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Probiotic L. reuteri has potential to produce antimicrobial compounds and 

secrete immunosuppressive factors. These metabolic attributes could benefit the 

human host by providing colonization resistance (competitive and metabolic 

exclusion) against enteropathogens and mitigating inflammation. As 

metabolically active cells are fundamental to such probiotic properties, synbiotic 

approaches that supply L. reuteri with a source(s) of carbon, energy, and/or 

external electron acceptor for cell growth in the gut environment could therefore 

prompt the probiotic to engage in beneficial activities.  In this study, the efficacy 

of GOS and/or rhamnose-based synbiotic approaches in promoting colonization 

persistence and metabolic activity of L. reuteri was evaluated. A single blind, 

randomized, crossover, placebo-controlled human trial revealed that daily 

administration of the L. reuteri DSM 17938 (5 x 108 cells)/GOS (1g)/rhamnose 

(1g) synbiotic combination significantly stimulated metabolic activity of the 



probiotic strain in the human gut. This positive outcome presumably results from 

the ability of L. reuteri to metabolize GOS as a carbon and energy source, while 

utilizing rhamnose as an external electron acceptor for redox balance. In 

contrast, neither GOS (2g) nor rhamnose (2g) alone could exert such stimulatory 

effect. In addition, after the synbiotic administration was terminated, the extended 

supplementation of the carbohydrates without L. reuteri did not appear to 

improve the persistence of the probiotic in the gut.  

Genetic characterization of GOS metabolic machinery disclosed that GOS 

metabolism in L. reuteri is inducible and is under carbon catabolite repression 

(CCR). The metabolic system relies on LacS permease and a second transporter 

to import diverse GOS species into the cytosol.  Then, two -galactosidases, 

LacA and LacLM, sequentially break down GOS oligosaccharides as well as 

concertedly hydrolyze GOS disaccharides.  The system is regulated by repressor 

protein LacR and fully activated only in the presence of inducer lactose and in the 

absence of glucose (i.e., a preferred carbon source). Furthermore, a growth 

advantage only the wild type strain, but not the GOS metabolic gene-deficient 

mutant, gained in the GOS-enriched murine gut suggests that the GOS metabolic 

system be operational in the gut environment. 
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Preface 

This dissertation consists of four chapters. In Chapter 1, fundamental 

knowledge on the effects of the gut microbiota on host health is reviewed.  In 

particular, the potential of L. reuteri and probiotic bacteria to enhance human 

health is described.  This review primarily focuses on mechanisms and 

molecules that have been found to contribute to activities of the gut microbiota 

and probiotic effects.  

Chapters 2 and 3 describe findings from two independent research 

projects. The goal of the first project (Chapter 2) was to evaluate the efficacy of 

three synbiotic preparations in a human trial.  All three synbiotics included 

Lactobacillus reuteri and either prebiotic beta-galactooligosaccharide (GOS), 

rhamnose, or a combination of both substances.  We then measured the ability of 

these preparations to prolong L. reuteri colonization and metabolic activity in the 

human gut.  The results (published in the Journal of Functional Foods, 2014) 

showed that although the GOS-rhamnose combination had no affect on L. reuteri 

persistence, this treatment did stimulate metabolic activity of the probiotic in the 

gut. 

In Chapter 3, the molecular machinery responsible for GOS metabolism in 

L. reuteri was characterized.  By employing comparative genomic analysis, 

mutant generation, and a series of subsequent phenotypic analyses, we 

identified transporters, -galactosidases, and regulatory elements of the GOS 

metabolic system.  A model of GOS metabolism and its regulation was proposed. 
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Finally, the major findings of this research are summarized in Chapter 4. 

