice 

PadiBeras Nasional (BERNAS) factory, Sri Tiram Jaya, Selangor provided the white rice (WR) and 

brown rice (BR) of Malaysian variety (MR220) used in this study. BR was germinated by soaking in 

0.1% sodium hypochlorite (1:5, w/v) and 0.5% hydrogen peroxide (1:5, w/v) for 30 min and 6 h 

respectively, and incubated at 37 °C for 18 h. Germination was shown by sprouting, and the final 

moisture content was 8%–11% after drying at 50 °C. 

3.3. Gamma-Aminobutyric Acid and Total Phenolic Contents, and Antioxidant Properties 

GABA content of the 70% ethanolic extract of GBR was determined as reported by  

Rozan et al. [31]. TPC was determined as detailed by Meda et al. [32], while antioxidant assays 

(DPPH and ABTS) were determined as reported by Kim et al. [33]. TPC of BR and WR ethanolic 

extracts was compared with that of GBR.  

3.4. Animal Handling, Feeding and Induction of Diabetes 

In accordance with the guidelines for the use of animals as approved by the Animal Care and Use 

Committee (ACUC) of the Faculty of Medicine and Health Sciences, University Putra Malaysia 

(Project approval number: UPM/FPSK/PADS/BR-UUH/00360), we housed the rats individually  

(35 male Sprague–Dawley rats; 150–200 g) in plastic cages, in an air-conditioned room (25–30 °C) 
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with a 12/12-h light/dark cycle. After a two-week period of adaptation on normal rat chow and free 

access to water, five rats were maintained on normal rat chow while the rest were fed with high-fat diet 

(HFD) for six weeks to induce obesity. The HFD was made up of 40.5% carbohydrate, 16.1% protein,  

31.1% fat, 2.5% fiber, and 5.1% mineral and vitamin mix, as formulated in our earlier study [34]. 

Streptozotocin (STZ) (35 mg/kg b.w.; i.p.) was then injected to induce type 2 diabetes mellitus except 

in normal rats (5 mmol/L of sodium citrate buffer [pH 4.5]) [35]. Type 2 diabetes was confirmed after 

two days by fasting plasma glucose of ≥250 mg/dL, and diabetic rats were randomly allocated to  

six groups of five rats each; control group received HFD, metformin group received HFD and  

300 mg/kg/day of metformin [36] while WR, BR, and GBR groups were given HFD in which 50% of 

the semi-purified diet used to formulate the pellets was substituted with 50% of the respective rice 

types. Feeding lasted for 28 days. 

3.5. Plasma Total Antioxidant Status, Glucose, and Liver- and Kidney-Function Tests 

Fasting blood samples were collected by cardiac puncture after induction of type 2 diabetes and 

after 28 days of treatment. Plasma was used for fasting glucose analysis and TAS, while serum was 

used to measure liver enzymes (ALT, AST and GGT) and kidney function (urea and creatinine levels) 

using randox analytical kits on an automated chemistry analyzer, Selectra XL (Vita Scientific, Dieren, 

the Netherlands) according to the kit protocol. Additional blood samples were taken at the end of the 

2nd and 3rd weeks for glucose analysis. AUC was calculated as reported previously [37]. 

3.6. Electron Spin Resonance (ESR) Spectroscopy  

All rats were sacrificed at the end of the experiment and their organs (liver and kidney) harvested 

and preserved in RCL2® Solution within 5–10 min of death. Liver and kidney antioxidant status 

against OH• was measured using an electron spin resonance (ESR) spectrometer (Jeil FA100; Tokyo, 

Japan). Preserved liver samples (100 mg each) were homogenized in 1 mL normal saline (0.9% 

Sodium chloride) and centrifuged (Mikro 22R Zentrifugen, Germany) at 10,000 rpm for 10 min. 

Analyses on ESR were similar to that which was reported by Ismail, Al-Naqeep and Chan [28]. 

Briefly, 60 μL of the supernatant was added to 40 μL of 0.4 mM DMPO, 37.5 μL of 0.2 mM FeSO4, 

112.5 μL of 0.2 mM EDTA, and 150 μL of 1 mM H2O2 at room temperature. The mixture was then 

inserted (200 μL) into a flat cell (200 pL capacity, quartz form) and measured on the ESR 

spectrometer. Measurements on the ESR were taken using the following parameters: magnetic field 

33.700 ± 5 mT, microwave power 8 MW, modulation frequency 100 KHz, modulation width 0.1 mT, 

time constant 0.1 s, amplitude 160, and 1 min sweeping time, and DMSO was used as standard. 

FeSO4 and H2O2 from above will generate OH• through the Fenton reaction, which will ultimately 

form DMPO-OH• adducts represented on ESR spectra (Figure 5), which are reflective of hydroxyl 

radical scavenging activity. Peak/marker values were used to calculate scavenging activities (%) using 

(Io – I/Io × 100%), where Io is the control peak/marker value while, I is the peak/marker value for  

the different groups [28]. Normal saline was used to obtain control peak/marker value. Different 

concentrations (25, 50, 100, 200, and 400 mM) of DMSO were plotted against scavenging activities 

(%) to make the standard curve (y = 0.4793x + 4.5652, r2 = 0.9959) used in calculating DMSO 

equivalent scavenging activities as shown in Table 3. 
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Figure 5. Spectra representing 5-dimethyl-1-pyrroline-N-oxide-hydroxyl radical  

(DMPO-OH•) adducts; figure shows electron spin resonance (ESR) spectra of DMPO-OH• 

adducts representing hydroxyl radical (OH•) scavenging activity of (a) liver and (b) kidneys 

in type 2 diabetic rats after feeding three different rice types for 28 days. In the presence  

of DMPO, OH• generated through the Fenton reaction by FeSO4 and H2O2 will form  

DMPO-OH• adducts that give the signal recorded as spectra on the ESR spectrometer. 

