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Abstract

Effect handlers are a promising way to structure effectful programs in a modular way. We present
the Scala library Effekt, which is centered around capability passing and implemented in terms of a
monad for multi-prompt delimited continuations. Effekt is the first library implementation of effect
handlers that supports effect safety and effect polymorphism without resorting to type-level program-
ming. We describe a novel way of achieving effect safety using intersection types and path-dependent
types. The effect system of our library design fits well into the programming paradigm of capabil-
ity passing and is inspired by the effect system of Zhang & Myers (2019, Proc. ACM Program.

Lang. 3(POPL), 5:1-5:29). Capabilities carry an abstract type member, which represents an individ-
ual effect type and reflects the use of the capability on the type level. We represent effect rows as the
contravariant intersection of effect types. Handlers introduce capabilities and remove components of
the intersection type. Reusing the existing type system of Scala, we get effect subtyping and effect
polymorphism for free.

1 Introduction

To get a first impression of Effekt, consider the following piece of code written in Scala
and using our library. It models a coin toss, but with a twist: the gambler might be too
drunk and lose the coin (Kammar et al., 2013). The program uses two effect operations:
flip and raise. The effect operation flip is used to nondeterministically decide whether
the gambler is too drunk to catch the coin. In that case, we use the effect operation raise

to signal an exception. Otherwise, we return the result of a second coin toss as a string.

def drunkFlip(amb: Amb, exc: Exc) = for {

caught ← amb.flip()

heads ← if (caught) amb.flip() else exc.raise("We dropped the coin")

} yield if (heads) "Heads" else "Tails"
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2 J. I. Brachthäuser et al.

This simple example already shows a few things. Firstly, the program is written in monadic

style using Scala’s for-comprehensions.1 Even though the program uses multiple effects,
all effectful code only uses one monad—a variant of the continuation monad. Secondly,
the effect operations are methods on capabilities amb and exc, which drunkFlip receives as
arguments. The semantics of the effect operations is thus dependent on the corresponding
implementations of Amb and Exc. We can, for instance, run the method drunkFlip with the
handlers maybe and collect:

val res1: List[Option[String]] = run {

collect { amb ⇒ maybe { exc ⇒ drunkFlip(amb, exc) } }

}

◮ List(Some(Heads), Some(Tails), None)

The collect handler enumerates all possible outcomes of the flip operation and collects
them in a list. The maybe handler returns None if the program raises an exception.

Swapping the two handlers changes the result type and the semantics:

val res2: Option[List[String]] = run {

maybe { exc ⇒ collect { amb ⇒ drunkFlip(amb, exc) } }

}

◮ None

This illustrates an important feature of effect handlers. Programs that use effects are agnos-
tic of the concrete handlers and their order (Plotkin & Pretnar, 2009). This gives the caller
of the program and the implementer of the handlers more flexibility. Moreover, effect han-
dlers are powerful enough to express many different control-flow abstractions as libraries,
which otherwise have to be built into a language. Examples are async-await, cooperative
multitasking, iterators, exceptions, and many more (Wu et al., 2014; Leijen, 2016, 2017b;
Dolan et al., 2017). We encounter some of these abstractions in the remainder of this paper.

1.1 Effekt - Effect handlers and capability passing

In this paper, we present Effekt: a library for programming with effect handlers in the lan-
guage Scala. The combination of effect handlers with object-oriented features enables new
modularization strategies, both for effectful programs and for effect handler implemen-
tations. While Scala conveniently provides us with all necessary features, the core ideas
behind Effekt (passing effect handlers explicitly as capabilities, combining effect handlers
with object-oriented programming, and using path-dependent types and intersection types
for effect safety) are independent of our embedding into Scala. The different aspects of our
library design are summarized in the type signature of the method drunkFlip that we have
seen above:

1 Similar to Haskell’s do-notation, for-comprehensions in Scala syntactically simplify writing monadic
code. In general, for { x1 ← e1; x2 ← e2; ... xn ← en } yield e desugars to
e1.flatMap { x1 ⇒ e2.flatMap { x2 ⇒ ... en.map { xn ⇒ e }}}.
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Result Type
︷ ︸︸ ︷

Effect Typing
︷ ︸︸ ︷

def drunkFlip( amb: Amb, exc: Exc
︸ ︷︷ ︸

Capability-passing style

): Control[String, amb.effect & exc.effect]
︸ ︷︷ ︸

Monad for Delimited Control

Like previous versions of Effekt (Brachthäuser & Schuster, 2017), our library design cen-
ters around the concept of capability passing. As we will see in the remainder of this paper,
capabilities in Effekt encapsulate three different things:

Capabilities contain Effect Implementations. They give semantics to effect operations
(Section 2). In the example program drunkFlip, we call effect operations as methods on
the capabilities amb and exc, for instance.

Capabilities contain Scope Delimiters. Effect operations can capture the continuation
delimited by the corresponding handler. Programs written with our library have type
Control (Section 3), a monadic implementation of delimited control with first-class
prompts (Dybvig et al., 2007). Prompts act as markers and are used to delimit the scope of
continuation capture. Capabilities can close over scope delimiters.

Capabilities contain Effect Labels. Our capabilities contain a type member (amb.effect)
that we use as a label on the type level to guarantee effect safety (Section 4). We keep track
of all used capabilities by aggregating their effect members in an intersection type as the
second-type parameter of Control.

1.2 Effect system

Previous versions of Effekt lacked effect safety (Brachthäuser & Schuster, 2017).
Capabilities could be used outside of the scope of their handler region, which resulted
in runtime exceptions. In this paper, we solve the problem of effect safety and present
a variant of Effekt that statically prevents programs from using leaked capabilities. We
describe a novel way of achieving effect safety in a library embedding using intersec-
tion types and path-dependent types. The effect system of our library design fits well into
the programming paradigm of capability passing and is inspired by the effect system of
the λ -calculus by Zhang & Myers (2019). As we will see in Section 4, we represent
effect rows as the contravariant intersection of effect types, where an individual effect of a
capability c is represented by the abstract type member c.effect. Handlers remove com-
ponents of the intersection type. By reusing the existing type system of Scala, we obtain
the features of effect subtyping and effect polymorphism for free. By embedding Effekt

into a practical, but unsound host language (Amin & Tate, 2016), type and effect safety of
our library can only be guaranteed up to soundness of the host language. We do not present
formal proofs, but a design for a library implementation as an embedding into an existing,
mainstream programming language. Nevertheless, from our experience of working with
Effekt, we are confident that it inherits the following properties from λ .
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Effect Safety. Our effect system asserts that all effects are handled. For example, we
can only call run on a program when all effects are handled and we reject programs
like run { amb.flip() }. Like with systems based on monadic regions (Launchbury &
Sabry, 1997; Moggi & Sabry, 2001; Kiselyov & Shan, 2008), capabilities can leave their
defining handler scope but our effect system ensures that they cannot be used outside their
defining handler scope.

Effect Subtyping. We use Scala’s support for subtyping of intersection types to imple-
ment effect subtyping. A program with type Control[Int, exc.effect] can be used
where a program of type Control[Int, exc.effect & amb.effect] is expected.

Effect Polymorphism. We use Scala’s support for type polymorphism to express effect
polymorphic functions like:

def mapM[A, B, E](ls: List[A], f: A ⇒ Control[B, E]): Control[List[B], E]

The function maps an effectful functions over a list. It is polymorphic in the effects E used
by function f. The effects of mapM are precisely the effects of f. Also, mapM may itself use
effects and handle them. They are encapsulated and do not appear in the signature.

Existing implementations of languages with effect handlers either completely lack a
static effect system—this includes Multicore OCaml (Dolan et al., 2014), Eff (Bauer &
Pretnar, 2015), embeddings of Eff in OCaml (Kiselyov & Sivaramakrishnan, 2016), and
previous versions of Effekt (Brachthäuser & Schuster, 2017; Brachthäuser et al., 2018)—or
they do not have sufficient support for effect polymorphism (Kammar et al., 2013;
Inostroza & van der Storm, 2018). Languages and libraries with effect systems like
Extensible Effects (Kiselyov et al., 2013), Koka (Leijen, 2017c), Links (Hillerström
et al., 2017), Frank (Lindley et al., 2017), and Helium (Biernacki et al., 2019) require
explicit lifting annotations to encapsulate effects in effectful higher-order functions, like
the function mapM above. Without such manual liftings, the implementation detail of effects
used within mapM would leak into its type signature. In contrast, Effekt requires no such
manual lifting.

Related to effect encapsulation is the property of effect parametricity (Zhang &
Myers, 2019). Just by looking at the type of mapM above, we can guarantee that no imple-
mentation of mapM can (accidentally or purposefully) handle effects E used by f. Handling
an effect means two things: delimiting captured continuations and providing an imple-
mentation for effect operations. By employing capability passing, Effekt guarantees that
no matter how mapM is implemented—it will never change the implementations of effect
operations used in f. However, it is possible for mapM to instantiate delimit continuations
for effects E, which are captured within f. This breaks effect parametricity as we explain
in Section 5.4 in more detail.

1.3 List of contributions and paper overview

In summary, this article makes the following contributions:

• We introduce the library design of Effekt, which is based on implementing effects
in terms of other effects. In particular, continuations are captured using the Scope
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effect, which serves as a base case. The corresponding built-in effect handler for
Scope delimits the extent of the captured continuation.

• We implement Effekt building on the operational semantics of Dybvig et al. (2007).
We achieve effect safety by generalizing techniques of Launchbury & Sabry (1997)
to nested regions (Kiselyov & Shan, 2008) and using intersection types of abstract
type members (Parreaux et al., 2017) instead of rank-2 types. Our effect system rules
out some use cases of multi-prompt delimited control (Kobori et al., 2016), but can
express many interesting use cases of effect handlers.

• We present our API design of ambient state (Kiselyov et al., 2006; Leijen, 2018) as
the second of the two built-in effects: the State effect.

• We evaluate the usability of our library in multiple extended case studies.
• We evaluate desirable properties like effect safety and effect parametricity of our

library embedding and discuss limitations.
• We evaluate the extensibility properties of our library design. We discuss interesting

opportunities to explore type- and effect-safe modularization of effectful programs,
opened up by embedding Effekt into Scala, a language that combines functional
programming with object-oriented programming.

The remainder of the paper is structured as follows. In Section 2, we give an overview of
programming with Effekt and show how to implement effect handlers. While ultimately
we aim to achieve an effect-safe implementation of effect handlers, as an intermediate
step, we present a monadic implementation of delimited control (Section 3) to then show
how to restrict it to an effect-safe, yet useful subset (Section 4). We discuss properties and
limitations of our effect system in Section 5. In Section 6, we give several extended case
studies and discuss novel extensibility properties that arise from our embedding into Scala.
Section 7 discusses related work and Section 8 concludes.

2 Programming with effect handlers in Effekt

To introduce programming with effect handlers in our library Effekt, we continue to
use the effects from the introduction as a running example. We will see how to declare
and handle the exception and ambiguity effects. This section should give the reader a
high-level intuition for the usage of the library. The examples of this section have been
presented in similar form in Koka (Leijen, 2017c) and previous versions of Effekt for
Scala (2017) and Java (2018). All code is given in Dotty (version 0.19), the upcoming
version of the Scala programming language. The library and examples from this paper are
available online:

https://github.com/b-studios/scala-effekt/tree/jfp

Programming with effect handlers encourages modularity by separating the interface of
an effect (the effect signature) from its implementation (the effect handler). This is reminis-
cent of how programs are organized in object-oriented programming. In fact, embedding
effect handlers into Scala—a language with support for functional as well as object-
oriented paradigms—we actively use the correspondence between effect handlers and
object-oriented programming (summarized in Figure 1).
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6 J. I. Brachthäuser et al.