In addition, directions for future research are proposed.  Ultimately, the 

knowledge gained from these studies provide a basis for formulating effective 

synbiotic approaches for enhancing gut health.  
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Chapter 1 

 

Contributions of Intestinal and Probiotic Microbes to Human Health and 

Their Galactooligosaccharide, Rhamnose, and 1,2-Propanediol Metabolism: 

The Literature Review  
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Part I: Contributions of intestinal and probiotic microbes to human health  

Millions of years of shared evolutionary fate have woven a symbiotic relationship 

between humans and the nearly 100 trillion intestinal bacteria each individual 

harbors (1, 2).  The generally anoxic gut shelters anaerobic microbes from a 

harmful oxygenated environment, and streams of indigestible food particles and 

exfoliated epithelial glycans become reliable nutrient sources that sustain growth 

and persistence and shape the colonic community (3-5). In return, gut microbes 

excrete metabolites that fuel enterocytes and other human cells, integrate 

metabolic traits into the host genome to enhances metabolic potential, assist in 

immune development, and protect the host from enteropathogen invasion and 

infection. 

The relationship between the host and the microbial community that 

inhabits the intestinal tract is complicated - promoting health or disease (6). Thus, 

like other ecosystems, when the microbial community is continually perturbed by 

infection, antibiotic and drug treatments, dietary changes, or inflammation (7, 8), 

the community structure and function may deviate from healthy and balanced to 

degrading and imbalanced states.  The latter, termed as dysbiosis, has been 

implicated in the development of a range of disorders.  

The evidence for unhealthy outcomes of microbial dysbiosis has led 

researchers to consider preventive and therapeutic approaches to maintain and 

regain the healthy status of the gut microbiota (9, 10). Indeed, the notion that 

human physiology, metabolism, and health were driven in part by indigenous 

microorganisms was made more than 100 years ago. Elie Metchnikoff envisioned 
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detrimental outcomes of accumulating toxic flora in the gut and conceived the 

idea of transforming it into a colony of host-friendly microbes (11). Metchnikoff’s 

approach was based on supplementing the gut with live microorganisms, thereby 

displacing the toxic flora, and ultimately promoting health and longevity.  This 

concept eventually led to the isolation and development of probiotic bacteria.  

Defined as “live microorganisms that can provide benefits to human health when 

administered in adequate amounts, which confer a beneficial health effect on the 

host” (12), probiotics are now used, as Metchnikoff anticipated, as microbiota-

based therapies (9, 10).  

Based on human and animal studies, probiotics have shown potential for 

preventing or treating several disorders or diseases, including antibiotic-

associated diseases (13, 14), necrotizing enterocolitis (15), inflammatory bowel 

disease (16), and metabolic disorders (17, 18). However, the clinical studies 

have often generated equivocal results, and variations in the response to a 

probiotic strain is considerably large among individuals (19). This suggests the 

necessity for a mechanistic understanding of specific probiotic actions in order to 

enable rational design of probiotic treatments for particular or personalized 

applications. 

Several key traits underlying specific microbial functions have been 

suggested as criteria for rational selection of probiotics.  Below, mechanisms by 

which the gut microbiota influences 1) host energy balance and metabolism, 2) 

immune development and homeostasis, and 3) colonization resistance against 



 4 

enteric pathogens are discussed in parallel with potential roles of probiotics in 

modulating these functions.    

 

Role of the gut microbiota in energy metabolism and fat storage 

The influence of intestinal microbes in energy metabolism was first observed in 

gnotobiotic animals. Germ-free rats excreted more calories in the feces and 

needed to consume about 20% more calories to maintain their body weight 

compared to conventional counterparts (20). It is now well established that 

intestinal microbes are involved in carbohydrate and lipid metabolism and 

thereby play a crucial role in host energy balance (21). Intestinal bacteria also 

increase energy harvesting from undigested dietary carbohydrates and host-

derived glycans. They first degrade such complex carbohydrates and then 

ferment liberated monosaccharides to short-chain fatty acids (SCFAs), mainly 

acetate, propionate, and butyrate.  The SAFAs are absorbed by mammalian cells 

and used as energy sources (22). In humans on a typical European diet, the gut 

microbes generally ferment 50 - 60 g of carbohydrates and produce 0.5 - 0.6 

mole of SCFAs with a total energy value of 140 - 180 kcal per day  (∼10% of the 

maintenance caloric requirement) (23). 

