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Abstract

Background: Recent alleged attacks with nerve agent sarin on civilians in Syria indicate their potential threat to

both civilian and military population. Acute nerve agent exposure can cause rapid death or leads to multiple and
long term neurological effects. The biochemical changes that occur following nerve agent exposure needs to be
elucidated to understand the mechanisms behind their long term neurological effects and to design better
therapeutic drugs to block their multiple neurotoxic effects. In the present study, we intend to study the efficacy of
antidotes comprising of HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-methoxy]-methyl]-2-[(hydroxyimino) methyl]
pyridinium dichloride), atropine and midazolam on soman induced neurodegeneration and the expression of c-Fos,
Calpain, and Bax levels in discrete rat brain areas.

Results: Therapeutic regime consisting of HI-6 (50 mg/kg, i.m), atropine (10 mg/kg, i.m) and midazolam (5 mg/kg, i.m)

protected animals against soman (2 X LDsq, s.0) lethality completely at 2 h and 80% at 24 h. HI-6 treatment reactivated

soman inhibited plasma and RBC cholinesterase up to 40%. Fluoro-Jade B (FJ-B) staining of neurodegenerative neurons
showed that soman induced significant necrotic neuronal cell death, which was reduced by this antidotal treatment.

expression in the hippocampus.

Soman increased the expression of neuronal proteins including c-Fos, Bax and Calpain levels in the hippocampus,
cerebral cortex and cerebellum regions of the brain. This therapeutic regime also reduced the soman induced Bax,
Calpain expression levels to near control levels in the different brain regions studied, except a mild induction of c-Fos

Conclusion: Rats that received antidotal treatment after soman exposure were protected from mortality and showed
reduction in the soman induced expression of c-Fos, Bax and Calpain and necrosis. Results highlight the need for timely
administration of better antidotes than standard therapy in order to prevent the molecular and biochemical changes
and subsequent long term neurological effects induced by nerve agents.

Keywords: Nerve agent, Soman, Acetylcholinesterase, HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-methoxy]-methyl]-2-
[(hydroxyimino) methyl] pyridinium dichloride), Atropine and midazolam

Background

Exposure to nerve agents such as sarin and soman causes
an array of toxic effects, including hypersecretions, fascic-
ulations, tremors, convulsions and death within minutes
due to respiratory distress [1]. These toxic effects are
mainly due to hyperactivity of the cholinergic system as a
result of acetylcholinesterase (AChE) inhibition and the
subsequent increase of the neurotransmitter acetylcholine

* Correspondence: ramugolime@gmail.com; bkbhattacharya@drde.drdo.in
'Biochemistry Division, Defence Research and Development Establishment,
Jhansi road, Gwalior, MP, India

Full list of author information is available at the end of the article

( BioMVed Central

at central and peripheral sites. The potential for exposure
to nerve agents in a real world situation is likely to occur
as a result of military operations, a terrorist incident, or
accidental exposure, including demilitarization of weapon-
ized material. Recent alleged use of nerve agent, sarin on
civilian’s in Syria indicates their potential threat to civil-
ian and military population. Use of chemical weapons
(CW) still remains a major concern despite the efforts of
the Organization for Prohibition of Chemical Weapons
(OPCW, Netherlands, Nobel peace prize winner of 2013),
to control the CW threat worldwide. In the event of nerve
agent poisoning, an anticholinergic drug, such as atropine
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sulfate, is used to antagonize the effects of excess acetyl-
choline at muscarinic receptor sites, and an oxime, such
as pralidoxime chloride (2-PAM-CI), is used to reactivate
any unaged inhibited enzyme [2,3]. However, this treat-
ment regimen does not control the development of nerve
agent-induced seizures [4,5]. Concomitant administration
of an anticonvulsant drug such as diazepam is considered
essential to optimize the regimen of carbamate pretreat-
ment plus atropine and oxime therapy for severely ex-
posed casualties [6,7]. Prolonged generalized seizures
(status epilepticus) can begin rapidly after nerve agent
exposure in humans [8-11]. Animal studies show these
seizures can result in neuropathology and long-term be-
havioral deficits if not promptly controlled [12-16]. It is
widely accepted that organophosphate (OP) induced seiz-
ure activities if not treated in a timely manner, can evolve
into status epilepticus. This can cause an irreversible brain
damage and long-term neurological, behavioral, and cog-
nitive deficits [1,17]. The neuropathological consequences
of OP-poisoning are related to the severity and duration
of seizure activity [16,18].