Effect Handlers Object-Oriented Programming

Effect Signatures Interfaces

Effect Operation Method

Effect Handlers Implementations / Classes

Effectful Programs Interface Users

Effect Capability Instances / Objects

Fig. 1. Mapping concepts from effect handlers to object-oriented programming.

2.1 Example: Exceptions—aborting the computation

Exceptions are a simple effect and provide a good opportunity to introduce the involved
concepts. Our effect system guarantees that all effects are handled, which means that the
exceptions we implement are checked. This is not the case for Scala’s native exceptions
they are unchecked.

Scala Background. In Scala, traits not only have value members, but also type mem-
bers. Value members and type members can be left abstract and defined in implementing
classes (Odersky & Zenger, 2005b). The syntax x ⇒ EXPR introduces a lambda that binds
x in EXPR. Methods with one argument (like map) can be written infix (i.e., c map f desug-
ars to c.map(f)). Methods with only one argument can be called with braces, instead
of parenthesis, that is, c.map(f) and c.map { f } are equivalent for the purpose of this
paper.

2.1.1 Effect signatures are interfaces

Effect signatures group multiple effect operations under one type. In Effekt, we represent
effect signatures as interfaces (called “traits” in Scala). Figure 2(a) declares the effect
signature Exc. The return type of effect operation raise makes use of the type alias:

type /[+Result, -Effects] = Control[Result, Effects]

In Scala, type constructors with two arguments can be used infix and we write R / E to
denote the type Control[R, E]. We read R / E as the type of a computation with result
type R, using effects E. The variance annotations + and - make it explicit that effectful
computations are covariant in their result type and contravariant in their effects. The
return type of effect operations like raise not only tells us the type of the result, in this
case Nothing (the bottom of Scala’s subtyping lattice). It also describes which effects an
effect operation may use, in this case the abstract type member effect (which is short
for this.effect). The type member effect is declared in the library trait Eff, that Exc
inherits from:

trait Eff { type effect }

We only use effect types like effect for effect safety. They do not have any operational
meaning attached to them and are erased by the compiler.
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Fig. 2. Using Effekt to declare and handle exception and ambiguity effects.

2.1.2 Capabilities are effect instances

Consider the following effectful function which uses a capability for the exception effect2:

def div(x: Int, y: Int)(exc: Exc): Int / exc.effect =

if (y == 0) exc.raise("y is zero") else pure(x / y)

We read the type signature of div as “given an exception capability exc, div computes an
integer using the capability exc”. While mentioning exc twice in the type signature seems
redundant, Effekt separates two concerns often conflated in existing effect languages.

2 To syntactically separate capabilities from other arguments, in the example, we curry the function definitions
using multiple argument sections.
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Dynamic Effect Semantics. Passing exc as parameter gives the program (term-level)
access to the methods of Exc, in this case the effect operation raise. Other languages
with support for effect handlers perform a search at runtime to handle effect operations
like raise. In contrast, using Effekt, we explicitly pass effect handlers in the form of
capabilities as parameters.

Static Effect Semantics. When we use the effect operations of the exc capability to imple-
ment div, we have to mention the type member exc.effect in the effect type of div. We
will go into the details of the effect system in Section 4—for now it is enough to under-
stand that we guarantee effect safety by tracking all unhandled effects in the type parameter
Effects of Control, that is, the right-hand side of R / E. Most of the time, the return type
of effectful functions like div can be inferred.

2.1.3 Effect handlers are implementations

The effect signature Exc only specifies the available effect operations. To give them a
concrete interpretation, we define a handler function with the following signature:

def maybe[R,E](prog: ( exc: Exc ) ⇒ R / ( exc.effect & E)): Option[R] / E

Handler functions fulfill two purposes. Firstly, they provide capabilities (i.e., exc) as argu-
ments to the handled program. Secondly, handler functions remove the used effect (i.e.,
exc.effect) from the effect type. The type of prog is a path-dependent function type.
The intersection type (i.e., exc.effect & E) reflects that prog might use the exc capability
passed to it, as well as other effects E. The handler function runs the program prog and
effectively removes exc.effect so the final effect type is just E. The handler is polymor-
phic in both—in the result type R of the handled program prog and in all other effects E

that the program might use, and which are not handled by maybe.
Operationally, the handler function interprets the effectful program which would com-

pute a result of type R (mnemonic for “result type”) into a new semantic domain of type
Option[R], the effect domain. As seen earlier, programs that raise exceptions will be
handled to return None. Programs that do not raise an exception return Some(result).

Remark. We interchangeably use the terminology capability and handler instance. While
“capability” puts a focus on the concept of entitling the holder to use an effect, “handler
instance” highlights the fact that handlers are implementations of effect signatures.

2.1.4 Handler implementations can shift the perspective

Figure 2(b) uses the Effekt library to implement the handler function maybe. In Effekt,
effect handlers can use other effects to implement effect operations. Often, handlers need
to capture a delimited continuation. This is achieved using the built-in effect Scope, which
declares the effect operation switch (Section 3). The Scope effect, in turn, can be handled
with the built-in library function handle. It introduces a new capability, which we bind to
scope in this example. Continuations captured by scope.switch will be delimited by this
very call to handle.
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The anonymous handler instance exc extends the effect signature Exc and implements
the method raise. It uses scope.switch to capture the current continuation. We com-
municate the use of scope on the type level by defining the type member effect to be
scope.effect. Since we call handle at type Option[R] / E, the method scope.switch

has type:

def switch[A](body: (A ⇒ Option[R] / E) ⇒ Option[R] / E): A / scope.effect

// ^^^^^^^^^^^^^^^^^^^

// the continuation

Calling scope.switch in our implementation of raise switches the current evaluation con-
text: it transfers the control flow from the call site of raise to the respective (dynamically
enclosing) call to handle. Conceptually, the body passed to switch is thus evaluated at the
call to handle not at the call to raise. Calling switch also captures the current continuation
and provides it as the argument (i.e., resume). The continuation allows us to transfer the
control flow back to the original call site of raise. In this example, however, we discard
the continuation and immediately return None. Operationally, the call to handle { ... }

will thus be replaced by pure(None), aborting the computation. The captured continua-
tion resume corresponds to the context between the call to handle { scope ⇒ ... } and
the call to scope.switch. While at runtime prog might arbitrarily install delimiters before
calling raise, the connection between the two functions scope.switch and handle is stat-

ically scoped. We know that for all calls to exc.raise the captured continuation will be
delimited by this lexically enclosing handle, even in the presence of duplicate instances of
this delimiter as we discuss in Section 5.4.1.

2.1.5 Return clauses

Delimiting the scope with handle requires the result type of the passed program to match
the effect domain of the handler—that is Option[R] in our case. For this reason, we are
mapping over the result of the program prog to wrap it in the constructor Some. In other
languages like Koka, Eff, or Frank, this lifting of the result type into the effect domain
is typically performed by return clauses. Using capability passing, return clauses are not
required to be part of the user interface of handlers while maintaining the same expressive
power (Section 5.5).

2.2 Example: Ambiguity—resuming multiple times

Our implementation of the exception effect discards the continuation of the program when
it encounters a raise and immediately returns None. In contrast, the handler for ambigu-
ity illustrates how to use the continuation to resume to the original call site. Figure 2(a)
declares the effect signature of the Amb effect. The implementation of the handler function
collect in Figure 2(c) handles the Amb effect. It changes the result type of the program
from R to the effect domain List[R]:

def collect[R, E](prog: (amb: Amb) ⇒ R / (amb.effect & E)): List[R]

https://doi.org/10.1017/S0956796820000027 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000027


10 J. I. Brachthäuser et al.

To implement the flip operation, we capture the continuation and call it with the result of
the coin flip. Here, the type of the continuation is resume: Boolean ⇒ List[R] / E, so
calling it with either true or false gives us a list of possible results List[R]. To explore
all execution paths we call resume twice, once with true and once with false. Finally, we
concatenate both lists with xs ++ ys. Like before, we lift the result type R into the effect
domain (this time List[R]) by wrapping the result in a singleton list. That is, if there is no
call to flip, no ambiguity arises and the list contains only one result.

2.3 The Effekt library

In this section, we encountered the basic concepts of programming with effect handlers
in Effekt. While all effectful computation happens in one monad (Control), programming
with effect handlers encourages a modularization into three components: effect signatures,
effectful programs, and effect handlers.

Effect signatures like Exc are interfaces containing methods marked as effectful with an
abstract type member effect. This abstraction is very powerful—not only is the implemen-
tation of the method left abstract, but we also leave open which effects an implementation
might use. In a concrete implementation, all effectful methods share the type member
effect much like all methods of an object share the private state.

Effectful programs use effect operations by calling into explicitly passed capabilities.
This has advantages, but also can be a burden due to its verbosity. Like we did in previ-
ous versions of Effekt for Scala (Brachthäuser & Schuster, 2017), we could hide most of
it using implicit parameters and implicit function types. However, for most parts of this
paper, we refrain from doing so to reduce cognitive overhead and focus on the aspect of
effect safety. Section 6.3.1 discusses the use of implicits in greater detail.

Effect handlers provide semantics to effect operations. We distinguish three different
aspects of an effect handler. The handler function, like collect, is a higher-order func-
tion that provides an amb capability and removes the amb.effect from the effect type
of the handled program. The handler implementation is a class implementing the effect
signature. In our above example, the Amb interface is implemented by an anonymous
inner class new Amb { ... }. The handler instance, like amb, is an instance of the han-
dler implementation. Handler functions encapsulate three aspects of effect handling in one
module:

1. the handler function uses handle to delimit the scope of the captured continuation;
2. it locally uses the fresh scope introduced by handle to implement the effect opera-

tions in terms of scope.switch—the effect operations close over scope and are thus
the only way to capture the continuation;

3. it finally lifts the return type of the handled function R into the effect domain which
makes it the answer type of the delimiter handle.

Grouping these aspects of effect handling in one module, it is possible to locally reason
about type safety. The implementation of raise is only safe because we statically know
that the answer type expected at handle is Option[R]. Likewise, in collect, we know
that the answer type in the body of scope.switch is List[R]. This allows us to safely
concatenate the results of the two calls of the continuation resume.
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The remainder of this paper iterates the running example of this section and introduces
all mentioned types and library functions in three steps: Section 3 gives an overview over
the underlying implementation of delimited control. Section 4 then establishes effect safety
for this implementation of delimited control and introduces the abstraction of effect sig-
natures. Finally, Section 6 explores newly gained extensibility by refactoring the handler
implementations of maybe and collect into reusable and extensible traits.

3 Answer-type safe effect handlers

Effekt implements effect handlers in terms of a monad for delimited control. In previous
sections, we used a monad Control[+Result, -Effects] that is both answer-type safe
and effect-safe. To focus on the operational semantics of delimited control and to illustrate
problems of effect safety, in this section, we start with a simpler variant Control[+Result]
which has the same operational semantics is answer-type safe, but not effect-safe. It
roughly corresponds to the one presented in earlier work (Brachthäuser & Schuster, 2017).
In Section 4, we show how to achieve effect safety.

3.1 Structured programming with delimited continuations

For multiple decades, control operators like call/cc have been used to program with con-
trol effects (Friedman et al., 1984). Recently, in disguise, control effects have found their
way into mainstream programming languages in the form of specialized solutions such as
async/await, fibers, coroutines, generators, and others.