In addition to their role as nutrients for colonic cells, SCFAs also appear to 

have other physiological effects.  In particular, they may decrease the risk of 

developing obesity.  Butyrate, propionate, and acetate were showed to protect 

against diet-induced obesity, while butyrate and propionate were showed to 

reduce food intake (24).  Butyrate also shows capacity to reduce adiposity and 
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increase insulin sensitivity in obese mice (25), while propionate can also inhibit 

hepatic lipogenesis by suppressing fatty acid synthase (FAS) expression (26).  

Furthermore, a recent study showed that SCFAs stimulate fatty acid oxidation in 

adipose tissue and liver by suppressing peroxisome proliferator-activated 

receptor- (PPAR) activity (27). These effects are potentially attributed in part to 

the action of SCFAs as signaling molecules that activate G-protein coupled 

receptor GPR41 and GPR43 (28) present on enteroendocrine cells (L cells).  

This triggers L cells to secrete gut hormones, i.e., glucagon-like peptides (GLP1 

and GLP2) and peptide YY (PYY), that are known to control energy homeostasis, 

fat storage, satiety, gut barrier function, and metabolic inflammation (26, 29-31).  

Ultimately, alterations in the gut microbiota that reduce SCFA production 

may contribute to positive energy balance, increased fat storage, and increased 

gut permeability. The compromised gut barrier could further lead to metabolic 

endotoxemia that triggers low-grade chronic inflammation and, in turn, metabolic 

dysregulations in intestinal and peripheral metabolic tissues (e.g. adipose tissue, 

muscles, liver, pancreas, and brain) (32).  As such, the lack of SCFA products 

may increase risks of developing obesity and the related metabolic disorders 

such as insulin resistance and nonalcoholic fatty liver disease (21, 33).  

In addition to SCFA production, certain members of the gut microbiota, 

including Bifidobacterium, Lactobacillus, and Roseburia species, are also 

capable of transforming dietary polyunsaturated fatty acids (PUFA) into bioactive 

metabolites.  In particular, conjugated linoleic acids (CLA) may be produced that 

have the ability to modulate host energy metabolism and fat storage (34-36). In 
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mouse adipose tissue, CLA has been found to suppress glucose metabolism, de 

novo fatty acid synthesis, fatty acid and triglyceride uptake, and pre-adipocyte 

differentiation, while promoteing fatty acid oxidation and energy expenditure (37). 

These mechanisms also appear to underlie modulation effects of SCFAs on 

energy metabolism and fat storage.  

Intestinal microbes may also influence energy balance and fat storage 

through bile acid biotransformation activities. Members of the gut microbiota 

possess bile salt hydrolases (BSHs) capable of deconjugating bile salts (glycine- 

or taurine-conjugated bile acids) into free primary bile acids in the intestinal 

lumen (38, 39). Compared with bile salts, free bile acids (BAs) are less soluble 

and less efficiently reabsorbed in the ileum to be recirculated to the liver via the 

enterohepatic cycle and therefore can travel to the colon and eventually be 

excreted with feces (40, 41).  Upon reaching the colon, primary BAs can be 

further transformed to secondary BAs by 7-dehydroxylation and 7/-

epimerization reaction carried out by some colonic bacteria (39).  BAs are not 

only responsible for digestion and absorption of dietary lipids and lipid-soluble 

vitamins, but also function as signaling molecules that regulate other 

physiological functions, including their own biosynthesis and detoxification, lipid 

and glucose metabolism, energy homeostasis, inflammatory responses, and 

epithelial defense mechanisms (42, 43). 
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Potential of probiotics to modulate energy metabolism and fat storage  

Numerous animal studies have been conducted to assess the ability of potential 

probiotic candidates to improve obesity and associated diseases.  These studies 

have shown that certain probiotic bacteria can modulate host energy metabolism 

and fat storage. Specifically, strains of Lactobacillus and Bifidobacterium reduced 

body weight, fat deposition, fasting blood glucose, hepatic triglyceride content, 

and/or serum cholesterol, as well as hepatic and/or adipose tissue inflammation 

(44-48).  Other studies have also reported associations between such effects and 

up-regulation of fatty acid oxidation and/or anti-inflammatory genes (49-51) as 

well as suppression of genes or elements involved in fatty acid synthesis (52), 

glucose uptake (51), or pro-inflammatory responses (53, 54). In L. reuteri MM4-

1A (ATCC PTA 6475), the anti-obesity effect is attributed to anti-inflammatory 

properties of the strain that induces IL-10 production and regulatory T cell (Treg) 

proliferation (55), thereby preventing low-grade chronic inflammation of adipose 

tissue that promotes the obese state (56).  

