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Abstract 

Background: The Angolan government recommends three artemisinin-based combinations for the treatment of 

uncomplicated Plasmodium falciparum malaria: artemether–lumefantrine (AL), artesunate–amodiaquine (ASAQ), and 

dihydroartemisinin–piperaquine (DP). Due to the threat of emerging anti-malarial drug resistance, it is important to 

periodically monitor the efficacy of artemisinin-based combination therapy (ACT). This study evaluated these medica-

tions’ therapeutic efficacy in Benguela, Lunda Sul, and Zaire Provinces.

Methods: Enrollment occurred between March and July 2017. Study participants were children with P. falciparum 

monoinfection from each provincial capital. Participants received a 3-day course of a quality-assured artemisinin-

based combination and were monitored for 28 (AL and ASAQ arms) or 42 days (DP arm). Each ACT was assessed in 

two provinces. The primary study endpoints were: (1) follow-up without complications and (2) failure to respond to 

treatment or development of recurrent P. falciparum infection. Parasites from each patient experiencing recurrent 

infection were genotyped to differentiate new infection from recrudescence of persistent parasitaemia. These para-

sites were also analysed for molecular markers associated with ACT resistance.

Results: Of 608 children enrolled in the study, 540 (89%) reached a primary study endpoint. Parasitaemia was cleared 

within 3 days of medication administration in all participants, and no early treatment failures were observed. After 

exclusion of reinfections, the corrected efficacy of AL was 96% (91–100%, 95% confidence interval) in Zaire and 97% 

(93–100%) in Lunda Sul. The corrected efficacy of ASAQ was 100% (97–100%) in Benguela and 93% (88–99%) in Zaire. 

The corrected efficacy of DP was 100% (96–100%) in Benguela and 100% in Lunda Sul. No mutations associated with 

artemisinin resistance were identified in the pfk13 gene in the 38 cases of recurrent P. falciparum infection. All 33 
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Background
Malaria is the principal cause of morbidity and mortal-

ity in Angola and is endemic throughout the country. �e 

disease led to more than three million cases and 7999 

deaths nationwide in 2015. In recent years, the country 

has made significant gains in reducing malaria burden 

with aggressive preventive measures, case management, 

and surveillance [1].

�ere are currently three medications equally recom-

mended by the Angolan Ministry of Health for treatment 

of uncomplicated malaria: artemether–lumefantrine 

(AL), artesunate–amodiaquine (ASAQ), and dihydroar-

temisinin–piperaquine (DP). �ese are all artemisinin-

based combinations, the drug class recommended as 

first-line malaria treatment by the World Health Organ-

ization (WHO) [2]. Artemisinin-based combination 

therapy (ACT) comprises an artemisinin derivative plus 

a partner drug; the artemisinin component has a rela-

tively short half-life and acts quickly to reduce parasite 

burden, while the partner drugs have longer half-lives 

and suppress parasitaemia for weeks post-treatment. 

�ese pharmacological differences are important when 

monitoring for drug resistance—inadequate clearance of 

parasitaemia in the first few days after treatment signals 

a possible problem with the artemisinin component of an 

ACT, while recurrent parasitaemia later on points more 

towards an issue with the partner drug.

WHO recommends biennial surveillance of ACT effi-

cacy to provide an early warning against the emergence 

and spread of resistance [3]. In Angola, the findings of 

such surveillance have generated international interest 

and demonstrate the need for continued monitoring [4]. 

A study of anti-malarial therapeutic efficacy in Angola 

in 2002–2003 revealed an efficacy of less than 20% for 

chloroquine [5] and encouraged the Ministry of Health 

to transition to ACT for first-line treatment of uncom-

plicated malaria [1]. Efficacy studies in 2013 and 2015 

raised concerns about possible lumefantrine resistance, 

particularly in Zaire Province where corrected efficacy 

was below the 90% WHO threshold for changing treat-

ment policy [6, 7]. Another therapeutic efficacy study 

using data from 2011 to 2013 prompted similar concern 

in Luanda [8].