Also recently, the programming languages research community found new interest in
control effects in the form of algebraic effects (Plotkin & Power, 2003) and their exten-
sion with handlers (Plotkin & Pretnar, 2009, 2013). Effect handlers occupy a sweet spot
between the general control operators (such as call/cc) and specialized programming
language features (such as async/await). Like general control operators, effect handlers
are very powerful and can express many of the above language features as user-defined
libraries (Dolan et al., 2015, 2017; Leijen, 2017b). However, unlike general control oper-
ators, effect handlers also encourage modularity. We believe the regained interest comes
from four important improvements over control operators like call/cc:

1. generalizing from undelimited to delimited continuations
2. generalizing from one control operator to a family of control operators
3. establishing answer-type safety of control operators
4. establishing effect safety of control operators

From an engineer’s perspective, each of these improvements helps to write programs in a
modular way making them easier to extend and making it easier to reason about parts of a
program in isolation.

The connection between effect handlers and delimited control is not accidental. It has
been established practically (Kiselyov & Sivaramakrishnan, 2018) as well as theoreti-
cally (Forster et al., 2017; Piróg et al., 2019) that certain forms of delimited continuations
can express certain forms of algebraic effect handlers. Similarly, in the literature, effect
handlers are sometimes introduced as a structured way to programming with delimited
continuations (Kammar et al., 2013; Leijen, 2017c).
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Fig. 3. The API of Effekt without effect typing.

“Effect handlers are to delimited continuations as structured programming is to goto” —
attributed to Andrej Bauer by Kammar et al. (2013).

In the design of the Effekt interface (presented in Figure 3), we take this quote literally. In
particular, there are two ways to view the monad Control.

An Embedding of Delimited Control. One can view Control as an embedding of a lan-
guage with (delimited) control effects into Scala. The library function handle is a delimiter
for the control effects in the provided program prog. It also introduces a fresh Scope that
can be thought of as a prompt marker (Sitaram & Felleisen, 1990; Gunter et al., 1995)
labeling the corresponding call to handle. The method switch is a control operator. It
captures (and removes) the current continuation up to (and including) the corresponding
handle. It then passes the continuation to the provided body. Taking this point of view, pro-
gramming with Control as presented in the introduction is “just” structured programming
with delimited continuations.

Delimited Control as Built-in Effect. For the purpose of this paper, however, we want to
take an alternative point of view. Staying in the conceptual framework of effect handlers,
we think of switch as an effect operation, defined in the effect signature Scope. The func-
tion handle is a handler function for the Scope effect. Effect handlers can be defined in
terms of other effects, including the Scope effect. The only difference between the Scope

effect and user-defined effects like Amb or Exc is that the handler function handle is built
into the Control monad. This point of view emphasizes programming with effects and han-
dlers. The potential use of the Scope effect to capture the continuation is an implementation
detail of the respective user-defined handler.

3.2 The Control monad—Delimiting continuations

Figure 3(a) defines the interface of our monad for delimited control. The implementation of
our monad Control[+Result] is based on the monad for multi-prompt delimited control
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by Dybvig et al. (2007). We specialize both, syntax and semantics, to better fit effect
handlers. As usual, we embed a pure value into the monad with pure and we sequence
effectful computations with flatMap. This enables us to write effectful programs in an
imperative style via Scala’s for-comprehensions. Using run[A], we execute a program
with control effects that computes a value of type A. The type parameter Result of our
monad is marked as covariant (i.e., +Result) to enable correct subtyping.

3.2.1 Capturing delimited continuations with Scope.switch

Besides being a monad, Control enables the implementation of one particular built-in
effect: Scope. Figure 3(b) defines the Scope effect and its corresponding built-in handler
handle. The effect operation switch captures the continuation and binds it to resume. It
is important to emphasize that the continuation is delimited. Such a delimited continua-

tion (Felleisen, 1988) is also referred to in literature as subcontinuation (Hieb et al., 1994)
or partial continuation (Johnson & Duggan, 1988). Since their introduction by Felleisen,
many variants of delimited control operators have been discovered—maybe the most
prominent example being shift / reset (Danvy & Filinski, 1992). Using shift / reset, we
can express the following example:

print(reset { (1 + shift { k ⇒ k(3) + k(4) } ) ∗ 2 })

The continuation captured by shift (highlighted in gray) corresponds to the evaluation con-
text (1 + �) ∗ 2. Its extent is delimited by reset and thus does not include the call to print.
The example will print the number ((1 + 3) ∗ 2) + ((1 + 4) ∗ 2) = 18. Importantly,
since it is delimited, calling the continuation k(3) does return with the value 8.

Example 1

We can translate the above example to Scala using the Control monad and the Scope

effect:

val ex1: Control[Unit] = handle { scope ⇒

scope.switch { resume ⇒ for {

x ← resume(3)

y ← resume(4)

} yield x + y } map { x ⇒ (1 + x) * 2 }

} map { x ⇒ print(x) }

Like above, running run { ex1 } will print the number 18. Adjusting the example
illustrates the choice of terminology for scope.switch.

val ex1b: Control[Unit] = handle { scope ⇒

scope.switch { resume ⇒ pure(42) } map { x ⇒ (1 + x) * 2 }

} map { x ⇒ print(x) }

The call to switch changes (i.e., “switches”) the context to the handle call that introduced
the scope. The body passed to switch is evaluated in the context print(�). Returning from
the body is returning from handle and running run { ex1b } prints 42.
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3.2.2 Multiple scopes and families of control operators

We will now see how to use the Control monad to program with multiple scopes (Sitaram
& Felleisen, 1990; Gunter et al., 1995). Every call to handle introduces a fresh scope that
corresponds to a prompt marker (Sitaram & Felleisen, 1990). This gives rise to a dynamic
number of control operators scope.switch, one for each call to handle. The following
example illustrates the use of multiple delimiters.

Example 2

We use handle twice, introducing two different scopes s1 and s2.

val ex2: Control[Int] = handle { s1 ⇒

handle { s2 ⇒

s1.switch { resume ⇒ pure(21) }

} map { x ⇒ if (x) 1 else 2 }

} map { x ⇒ 2 * x }

The captured continuation resume contains the program segment delimited by scope s1,
that is, the evaluation context handle { s1 ⇒ if (handle { s2 ⇒ � }) 1 else 2 }. Here, the
body of switch discards the continuation and returns 21. Hence, run { ex2 } gives 42.

3.2.3 Answer-type safety

Operationally, scope.switch { k ⇒ PROG } replaces the corresponding call to handle

by the body PROG. The return type of the body has to match the answer type at the handle.
To guarantee this, we follow Gunter et al. (1995) and parametrize the Scope effect by
the answer-type R (Figure 3(b)). In Example 2, the two scope capabilities thus have types
s1: Scope[Int] and s2: Scope[Boolean]. The type of handle[R] in Figure 3(b) requires
three types to be R: the answer type of the created scope (i.e., Scope[R]), the result of
the given program (i.e., Control[R]), and the return type of handle. Similarly, the type
of switch uses the answer type of the given scope and requires that (a) the return type
of the continuation and (b) the return type of the given body agree with (c) the answer
type expected at the handle that introduced this scope. Answer-type safety is especially
important for multiple nested scopes. Each call to handle might introduce a scope with
a different answer type. Switching to a handler with the wrong type should be statically
rejected. For instance, switching to s2 instead of s1 would render Example 2 type-incorrect.
It would require the body of switch to return a computation of type Boolean, not Int.

4 Effect-safe effect handlers

In the previous section, we have seen a version of Control that has a type parameter
Result. Also indexing Scope with Result, we statically track answer types and guar-
antee that capturing and calling the continuation is type-safe. However, this version of
Control is not effect-safe: capabilities can leave the scope of the handler function that
introduced them, that is, the handler region. Using a Scope capability outside of the handler
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region leads to a runtime error. We illustrate two ways for capabilities to leave the handler
region.

Leaving the Handler Region by Returning. We can leave the handler region by return-
ing from it. In this case, it is possible to leak the Scope capability either through
references

var s: Scope[Unit] = null

val problem1 = run {

for {

_ ← handle { scope ⇒ s = scope ; pure(()) }

_ ← s.switch { resume ⇒ pure(()) } // Exception: undelimited scope

} yield ()

}

or simply by returning it as result:

val problem2 = run {

for {

s ← handle { scope ⇒ pure( scope ) }

_ ← s.switch { resume ⇒ pure(()) } // Exception: undelimited scope

} yield ()

}

As also observed by Osvald et al. (2016), both sources of leakage can occur indirectly
through functions or objects that close over the capability. Capabilities might even leave
the scope of the enclosing run to then be used in the scope of a different run. Dybvig
et al. (2007) use rank-2 types to prevent this particular source of runtime errors, but leave
others to future work.

Leaving the Handler Region by Scope Switching. We can also leave the scope of handle
by means of control effects, that is, by switching the scope.

val problem3 = run {

handle { scope ⇒

scope.switch { resume ⇒

scope.switch { resume ⇒ pure(()) } // Exception: undelimited scope

}

}

}

Since switching the scope removes the enclosing handle, switching a second time inside of
the body of switch results in a runtime error. The evaluation context of the second switch is
run {�} and the captured continuation is not delimited anymore. Danvy & Filinski (1990)
operationally prevent this kind of runtime error by leaving the outer delimiter behind. That
is, the evaluation context would correspond to run { handle { scope ⇒ �} }. However, in
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the setting of multiple prompts/scopes this is not sufficient. The delimiter can be removed
by switching to a different scope:

val problem4 = run {

handle { s1 ⇒ handle { s2 ⇒

s1.switch { resume ⇒

s2.switch { resume ⇒ pure(()) } // Exception: undelimited scope

}

}}

}

4.1 Establishing effect safety

We now introduce our implementation of an effect system that rules out the above four
problematic programs, prevents the use of escaped capabilities, and guarantees effect
safety. The underlying problem that our effect system solves is a general one: we need
to restrict the lifetime of a resource (capabilities in our case) to a certain dynamic
region (the call to handle in our case). This problem occurs in the domain of region-
based resource management (Kiselyov & Shan, 2008), object capabilities (Haller &
Loiko, 2016), delimited control (Dybvig et al., 2007), scope safety in type-safe meta-
programming (Parreaux et al., 2017), as well as with prompt-based implementations of
effect handlers (Brachthäuser & Schuster, 2017). Our effect system is inspired by the λ

calculus (Zhang & Myers, 2019), which uses dependent types to track the set of used labels
(i.e., capabilities) in the effect type. In Section 5, we discuss some properties of our effect
system embedding, but leave formal proofs of safety and soundness to future work. For a
better comparison, Appendix A gives a more immediate embedding of λ into Scala.

4.2 Tracking capabilities

Following Zhang & Myers (2019), our effect system builds on the idea of tracking the set
of capabilities used by a program in the type of the program. To enable tracking of effects,
Figure 4 thus defines our final version of Control with a second-type parameter Effects.
We represent capabilities (i.e., instances of type Eff) on the type level by their abstract
type member effect and we use Scala’s intersection types to describe a set of capabilities.

As an example, assuming capabilities c1, c2, and c3 we write the type of the effectful
program that uses c1 and c2 to compute an integer as:

val prog1: Control[Int, c1.effect & c2.effect]

Here, c1.effect is the abstract type member of the capability and c1.effect & c2.effect

is an intersection type. The intersection might be uninhabited, but this is irrelevant for our
use case. We only use the intersection type as a phantom type to track used effects.