In addition to Lactobacillus and Biffidobacterium strains, Akkermansia 

muciniphila is another bacterium that shows promise in modulating host obese 

and metabolic status. This mucin-degrading bacterium resides in the mucus layer 

(57), and its decreased abundance has been observed in obese and type 2 

diabetic mice and humans. Treatment with live, but not heat-killed, A. muciniphila 

cells increased adipose tissue fatty acid oxidation and mucus layer thickness, 

while reducing fat mass development and metabolic endotoxemia, which 
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ultimately reverse high-fat diet-induced obesity and insulin resistance in mice 

(58).  

Probiotics with BSH activity could alter the bile acid pool and therefore 

have potential to modulate energy and lipid metabolism (40, 41). BSH-mediated 

modulation of BAs that positively affects host physiology has been clearly 

demonstrated in a recent controlled experimental study (59). This study showed 

that colonization of conventional mice with E. coli expressing cloned BSH 

enzymes from L. salivarius resulted in a significant reduction in host weight gain, 

plasma cholesterol, and liver triglycerides as compared to mice colonized with 

BSH-negative E. coli (59). Such physiological effects were accompanied by a 

decrease in tauroconjugated BAs, including tauro--muricholic acid (TMCA). 

The latter is a potent antagonist of the host Farnesoid-X-receptor (FXR) that 

regulates bile acid synthesis through the control of hepatic cholesterol 7-

hydroxylase (CYP7A1) activity (60). This study therefore suggests the feasibility 

of harnessing BHS-positive probiotics to control obesity, metabolic syndrome, 

and hypercholesterolemia. 

Indeed, the BSH-catalyzing deconjugation of bile salts has long been 

proposed as a potential mechanism for the hypocholesterolemic effect of 

probiotics since the lower re-absorbability of unconjugated BAs may stimulate the 

de novo synthesis of bile acids from cholesterol in the liver. Furthermore, the 

decreasing solubility of unconjugated bile acids at physiological pH may inhibit 

cholesterol micelle formation in the intestinal lumen, thereby reducing cholesterol 

absorption and increasing its excretion in feces (61-64).   



 9 

The experimental findings described above suggest the potential of 

harnessing probiotics to modulate host metabolism and therefore improve 

obesity, metabolic syndrome, and hypercholesterolemia. However, the molecular 

effectors mediating these beneficial effects have not been identified.   There is 

also a need for translational research to develop probiotic therapies so that 

effective doses of effector elements will be delivered to the target. Rational 

selection of probiotics based on effectors known to mediate functional properties 

of the gut microbiota, for example their ability to deconjugate bile salts, may 

therefore facilitate the development of probiotics.         

 

Role of the gut microbiota in immune development and homeostasis 

One of the most remarkable features of the human immune system is its 

tolerance toward myriad and diverse gut commensals, while also being able to 

respond to pathogenic invaders.  Such mutualism is initiated as early as the 

establishment of the immune system when the interaction with the gut microbes 

is required for its proper development and maturation.  Indeed, it is well known 

that the immune system does not develop normally in germ-free mice (65). Thus, 

the absence of microbial colonization leads to hypoplastic Peyer's patches 

containing few germinal centers, low numbers of laminar propria CD4+ T cells 

and IgA-producing B cells, and underdeveloped lymphoid tissues and isolated 

lymphoid follicles (ILFs) (65, 66). Bouskra et al. (65) clearly demonstrated that 

ILFs require Gram negative peptidoglycan for their genesis and subsequent 

bacterial recognition by Toll-like receptors (TLRs) for their maturation into large 



 10 

B-cell clusters. Furthermore the absence of ILFs profoundly alters the 

composition of the gut microbial community. Their study clearly shows the 

interplay between the host immune system and the intestinal microbes in 

creating a mutualistic environment.  