Although artemisinin resistance has not yet been docu-

mented in Africa, it is widespread in Southeast Asia [9, 

10]. In 2013, a Vietnamese man with recent travel to 

Angola’s Lunda Sul Province was diagnosed with malaria 

which failed to respond to repeated dosing of artemisinin 

derivatives [11]. Ultimately, this case was inconclusive 

for artemisinin failure, largely because of uncertainty 

around the quality of medications administered and the 

role of the patient’s functional asplenia in delayed para-

site clearance [12, 13]. However, the case does emphasize 

the importance of continued surveillance, particularly as 

Africa and Asia forge closer economic links. �e exten-

sive use of ACT worldwide also provides a strong selec-

tive pressure for artemisinin resistance.

Another important component of anti-malarial resist-

ance monitoring is surveillance for molecular markers 

of resistance among Plasmodium falciparum parasites. 

Numerous polymorphisms in the P. falciparum genome 

have been suggested to provide resistance to ACT, both 

to the artemisinin component and to various partner 

drugs. Certain mutations in the propeller domain of 

pfk13, for instance, have been shown to confer arte-

misinin resistance [14]. Polymorphisms in the chloro-

quine resistance transporter gene pfcrt [15], originally 

identified as a marker of chloroquine resistance, have 

also been associated with resistance to multiple drugs, 

including amodiaquine and lumefantrine. Polymor-

phisms in the gene encoding the multidrug resistance 1 

transporter (pfmdr1) have been preliminarily associated 

with both lumefantrine and amodiaquine resistance, 

with certain mutations such as N86Y having an opposite 

effect on lumefantrine and amodiaquine susceptibility 

[16, 17]. Elevated pfmdr1 copy number has been postu-

lated to confer resistance to lumefantrine [18], and, most 

recently, elevated copy number of the plasmepsin 2 gene 

(pfpm2) has been proposed as a marker for piperaquine 

resistance [19, 20].

�is report presents the results of the latest round 

of therapeutic efficacy monitoring of anti-malarials in 

treatment failures in the AL and ASAQ arms carried pfmdr1 or pfcrt mutations associated with lumefantrine and amo-

diaquine resistance, respectively, on day of failure.

Conclusions: AL, ASAQ, and DP continue to be efficacious against P. falciparum malaria in these provinces of Angola. 

Rapid parasite clearance and the absence of genetic evidence of artemisinin resistance are consistent with full sus-

ceptibility to artemisinin derivatives. Periodic monitoring of in vivo drug efficacy remains a priority routine activity for 

Angola.

Keywords: Antimalarial resistance, Artemether–lumefantrine, Artesunate–amodiaquine, Dihydroartemisinin–

piperaquine, pfK13, pfmdr1, pfcrt, pfpm2



Page 3 of 11Davlantes et al. Malar J  (2018) 17:144 

Angola’s three fixed anti-malarial surveillance sentinel 

sites.

Methods
Study design

An in vivo assessment of the therapeutic efficacy of AL, 

ASAQ, and DP was conducted according to the stand-

ard WHO protocol [3]. Study participants were recently 

febrile children with P. falciparum monoinfection. Par-

ticipants were followed with physical exams and blood 

samples for 28–42 days after anti-malarial administration 

for development of adverse medication effects or recur-

rent parasitaemia. Molecular analyses were performed 

on samples from those experiencing treatment failure.

Study population

�e study took place at anti-malarial resistance sentinel 

sites in Benguela, Lunda Sul, and Zaire that were retained 

from previous therapeutic efficacy studies [6, 7]. Ben-

guela is a southern coastal province with stable mesoen-

demic malaria transmission. Zaire is a forested province 

on the northern coast that also has stable mesoendemic 

transmission. Lunda Sul province, part of Angola’s east-

ern savannah, features hyperendemic transmission 

(Fig. 1) [1].

Enrollment was divided into six arms, and efficacy of 

each medication was assessed in two provinces. Target 

enrollment of one hundred participants per arm provided 

enough power to estimate efficacy with 95% confidence 

Zaire

AL, ASAQ

Benguela

DP, ASAQ

Lunda Sul

AL, DP

Na�onal capital

Provincial capital
Fig. 1 Location of sentinel sites for therapeutic efficacy monitoring in Angola, 2017
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limits of ± 5%, assuming an expected efficacy of 95% and 

a maximum loss to follow-up and exclusion rate of 27%. 