To support effect subtyping, the type parameter Effects of Control is marked as
contravariant (i.e., -Effects).

val prog2: Control[Int, c1.effect & c2.effect & c3.effect] = prog1
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Fig. 4. The API of Effekt with effect typing.

The above assignment is type correct, since we have by subtyping:

c1.effect & c2.effect & c3.effect <: c1.effect & c2.effect

We model the syntactically empty intersection of capability types by defining the type
alias type Pure = Any, where Any is the top of the Scala subtyping lattice. Pure programs
have an effect type Pure since they do not use any capabilities. By contravariance, they
are a subtype of effectful programs that do contain capability types in the intersection. It
is important to point out that the purity only refers to delimited control. Programs with a
pure effect row still can use side effects like writing to files or accessing the network.

Every use of a Scope capability, for example, scope.switch, taints the effect type of
its result. The return type A / effect of switch (Figure 4) indicates the use of switch on
this capability on the type level. The type of run asserts that only pure programs without
control effects can be executed. That is, all capabilities have to be removed from the set of
effects and it has to be Pure. To guarantee safety, we have to make sure that the only way
to remove an effect from the intersection is by delimiting the program with handle:

def handle[R, E](prog: (s: Scope[R, E]) ⇒ R / (s.effect & E)): R / E

Here, prog has a dependent function type: the return type is (path)-dependent on its value
parameter s. Importantly, in our implementation, we leave the type member effect of s
abstract. Different calls to handle lead to different types s.effect that cannot be unified
by the type checker. Hence, only the call to handle that introduced a scope capability can
remove its very own abstract effect type from the set of effects. This excludes problematic
programs like problem1 and problem2 from above.

Our approach to achieve effect safety is similar to how rank-2 types can be used to enable
type-safe monadic regions in Haskell (Launchbury & Sabry, 1997; Moggi & Sabry, 2001;
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Kiselyov & Shan, 2008). Using path-dependent types, we move the universal quantifica-
tion from the type level to the term level. Since rank-2 types are not well supported in
Scala, using abstract type members also improves ergonomics and type inference.

Remark. In Scala, two (path-dependent) types are equal if and only if their prefix paths
are stable and they can be unified (Odersky & Zenger, 2005b). Informally, a path is stable
if it does not contain a mutable component. This way we prevent leakage via mutable
references as in problem1.

4.3 From answer-type safety to effect safety

In the previous variant of Control, scopes carried the answer-type R to ensure that using
control effects is type-safe. Crucially, to establish effect safety and prevent programs
like problem4 from type checking, the type Scope (Figure 4) now has an additional type
parameter E.

trait Scope[R, E]

With this change, scope capabilities now track both the expected return type R and the
set of capabilities E available at the corresponding handler. The type Scope[R, E] can
conceptually be understood as type Scope[R / E]. However, we track the two aspects in
separate type parameters to improve type inference.

Intuitively, the body of a switch is evaluated at the position of the corresponding call to
handle. This is also reflected in the type of the body:

body: (A ⇒ R / E) ⇒ R / E

Both, the answer-type R and the effects E have to match the corresponding handle[R, E].
Thus, capability-passing style is not only essential for operationally delimiting control
effects but also necessary to carry both the expected answer type as well as the avail-
able effects from the definition site handle { scope ⇒ ... } down to the use site
scope.switch.

Since the body of switch has to return R / E, it cannot shift to the same scope again
(as in problem3). This would require a type of R / (scope.effect & E). The problematic
program problem4 is ruled out too: s1 has type Scope[Int, Pure] and thus the body of the
first switch needs to be pure and cannot use s2.

Example 1 —Effect typed

We are now ready to revisit the examples from the previous section and assign effect types.
On the term level, the example is the same, but its typing is more precise:

val ex: Unit / Pure = handle { (scope: Scope[Int, Pure ]) ⇒

scope.switch { resume ⇒ for {

x ← resume(3)

y ← resume(4)

} yield x + y } map { x ⇒ (1 + x) * 2 }

} map { x ⇒ print(x) }
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The effect type of ex shows that after handling there are no more undelimited control
effects left and we can safely run the program.

Example 2 —Effect typed

The second example illustrates how each handle removes its corresponding scope capabil-
ity from the effect type.

val ex2: Int / Pure = handle { (s1: Scope[Int, Pure ])⇒

handle { (s2: Scope[Boolean, s1.effect ]) ⇒

s1.switch { resume ⇒ pure(21) } // Control[Int, s2.effect & s1.effect]

} map { x ⇒ if (x) 1 else 2 } // Control[Int, s1.effect]

} map { x ⇒ 2 * x } // Control[Int, Pure]

The body of the second handle has type Control[Int, s1.effect & s2.effect].
By effect subtyping, we can still use s1.switch {...}, which has type
Control[Int, s1.effect].

The example also highlights an important aspect of our effect-safe control operator:
scope capabilities track the available effects at the definition site, not the use site. For
instance, the type of s2 informs us that within a body of s2.switch { ... }, the s1.effect

can be used. In contrast, the return type of s2.switch in this example would only men-
tion s2.effect, not s1.effect. From the point of view of effect handlers, the potential
usage of s1.effect in the body of s2.switch { ... } is an implementation detail that is
encapsulated at the definition site. It does not leak to the use site.

Coin flipping example – Effect typed

The handler function maybe from Section 2 implements a user-defined effect Exc in terms
of another effect Scope. Let us recall the effect signature of Exc

trait Exc extends Eff { def raise(msg: String): Nothing / effect }

and the (type annotated) maybe handler function:

def maybe[R, E](prog: (exc: Exc) ⇒ R / (exc.effect & E)): Option[R] / E =

handle { scope ⇒

val exc: Exc { type effect = scope.effect } = new Exc {

type effect = scope.effect

def raise(msg: String) = scope.switch { resume ⇒ pure(None) }

}

(prog(exc): R / (scope.effect & E) ) map { r ⇒ Some(r) }

}

The implementation exc of Exc uses the scope capability. The type of exc is there-
fore refined from Exc to Exc { type effect = scope.effect }. This allows the type
checker to locally unify exc.effect and scope.effect. It is also necessary for handle

to remove the scope.effect component of the effect type, resulting in the return type
Option[R] / E . Since the type refinement is local, the use of the capability scope in the
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implementation of exc and the type equivalence between exc.effect and scope.effect

remains unknown to the handled program prog. This implementation detail is encapsu-
lated in the maybe handler function. Similarly, as we will see in Section 6, also the usage
of effects other than Scope can be encapsulated.

Having introduced the effect system, we are ready to type- and effect-check the example
program from the introduction:

val res1 = run {

collect { amb ⇒

maybe { exc ⇒

drunkFlip(amb, exc) // Control[String, exc.effect & amb.effect]

} // Control[Option[String], amb.effect]

} // Control[List[Option[String]], Pure]

} // List[Option[String]]

Each handler function removes an effect and at the same time changes the effect domain.

4.4 Effect-safe ambient state

Many practical handler implementations require some form of state. Our host language
Scala already supports mutable state and effect handlers can readily use it. However,
combining mutable state and delimited control can interact in unforeseen ways (Kiselyov
et al., 2006; Leijen, 2018). This is illustrated by the example in Figure 5(a). In the program
on the left, we introduce a local mutable variable x. We only modify it if the flip operation
returns true. Still, running the example outputs List(2, 2). Surprisingly, the change to x

is also visible in the branch where flip returns false. Built-in mutable state is global and
does not backtrack across different resumptions.

For some effect handlers, we want local, backtrackable state. Running the example pro-
gram should return List(2, 0), backtracking the local state when resuming the second
time. Leijen (2017c) calls this form of state “ambient”. There are multiple ways to achieve
this desired behavior. One way is to define a state effect in terms of the Scope effect. For
effect handlers, this technique has been presented by Kammar et al. (2013), and for delim-
ited control by Kiselyov et al. (2006). Another way would be to offer a generalized form
of effect handlers that support local state. For example, Koka (Leijen, 2017c) supports
“parametrized handlers” which manually perform state-passing.

4.4.1 The State effect

For our design of Effekt, we explore a third approach and offer a built-in State

effect that exhibits the correct backtracking behavior in combination with the Scope

effect. Figure 5(b) defines the interface of the effect signature State and the cor-
responding built-in handler region. The use of the state effect is illustrated in the
right column of Figure 5(a). Given a capability state, we create a new field x with
val x = state.Field(...). To read and update the state, we use the effect operations
get and put on the field. Our types make sure that we can only access a field within the
region of the state capability that we used to create the field.
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Fig. 5. Effect-safe state effect.

The type of the nested trait Field looks like an effect signature. However, instead of
extending Eff, it refers to the type member effect on the outer trait State. This way,
all fields created by calling the method Field share the same effect (Leijen 2018 also
refers to this parent effect as “umbrella effect”). This way a dynamic number of fields
can be created, while maintaining the invariant that fields cannot escape the region of the
corresponding state handler.

Our implementation of Control is specialized to properly save and restore the fields for
each State effect. The region handler introduces a new mutable frame which holds the
allocated fields on the stack that the implementation of Control is based on. Capturing
the continuation with scope will capture parts of this stack, shallowly copying the cur-
rent values of the fields. Calling the continuation restores the values. This way, access
and modification are possible in constant time, at the cost of (shallow) copying fields on
continuation capture. If we would switch the order of the effect handlers to

region { state ⇒ collect { amb ⇒ ... }}

running the example would again yield List(2, 2). In this order, changes to the state are
persisted across multiple resumptions. In Section 6, we will encounter additional examples
using the built-in state effect.

5 Properties of the effect system

Our effect system is based on the λ calculus by Zhang & Myers (2019). We embed
their calculus into the practical programming language Scala, which has no full formal
specification and will therefore not formally prove properties of our library. Nevertheless,
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in this section, we discuss some properties of our embedded effect system and explain
under which assumptions we believe them to hold.

5.1 Effect safety

Effect safety is the absence of runtime errors, caused by capabilities being used outside
of their defining handlers. Assuming a sound subset of Scala, such as the pDot calcu-
lus (Rapoport & Lhoták, 2019), we are confident that our effect system establishes effect
safety—though we do not give formal proofs. Adding mutable variables and fields to the
calculus should also not affect our effect system, which relies on stable, that is, immutable
paths. The same also holds for native exceptions, though our library as presented in this
paper is not prepared to interact with native exceptions. A formal treatment is left to future
work. In our experience, adding effect types to existing advanced case studies (such as the
Scheduler handler in Section 7) helped us to discover a few subtle bugs. The effect system
also guided us in the design of the interface for ambient state as presented in Section 4.4.

5.2 Effect subtyping

By marking the set of capabilities in Control as contravariant, we use Scala’s support for
subtyping of intersection types to express effect subtyping. For example, a program only
using the amb effect is a subtype of a program using amb and exc:

Control[R, amb.effect] <: Control[R, amb.effect & exc.effect]

As explained in Section 4, this is the case since we have

amb.effect & exc.effect <: amb.effect

Reusing Scala’s subtyping for effect subtyping is an important advantage over effect sys-
tems that encode effect rows using type-level lists. In those systems, effect subtyping
typically has to be implemented manually by performing type-level computation (Kiselyov
& Ishii, 2015). In contrast, using intersection types to express the set of effects integrates
well with other Scala features like variance annotations and type bounds. Type infer-
ence for monotonically growing intersection types is well supported, and in consequence
most return types of effectful functions (like drunkFlip) and handlers (like maybe) can be
omitted.