 The absence of particular members of the gut microbiota has been 

associated with increasing incidence of immune-mediated diseases. For 

example, Helicobacter pylori is thought to have once dominated the gastric niche 

in most human individuals and is nowadays almost eradicated from Western-

born children due to increasing hygienic life-styles.  This change in the human 

microbiota coincides with the rising incidence of allergic and metabolic diseases 

(67). Indeed, H. pylori infection has been showed to prevent asthma in mouse 

models and augmented regulatory T (Treg) cell proliferation induced by H. pylori 

colonization has been suggested to underlie such protective effect (68).  This H. 

pylori scenario emphasizes the essential role of the intestinal colonization with 

proper microbes in immune development and downstream protection against 

immune-mediate disorders.  

Altered interactions between gut microbes and the mucosal immune 

system, leading to disintegration of intestinal immune homeostasis is implicated 

in pathogenesis of inflammatory bowel disease (IBD) (69).  This noninfectious 

intestinal inflammatory disease often develops in human hosts with altered loci 

implicating impaired immune functions (70, 71). For example, susceptibility to 

Crohn’ s disease has been associated with NOD2 dysfunction that reduces 

intestinal epithelial production of antimicrobial proteins essential for confining gut 
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microbes away from the intestinal epithelium and immune cells underneath (72). 

Hence, the impairment in host-symbiont mutualism in IBD patients is possibly 

triggered by susceptible loci conspiring with diet and other environmental factors, 

which facilitates the accumulation of microbial communities capable of driving 

inflammation (73) as demonstrated by characteristic shifts in composition of the 

gut microbiota (74) and the lose of anti-inflammatory members such as 

Feacalibacterium prausnitzii (75). 

 

Probiotic potential for modulating immune responses and intestinal 

epithelial barrier 

The ability of probiotics to modulate the immune system and gut barrier function 

is particularly important in several inflammatory conditions, such as IBD, 

necrotizing enterocolitis (NEC), and allergic diseases (76).  Numerous 

experimental studies have shown that specific probiotic bacteria can modulate 

immune and mucosal responses (76, 77). Furthermore, mechanistic studies have 

identified microbial effectors, along with their cognate immune elements and 

signaling pathways (78-82). Probiotics can have either pro- or anti-inflammatory 

properties and elicit immune responses through their cell surface-associated 

components, bacterial DNA, and/or secreted compounds (81). These effector 

molecules generally function as microorganism-associated molecular patterns 

(MAMPs) that interact with pattern recognition receptors (PRRs), including TLRs 

and nucleotide-binding oligomerization domains (NODs), present in immune cells 

such as dendritic cells (DCs) and macrophages as well as intestinal epithelial 
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cells (IECs). Such MAMP-PRR interaction triggers signaling cascades, thereby 

leading to the activation of nuclear factor-B (NF-B) and mitogen-activated 

protein kinases (MAPKs) (83, 84). This activation allows NF-B and MAPKs to 

translocate into the cell nucleus and induce gene expression, which thereby 

mounts cellular responses such as pro- or anti-inflammatory cytokine secretion, 

mucin and antimicrobial compound production by IEC, and DC maturation and 

activation. MAMP-activated DCs and their secretory cytokines further govern T 

cell differentiation and proliferation thereby enabling probiotic recognition to 

influence adaptive immune responses (78-80, 82, 85).  