AL and DP were evaluated in Lunda Sul, AL and ASAQ 

in Zaire, and DP and ASAQ in Benguela (Fig.  1). Two 

drugs were assessed sequentially in each site. Medication 

administration was not randomized or blinded; the first 

hundred participants enrolled at each site received the 

first ACT to be evaluated there (AL in Zaire and Lunda 

Sul or DP in Benguela), and the second hundred enroll-

ees received the second drug under evaluation (ASAQ in 

Benguela and Zaire or DP in Lunda Sul).

Screening for participants took place at two health 

facilities in each province’s capital from March to July 

2017. Study entrants were children with fever (≥ 37.5 °C) 

or a history of fever in the past 24 h, P. falciparum mono-

infection on blood smear, no signs of severe malaria on 

physical exam, no concomitant illness or severe mal-

nutrition, a haemoglobin greater than 8  g/dL, no anti-

malarials within the last 14 days, and caregivers willing to 

attend all follow-up visits with study staff. Inclusion crite-

ria were broader in Benguela compared to Lunda Sul and 

Zaire, allowing for older children (< 12 years vs. < 5 years) 

and lower parasitaemias (between 1000 and 100,000 

asexual parasites/μL vs. between 2000 and 200,000 para-

sites/μL), due to the lower level of malaria transmission 

in Benguela.

Clinical monitoring

Enrolled children received a 3-day course of one of 

the anti-malarials under evaluation, dosed accord-

ing to guidelines from the drug manufacturers. Qual-

ity-controlled AL (Ipca Laboratories, Maharashtra, 

India), ASAQ (Sanofi Aventis, Paris, France), and DP 

 (Eurartesim®; Leadiant Biosciences, Rome, Italy) were 

provided by WHO. For ASAQ and DP, which have once-

daily dosing, all three doses were given under direct 

observation of study staff. For AL, which requires twice-

daily dosing, each morning dose was directly observed. 

Evening doses were given at home, and as in previous 

studies, efforts were made to ensure correct administra-

tion of each dose. Parents or guardians were given the 

appropriate weight-based dose, called at home to confirm 

delivery of the dose, and instructed to bring the empty 

pill packages back to study staff the following morning. 

All AL doses were administered with a snack, containing 

at least 3 g of fat, to facilitate drug absorption. Parents or 

guardians were given individual packages of yogurt or 

chocolate milk to take home and were asked to bring the 

empty package back to study staff the following morning.

After each medication administration, children were 

observed for 1  h to monitor for vomiting or other side 

effects, including diarrhea, nausea, or excessive sweat-

ing. Children who vomited within half an hour after 

medication administration were given a repeat dose. 

Children who vomited between half an hour and 1 h after 

medication administration were given a repeat dose that 

was half of the original dose. �ose with persistent vom-

iting were excluded from the study.

Participants made eight or ten visits to study staff over 

the course of 28 or 42  days. Participants in the AL and 

ASAQ arms were followed for 28  days, while those in 

the DP arms required 42-day follow-up due to the longer 

half-life of piperaquine [3]. All children were monitored 

daily during the 3 days of drug administration and 1 day 

following; afterwards, follow-up visits occurred weekly. 

An interval history, physical exam, thick and thin blood 

smear, and dried blood spot collection were performed at 

each visit, except for day 1 of follow-up, in which blood 

samples were only collected if a child exhibited signs of 

severe malaria. Participants’ haemoglobin was also meas-

ured every 2  weeks. Finally, participants in the AL arm 

in Zaire underwent an additional dried blood spot collec-

tion on day 7 of follow-up to measure blood lumefantrine 

levels, to provide further insight into the large number 

of late treatment failures previously observed with AL in 

this province [6, 7].

Children were excluded from follow-up if they devel-

oped a non-falciparum malaria infection, showed signs of 

severe illness, missed a follow-up visit, or took another 

anti-malarial. For the preliminary analysis, the primary 

outcomes were adequate clinical and parasitological 

response, failure to adequately clear parasitaemia, or 

recurrent P. falciparum parasitaemia. Participants were 

categorized as early treatment failures if their parasitae-

mia increased from day 0 to day 2 of follow-up, failed to 

decrease by at least 75% by day 3, was associated with 

fever on day 3, or was associated with signs of severe 

malaria on days 1–3. Participants who developed any 

parasitaemia after day 3 were classified as late treatment 

failures.