Reactivation of inhibited acetylcholinesterase is consid-
ered to be an important element in post-exposure treat-
ment. Bis-pyridinium oximes such as HI-6 can reactivate
the phosphorylated enzyme if they are administered
prior to the enzyme changes from the reactivatable to
the unreactivatable state, the process referred to as “ageing”
[3]. Diazepam (DZ), the preferred anticonvulsant benzo-
diazepine (BZ) for the treatment of OP-nerve agent-
induced seizures and neuronal damage has been associated
with unwanted effects, poor bioavailability, anticonvulsant
tolerance, and dependence liability. Diazepam was also
found to be not always completely effective in protecting
animals against soman-induced neuropathology [19,20]. In
a search for safer and more effective anticonvulsant
BZs against OP-induced seizure and neuronal damage,
Midazolam (MDZ), a non-selective and full positive allo-
steric modulator of GABA action at a variety of GABAA
receptor subtypes [21], has recently been considered a
possible anticonvulsant replacement for DZ [22]. The ad-
vantages that have been attributed to MDZ include its
rapid bioavailability and the ease of administration by in-
tranasal, sublingual, and intramuscular routes [22]. Gene
expression studies during nerve agent exposure demon-
strated several pathways in neurons including cholinergic,
purinergic, NMDA -glutamatergic, GABAergic, catechol-
aminergic, serotogenic, calcium, and MAP kinase signal-
ing along with genes related to ion channels, cytoskeletal
proteins, cell adhesion, neurodegeneration, learning
and memory, dementia/ataxia, mitochondrial dysfunc-
tion and apoptosis were altered significantly [23-26].
Excess muscarinic activation induced either by agonist
application or by inhibition of AChE, results in long-
lasting modifications of gene expression and protein
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levels of key cholinergic proteins [27,28]. Several studies
have successfully employed c-Fos activity as a marker of
neural activity [29] and increased c-Fos expression has
been linked with organophosphate administration [30,31].
Convincing evidence suggest the role of free radicals in
AChE inhibitors-induced neuronal cell and macromolecu-
lar damage [32,33].

The relative lethality of nerve agents as determined
in animal studies is VX > Soman > Sarin > Tabun [34].
Among OP nerve agents, soman is considered as one of
the most toxic due to its high lipophility and high affin-
ity to the brain AChE and causes rapid ageing of AChE
when compared to sarin, which is less lipophilic, how-
ever, its affinity to the brain AChE is also high [35,36].
Soman poisoning is also most difficult to counteract due
to soman induced epileptic seizures and related brain
damage, may resist to current therapies, if not treated
immediately [19,20]. In view of this, soman represents
most serious toxicant to test the therapeutic possibilities
for nerve agents. Seizures might be one of the factors re-
sponsible for the late neurological effects of OP poison-
ing, it is important to determine the extent to which
existing antidotes can reduce the seizures and diminish
brain injury. Thus, there has been an active research ef-
fort to find out the molecular changes responsible for
nerve agent-induced neurotoxicity to designing better
drugs. A possible sequence of neurochemical events fol-
lowing nerve agent exposure is the inhibition of AChE
causes an elevation of acetylcholine leading to massive
activation of muscarinic and nicotinic receptors. Paral-
leled or sequenced activation of different pathways
including phospholipases, protein kinases, proteases,
transcription factors and generation of reactive oxygen
and nitrogen species, may further account for the mul-
tiple neurotoxic effects resulting from nerve agent ex-
posure. Thus, identifying the pathways and target genes
will helps in the development of new pharmacological
treatment to enhance recovery and repair processes in
the nerve agent induced brain damage. In view of this, it
is of interest to investigate the therapeutic effects of
antidotes (HI-6, atropine and midazolam) on soman-
induced neurodegeneration and the expression of c-Fos,
Calpain, and Bax levels in the discrete rat brain areas.

Methods

Chemicals

Soman and HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-
methoxy]-methyl]-2-[(hydroxyimino)-methyl] pyridinium
dichloride) were obtained from Process Technology
Development Division of DRDE, Gwalior. Purity of
soman was greater than 98%, as verified by Gas chroma-
tography. Mouse monoclonal antibodies for anti c-Fos
(clone 2G9C3, Calbiochem,) anti p-calpain and anti-f
actin (clone, Ac-15), atropine sulphate and all other
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chemicals were obtained from Sigma chemicals Co. (St,
Louis, U.S.A), unless otherwise mentioned. Luminal and
Horseradish Peroxidase (HRP) substrate for chemilu-
minescence detection were purchased from Millipore
Corporation, (Billerica, MA, USA). HRP conjugated anti
mouse IgG was obtained from Dako Denmark A/S,
DK2600 (Glostrup, Denmark).