5.3 Effect polymorphism

Since effect types are Scala types, we can also reuse Scala’s support for type polymorphism
to express effect polymorphic functions. One example of an effect polymorphic, higher-
order function is

def mapM[A, B, E](lst: List[A], f: A ⇒ B / E): List[B] / E

The function mapM is effect polymorphic in the effects E used by function f. The return
type of mapM indicates that it potentially calls f in its implementation and so has the same

https://doi.org/10.1017/S0956796820000027 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000027


Effekt 23

effects as f. The effects E still need to be handled by the caller of mapM. Handler functions
like collect and maybe (Section 2) are other examples for effect polymorphic functions.
Type inference for calling higher-order functions (like mapM) that do not alter the set of
effects is well supported. In contrast, nesting multiple handler applications (like collect

and maybe) often requires users to explicitly list the remaining effects by provide typing
annotations.

5.4 Effect parametricity

The example function mapM is polymorphic in the effects E. Following Zhang &
Myers (2019), we claim that it should not be possible for the implementation of mapM to
(accidentally) handle any concrete effect in E; no matter what E will be instantiated to at the
call site. That is, in the following user program, we should be able to determine statically

that flip is handled by collect. No implementation of mapM should be able to violate this
assumption.

collect { amb ⇒ mapM(List(1,2,3), n ⇒ amb.flip()) }

We refer to this property as effect parametricity. It has also been called abstraction safety

in the literature (Zhang & Myers, 2019). Generally speaking, given a type, parametricity
allows us to infer properties of the runtime behavior. In the case of effect parametricity, we
want to guarantee the absence of accidental handling. But does effect parametricity hold
for our implementation of Effekt? The answer is more subtle than in most other implemen-
tations of effects and handlers because Effekt is based on capability passing. We need to
distinguish two different aspects of accidental handling:

Implementation Parametricity. Accidental handling of effects can occur in languages
without static effect systems like Eff (Bauer & Pretnar, 2015) and Multicore OCaml (Dolan
et al., 2014). Those languages dynamically search handlers at runtime. In those sys-
tems, mapM could (accidentally or purposefully) handle Amb and, for example, change
the semantics of the flip operation to always return true. Previous presentations of
Effekt (Brachthäuser & Schuster, 2017; Brachthäuser et al., 2018) did not have an effect
system. Still, they already support this aspect of effect parametricity. Just like presented
in this paper, user programs are written in capability-passing style. Capabilities are passed
down to their use site and not looked up at runtime. In our example, the function passed to
mapM closes over the capability amb, which fixes the implementation of flip.

Scope Parametricity. Because Effekt uses an implementation of multi-prompt delimited
continuations under the hood, there is a second aspect of effect parametricity to consider.
Looking at the example call to mapM again, we would also like to be sure that the continu-
ation captured by flip will always be delimited by the corresponding call to collect and
nowhere else. Because mapM does not know about amb, it should not be possible for mapM
to install a scope delimiter for amb. In Effekt, we can construct examples that violate this
property as we will see next.
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5.4.1 Capturing the scope delimiter by leaking the continuation

Every call to handle creates a fresh scope. Surprisingly, it is possible to delimit a program
given an existing scope, even if we do not offer this in the API of Effekt.3 The following
example illustrates (accidental) delimiting of continuations.

handle[String, Pure] { s ⇒

delimit(s) {

s.switch { resume ⇒ pure("abort") }

} map { x ⇒ "Did not abort" }

}

We use handle to delimit a program and create a new scope s. Within the delimiter, we
then use s.switch to abort the current computation and return the string "abort" as the
overall result. We now want to statically know that the continuation captured by s.switch

is delimited by the call to handle that created s, independent of the implementation of
delimit. In particular, we might think that running the program will always return the
string "abort", given that delimit forces the computation passed to it. In Effekt, this does
not hold. Maybe surprisingly, we can write a function delimit, such that the example
program returns the string "Did not abort" instead of aborting to the outer scope.

Installing Delimiters by Resuming. The continuation captured by s.switch contains the
delimiter for s and calling the continuation reinstalls the delimiter. This fact is not repre-
sented in the type of resume. It only mentions the effects it uses not the ones it delimits.
Using this insight, we can define delimit:

def delimit[R,E](s: Scope[R,E])(prog: R / s.effect): R / (s.effect & E) =

s.switch[R / (s.effect & E)] { resume ⇒

resume( resume(prog) )

}.flatMap(c ⇒ c)

The implementation of delimit captures the continuation resume, which contains the
delimiter for scope s. The call to s.switch returns a computation that will call the con-
tinuation on the given program. We force this computation outside of the call to s.switch

with flatmap(c ⇒ c). This effectively duplicates the captured context and the delimiter
for s, as illustrated by the following reduction:

handle { s ⇒ E[delimit(s) { body }] } �−→ resume(λ(). resume(body))
�−→ handle { s ⇒ E[ (λ(). resume(body))() ] }

�−→ handle { s ⇒ E[ resume(body) ] }

�−→ handle { s ⇒ E[ handle { s ⇒ E[ body() ] } ] }

where resume = λc. handle { s ⇒ E[ c() ] }

Here, we use E to denote the evaluation context between the call to delimit and the corre-
sponding handler for s (Wright & Felleisen, 1994). Evaluating the call to delimit reifies
the context and binds it to resume. Forcing the passed continuation (e.g., c()) is part of this
captured context. Now, calling the continuation reinstalls the evaluation context between

3 We are grateful to an anonymous reviewer, who pointed out this source of violating parametricity.
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the call to delimit and (including) the original call to handle. Calling it again, after the
context has already been restored, duplicates the context. If body now captures and discards
the continuation, only the innermost copy of the context handle { s ⇒ E[�] } is removed.
Hence, our example returns "Did not abort".

Importantly, the captured context E can contain arbitrary other handler frames for
scopes s �= s′. That is, all other delimiters in the evaluation context E are duplicated,
even though the method delimit neither has access to them nor mentions them in its type
signature.

5.4.2 Discussion

As can be seen from the example, violating scope parametricity requires some careful
engineering. While it is necessary for the continuation to leave the effect operation that
captured it, this is not sufficient. It is important to note that just calling the continua-
tion twice (e.g., resume(); resume()) does not cause the capturing behavior. When the
continuation is called for the second time, the delimiters reinstalled by the first call have
already been removed. The same holds for executing code after calling a continuation (e.g.,
resume(); f()). Effects in f are not captured by the delimiters in resume. To observe acci-
dental capture, the executed code has to be part of the continuation itself. In our example,
we use a higher-order function and pass the code to be executed to the continuation.

In our experience in working with the library, we did not find the lost scope para-
metricity to be a problem in practice. To instantiate multiple copies of the continuation
required us to use higher-order, effect polymorphic effect operations. Other effect han-
dler implementations come with different linguistic restrictions, ruling out this particular
capturing scenario. For example, Koka and the λ calculus do not support effect poly-
morphic effect operations, which makes it difficult to express delimit. Scala Effekt is a
practical implementation, embedded in Scala. Using Scala’s type polymorphism to model
effect polymorphism, effect operations can naturally also make use of this feature. It is not
clear to us which restrictions are desirable and practically enforceable without ruling out
useful programs (like the ones in the following section).

Finally, we are not aware of any effect handler language, where the type of the con-
tinuation reflects the effects it handles. Depending on the other features of the particular
language, it thus might still be possible to construct a scenario similar to the one described
above. We leave it to future work to further investigate the problem and explore solutions,
both for stand-alone languages, as well as for embeddings like Effekt.

5.5 Effect encapsulation

Another property, effect encapsulation, is related to effect parametricity, and violations of
it can be observed in languages featuring an ML-like type system with row polymorphism
for effect types like Koka and Frank (Lindley, 2018; Leijen, 2018). The following program
is adapted from Leijen (2018) and written in the Koka language. It shows how an effect
used by f1 leaks into its type—it is not encapsulated.

fun f1(action: () → <exc|e> a): e option<a> { // types inferred

maybe { if (...) { raise("abort") }; action() }

}
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Here, f1 is a higher-order function that takes an effectful function action as its argument.
The function f1 uses exceptions in its implementation but locally handles them with the
maybe handler. This implementation detail leaks as part of the inferred type which states the
fact that exc effects of action will be handled by f1. Koka implements effect subtyping via
row polymorphism so the effect row of action() is unified with those of other statements
handled by maybe.

5.5.1 Manually encapsulating effects

Operationally, Koka will handle any exception effect used in action with the maybe han-
dler in f1. We cannot hide this fact by annotating the parameter action of f1 with the
type () → e a, which does not type-check. However, if we do not want any exceptions
thrown by action to be handled by maybe, languages like Koka and Frank offer some form
of manual lifting operation (Biernacki et al., 2017; Convent et al., 2019).

fun f2(action: () → e a): e option<a> { // types inferred

maybe {

if (...) { raise("abort") }

inject<exc> { action() }

}

}

Manually injecting the exc effect into the effect row also has operational content as
described by Leijen (2018): the runtime search for the exception handler will skip the
maybe handler in f2. Now the type of f2 truthfully states that it does not handle any effects
in e—including any exception effects.

In Effekt, we can directly express the two variants of the function f with different types:

def f1[A, E](action: (exc: Exc) ⇒ A / (exc.effect & E)): Option[A] / E

def f2[A, E](action: () ⇒ A / E): Option[A] / E

The type of f1 makes it clear that action has an unhandled exception effect, handled by
f1. Furthermore, no inject is necessary to select the right handler, since capabilities are
named and passed explicitly.

5.5.2 Encapsulation in return clauses

In addition to the implementation of effect operations, in languages like Koka, Eff, or Frank
handlers also need to implement a return clause (called unit in the following example):

val exc = new Exc {

def unit(r: R): Option[R] / E = pure(Some(r))

def raise(msg: String) = scope.switch { resume ⇒ pure(None) }

}

This additional abstraction exists both for historical and technical reasons. Historically,
algebraic effect handlers were conceived as a fold over the tree of computation opera-
tions (Plotkin & Pretnar, 2009). Return clauses are required to lift pure values into the
domain of computations. In Effekt, it is possible to express return clauses in terms of
mapping over the result like:
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handle { scope ⇒ val exc = ...; prog(exc) flatMap exc.unit }

However, languages like Koka require some form of lifting or inject to make this trans-
formation since effect operations used in the return clause might accidentally be handled
by the same handler that has the return clause (Leijen, 2018; Lindley, 2018). Again, this is
not an issue in Effekt, since the connection between handler and operations is established
explicitly via capability passing. Using capability passing, return clauses are not required
to be part of the user interface of handlers while maintaining the same expressive power.

6 Even more extensible effects

In previous sections, we have seen how to write simple programs with Effekt (Section 2)
and how to establish effect safety (Section 4). In this section, we now give additional exam-
ples to evaluate the different dimensions of extensibility gained by embedding Effekt into
Scala—a language that supports functional and object-oriented paradigms. In particular,
we will see how to compose effect signatures, effect handlers, and effectful programs.

6.1 Composing effect signatures

In the introduction, we alluded to the fact that mapping effect signatures and handlers to
existing features of object-oriented programming allows us to reuse the abstractions those
features offer. In particular, as we will see, mapping signatures to Scala’s traits opens up
interesting new modularity benefits.

6.1.1 Extending effect signatures

Since signatures are traits, we can extend them and add new operations. Here, we extend
the Amb trait (defined in Figure 2(a), Section 2) with an additional effect operation choose.

trait Choose extends Amb {

def choose[A](first: A, second: A): A / effect

}

This introduces a subtyping relationship between Amb capabilities and Choose capabilities.
A handler for Choose thus can also be used to handle Amb. This cannot be expressed in
Koka, for example, where a handler is tied to a single-effect signature and can only handle
precisely the effect with this signature.