Molecular analysis

Microsatellite analysis and Sanger sequencing of P. fal-

ciparum parasites were performed on selected blood 

samples from study participants. Day 0 and day of fail-

ure samples from all cases of late treatment failure were 

genotyped by microsatellite analysis for reclassification 

as reinfection or recrudescence. Additional day 0 sam-

ples from participants not experiencing treatment failure 

were randomly selected for neutral microsatellite analy-

sis to augment the number of samples for determination 

of allele frequencies. day 0 and day of failure samples 

from all cases of late treatment failure were also assessed 

for pfK13, pfcrt, and pfmdr1 sequence and pfmdr1 and 

pfpm2 copy number.
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Genomic DNA was extracted using the QIAamp blood 

minikit (Qiagen Inc., California, USA). Seven neutral 

microsatellite loci spanning six chromosomes (TA1, 

chromosome 6; poly α, chromosome 4; PfPK2, chromo-

some 12; TA109, chromosome 6; and 2490, chromosome 

10; C2M24, chromosome 2; and C3M69, chromosome 

3) were amplified by non-nested or semi-nested PCR 

and their fragment lengths were measured [21–24]. 

Fragments of the pfcrt [25], pfmdr1 [25], and pfK13 [26] 

genes were amplified using previously published prim-

ers. Direct Sanger sequencing of the nested purified PCR 

products was performed by using a BigDye Terminator 

v3.1 cycle sequencing kit on an iCycler thermal cycler 

(Bio-Rad, California, USA). Sequence analysis was per-

formed by using Geneious R7 (Biomatters, Auckland, 

New Zealand).

Pfmdr1 copy number was assessed using a previously 

described protocol [27]. �e P. falciparum β-tubulin gene 

was used as the reference gene for relative quantifica-

tion of pfmdr1 gene copy number. Each run included the 

3D7 parasite strain as a single-copy control, the W2Mef 

strain (two copies), and the Dd2 strain (three to four cop-

ies). �e assay was performed using the Agilent Mx3005 

real-time PCR instrument (Agilent Technologies, Cali-

fornia, USA). �e copy number was determined by using 

the relative quantification module in MxPro3005 soft-

ware (Agilent Technologies, California, USA), using the 

comparative ΔΔCT method, and rounded to the nearest 

integer.

For pfpm2 copy number analysis, the P. falciparum 

β-tubulin gene was again used for reference. �e reverse 

primers of both the pfpm2 and β-tubulin genes were 

modified with the PET tag and labeled with FAM (pfpm2) 

and HEX (β-tubulin) fluorophores. �e PET-PCR assays 

were performed using Agilent Mx3005pro thermocyclers 

(Agilent Technologies, California, USA).

Lumefantrine level measurement

Additional dried blood spots were collected on day 7 of 

follow-up from participants in the AL arm in Zaire. A 

volume of 50  μL of whole blood was collected on filter 

paper pre-treated with 0.75 M tartaric acid and stored at 

room temperature. Dried blood spots were eluted with 

an acidified acetonitrile solution followed by solid phase 

extraction. �e extraction procedure was followed by liq-

uid chromatographic separation using a Synergi Hydro-

RP, 4 µm, 150 × 2.0 mm analytical column (Phenomenex, 

California, USA) with an isocratic mobile phase con-

taining a mixture of acetonitrile, water, and formic acid 

(70:29.8:0.2) at a flow-rate of 300  µL/min. An AB Sciex 

API 3000 mass spectrometer at unit resolution in the 

multiple reaction monitoring mode was used to monitor 

the transition of the protonated precursor ions m/z 530.0 

and m/z 539.1 to the product ions m/z 512.1 and m/z 

521.3 for lumefantrine and the internal standard, respec-

tively. Electrospray ionization was used for ion produc-

tion [28, 29].

Day 7 lumefantrine concentrations greater than or 

equal to 0.2 μg/mL were considered therapeutic [30].

Statistical analysis

Uncorrected efficacy was determined by dividing the 

number of treatment failures in each study arm by the 

total number of participants classified as either adequate 

clinical and parasitological response or treatment failure 

in that arm. Parasite clearance rates on day 2 and day 3 

of follow-up were also examined to evaluate artemisinin 

delayed response.

Kaplan–Meier estimates of survival curves were cal-

culated using the survival package in R version 3.3.2 (R 

Foundation for Statistical Computing, Vienna, Austria). 