Drug treatment

Wistar male rats (100-120 g, 8—10 week old) were used
in the present study. Rats were bred in Animal Facilities
division of DRDE, Gwalior, India. All animal experimental
procedures were approved by the Institutional Animals
Ethics Committee (Registration No: 37/1999/CPCSEA,
India). The care and maintenance of the animals were
done as per the approved guidelines of the Committee
for the Purpose of Control of the Experimental animals
(CPCSEA, INDIA) under PCA acts 1960 and 1998. Ani-
mals were housed in vivarium under conditions of con-
trolled room temperature between 21-25°C with 12 hr
light—dark cycle. Food and water were provided ad libi-
tum. Soman was dissolved in saline and administered to
rats at 105 pg/kg (1 x LDso) as a single dose through
subcutaneous (s.c) route and sacrificed at 30 min, 2.5 h,
1, and 7 day (n =4 per each time point) time intervals.
The sub cutaneous LDg, value of soman in the wistar
rats was determined in our previous studies [37]. Ve-
hicle (saline) control animals received an equivalent vol-
ume of 0.9% sodium chloride. In another set of
experiments, animals were pretreated with the oxime,
HI-6 (50 mg/kg, i.m), 30 min prior to challenge with 2 x
LDso soman (210 ug/kg, s.c). One minute after soman
exposure, animals were treated with atropine sulphate
(10 mg/kg, i.m) followed by midazolam (5 mg/kg, i.m)
on the onset of seizures and sacrificed at 30 min, 2.5 h,
1, and 7 day (n =4 per each time point) time intervals.
The rationale behind using the 2 x LD5, soman dose for
soman plus antidotes treated animals is that previous
studies has demonstrated that the LDs, value of nerve
agents decreases with antidotal (atropine and HI-6) treat-
ment [38]. In order to keep the number of experimental
animals down, we have used 1 x LDs, dose to establish
acute effects with soman alone as the death rate will be
very high with 2 x LDs, dose of soman without any anti-
dotes treatment. Control animals of this group were
injected with antidotes comprising of HI-6, (50 mg/kg, i.m),
30 min prior to challenge with saline instead of soman.
One minute later animals were treated with atropine
sulphate (10 mg/kg, i.m) followed by midazolam (5 mg/
kg, i.m) (n = 4; per each time point at 1 and 7 day). Rats
were sacrificed by decapitation and brains were proc-
essed for further analysis. Samples were stored at —80°C
until use.
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Assay of AChE activity (EC 3.1.1.7)

AChE activity was assayed according to the method of
Ellman et al. [39], using acetylthiocholine iodide as the
substrate. The enzyme activity was calculated as nmole
substrate hydrolyzed min™' ml™* for plasma and nmole
substrate hydrolyzed min™* mg™ protein for RBC and
brain. Protein was estimated by Bradford method [40].

Histopathological analyses of the brain after soman and
antidotes treatment

Rats were anesthetized and subjected to transcardiacal
perfusion with 0.9% saline (70 ml/min) until blood was
cleared, followed by perfusion with 10% formalin at
room temperature. Brains were immediately removed at
2 h, 1 and 7 day after soman, soman plus drugs and ve-
hicle treated control rats and placed in fixative (10% for-
malin) for no longer than 48 h. Brains were then
dehydrated and embedded in paraffin. Sections (10 pm
thick) were cut and dried in an incubator at 37°C for
12 h before they were stained with neuron selective
Fluoro-Jade B (FJ-B) as described [41]. After mounting,
the tissue was examined using an epifluorescent micro-
scope with blue (450-490 nm) excitation light and a fil-
ter for fluorescein isothiocyanate. Photomicrographs
were taken with a digital microscope camera (AxioCam,
Zeiss, Jena, Germany). For qualitative neuropathology
evaluation of FJ-B stained sections, the following rating
system initially described by McDonough et al. [42,43]
and later applied for FJ-stained sections by Myhrer et al.
[18], was used to score the extent of neuronal degener-
ation (neuropathology score) in each region is as follows,
0 = no neuropathology; 1 = minimal neuropathology (1-10%
of the neuronal population was FJB-stained); 2 = mild
neuropathology (11-25%); 3 = moderate neuropathology
(26—45%); and 4 = severe neuropathology (>45%).