6.1.2 Default methods: primitive versus derived effect operations

Traits in Scala cannot only contain abstract method declarations, but also concrete method
implementations. Similarly, our effect signatures cannot only contain abstract operations,
but also concrete effect operation implementations, as illustrated in the following example.

trait Fiber extends Eff {

// primitive effect operations

def suspend(): Unit / effect

def fork(): Boolean / effect

def exit(): Nothing / effect
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// derived effect operations

def forked[E](p: Unit / E): Unit / (E & effect) = for {

b ← fork()

r ← if (b) p andThen exit() else pure(())

} yield r

}

Here, the Fiber effect (Dolan et al., 2015; Leijen, 2017b) for cooperative multitasking
has three abstract effect operations that need to be implemented by handlers. The effect
operation suspend indicates that the current fiber can be suspended. The effect opera-
tion fork is similar to the equally named system call in Unix, spawns a new fiber, and
returns true if the code is executed as part of this new fiber. Finally, the effect operation
exit terminates the current fiber. In addition to the three abstract effect operations, the
effect signature also contains a concrete effect operation forked. The argument computa-
tion of type Unit / E represents the code, which is executed as part of the forked fiber.
The effect operation forked is implemented in terms of fork and exit. We refer to oper-
ations like suspend as primitive effect operation and to operations like forked as derived

effect operations. Derived effect operations can be overridden in handler implementations,
for example, for efficiency. Furthermore, the derived operation forked does not make any
assumptions about the handler implementation. In particular, it does not explicitly capture
the continuation with scope but only uses the other effect operations of Fiber. This illus-
trates an important difference to languages like Koka, where every effect operation always
automatically captures the continuation.

6.1.3 Abstract type members: Effect signatures as module interfaces

Another particularly interesting example of abstraction reuse is Scala’s abstract type mem-
bers. Mapping effect signatures to Scala traits, they cannot only describe effect operations,
but also have (abstract) type members. This opens up interesting ways to structure effect
signatures, illustrated by the following signature of the Async effect (Dolan et al., 2017):

trait Async extends Eff {

type Promise[T]

def async[T, E](prog: T / E): Promise[T] / (E & effect)

def await[T](p: Promise[T]): T / effect

}

The abstract type member Promise allows handler implementations to choose the rep-
resentation of promises. The effect signature also declares two effect operations (async
and await) that refer to the abstract type. The operation async takes an effectful com-
putation and returns a promise that can be awaited with the effect operation await. In a
concrete capability of type Async, the choice of representation for Promise is hidden exis-
tentially. Hiding the representation prevents instances of promises to be awaited outside of
the corresponding Async-handler.

Example: Asynchronous Programming. Having declared the effect signatures for Async
and Fiber we can write effectful programs using these effects:
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def asyncEx(f: Fiber, a: Async) = for {

p ← a.async { for {

_ ← log("Async 1")

_ ← f.suspend()

_ ← log("Async 2")

_ ← f.suspend()

} yield 42 }

_ ← log("Main")

r ← a.await(p)

_ ← log("Main with result " + r)

} yield ()

We will see how to run this example after having defined the handlers for Fiber and Async.

6.1.4 Nested traits: Families of effectful types

Abstract type members like Promise are not the only way to express a family of effectful
types. Traits in Scala can also be nested, and we can refactor the effect signature Async to:

trait AsyncNested extends Eff {

trait Promise[T] { def await: T / effect }

def async[T, E](prog: T/ E): Promise[T] / (E & effect)

}

Like in the effect signature of the State effect (Figure 5(b), Section 4), the type effect

used by Promise refers to the type member on AsyncNested.

6.1.5 Mixing effect signatures

Scala supports mixin composition on traits (Odersky & Zenger, 2005b) so we can mix inde-
pendently declared effect signatures. For example, we can mix the two effect signatures
for ambiguity and exceptions to obtain a combined effect signature for nondeterminism:

trait Nondet extends Amb with Exc

Furthermore, since traits can contain both abstract and concrete definitions, effect signa-
tures can be mixed to mutually implement primitive (i.e., abstract) effect operations in
one signature by derived (i.e., concrete) effect operations in another. This works for both
abstract types and abstract methods.

6.2 Composing effect handlers

All effect handlers so far were implemented as anonymous inner classes. This style of
implementing handlers precludes certain forms of reuse.

6.2.1 Handlers as traits

To recover extensibility and reuse, we can express effect handlers as traits. Effects that are
required by the implementation can be expressed as abstract value members. For instance,
expressing the maybe handler (Figure 2(b)) as a trait looks like:
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trait Maybe[R, E] extends Exc {

val scope: Scope[Option[R], E]

type effect = scope.effect

def raise(msg: String) = scope.switch { resume ⇒ pure(None) }

}

Here we express the dependency on the scope effect as an abstract value member scope.
The type of Scope communicates that it needs to be delimited at some optional type.
Otherwise, to increase reuse, the Maybe handler is parametric in type R and the set of effects
E at the scope delimiter. Similarly, we can express the handler for ambiguity as a trait:

trait Collect[R, E] extends Amb {

val scope: Scope[List[R], E]

type effect = scope.effect

def flip() = scope.switch { resume ⇒ for {

xs ← resume(true)

ys ← resume(false)

} yield xs ++ ys }

}

Handling the Amb effect with the Collect handler trait now amounts to constructing a
handler instance of Collect and passing it to the program.

handle { s ⇒

val amb = new Collect[R, E] { val scope: s.type = s }

prog(amb) map { r ⇒ List(r) }

}

The highlighted type refinement is essential. It allows the type checker to locally unify
scope.effect, s.effect, and amb.effect. This way, handle can remove amb.effect from
the set of effects of prog. Expressing handlers as traits turns them into reusable, com-
posable, and extensible components. We will now explore the different dimensions of
extensibility enabled by this technique.

6.2.2 The effect expression problem

Many implementations of libraries and languages for (algebraic) effects and handlers are
based on a deep embedding of effect operations. They reify effect operations as alter-
natives in a sum type and represent effectful computations as a command-response tree.
For instance, the flip effect operation would be reified as a constructor of an algebraic
data type Amb. Handlers fold over the tree of computation and interpret the reified effect
operations by pattern matching on them (Bauer & Pretnar, 2015; Kiselyov & Ishii, 2015;
Hillerström et al., 2017; Leijen, 2017c; Kiselyov & Sivaramakrishnan, 2018). To mix
programs with different effects means to extend an open union type of reified effect
operations.

In contrast, by performing capability passing and representing effect signatures as traits,
Effekt builds on a shallow embedding (Hudak, 1998; Carette et al., 2007) of effect oper-
ations. Instead of folding over the tree of computation, user programs directly call effect
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operations on the handler. In a language with mixin composition, shallow embeddings
can be structured in a pleasingly extensible way (Oliveira & Cook, 2012). Thus, Effekt

has a solution to the expression problem (Wadler, 1998) at its foundation, a property
it shares with many other effect handler implementations. For instance, languages like
Koka (Leijen, 2014), Frank (Lindley et al., 2017), and Links (Hillerström et al., 2017)
are based on row polymorphism (Gaster & Jones, 1996) and Extensible Effects (Kiselyov
et al., 2013; Kiselyov & Ishii, 2015) are based on open unions (Liang et al., 1995).

We relate extensibility dimensions discussed in the literature on the expression problem
to effect handlers (Brachthäuser & Schuster, 2017) and show how Effekt supports them:

Adding New Handlers. The first dimension of the effect expression problem corresponds
to adding a new function definition over the recursive data type in the original expression
problem. A central feature of every implementation of effects and handlers is the ability to
define a new handler for an existing effect. Effekt supports this feature: users can define a
new trait or class that implements an existing effect signature.

Adding New Operations. The second dimension of the effect expression problem cor-
responds to adding a new variant to the recursive data type in the original expression
problem. We can distinguish between adding an operation to an existing effect signature
and adding a new effect signature. Effekt supports the modular extension of effect signa-
tures as illustrated by the example trait Choose of Subsection 6.1. Other languages like
Koka cannot compose effect signatures. In those languages, it is therefore also not nec-
essary to compose or extend handler implementations. Effekt allows the programmer to
extend handler implementations modularly.

trait CollectChoose[R, E] extends Collect[R, E] with Choose {

def choose[A](first: A, second: A): A / effect = for {

b ← flip()

} yield if (b) first else second

}

In this example, the handler for the extended effect signature Choose extends the existing
Collect handler and only implements the missing effect operation choose. The example
also illustrates that we can reuse the implementation of flip to implement choose.

6.2.3 Mixing handlers—horizontal composition of handlers

The description of the expression problem has seen many extensions and additional
requirements. One additional requirement described by Odersky & Zenger (2005a) is that
the programmer should be able to combine independently developed extensions. For effect
handlers, this means to compose two existing effect handlers. This feature might seem
unnecessary in the context of effect handlers where handler composition can be expressed
by function composition. However, using trait mixin composition to combine two handlers,
the handler implementations can share implementation details like private methods and
dependencies on other internally used effects. As an example, we define another handler
for ambiguity that performs backtracking to compute only the first successful result:
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trait Backtrack[R, E] extends Amb {

val scope: Scope[Option[R], E]

type effect = scope.effect

def flip() = scope.switch { resume ⇒ for {

attempt ← resume(true)

res ← if (attempt.isDefined) pure(attempt) else resume(false)

} yield res }

}

We can implement the Nondet effect simply by mixing the handlers Backtrack and Maybe:

def nondet[R,E](prog: (b: Nondet) ⇒ R / (b.effect & E)): Option[R] / E =

handle { s ⇒

val n = new Nondet with Backtrack[R,E] with Maybe[R,E] {

val scope: s.type = s }

prog(n) map { r ⇒ Some(r) }

}

The use of mixin composition is legal, since the two handlers use the same effects. In
particular, both the answer-type Option[R] and the set of effects E on scope coincide.
Using the handler function nondet, we can handle Exc and Amb simultaneously:

val res3: Option[String] = run { nondet { n ⇒ drunkFlip(n, n) } }

◮ Some("Heads")

The example illustrates how handlers can be composed horizontally with mixin com-
position under the condition that they interpret the effects into the same effect domain.
Operationally, they share the same scope delimiter. By subtyping, the combined handler
can be used to handle both effects. In res3, it is passed down twice, once to handle the Amb

effect and once to handle the Exc effect.

6.2.4 Composition over inheritance—vertical composition of handlers

Effect handlers allow us to locally handle a subset of effects used by a program. To do
so, handlers can again use effects in their implementation which are then handled by other
handlers. That is, we can compose handlers vertically. However, so far this composition
was not particularly interesting. All handlers, that we have so far encountered used the
Scope effect and consequently defined type effect = scope.effect.

Different to most other formulations of effect handlers, handlers in Effekt do not have
to capture and use the continuation and consequently do not have to use the Scope effect.
It is up to the handler implementation to decide. Figure 6 presents an example of such
a handler that does not use the scope effect to capture the continuation. Instead, it uses
the effects State and Fiber and therefore has the capabilities state and fiber as abstract
value members. We use the Fiber effect to fork the computation in async and to implement
polling in await. We define Promise to be the type state.Field and implement async
to store the result of the asynchronous computation to the field provided by the state

capability. The handler function poll takes the two required capabilities to construct an
instance of the handler trait Poll:
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Fig. 6. Handler for the Async effect – using two effects State and Fiber.