Data from participants excluded for reasons other than 

treatment failure or incorrect enrollment were included 

in the analysis until the day of study departure.

To determine corrected therapeutic efficacy, micros-

atellite data were analysed using a previously published 

algorithm [31] that assigns each late treatment failure a 

posterior probability of recrudescence. A probability of 

more than 0.5 was considered a recrudescence, and less 

than or equal to 0.5 was designated as a reinfection.

�e distribution of day 7 lumefantrine drug levels 

was compared between cases of adequate clinical and 

parasitological response and cases of recrudescence and 

reinfection using the Kolmogorov–Smirnov test. �e 

proportion of participants with sub-therapeutic day 7 

lumefantrine levels was compared between cases of ade-

quate clinical and parasitological response and cases of 

recrudescence and reinfection using Fisher’s exact test.

Results
Triage and enrollment

Of 608 children enrolled in the study, 27 (4%) were lost 

to follow-up (loss to follow-up rates were 7% or less in 

all study arms), and 41 participants (7%) were excluded 

(Additional file  1). Participant characteristics at base-

line reflected the different inclusion criteria in each site 

(Table 1). Median age ranged from 2.7 years in the Lunda 

Sul DP arm to 7.1  years in the Benguela DP arm. Suffi-

cient participants completed follow-up to provide statis-

tical power in all treatment arms, with between 85 and 

94 participants reaching a primary study outcome in each 

arm.

Efficacy

Of 540 children completing follow up, 502 achieved 

adequate clinical and parasitological response, and 38 
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were classified as treatment failures (Table 2). Rates of 

parasite clearance were at least 97% on day 2 in all arms 

and 100% by day 3 in all arms (Table  3). No children 

experienced early treatment failure; all 38 treatment 

failures were late treatment failures.

�e uncorrected 28-day efficacy using the Kaplan–

Meier estimate of the survival curve was 93% (88–98%) 

for AL in Zaire, 90% (84–96%) for AL in Lunda Sul, 99% 

(94–100%, 95% confidence interval) for ASAQ in Ben-

guela, and 82% (75–90%) for ASAQ in Zaire (Table 4). 

�e uncorrected 42-day efficacy was 95% (90–99%) for 

DP in Benguela and 100% (100–100%) for DP in Lunda 

Sul.

�e majority of the 38 late treatment failures were 

reinfections (26, 68%) rather than recrudescences (12, 

32%) by microsatellite analysis (Table  2). Late treat-

ment failures were categorized with a high degree of 

confidence, with the posterior probability of recrudes-

cence greater than 90% or less than 10% in all but three 

instances (Additional file  2). One late treatment fail-

ure in the Zaire AL arm had a posterior probability of 

recrudescence of 29%, and two late treatment failures 

in the Zaire ASAQ arms had probabilities of 19 and 

39%. Four cases of recrudescence were identified in the 

Zaire AL arm, three in the Lunda Sul AL arm, and five 

in the Zaire ASAQ arm. No recrudescences were found 

among participants in the Benguela DP, Lunda Sul DP, 

or Benguela ASAQ arms.

After exclusion of reinfections, the corrected 28-day 

efficacy of AL was 96% (91–100%), in Zaire and 97% 

(93–100%) in Lunda Sul. �e corrected 28-day efficacy 

of ASAQ was 100% (97–100%) in Benguela and 93% (88–

99%) in Zaire. �e corrected 42-day efficacy of DP was 

100% (96–100%) in Benguela and 100% in Lunda Sul.

Safety

Among the 586 participants enrolled within inclusion 

criteria, 11 participants (2%) reported adverse medica-

tion effects: four with vomiting after DP (2% of partici-

pants in DP arms), three with nausea after ASAQ (2%), 

two with excessive sweating after ASAQ (1%), one with 

vomiting after ASAQ (1%), and one with excessive sweat-

ing after DP (1%). No participants reported adverse 

effects after AL administration, neither under direct 

observation nor at home. No participants left the study 

due to adverse medication effects.