 Among the cell-associated effectors identified in probiotic strains are: (1) 

peptidoglycan (PG) and peptidoglycan-derived muropeptides (86-88); (2) 

lipoteichoic acids (LTA) (89, 90); (3) cell wall-associated polysaccharides (CPS) 

(91-93); (4) flagellin (94); (5) fimbriae/pili (95); (6) surface (S) layer proteins (96); 

and (7) DNA (97-99). Subtle differences in structure or biochemical properties of 

these individual cellular components have been suggested as major contributors 

to strain-specific immunomodulatory attributes of probiotics (100).  For example, 

Lactobacillus salivarius Ls33 and Lactobacillus acidophilus NCFM possess PG 

containing the same muropeptide chain, GlcNAc-MurNAc-L-Ala-D-iGln-L-Lys-D-

iAsn. However, whereas NCFM releases this muropeptide exclusively during PG 

degradation, Ls33 also releases an additional muropeptide without D-iAsn. The 

latter muropeptide is presumably short enough to be taken up by 

dipeptide/tripeptide transporters and consequently interacts with intracellular 

NOD2. As a result, only PG purified from Ls33 could stimulate tolerogenic DC 
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(tol-DC) development and thereby exert an IL-10-mediated protective effect 

against colitis in a mouse model, while NCFM-isolated PG failed to do so (87, 

101).  

Another example is the structural variation that affects pro-inflammatory 

character of LTAs. The difference in the degree of D-alanylation (D-alanine 

substitutions) on the polyglycerolphosphate chain and polyglycerolphosphate 

chain length as well as in the acylated glycolipid anchor composition (number of 

acyl fatty acid chains and saturation) appear to influence LTA-TLR2 or LTA-

TLR2/6 interaction, thereby contributing to strain-dependent LTA-mediated 

immunostimulatory activity of probiotics (89, 102-105). A study into the impact of 

LTA structure on pro-inflammatory properties of L. rhamnosus GG (LGG) has 

demonstrated that partial removal of acyl fatty acid chains from native LTA 

structure abolishes capacity of the modified LTA to interact with the PRR couple 

TLR2/6 and thereby to activate NF-B in HEK293T cells, while D-Ala removal 

does not significantly alter LTA-TLR2/6 interaction. However, D-Ala has been 

showed to be essential for the induction of inflammatory chemokine IL-8 

expression in Caco-2 intestinal epithelial cells in which LTA-TLR2/6 signaling 

seems to require the interaction between the D-Ala substituents and additional 

coreceptors (104). This study not only emphasizes the role of the glycolipid 

anchor and D-Ala substituents in immunostimulatory attributes of LTAs, but also 

suggests that distinct host cells may respond to a certain LTA differently owing to 

PRRs and cognate coreceptors they express.   
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In short, the above studies and others (80) have shown that the type and 

level of a host cell response to a probiotic strain depends on (1) the 

combinational engagement of distinct MAMPs that interact with their cognate 

PPRs and associated co-receptors, resulting in finely tuned immune signaling 

(106), (2) structure, expression, and concentration of MAMPs that could be 

altered by gut conditions such as acidity, the presence of bile acids, intestinal 

enzymes, and antimicrobial compounds, and nutrient availability (107), (3) the 

effect of shielding factors such as exopolysaccharides that could limit MAMP-

PRR interaction (100) (4) the accessibility of the host PRRs that can be varied 

between distinct cell types and limited by the dense mucus layer (108) and the 

presence of other microbial effector molecules, and (5) host-derived negative 

regulators of PRR signaling that modulate the downstream signaling pathway at 

different points (109, 110).      

  In addition to cell-associated molecules, certain probiotics have potential 

to elicit host immune and IEC responses through their secreted compounds and 

metabolites. Such probiotic factors can signal through surface receptors or be 

taken into the host cells by transporters or endocytosis systems (111) and 

consequently interact with intracellular regulatory components of diverse 

signaling pathways in IECs, macrophages, and DCs (78, 112, 113).  In IECs, 

probiotic secreted compounds have been found to modulate cell survival, barrier 

function, and cytokine secretion.  For example, two soluble proteins, Msp1/p75 

and p40, secreted by LGG can activate anti-apoptotic protein kinase B (Akt), 

thereby regulating IEC cell survival and preventing cytokine-induced IEC 
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apoptosis (114). Furthermore, administration of LGG p40 can mitigate DSS-

induced intestinal injury and acute colitis as well as oxazolone-induced TH2 

cytokine-driven chronic colitis in mouse models through the interaction with 

epidermal growth factor receptor (EGFR), leading to Akt activation (115). In 

addition to anti-apoptotic effect, activation of EGFR by p40 can also stimulate 

mucin production in goblet cells and may thereby improve gut barrier function 

and protect the intestinal epithelium from injury and inflammation (116).  