Fig. 7. Handler for the Fiber effect — using the State effect after switching the scope.

def poll[R,E](s: State, f: Fiber)(prog: (a: Async) ⇒ R / (a.effect & E))

= prog(new Poll { val state: s.type = s; val fiber: f.type = f })

By refining the types of state and fiber to singleton types, the inferred return type of poll
is R / (E & s.effect & f.effect). It thus communicates precisely that we implement
the Async effect in terms of the given state and fiber capabilities.
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6.2.5 Vertical composition and scopes

The Poll handler (Figure 6) uses two effects State and Fiber in its implementation, but
does not use the Scope effect to capture the continuation. All the other effect handlers we
have seen so far do use the scope effect (e.g., a capability of type Scope[R, E]) but are
parametric in the set of outer effects E. That is, after switching the scope those handlers did
not use any other effects. However, there is another combination of using effects that we
have not seen so far: first, switch the scope and then use another effect.

Figure 7 uses this technique to implement the Fiber effect as a round robin scheduler.
It requires the two capabilities state and scope. It uses the state capability to maintain
a queue of fibers that still needs to be scheduled. Fibers are obtained by capturing the
continuation using the scope capability. The difference to the previous examples now is
in the type of the scope capability. It informs us that the state effect is available after

switching the scope. This is not relevant for the implementation of the effect operation
exit which simply discards the continuation. However, the two remaining operations fork
and suspend both use the state effect in the body passed to scope.switch.

The type of the scope capability imposes an order on how state and scope need to be
handled. The state effect is required to be the outer handler. Not only is this important
to be able to use state after switching the scope, it is also important for the seman-
tics of the scheduler: the handler uses state to store a queue of running fibers. The state
should be persisted across different fibers, which are forked by resuming once with true

and once with false. The handler function for the scheduler directly handles the Scope

effect, but leaves the state effect open. The inferred return type of scheduler is thus
Unit / (st.effect & E).

def scheduler[E](st: State)(prog: (f: Fiber) ⇒ Unit / (f.effect & E)) =

handle { sc ⇒ prog(new Scheduler[E] {

val scope: sc.type = sc; val state: st.type = st

})}

This mode of use is how all effect handlers are implemented in Koka, Eff, and Frank.
In those languages, the body of an effect operation is always executed at the call site of
the handler, not the operation. Also all effects used in the implementation of the effect
operation will be evaluated at the handler call site (i.e., the call to handle in our case). This
is essential to encapsulate effects as implementation details and not leak their usage into the
call site. As seen with the Poll handler, Effekt offers an alternative to encapsulate effects
by employing capability passing and using (path-dependent) abstract type members.

Example: Running Asynchronous Programs. Having defined handlers for the Fiber

and Async effects, we can now finally run asyncEx (Subsection 6.1.3) as follows

region { s ⇒

scheduler[s.effect](s) { f ⇒

poll(s, f) { a ⇒

asyncEx(f, a) // Unit / (f.effect & a.effect)

} // Unit / (f.effect & s.effect)

} // Unit / s.effect

} // Unit / Pure

Async 1

Main

Async 2

Main with result 42
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resulting in the output on the right. Type inference is not proficient enough to infer
the removal of effects and we need to annotate the effect type s.effect at the call to
scheduler.

6.3 Composing effectful programs

By passing capabilities explicitly, we are able to select which instance of an effect to use
in the presence of multiple instances of the same effect. For example, we can use multiple
instances of Fiber in one program to model different thread pools. At the same time,
explicit capability passing can be a burden since it introduces manual boilerplate. This is
illustrated by the following example that uses the three effects ambiguity, exceptions, and
reading from an input stream to model a parser. The parser recognizes an arbitrary number
of characters ’a’ followed by a single character ’b’.

// AB ::= a AB | b

def parseAB(amb: Amb, exc: Exc, in: Input) = alternative(

accept(’a’)(in, exc) andThen parseAB(amb, exc, in) map { _ + 1 },

accept(’b’)(in, exc) map { x ⇒ 0 })(amb)

def accept(exp: Char)(in: Input, exc: Exc) = in.read() flatMap { t ⇒

if (t == exp) pure(()) else exc.raise("Expected " + exp) }

def alternative[A, E](fst: A / E, snd: A / E)(amb: Amb) =

amb.flip() flatMap { b ⇒ if (b) fst else snd }

In the example, we use an Input effect that supports reading from an input stream.

trait Input extends Eff { def read(): Char / effect }

When composing effectful programs that use different effects, the programmer needs to
manually pass the capabilities to the respective function calls. In particular, a function like
parseAB that uses other effectful functions (like accept and alternative) needs to take
the union of all capabilities required by its dependencies. To call them, the programmer
needs to select the correct subset of capabilities and provide them along other arguments.
For example, all three capabilities need to be passed to the recursive call.

6.3.1 Implicits for capability-passing style

While the overall design of Effekt is largely independent of Scala, there are certain fea-
tures that ease the use of the library. One such feature is implicit parameters. Implicit
parameters (now called “given-clauses” or “contextual parameters” in Scala 3) can help
to automatically pass function arguments based on their type (Odersky et al., 2017). This
makes implicits a perfect fit for the Effekt library.

To implicitly look up capabilities, for every effect signature, we define functions like:

def Amb given (a: Amb): a.type = a

Calling the nullary function Amb implicitly searches for a value of the equally named type
in the current scope and returns it. As before, the return type is a singleton type to allow
the necessary unification of path-dependent types our effect system relies on. Using these
helpers, we can now rewrite the above example to:
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// AB ::= a AB | b

def parseAB given Amb given Exc given Input = alternative(

accept(’a’) andThen parseAB map { _ + 1 },

accept(’b’) map { x ⇒ 0 })

def accept(exp: Char) given Input given Exc = Input .read() flatMap { t ⇒

if (t == exp) pure(()) else Exc .raise("Expected " + exp) }

def alternative[A, E](fst: A / E, snd: A / E) given Amb =

Amb .flip() flatMap { b ⇒ if (b) fst else snd }

Note how all the arguments to the recursive call to parseAB (and to the functions accept

and alternative) are now provided implicitly. The signature of accept informs us that it
relies on an instance of Input and an instance of Exc being in scope at the call site.4 At
the same time, it brings these two instances in scope for the method body, so Input.read

and Exc.raise will resolve to method calls on the corresponding implicit argument. Here,
Input is the nullary method call to a boilerplate function as defined above. For the purpose
of this paper, it is enough to understand that implicit search is performed at compile time,
is lexically scoped, and type-directed. Implicit resolution results in a program like the
explicit capability-passing variant above. We can also choose to bind implicit parameters
to explicit names. In fact, this is necessary for the method parseAB which is recursive and
thus requires a type annotation:

def parseAB given (a: Amb) given (e: Exc) given (i: Input)

: Int / (a.effect & e.effect & i.effect)

Binding capabilities to names also enables us to fall back to passing them explicitly
(e.g., accept(’a’) given a given e). This is important to resolve conflicts in case of
ambiguous implicits, which would otherwise result in a compile time error.

6.3.2 Reducing the overhead by composition

Another strategy to reduce the burden of passing capabilities is by composition. We can
define a trait that contains the necessary capabilities as members:

trait Parser { val amb: Amb; val exc: Exc; val input: Input }

Now all three methods can be refactored to only take one (potentially implicit) argument
of type Parser, manually projecting the fields where necessary. Interestingly, the type
signature of accept then becomes

def accept(exp: Char)(p: Parser): Unit / (p.exc.effect & p.amb.effect)

This illustrates the flexibility of path-dependent types in Scala. The stable path can have
an arbitrary length.

4 Since Scala 3, naming implicitly bound variables is optional. The signature thus roughly corresponds to
def accept(exp: Char)(implicit $1: Input, $2: Exc) in Scala 2.
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6.4 Effect handlers and object orientation

Effekt is an embedding of effect handlers in a language with support for object-oriented
programming. Naturally, the question arises how these two features interact.

Object-oriented programming has a strong focus on encapsulation. In particular, the
concrete implementation of an object and its internal state is often hidden behind an inter-
face. That is, the implementation can differ with the granularity of a single object. Another
important feature is that objects are first class and typically are stored on the heap. In con-
trast, effects and handlers are tied to a stack discipline. Effect handler implementations
can capture parts of the stack as a continuation, handlers delimit segments of the stack
and effect typing asserts that these stack operations are safe, which effects are used by
an object’s implementation can either be seen as part of the public interface or as a pri-
vate implementation detail. It is a design decision the programmer should make. However,
if the effects used by an object are hidden behind an interface, how can we assert effect
safety? For instance, if an object closes over a capability, the object’s lifetime needs to
be restricted to the capability’s lifetime. Otherwise, the use of the capability might not be
effect-safe.

The following interface will serve as a running example to discuss possible design
choices when safely combining effect handlers with object-oriented programming:

trait Person { def greet(other: String): Unit }

6.4.1 Alternative 1: Effects as part of the public interface

An implementation might want to use the following effect to print the greeting.

trait Console extends Eff { def print(msg: String): Unit / effect }

However, the method greet as declared above does not mention the Console effect. Of
course, we can change the interface accordingly.

trait Person {

def greet(other: String)( out: Console ): Unit / out.effect

}

Now, the Console effect is part of the public interface and all implementations of Person
can make use of it to implement the method greet. The effect has to be handled by the
caller of greet. In this variant, it is possible to have multiple different implementations of
Person and store the instances in data structures on the heap.

6.4.2 Alternative 2: Hiding effects behind an interface

Changing the interface of Person to mention the effects used by a particular implemen-
tation leaks implementation details. This problem also occurs with checked exceptions in
Java. We can think of Console as a checked exception that is not mentioned in the interface
of greet. Java programmers often resort to wrapping checked exceptions in unchecked
ones to work around this problem (Zhang et al., 2016). The exceptions thrown by an imple-
mentation can be considered an implementation detail that we might want to encapsulate.
In Effekt, we can hide the effects behind an abstract type member effect.
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trait Person {

type effect

def greet(other: String): Unit / effect

}

An implementation of Person closes over the effect capabilities, just like a handler does:

trait MyPerson extends Person {

val out: Console

type effect = out.effect

def greet(other: String) = out.print("Hello " + other)

}

Assuming a handler for the Console effect, in the following example, the lifetime of an
instance of MyPerson is now coupled to the lifetime of the capability o.

withConsole { o ⇒ ... val p = new MyPerson { val out: o.type = o } ... }

For instance, the object p must not be used outside the scope of withConsole, which is
ensured by our effect system: out.effect is an abstract type that only unifies with this one
particular o created at the call to withConsole.

To be able to eventually handle the effects used by the implementation, users always
need to have stable paths to an object.

def user(p1: Person, p2: Person): Unit / (p1.effect & p2.effect) =

p1.greet("Alice") andThen p2.greet("Bob")

In this example p1 and p2 are arguments of method user and have stable paths that can be
referred to in the return type. In general, path stability excludes objects from being stored
in mutable references or containers like lists. While we can store p1 in a mutable variable,
the effect system will prevent us from calling any effectful methods on it.