Molecular markers of resistance

Almost all (75/76, 99%) of the day 0 and day of failure 

samples analysed from the 38 treatment failures were 

wild-type for pfk13 (Table  5). One sample from Zaire 

exhibited the A504V mutation, which has not been 

Table 1 Number of participants enrolled and finishing follow-up and characteristics at baseline

AL artemether–lumefantrine, ASAQ artesunate–amodiaquine, DP dihydroartemisinin–piperaquine

a 28-day follow-up

b 42-day follow-up

Benguela Zaire Lunda Sul

DPb ASAQa ALa ASAQa ALa DPb

Enrollment and follow-up

 Enrolled, n 100 105 100 98 105 100

 Lost to follow up, 
n (%)

5 (5) 2 (2) 3 (3) 5 (5) 5 (5) 7 (7)

 Excluded, n (%) 10 (10) 12 (11) 3 (3) 3 (3) 9 (9) 4 (4)

 Reached study 
endpoint, n (%)

85 (85) 91 (87) 94 (94) 90 (92) 91 (87) 89 (89)

Participant characteristics at baseline

 Median age, years 
(range)

7.1 (2–12) 6.3 (2–12) 3 (0.5–5) 2.7 (0.8–5) 3.3 (0.6–5) 3 (0.5–5)

 Median weight, kg 
(range)

20 (9–48) 19 (10–52) 12 (7–20) 12 (7–19) 12 (6–20) 12 (6–19)

 Percent female (%) 53 53 46 55 54 47

 Median day 0 
parasitaemia, 
parasites/µL 
(range)

25,940 (1218–
95,585)

31,399 (1242–
97,167)

47,607 (2175–
182,138)

31,215 (2848–
184,243)

22,340 (2162–
122,064)

19,812 (3316–
184,465)

 Median day 0 
haemoglobin, g/
dL (range)

10.5 (8.1–13.9) 10.7 (8.1–15.1) 10.1 (8.1–13.0) 9.7 (8.1–13.0) 9.5 (8.1–12.8) 9.3 (8.1–14.9)
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associated with artemisinin resistance. Nearly all day of 

failure samples in the AL arms carried the pfcrt wildtype 

K76 genotype (14/16, 88%), and all had the N86 pfmdr1 

genotype (16/16, 100%). All ASAQ day of failure sam-

ples (17/17, 100%) carried the pfcrt 76T single-nucleotide 

polymorphism. �e only two samples with the pfmdr1 

86Y mutation were ASAQ day of failure samples from 

Benguela.

All 76 analysed samples had only one copy of both the 

pfmdr1 and pfpm2 genes. However, 75 of 76 samples con-

tained multiple P. falciparum strains.

Lumefantrine concentrations

Median day 7 lumefantrine concentrations in the Zaire 

AL arm were similar among participants experiencing 

adequate clinical and parasitological response, reinfec-

tion, and recrudescence, ranging from 0.19 to 0.23  μg/

mL (Additional files 3, 4). Two (50%) out of the four cases 

of recrudescence observed in the AL arm had sub-ther-

apeutic day 7 lumefantrine levels, but this did not differ 

significantly (p value 1.0) from rate of sub-therapeutic 

day 7 lumefantrine levels in participants with adequate 

clinical and parasitological response (35/87, 40%). Two 

children had undetectable lumefantrine levels, one of 

whom successfully responded to treatment and one of 

whom had a recrudescent infection. �e distribution of 

day 7 lumefantrine concentrations was not statistically 

different between cases of adequate clinical and para-

sitological response and recrudescence (p value 0.94), 

between cases of adequate clinical and parasitological 

Table 2 Treatment outcomes for participants finishing follow-up

AL artemether–lumefantrine, ASAQ artesunate–amodiaquine, DP dihydroartemisinin–piperaquine

a 28-day follow-up

b 42-day follow-up

n (%)

Benguela Zaire Lunda Sul

DPb ASAQa ALa ASAQa ALa DPb

n = 85 n = 91 n = 94 n = 90 n = 91 n = 89

Treatment failure 5 (6) 1 (1) 7 (7) 16 (18) 9 (10) 0

 Early treatment failure 0 0 0 0 0 0

 Late treatment failure 5 (6) 1 (1) 7 (7) 16 (18) 9 (10) 0

 Recrudescence 0 0 4 (4) 5 (6) 3 (3) 0

  Day 21 0 0 1 (1) 5 (6) 3 (3) 0

  Day 28 0 0 3 (3) 0 0 0

  Day 35 0 – – – – 0

  Day 42 0 – – – – 0

 Reinfection 5 (6) 1 (1) 3 (3) 11 (12) 6 (7) 0

  Day 21 0 0 0 7 (8) 2 (2) 0

  Day 28 0 1 (1) 3 (3) 4 (4) 4 (4) 0

  Day 35 2 (2) – – – – 0

  Day 42 3 (4) – – – – 0

Adequate clinical and parasitologi-
cal response

80 (94) 90 (99) 87 (93) 74 (82) 82 (90) 89 (100)