Scavenging activities (%) were calculated using (Io – I/Io × 100%) where Io is the control 

peak/marker value while, I is the peak/marker value for the different rats [28]. Different 

concentrations (25, 50, 100, 200, and 400 mM) of standard (DMSO) were plotted against 

scavenging activities (%) to make the standard curve (y = 0.4793x + 4.5652, r2 = 0.9959) 

used to calculate DMSO equivalent scavenging activity. 1 = control, 2 = Normal group,  

3 = Diabetic control group, 4 = Metformin group, 5 = White Rice (WR) group, 6 = Brown 

Rice (BR) group, 7 = Germinated Brown Rice (GBR) group. Other groupings are the same 

as in Table 1. 
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3.7. Cell Culture 

We evaluated the effect of the 70% ethanolic extracts (from Section 3.3.) of GBR, BR amd WR on 

the expression of catalase and SOD 2 genes to determine if any nutrigenomic mechanism was involved 

in BR or GBR’s antioxidant effects. HEPG2 cells acquired from the American Type Culture Collection 

(Manassas, VA, USA) were cultured in RPMI 1640 medium supplemented with 10% fetal bovine 

serum (FBS) and 1% antibiotics (100 U/mL penicillin) in an incubator at 37 °C with 5% CO2, 

following which cell viability was assessed as described by Mosmann [38]. Cells were seeded on a  

24-well plate and allowed to attach for 24 h. The cells were serum starved (RPMI 1640 medium with 

0.5% FBS and 1% antibiotics) for 12 h and then treated for 24 h with non-toxic doses (50 ppm) of the 

70% ethanolic extracts and insulin (100 nM), in a medium that contained 1 μM dexamethasone, 10% 

FBS and 1% antibiotic. 

3.8. Hepatic Antioxidant mRNA Expression Analysis 

3.8.1. RNA Isolation 

RNA from treated HEPG2 was isolated using the GF-TR-100 RNA Isolation Kit (Vivantis, 

Malaysia) according to the kit protocol. 

3.8.2. Primer Design 

Primers were designed on the GenomeLab eXpress Profiler software using Homo sapien sequence 

adopted from the National Center for Biotechnology Information GenBank Database [39]. The genes 

of interest, housekeeping genes and an internal control are shown in Table 4. The forward and reverse 

primers had universal sequences (tags) in addition to nucleotides that were complementary to the target 

genes. Primers were supplied by First Base Ltd. (Selangor, Malaysia), and diluted in 1× TE buffer to a 

final concentration of 500 nM for reverse primer and 200 nM for forward primers. 

3.8.3. Reverse Transcription and Polymerase Chain Reaction (PCR)  

Reverse transcription and multiplex PCR of RNA samples (50 ng each) were done in an XP 

Thermal Cycler (BIOER Technology, Hangzhou, China) according to the kit protocol. 

3.8.4. GeXP Multiplex Data Analysis 

PCR products (1 μL each) from the above reactions were mixed with 38.5 μL of sample loading 

solution and 0.5 μL of DNA size standard 400 (Beckman Coulter, Inc, Miami, FL, USA) in a 96-well 

sample loading plate and analyzed on the GeXP machine (Beckman Coulter, Inc, Miami, FL, USA). 

The results from the machine were analyzed using the Fragment Analysis module of the GeXP system 

software and then imported onto the analysis module of eXpress Profiler software. Normalization was 

done with GAPDH. 
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Table 4. Gene name, accession number, and primer sequences used in GeXP multiplex analysis of antioxidant genes in HEPG2 cells. 

Gene name  

(Accession number) * 

Primer sequences * (with universal tag) 

Forward Reverse 

Catalase [NM_001752] AGGTGACACTATAGAATAGCTCAGCTGACACAGTTCGT GTACGACTCACTATAGGGACCATTCGCATTAACCAGCTT 

Superoxide dismutase 2 

[NM_000636] 

AGGTGACACTATAGAATACAAGCGTGACTTTGGGTCTT GTACGACTCACTATAGGGAGGGCTTCACTTCTTGCAAAC 

Actb [NM_001101] a AGGTGACACTATAGAATAGATCATTGCTCCTCCTGAGC GTACGACTCACTATAGGGAAAAGCCATGCCAATCTCATC 

GAPDH [NM_002046] a,# AGGTGACACTATAGAATAAAGGTGAAGGTCGGAGTCAA GTACGACTCACTATAGGGAGATCTCGCTCCTGGAAGATG 

EEF1A1 [NM_001402] a AGGTGACACTATAGAATACACACGGCTCACATTGCAT GTACGACTCACTATAGGGACACGAACAGCAAAGCGA 

Kanr b   
* based on the Homo sapien gene sequences adopted from the National Center for Biotechnology Information GenBank Database [39]. a Housekeeping genes; b Internal 

control; # Normalization gene. 
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4. Conclusions 

In this study we show the evidence that WR worsens antioxidant status in type 2 diabetic rats, while 

BR and GBR maintain antioxidant status to varying degrees. BR and GBR improved glycemia, TAS, 

serum creatinine, and radical scavenging potential of the kidneys better than WR. Also, nutrigenomic 

upregulation of SOD 2 gene may be involved in BR and GBR’s antioxidant effects as a result of higher 

amounts of GABA and phenolics compared to WR. Although BR and GBR bioactive compounds 

confer these rice types with their functionality, our findings suggest that some of them may have 

exponential effects on antioxidant parameters while others may only elicit an “all-or-none” effect. 

These antioxidant effects of BR and GBR, the exact bioactive compounds responsible for them, and 

what mechanisms are involved to either produce the exponential or “all-or-none” effects are worth 

studying further. 
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