Lactate and acetate produced by probiotic lactic acid bacteria also show 

capacity to regulate epithelial proliferation. In L. casei strain Shirota and 

Bifidobacterium brevis strain Yakult, both organic acids have been recently 

characterized as effector molecules capable of down-regulating cell cycle 

regulatory proteins (cyclins) and inducing expression of genes involved in 

intestinal epithelial cell differentiation (117). Although detailed molecular 

pathways remains to be elucidated, the potential of probiotic metabolites to 

modulate intestinal epithelial cell cycle could be useful for the maintenance of 

functional epithelial barrier during infection of certain pathogens capable of 

altering such cell cycle (118). 

In macrophages, secreted compounds from certain probiotics have 

potential to suppress proinflammatory tumor necrosis factor (TNF) expression by 

modulating NF-B or MAPK signaling (119, 120). For example, soluble factors 

secreted by L. reuteri MM4-1A shows ability to suppress TNF transcription in 

monocytes and LPS-activated, Crohn’s disease patient-isolated macrophages 

(120). Such immunosuppressive effect is attributed to the inactivation of MAPK-
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activated transcription factor AP-1 that regulates transcription of proinflammatory 

cytokines (120). This probiotic property may be useful for the treatment of 

Crohn’s disease in which elevated levels of TNF have been commonly detected 

(121). 

Furthermore, L. reuteri MM4-1A-secreted factors are able to promote 

TNF-induced apoptosis in human myeloid leukemia-derived cells. The secreted 

factors stabilize the IB inhibitor, therefore suppressing NF-B-dependent 

expression of mediators of cell survival and proliferation (122). Such probiotic 

factors also enhance pro-apoptotic MAPK signaling, thereby promoting apoptosis 

in activated immune cells (122). Such pro-apoptotic effects on activated immune 

cells may be valuable for colorectal cancer and IBD therapy (122, 123). 

Altogether, growing evidence from in vitro cell cultures and animal models 

has substantiated immunomodulatory and epithelial effects of probiotic strains 

and pinpointed cell-associated and secretory molecules as effectors that interact 

with receptors or regulatory components of diverse host cell signaling pathways 

and consequently modulate transcription of response genes involved in cytokine 

production, cell cycle (maturation, proliferation, differentiation, and apoptosis), 

and epithelial barrier function. Resultant immunosuppressive effects may reduce 

the risk of allergic reactions and mitigate inflammation, whereas 

immunostimulatory and epithelial barrier-strengthening properties could protect 

the host from pathogen infection. However, such effector molecules are dynamic 

entities whose expression depends on bacterial growth stages as evidenced by 

differential modulation of NF-B signaling components in the human duodenal 
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mucosa in response to Lactobacillus plantarum harvested at different growth 

phases (124). Moreover, altered expression and modification of effector 

molecules could proceed during the adaptation of probiotics to the gut 

environment as implied by the gut-induced transcriptional changes in L. 

plantarum genes involved in extracellular protein and polysaccharide 

biosynthesis and D-alanylation of LTA (125, 126). Therefore, it is fundamental to 

consider probiotic effects to be growth-stage dependent. Also of importance is 

that expression of effector molecules is examined in the gut environment to 

evaluate the in situ capacity of probiotics.  

 

Contributions of the gut microbiota to colonization resistance against 

enteropathogens 

Colonization resistance is an essential functional property found in well-

established ecosystems to protect invasion of new species and overexpansion of 

a particular member. This ecological attribute is well established within the 

community of the gut microbes and plays a crucial role in protecting our gut from 

pathogen colonization and pathobiont overgrowth (127), as evidenced by 

mounting susceptibility of germ-free and antibiotic-treated mice to enteric 

pathogen infection, which can be antagonized by re-colonization of the microbial 

residents (128-132). Efforts to protect their gut environment have been 

demonstrated among the symbiotic microbes.  For example, colonization of 

Gram-negative symbiont B. thetaiotaomicron in germ-free mice induces Paneth 

cells to express the antimicrobial peptide REGIII that primarily targets 
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peptidoglycan of Gram-positive bacteria (133). Mechanisms that regulate 

colonization resistance in the gut have been proposed to fall into two categories, 

i.e., direct microbe-microbe interaction and immune-mediated colonization 

resistance (127, 134, 135).   