Table 3 Proportion of slides negative for asexual malaria parasites on days 2 and 3 following treatment

AL artemether–lumefantrine, ASAQ artesunate–amodiaquine, DP dihydroartemisinin–piperaquine

Proportion slides negative (95% confidence intervals)

Benguela Zaire Lunda Sul

DP ASAQ AL ASAQ AL DP

Day 2 98 (92–100) 100 (95–100) 97 (91–99) 97 (91–99) 97 (91–99) 100 (95–100)

Day 3 100 (95–100) 100 (95–100) 100 (95–100) 100 (95–100) 100 (95–100) 100 (95–100)
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response and reinfection (p value 0.34), or between cases 

of adequate clinical and parasitological response and 

recrudescence/reinfection (0.80).

Discussion
AL, ASAQ, and DP remain efficacious for the treatment 

of uncomplicated P. falciparum malaria in the sites where 

they were tested. �e WHO recommends changing 

national malaria treatment policy if efficacy drops below 

90% [2], and all corrected efficacies reported here exceed 

that threshold. All three medications were very well tol-

erated, with less than 2% of participants experiencing 

mild adverse effects and no participants experiencing 

serious adverse effects.

Uncorrected therapeutic efficacy was above 90% in all 

study arms except ASAQ in Zaire, which had an uncor-

rected efficacy of 82%. Low uncorrected efficacy has been 

noted in previous anti-malarial studies in Zaire [6, 7] and 

may be explained in part by relatively high malaria trans-

mission in this province as compared to the other sites.

�ere has been concern recently around possible lume-

fantrine resistance in Angola, particularly in Zaire. �e 

results presented here do not support this concern, with 

corrected AL efficacy at 96% in Zaire and 97% in Lunda 

Sul. Greater efforts to administer all AL doses with a 

fatty meal could explain the higher lumefantrine efficacy 

observed in this round of monitoring. Nevertheless, a 

substantial proportion (40%) of cases of adequate clinical 

and parasitological response had day 7 lumefantrine con-

centrations below the recommended therapeutic thresh-

old of 0.2  μg/mL. �ere was no statistically significant 

difference in day 7 lumefantrine drug levels by treatment 

outcome in the AL Zaire arm, but this could be due to the 

small number of treatment failures observed in that arm.

DP demonstrated the highest efficacy of all anti-

malarials in this study, with no recrudescences identified 

throughout 42 days of follow-up among 174 participants 

taking this medication. �is high efficacy, combined with 

the drug’s relatively long half-life, confirms DP as an 

appropriate ACT for Angola [32]. Although the utility of 

this medication is declining in Asia, DP efficacy remains 

high throughout Africa [33].

Multiple factors provide reassurance that P. falciparum 

is still highly susceptible to artemisinin derivatives in 

Angola. No early treatment failures were observed in this 

study. Parasite clearance was rapid in all study arms, with 

parasitaemia resolving in at least 97% of participants by 

day 2 of follow-up and all participants by day 3. Finally, 

no mutations in pfk13 associated with artemisinin resist-

ance were identified during molecular analysis of treat-

ment failures.