RNA isolation and estimation

Total RNA was extracted from 50 mg of different re-
gions of rat brain using RNeasy kit (Qiagen, Germany)
following manufacturer’s protocol. The purity and quan-
tity of total RNA was determined by measuring absorb-
ance at A260/A280 ratios and then A260, respectively,
using a UV-Spectrophotometer (BioTek, U.S.A). RNA
having high purity ratio ranging from 1.9 to 2.1 was used
for further real time PCR studies.

Real-time RT-PCR

The quantitative real-time RT-PCR was carried out for
the selected genes using gene specific primers from
Quantitect primer assay kit (Qiagen, Germany). Quanti-
Fast one step RT-PCR kit was used for real time PCR
and RNA polymerase-II (RP-II) was used as an endogen-
ous reference gene. Briefly, the reaction mixture con-
sisted of 12.5 pl of 2 x QuantiFast SYBR Green RT-PCR
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Master Mix, 2.5 pl 10 x Quantitect primer mix, 0.25 pl
of Quantifast RT Mix, 100 ng (2 pl) of template RNA
and 8.75 pl nuclease free water in 25 pl reaction volume.
The Roche Light cycler-480 system was used to monitor
the SYBR Green signal at the end of each extension
period for 40 cycles. The thermal profile consisted of
10 min of reverse transcription at 50°C for one cycle and
5 min of polymerase activation at 95°C, followed by
40 cycles of PCR at 95°C for 10 s, 60°C for 30 s for com-
bined annealing/extension. The relative quantification levels
in expression were determined using the 2nd derivative
maximum analysis with the determination of the crossing
points for each transcript. Crossing point values for each
target gene were normalized to the respective crossing
point values for the reference gene RP-II. Data are pre-
sented as normalized ratios of genes along with stand-
ard error using Roche Applied Science E-Method [44].

Western analysis

Hippocampus, cerebellum and cerebral cortex tissues
were homogenized in buffer containing 10 mM Tris,
pH 7.6, 0.5 M sucrose, 1.5 mM MgCl,, 10 mM KCl, 10%
glycerol, 1 mM EDTA, 1 mM dithiothreitol, and a prote-
ase inhibitor mixture (1 mM PMSE, 2 pg/ml aprotinin,
leupeptin, and pepstatin A). The crude nuclear fraction
was isolated by centrifugation at 4000xg for 5 min at 4°C.
The nuclear pellet was resuspended in a lysis buffer con-
taining 20 mM Tris (pH 7.6), 20% glycerol, 1.5 mM
MgCl,, 0.2 mM EDTA, 0.3 M NaCl, 0.5 mM dithiothrei-
tol, and 0.5 mM PMSF. Nuclear proteins were derived
from the supernatant following centrifugation at 12,000xg
for 20 min at 4°C. As for detecting calpain expression,
brain tissues were homogenized in a tissue extraction
buffer (Tris—HCl pH 6.8 containing 1 mM EGTA,
1 mM EDTA, and 1% Triton X-100), 20 mM p-
glycerophosphate, 20 mM sodium fluoride, 1 mM so-
dium vanadate, and protease inhibitor cocktail (50 pl/g
tissue). For the western analysis of calpain, the samples
were centrifuged at 30,000xg for 30 min and resulting
supernatants were used. After measuring protein con-
centrations using Bradford method [40], equal amounts
of protein (40 pg) were diluted in 2x Laemmli’s buffer
and subjected to 10% SDS-polyacrylamide gel electro-
phoresis. Proteins were transferred on to PVDF mem-
branes and blocked with 5% non-fat dried milk
dissolved in PBS (pH 7.5). Immunoblotting was carried
out with anti-c-Fos antibody at 1:1000, 1:5000 dilutions
for p-calpain and B-actin overnight at 4°C. PVDF mem-
branes were washed thrice in PBS containing 0.05%
Tween 20 and incubated with anti-mouse horseradish
peroxidase-conjugated secondary antibody at 1:3000
c-Fos, 1:8000 for p-calpain and 1: 10,000 dilution for f3-
actin for 1 h at room temperature. Bands were devel-
oped by chemiluminescence detection using Luminol
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Table 1 Clinical toxicity of nerve agent exposure

Treatment Total number  Number of Number of

of animal used animals died animals survived
Soman treated 60 28 32
Soman plus 36 6 30

antidotes treated

substrate. Immunoreactive bands of proteins were
quantified as optical density (OD) by using Bio-Rad
Quantity one software.