6.4.3 Alternative 3: Grouping objects by their effect implementations

Alternative 1 requires all objects to use the same effects in their implementation and
Alternative 2 allows each object to individually differ in their effect implementation. Both
solutions also have drawbacks: the former constrains the implementer while the latter
imposes restrictions on the user. As a compromise between the two, we can generalize
over the effect implementation and thereby group objects by their effect implementations.

trait Person[ E ] { def greet(other: String): Unit / E }

Like with abstract type members, implementing classes can instantiate E to the desired
implementation effects. Like with the first alternative, objects of type Person[Console]

leak the implementation detail that they use the Console effect in their implementation.
Programs using instances of Person can be polymorphic in the effect type:

def user[E](p1: Person[E], p2: Person[E]): Unit / E =

p1.greet("Alice") andThen p2.greet("Bob")

While we now can store objects of type Person[E] in lists of type List[Person[E]], this
requires all instances to have the same effect implementation. Furthermore, instances of
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Person[o.effect] are still coupled to the lifetime of the capability o. An implementation
that depends on more than one effect can only be used in the intersection of the respective
handler regions.

7 Related work

In this section, we discuss closely related work. In particular, we compare our approach of
capability passing to other implementations of effect handlers and relate our effect handlers
design for object-oriented languages to others.

Shallow Embedding of Effect Operations. Many implementations of libraries and lan-
guages for effect handlers are based on a deep embedding of effect operations. In contrast,
as pointed out in Section 6.2.2, by performing capability passing, Effekt builds on a
shallow embedding of effect operations. Similarly, Kammar et al. (2013) base their
library implementation of algebraic effect handlers on Haskell’s type classes, effectively
performing a shallow embedding. Using type classes and the associated dictionary pass-
ing helps Kammar et al. (2013) to achieve good performance results, since it prevents
the materialization of constructors for effect operations. It also avoids any search for
the matching handler implementation in some kind of handler stack, as it is done in
Koka (Leijen, 2017a, c).

Continuations and Delimiters. Our implementation of delimited control is based
on Dybvig et al. (2007), who in turn present a monadic implementation of a variant of
multi-prompt delimited control by Gunter et al. (1995). Dybvig et al. (2007) present a
very general framework that can express many different control operators. In particular,
capturing the continuation with their control operator withSubCont removes both the cor-
responding outer delimiter and excludes it from the captured continuation. In contrast, our
effect operation switch captures and removes the continuation up to and including the cor-
responding delimiter handle. It is thus operationally closer to shift0 by Danvy & Filinski
(1989, Appendix C) and spawn by Hieb & Dybvig (1990) as illustrated by the following
equation:

def spawn(body) = handle { s ⇒ body(s.switch) }

As highlighted by Kammar et al. (2013), shift0 matches the semantics of deep handlers

where the same effect is already handled in the continuation. Materzok & Biernacki (2011)
present an effect system for shift0 that supports answer-type modification, while our effect-
safe version of Control does not. In turn, Effekt allows handlers to switch to a specific
scope, while shift0 always captures the continuation up to the closest delimiter.

Effect-Safe Multi-Prompt Delimited Control. Like our presentation in Section 3,
Dybvig et al. (2007) guarantee answer-type safety by indexing prompts with the expected
answer type. Furthermore, they use rank-2 types to prevent prompts from being used
across different instances of run. But, as they observe, this is not enough to achieve
effect safety, which they explicitly leave to future work. We generalize the idea of region
safety and guarantee that capabilities cannot be used outside of the scope that they are

https://doi.org/10.1017/S0956796820000027 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796820000027


40 J. I. Brachthäuser et al.

created in. Instead of rank-2 types, we use abstract type members. This lets us easily nest
scopes using intersection types. In general, Scala has better support for path-dependent
function types than for rank-2 types. For instance, we can use the lambda syntax (e.g.,
amb ⇒ amb.flip()), which is not possible with rank-2 types that need to be instantiated
as anonymous inner classes. Compared to path-dependent function types, the use of rank-2
types is thus more verbose and hinders type inference.

Region Safety for Effects. Many languages with effect handlers base their effect sys-
tem on some form of row polymorphism. Prominent examples are Koka (Leijen, 2014),
Frank (Lindley et al., 2017), and Links (Hillerström & Lindley, 2016). In contrast,
effect-safe library embeddings like Extensible Effects (Kiselyov et al., 2013; Kiselyov
& Ishii, 2015) use various forms of open union types to track the list of unhandled effects.
In Effekt, we index effectful computations with an intersection of all capabilities used by
a computation. This way, capabilities cannot be used outside of their handler region.

Region Safety for Resources. To achieve resource safety, Kiselyov & Shan (2008) gener-
alize from a single region (Moggi & Sabry, 2001) to multiple nested regions. They achieve
region polymorphism and region subtyping together with good type inference for their
library in Haskell. On the type level, they represent nested regions as nesting of a monad
transformer while we represent nested delimiters by an intersection of abstract type mem-
bers. To achieve region polymorphism, they reuse Haskell’s polymorphism and to achieve
region subtyping they use Haskell’s type class instance search. In contrast, to achieve
effect polymorphism, we reuse Scala’s polymorphism and to achieve subtyping, we reuse
subtyping for intersection types built into Scala.

Region Safety for Variable Scopes. Parreaux et al. (2017) apply a strategy very similar
to ours to guarantee scope safety in type-safe meta-programming. The type parameter Ctx
of their type Code[+Typ, -Ctx] is used to track the set of free variables:

class Variable[A] {

type Ctx;

def substitute[T,C](pgrm: Code[T, Ctx & C], v: Code[A, C]): Code[T,C]

}

As can be seen from the type of substitute, substitution of free variables removes Ctx

from the intersection type and thus corresponds to handling of effects in Effekt.

Capability Passing. Like in this paper, Osvald et al. (2016) perform capability passing in
Scala: a capability serves as a constructive proof that the holder is entitled to use the actions
associated with the capability. To prevent leaking of capabilities, Osvald et al. (2016)
introduce a type-based escape analysis as an alternative approach to traditional effect sys-
tems: arguments to functions can be marked as second class (or “local”). The type checker
then guarantees that the capability cannot leave the dynamic scope of the function call.
Liu (2016) presents a different approach to capability-based effect safety, by distinguishing
between functions that can capture capabilities and others that cannot (called “stoic”). In
our design of Effekt, we adopt the capability passing of Osvald et al. (2016). Second-class
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values might be an interesting alternative to the effect system presented in this paper.
However, they are not available in Scala, while our library can readily be used.

Abstraction-Safe Effect Handlers via Tunneling. The dynamic and static semantics
of Effekt is closely related to λ presented by Zhang & Myers (2019). As in previous
versions of Effekt (Brachthäuser & Schuster, 2017), capabilities in λ are pairs of a
label and the handler implementation. Also like in Effekt, they are explicitly passed to
the use site of the effect operation. Handling an effect introduces a fresh label. Like scope
capabilities in Effekt, the label is used on the term level to delimit the scope of captured
continuations. The label is used on the type level to track the set of unhandled effects,
similar to the type member effect in the present paper. Due to the embedding of Effekt in
Scala, scope capabilities are first class while labels in λ are not first class. Instead, the
binding of a label by means of try and the use of a label in a handler implementation is
statically scoped. For better comparison of λ and Effekt, Appendix A provides a more
direct embedding into Scala.

Effect Handlers and Object-Oriented Programming. In earlier work on Effekt (2017;
2018), we started to explore the combination of effect handlers and object orientation.
However, those versions of Effekt did not guarantee effect safety. The present paper shows
how to add effect safety to Effekt and support effect polymorphism. Indexing the monad
for delimited control with the set of used effects is essential to guarantee effect safety. It
is not immediate to us how the effect system can be embedded in a direct style version of
the library (Brachthäuser et al., 2018) because there is no monadic type that could carry
the set of used effects. As highlighted in Section 6, effect-safe programming with effect
handlers in a language with objects comes with new challenges—mediating encapsulation
and flexible use of objects. Inostroza & van der Storm (2018) also combine effect han-
dlers and object orientation in the language JEff. In JEff, the continuation takes an updated
copy of the effect handler as additional argument. Parametrizing continuations by the han-
dler instances can model dynamically scoped state (Kiselyov et al., 2006) and also allows
handlers to change their implementation for the rest of the computation, similar to shal-
low handlers. The effect system of JEff does not feature effect polymorphism and hence
problems with effect encapsulation and effect parametricity do not arise.

8 Conclusion

In this article, we presented Effekt, a monadic library for programming with effect handlers
in Scala that features effect polymorphism, effect subtyping, and effect safety. We use
intersection types and path-dependent types to track the set of effects a program might use.
This allows us to directly reuse Scala’s support for polymorphism for effect polymorphism
and Scala’s support for subtyping for effect subtyping. Combining effect handlers with
object-oriented programming both offers new ways to modularize effectful programs but
also comes with new challenges.
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Fig. 8. Using Control to embed the λ calculus into Scala.

Appendix

Embedding the Tunneling Calculus

The effect system as presented in this paper is heavily influenced by the one of λ (Zhang
& Myers, 2019). To ensure effect safety, Zhang & Myers use a simple form of dependent
types: Using an effect handler h introduces h.lbl in the effect type which is effectively
a set of labels. The dependent label corresponds to the abstract type member h.effect in
Effekt. Like in Effekt, this dependent effect type can only be discharged by the very same
delimiter (denoted by ℓ t) that introduced the label. Zhang & Myers formalize λ and
formally show effect parametricity. However, they do not provide an implementation of
their calculus. We use intersection types and path dependent types to encode the ideas of
the λ effect system and thereby make Effekt effect safe.

To facilitate comparison of λ with Effekt, Figure 8 embeds the λ calculus (Zhang
& Myers, 2019) in Scala. We immediately use the Control monad and the Scope effect to
express the operational semantics. We just present the practical embedding into Scala and
leave a formal translation and corresponding soundness proofs to future work. However,
assuming a sound subset of Scala that corresponds to λ , we conjecture that our
embedding faithfully models the calculus by Zhang & Myers. In particular, the restriction
to a subset of Scala excludes the use of mutable state, recursive function definitions,
recursive data-types, and exceptions. Also effect signatures have to be declared on the
top level and should not use mixin composition, type members, subtyping, or any other
advanced Scala feature.

Example

To ease comparison with the original calculus, we use ℓ as the type of labels and F as the
type of effect signatures. Effect signatures F[A, B] only declare a single-effect operation
with argument type A and return type B. For example, we can express the signatures of the
ambiguity and exception effect as:
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trait Amb extends F[Unit, Boolean]

trait Exc extends F[String, Nothing]

Handlers, modeled by the case class Handler, are pairs of labels and effect implementa-
tions. In this style, the handler for expressions can be expressed as:

def maybe[R, E](prog: (exc: Exc) ⇒ Control[R, exc.effect & E]) = { l ⇒

val exc = new Handler(l, msg ⇒ k ⇒ pure(None)) with Exc

prog(exc) map { r ⇒ Some(r) }

}

Calling an effect operation amounts to calling on the handler:

maybe { h ⇒ ... (h)("Failed!") ... }

While in λ , performs the continuation capture, in the embedding we perform the
capturing in the implementation of Handler.apply by means of label.switch. This is
necessary to have the available answer types (T and E in scope). We use subtyping
Handler <: F to existentially hide the answer types and other implementation details of
Handler when passing capabilities of type F.

Refinement to Singleton Types. In the presentation of Effekt in this paper, we always
performed explicit refinement to singleton types to establish type equalities of type mem-
bers. Similarly, to prevent widening of the label singleton type to ℓ, the actual signature of
Handler is:

case class Handler[-A, +B, T, E, L <: ℓ[T, E]](label: L, ...)‘

Additionally, at construction site, the type parameter L has to be explicitly provided as
singleton type l.type:

val h = Handler[A, B, T, E, l.type](l, ???).effect

This establishes the type equality between l.effect and h.effect.
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