In contrast to the previous rounds of therapeutic effi-

cacy studies [6, 7], the minimum haemoglobin required 

for inclusion was increased to 8 g/dL from 5 g/dL, pos-

sibly explaining why no early treatment failures were 

observed in the current round. All but one of the early 

treatment failures observed in both the 2013 and 2015 

studies were due to severe anemia. A haemoglobin 

of less than 5  g/dL in the presence of parasitaemia is a 

sign of severe malaria and, if observed during follow up, 

would prompt concern for treatment failure. However, 

it is common for patients on anti-malarial treatment to 

Table 4 Efficacy of first-line anti-malarials in three therapeutic efficacy monitoring sites in Angola, 2017

Per-protocol efficacy defined as proportion adequate clinical and parasitological response, Kaplan–Meier estimate calculated from estimate of survival function

AL artemether–lumefantrine, ASAQ artesunate–amodiaquine, DP dihydroartemisinin–piperaquine

a 28-day follow up

b 42-day follow up

Efficacy (95% confidence intervals)

Benguela Zaire Lunda Sul

DPb ASAQa ALa ASAQa ALa DPb

Uncorrected

 Per-protocol day 28 100 (95–100) 99 (94–100) 92.8 (85–97) 82.2 (72–89) 90.1 (82–95) 100 (95–100)

 Per-protocol day 42 94.6 (87–98) – – – – 100 (95–100)

 Kaplan–Meier estimate day 28 100 (100–100) 98.9 (97–100) 92.7 (88–98) 82.1 (75–90) 90.1 (84–96) 100 (100–100)

 Kaplan–Meier estimate day 42 94.6 (90–99) – – – – 100 (100–100)

PCR-corrected

 Per-protocol day 28 100 (97–100) 100 (97–100) 95.5 (89–98) 93 (85–97) 96.4 (90–99) 100 (96–100)

 Per-protocol day 42 100 (96–100) – – – – 100 (96–100)

 Kaplan–Meier estimate day 28 100 100 (97–100) 95.5 (91–100) 93.3 (88–99) 96.5 (93–100) 100

 Kaplan–Meier estimate day 42 100 (96–100) – – – – 100
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experience an initial drop in haemoglobin before improv-

ing. Children enrolled with a haemoglobin near 5  g/dL 

who undergo this customary decrease may be inappro-

priately classified as early treatment failures, when in fact 

they were following the expected treatment course.

Analysis of markers of partner drug resistance in AL 

and ASAQ treatment failures yielded results consistent 

with previous understanding of these resistance markers. 

Mutations in pfcrt K76 and pfmdr1 N86 are known to be 

associated with AL resistance [17], and these were pre-

sent on day of failure in nearly all AL treatment failures. 

�e pfcrt K76T genotype, which has been associated 

with decreased ASAQ susceptibility [17], was identi-

fied in all ASAQ treatment failures from this study. �e 

only instances of a pfmdr1 86Y mutation, associated with 

amodiaquine resistance, were identified in ASAQ treat-

ment failures.

As AL and ASAQ exhibit opposite selective pressures 

on certain loci in the pfmdr1 and pfcrt genes, alternat-

ing the use of these drugs might preserve diversity in 

these genes and minimize the emergence of resistance. 

Analysis of day 0 samples from the 2015 therapeutic effi-

cacy study has shown that the majority of parasites cir-

culating in the three sentinel provinces in Angola carry 

the pfmdr1 N86 genotype [34]. A similar analysis of all 

day 0 samples from this current study could be useful in 

characterizing how the circulating parasite population is 

affected by the selective pressures on the pfmdr1 gene.

None of the day 0 or day of failure samples had an ele-

vated copy number of pfmdr1, consistent with the gen-

eral absence [35, 36] or low rates [37, 38] of pfmdr1 copy 

number variation in sub-Saharan Africa. As a recently 

proposed marker, there are few available data on pfpm2 

copy number variation in sub-Saharan Africa; absence 

of elevated copy number in this gene in the samples ana-

lysed here is consistent with relatively low rates of DP use 

in sub-Saharan Africa. However, all but one of the sam-

ples analysed for copy number variation contained mul-

tiple P. falciparum strains, so this analysis of could have 

missed an elevated copy number in parasites occurring at 

low-frequencies in mixed-strain infections.

Although the study was carried out in three provinces 

of Angola with varied geography and malaria endemicity, 

it is possible that these results may not be representative 

of either any one province or the entire country. Fur-

thermore, since assignment of treatment drug was not 

random, drug efficacies should not be compared across 

study arms.

Conclusions
All three evaluated artemisinin-based combinations 

continue to be efficacious against P. falciparum malaria 

in the three sentinel sites in Angola. Rapid parasite 

clearance is consistent with full susceptibility to arte-

misinin derivatives. Periodic monitoring of in vivo drug 

efficacy remains a critical routine activity for the Ango-

lan NMCP.
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