Statistical analysis

Results were expressed as mean * S.E and statistical ana-
lysis was performed with one-way analysis of variance
(ANOVA), followed by Dunnett’s multiple comparison
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Figure 1 Cholinesterase activity after soman and HI-6
treatment. Cholinesterase activity in the rat plasma, RBC, cerebral
cortex and cerebellum (A), at 30 min, 2.5 h, 1, and 7 days after
soman (105 pg/kg, s.c) exposure. Efficacy of HI-6 pretreatment

(50 mg/kg, i.m, 30 min prior to soman exposure) on soman inhibited
cholinesterase activity of rat plasma, RBC, cerebral cortex and
cerebellum (B) at 30 min, 2.5 h, 1, and 7 day time points. AChE
activity was presented as a percentage of control (n=4 per each
time point). *Significantly different from control. A difference of

p < 0.05 was considered significant.
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test using Sigma stat statistical software. A difference of
p < 0.05 was considered significant.

Results

Clinical signs of nerve agent toxicity

Rats exhibited cholinergic signs of intoxication including
tremors, chewing behavior, muscle fasciculations, saliva-
tion, respiratory distress and convulsions, within 5 to
15 min after soman (105 pg/kg, s.c.) administration. 40
to 50% animals that received 1 x LDsy dose of soman
were died within 24 h after dosing (Table 1). Animals
that received antidotal treatment (HI-6, atropine
sulphate and midazolam) after soman (2 x LDsg) expos-
ure did not show severe classical cholinergic signs but
were incapacitated up to 2 to 4 h with mild to moderate
tremors and seizures. Thereafter animals were active and
15 to 20% of rats from these groups were died (Table 1)
during the experimental period.
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AChE activity in the blood and brain

The effects of soman and HI-6 treatment on plasma, RBC
and brain AChE activity were studied. Exposure to soman
(105 pg/kg, s.c) reduced the cholinesterase activity to 17.4,
19.8, 32% and 9.7, 15 and 33.6% in the plasma and RBC
(Figure 1A) at 30 min, 2.5 h and 1 day respectively. AChE
activity in the cortex and cerebellum was reduced to 22,
24.6, 69.6% and 25.7, 29.8 and 64.5% at 30 min, 2.5 h and
1 day (Figure 1A), followed by the enzyme activity was re-
covered to near control level. HI-6 pretreatment reacti-
vated the soman inhibited plasma ChE activity to 36, 42.4,
74% and RBC AChE activity to 35.3, 38.9 and 66.4%
(Figure 1B), to control level at 30 min, 2.5 h and 1 day
time points. Thereafter AChE enzyme activity was re-
stored to near control levels. No significant reactivation
in brain AChE activities were observed after HI-6 treat-
ment (Figure 1B), when compared to soman exposed
group, indicate that HI-6 cannot reactivate soman
inhibited CNS AChE.
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Cerebral cortex-1d

J Cerebral cortex-7d

B
Hippocampus
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H
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Figure 2 Neurodegeneration after soman poisoning. Soman induced neurodegeneration was detected using neuron selective Fluoro-Jade-B
staining: Representative photomicrographs of Fluoro-Jade-B positive neurons of cerebral cortex, hippocampus (CA1 sub region), and cerebellar
regions obtained from vehicle (A, B and C) and soman (105 pg/kg, s.c) treated rats sacrificed at 2 h (D, E and F), 1 day (G, H and 1) and 7 day
(J, Kand L) time points (n =4 per each time point) taken with 100 magnifications.
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Neuropathology of brain regions after nerve agent and
antidotes treatment

Neuron selective Fluoro-Jade-B staining was used to
identify degenerating neurons in different brain regions
of soman exposed rats. FJ-B, an anionic fluorescein de-
rivative that binds with high affinity to degenerating
neurons that presumably expresses a strong basic mol-
ecule. In the present study, Fluoro-Jade positive neurons
in the brain sections of soman (1 x LDs) challenged rats
and rats that received antidotes (HI-6, atropine sulphate
and midazolam) were studied at 2 h, 1 and 7 day after
treatment. This staining procedure is a sensitive and reli-
able marker for neuronal degeneration that results from
OP-poisoning and traumatic brain injury [41]. Large
numbers of shrunken FJ-B positive neurons were con-
sistently seen in the hippocampus (CAl sub region),
cerebral cortex and in the cerebellum regions (Figure 2)
of animals that survived the exposure to 1 x LD5, soman.
The number of degenerating neurons increased with the
severity of the acute signs of intoxication following the
soman exposure as maximum necrotic neurons were
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visible at 2 hours and 1 day, particularly in the hippo-
campus (CA1 sub region), and cerebral cortex indicate
their sensitivity when compared least sensitive cerebel-
lum region of the brain (Figure 2). Treatment with anti-
dotes (HI-6, atropine sulphate and midazolam) after
soman exposure prevented soman-induced neurodegen-
eration as FJ-B positive neurons were reduced in all the
brain regions obtained from animals that received anti-
dotes (Figure 3), except very few necrotic neurons were
observed in the sensitive regions such as hippocampus
(CA1) and cerebral cortex.

Efficacy of HI-6, atropine and midazolam on soman
induced c-Fos and Bax expression

Animals that received the antidotes comprising of HI-6,
30 min prior to soman (210 pg/kg, s.c) exposure followed
by atropine and midazolam (1 and 10 min after soman
challenge) has reduced soman induced Bax mRNA levels
(Table 2), except one fold induction in the hippocampus
region at 2.5 hour (Figure 4A) time point. Similarly, these
rats displayed low mRNA expression levels of c-fos
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D Cerebral cortex-2h
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J  Cerebral cortex-7d
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B Hil‘ocamlus

E Hi“ocam‘uslh F ‘ “““““‘.I‘
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Figure 3 Efficacy of antidotes on soman induced neurodegeneration. Efficacy of antidotes (HI-6 (50 mg/kg, im), atropine (10 mg/kg, i.m)
and midazolam (5 mg/kg, i.m) on soman induced neurodegeneration: Representative photomicrographs of Fluoro-Jade B stained cerebral cortex,
hippocampus (CAT sub region) and cerebellum regions obtained from vehicle (A, B and C) and after antidotes + soman treatment animals

day (G, H and 1), 7 day (J, K and L) time points (n =4 per each time point) taken with 100 magnifications.

Cerebellum

Cerebellum 1d

L Cerebellum-7d




RamaRao

et al. BMC Neuroscience 2014, 15:47

http://www.biomedcentral.com/1471-2202/15/47

Page 7 of 11

Table 2 Effect of soman (105 pg/kg) on c-Fos and Bax mRNA levels in different brain regions

Time points Fold change over control

Hippocampus Cerebral cortex Cerebellum
Gene name c-Fos Bax c-Fos Bax c-Fos Bax
Control animals 1.0£0.18 1.0£0.21 1.0+£0.24 1.0 £0.18 1.0 £0.16 1.0£0.13
Soman exposed
30 min 3.5%+047 26%+0.13 5.0* +0.8 25%+0.24 3.0%+04 0.72+0.24
25h 4.2*+0.18 1.6%+£0.31 3.1*+0.71 2.0*¥+0.3 1.8%+0.25 0.75%£0.14
1 day 34*+04 1.8%+0.27 3.8¥£0.8 1.6*+0.18 1.5%+0.19 045*£0.18
7 day 0.65+0.3 1.5%+0.18 0.78+0.23 1.25+0.25 0.8+0.18 0.52*+0.09

Quantitative real-time RT-PCR was carried out and results are presented as fold change over control (presented as 1.0 fold) after normalizing the data (n=4 per
each time point) with housekeeping gene, RNA polymerase-Il (RP-Il), which did not show any significant changes in the mRNA expression among control and
experimental groups (Data not presented). *Significantly different from control group. A difference of p< 0.05 was considered significant.
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W Hippocampus B Cerebral cortex @ Cerebellum

il Ilﬂ 1M

and mid

not pres
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Figure 4 Efficacy of antidotes on soman induced c-Fos and Bax
mRNA levels. Effect of HI-6 (50 mg/kg, i.m), atropine (10 mg/kg, i.m)

azolam (5 mg/kg, i.m) on soman induced Bax (Figure 4A)

c-Fos (Figure 4B) mRNA levels of rats sacrificed at 30 min, 2.5 h, 1d
and 7d time points (n = 4 per each time point). Quantitative
real-time RT-PCR was carried out and results were presented as fold
change over control (presented as 1.0 fold) after normalizing the
data (n = 4 per each time point) with housekeeping gene, RNA
polymerase-Il (RP-Il), which did not show any significant changes in
the mRNA expression among control and experimental groups (Data

ented). *Significantly different from control group. A

difference of p < 0.05 was considered significant.

mRNA in the hippocampus, cortex, and cerebellum
(Figure 4B), when compared to soman exposed animals
(Table 2), except a moderate increase at early time
points (30 min and 2.5 h). Protein levels of c-Fos were
increased significantly by 3.62, 3.17, 3.42 fold in the
hippocampus (Figure 5A), 3.0, 3.2, 3.12 fold in the cere-
bral cortex (Figure 5B) and 3.3, 2.42, 1.76 fold in the
cerebellum (Figure 5C) at 30 min, 2.5 h and 1 day after
soman exposure (Figure 5E). Immunoreactivity levels of
c-Fos was restored to near control levels in the cerebral
cortex (Figure 5G) and cerebellum (Figure 5H), while
there was a mild to moderate induction at very early
time points (30 min and 2.5 h) in the hippocampus (Figure 5F)
after treatment with antidotes (Figure 5]). f-actin (Figure 5D
and I) was used as protein loading control.

Expression of p-calpain in the rat brain after soman and
antidotes treatment

Expression of p-calpain was studied in the rat brain fol-
lowing soman exposure. The immunoreactivity levels of
p-calpain increased significantly by 1.92, 2.2, 1.73, 1.64
fold in the hippocampus (Figure 6A), 2.2, 2.4, 2.1,1.65 fold
in the cerebral cortex (Figure 6B) and 1.43, 1.8, 1.35, 0.78
fold in the cerebellum (Figure 6C) at 30 min, 2.5 h, 1 and
7 day post soman exposure time points (Figure 6E). While,
p-calpain levels in the hippocampus (Figure 6F), cerebral
cortex (Figure 6G) and cerebellum (Figure 6H) of rats that
received antidotes (Figure 6]) were reduced to near con-
trol levels when compared to soman treated rats. f-actin
(Figure 6D and I) was used as protein loading control.

Discussion

Exposure to nerve agents can cause long term neuro-
logical effects via a complex and diverse mechanisms.
Poor understanding of molecular and biochemical
changes that cause persistent neurological impairments
after nerve agent exposure is hampering the develop-
ment of complete therapy against nerve agents. Several
studies that used diazepam as an OP treatment found
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Figure 5 c-Fos protein levels after soman and antidotes treatment. Efficacy of HI-6 (50 mg/kg, im), atropine (10 mg/kg, i.m) and midazolam

(5 mg/kg, i.m) on soman induced c-Fos protein levels of rats sacrificed at 30 min, 2.5 h, 1d and 7d time points (n =4 per each time point). c-Fos
immunoreactivity levels in the rat hippocampus (A), cerebral cortex (B) and cerebellum (C) after soman exposure (E-bar graph). c-Fos immunoreactivity
levels in the rat hippocampus (F), cerebral cortex (G) and cerebellum (H) after antidotes treatment (J- bar graph). 3-actin (D and I) was used as protein
loading control. Letters on blot C1 (1d) and C2 (7d) indicate the control samples collected after 1 and 7 days after HI-6 (50 mg/kg, i.m), saline

(100-120 pl/rat, s.0), atropine sulphate (10 mg/kg, i.m), and midazolam (5 mg/kg, i.m), treatment. Densitometric quantification of band intensities are
presented as fold change over control (presented as 1.0). A difference of p < 0.05 was considered significant (¥).

that it could block the seizures and reduce neuropathol-
ogy when administrated in combination with other ther-
apies [42]. However, protection against brain damage is
not complete with diazepam. The bispyridinium oxime,
HI-6, together with atropine and potent anticonvulsant
such as midazolam treatment, can be effective therapy for
blocking soman induced molecular changes and brain
damage. The present study was designed to evaluate the
efficacy of HI-6, atropine and midazolam on soman in-
duced molecular and biochemical changes in the discrete
rat brain areas. Different parameters that were addressed
in the study include: the effects of antidotes on nerve
agent induced c-Fos, Calpain, and Bax expression levels
and neurodegeneration in the different rat brain regions.
Neuron selective FJ-B staining was used to detect neu-
rons undergoing degeneration in the brain sections of
soman exposed rats that received either no treatment or
antidotes comprised of (HI-6, atropine sulphate and
midazolam). Results showed that soman induced neuro-
degeneration can be significantly reduced by timely ad-
ministration of therapeutic regime consisting of potent
anticonvulsant, midazolam. Neurodegeneration in the
hippocampus, cortex, and amygdala is a hallmark of

nonfatal OP exposure in animals. It probably contributes
to the delayed cognitive effects observed in the survivors
of the sarin subway attack in Japan [45]. The intensity and
duration of OP-induced seizures appear to be major deter-
minants of the degree of neurodegeneration in the brains
of OP-intoxicated rodents and nonhuman primates
[13,20]. Cholinergic hyperactivity initiates nerve agent in-
duced seizures and triggers glutamatergic hyperactivity,
which sustains and reinforces seizures and is eventually
responsible for excitotoxic damage in the several parts of
cortex, amygdala, and hippocampus [5,17,46]. It is crucial
to control soman-induced seizures at an early stage
(<20 min) to avoid brain damage and cognitive dysfunc-
tions [18]. Intoxication of rodents and nonhuman primates
with soman and other OP compounds triggers neuronal
loss in the brain, especially in the pyriform cortex, amyg-
dala, and in the hippocampus [47].

We have recently shown that c-fos and Bax expression
was significantly increased in the rat brain after soman
exposure [31]. The transient immediate elevation of c-
Fos may lead to the activation of other genes that are in-
volved in the expression of proteins implicated in the
development of delayed neurotoxic effects of nerve
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agents [31,48,49]. Recent reports demonstrated that role
of OP induced acetylcholine and seizures in the c-Fos
induction [50,51]. In the present study, when these drugs
were given immediately after soman exposure has shown
promising protection against mortality and brought
down the Bax gene expression to near control levels.
Soman induced c-Fos levels were also significantly re-
duced, except moderate induction at early time points.
c-Fos induction can be a sensitive indicator of soman in-
duced neuronal activation such as seizures, and early c-
Fos induction even after antidotal treatment indicate the
involvement and activation of many molecular and sig-
naling pathways immediately after nerve agent exposure.
It is hypothesized that initial cholinergic neurotransmis-
sion, followed by non-cholinergic neurotransmission
persisting for hours after the initial exposure of nerve
agents, results in cognitive and motor deficits in animals
[20]. The immunoreactivity levels of soman induced p-
calpain in the rat brain areas were reduced by antidotal
treatment used in the present study. Calpains constitute

a family of cysteine proteases that are activated by cal-
cium at neutral p™. Calpains activation under physio-
logical conditions is critical for normal synaptic function
and memory formation in the CNS and hyper activation
under pathological conditions that involve sustained cal-
cium overload, generally associated with severe cellular
challenge or damage [52,53]. Increasing evidence suggest
that AChE inhibitors-induced neuronal damage is a con-
sequence of a series of extra and intracellular events lead-
ing to the intracellular accumulation of Calcium and the
generation of oxygen-derived free radicals. These, in turn,
cause irreversible damage to cellular components [32,33].

Conclusion

To summarize the present study findings, results pre-
sented herein suggest that therapeutic treatment com-
prising of HI-6, atropine sulphate and midazolam has
significantly protected animals from death and reduced
the soman induced biochemical changes including neur-
onal cell death, expression of Bax, Calpain and c-Fos in



RamaRao et al. BMIC Neuroscience 2014, 15:47
http://www.biomedcentral.com/1471-2202/15/47

the cerebral cortex, hippocampus and cerebellum. The
early response after nerve agent exposure can be attrib-
uted to AChE inhibition, increasing acetylcholine levels,
and corresponding induction of signal transduction pro-
cesses [26,54,55]. Several organophosphates, including
sarin, can exert direct effects on multiple brain proteins
besides their effects mediated through AChE inhibition
[56,57]. Our findings might provide an additional under-
standing of diverse targets of OPs in the brain. Results
suggest that in order to prevent the nerve agent induced
molecular and biochemical changes, better antidotes
should be administered immediately as the existing
drugs were unable to completely reverse the soman in-
duced molecular changes. This is particularly important
in the case of acute exposures such as terrorist attacks
or in the military operations, so that drugs will prevent
the long term changes of the nerve agents, initially in
the most acute phase.
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