Colonization resistance elicited by direct interactions between the 

indigenous microbes and invading species involves competitive and metabolic 

exclusion.  Competitive exclusion relies on the ability of the gut symbionts to 

sequester nutrients and other niches from invaders (136-138). In the gut 

environment, microbial inhabitants fill available nutritional niches and form 

complicate cross-feeding networks to circular metabolic substrates within the 

community (139), thereby actively sequestering nutrients from invading microbes. 

An example is demonstrated by the pre-colonization of the mouse gut with the 

combination of three commensal E. coli strains that effectively fill the sugar-

defined nutritional niche of enterohemorrhagic E. coli (EHEC), a leading cause of 

bloody diarrhea in humans, and consequently prevent the pathogenic strain from 

colonization (137). Competition for the amino acid proline between indigenous E. 

coli and E. coli O157:H7 has also been reported to strongly inhibit growth of the 

pathogenic strain in a baby-flora-associated mouse model (140). In addition to 

competition for the same nutrient, occupation of space is also a key of pathogen 

exclusion. Colonization of indigenous microbes at the mucus layer can exclude 

mucin-derived binding sites from invaders, thereby restraining the penetration of 

pathogenic microbes into gut epithelium (141).   
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The gut microbiota could also inhibit pathogen colonization through 

metabolic exclusion involving bacteriocin secretion and SCFA production. 

Members of intestinal microbes are capable of producing bacteriocins with 

bactericidal activities that can inhibit growth of competing species (142-145). 

SCFAs are the other metabolites that can mediate colonization resistance by 

suppressing pathogen growth and expression of virulence factors (146-148). In 

addition, the gut acidification by SCFAs prevents dissociation of intestinal fatty 

acids, thereby potentiating their antibacterial properties (149, 150).  

The second mechanism of colonization resistance is directed by 

immunomodulatory activities of the symbionts that enhance host defense against 

pathogen colonization.  The gut symbionts have capacity to stimulate 

antimicrobial protein production by Paneth cells through NOD2/TLR-bacterial 

ligand recognition (133, 151, 152).  The gut microbiota activation of MyD88-

dependant antimicrobial responses from Paneth cells has been found to limit 

Salmonella enterica serova Typhimurium (S. Typhimurium) penetration across 

the host epithelium (151).  

The gut symbionts also stimulates host immune defense through their 

SCFA metabolites. Certain strains of Bifidobacterium longum produce acetate 

that can upregulate host anti-inflammatory and anti-apoptosis gene expression, 

which reduces translocation of Shiga toxin from the intestine to the blood and 

therefore prevents Escherichia coli O157:H7 infection (153, 154). SCFAs 

particularly butyrate and propionate have been found to mediate Treg cell 

proliferation (155, 156) by binding to GPR43 expressed by colonic Treg cells. The 
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SFCA-GPR43 interaction provides a signal for colonic Tregs expansion and, in 

consequence, augments anti-inflammatory cytokine IL-10 production (157). 

SCFA signaling through GPR43 present on neutrophils also induces cell 

apoptosis while limits cell migration and surface expression of pro-inflammatory 

receptors, thereby potentially aiding in resolving intestinal inflammation by 

suppressing the damaging effects of neutrophils (158). These SCFA-mediated 

anti-inflammatory activities have been postulated to promote colonization 

resistance by counteracting inflammation, induced by pathogen-host interaction, 

which can surprisingly facilitate pathogen growth (159). This postulation is 

supported by the finding that major enteric pathogens can utilize by-products of 

the inflammatory host response, for example nitrate (NO3
-) derived from nitric 

oxide (NO) and superoxide radical (O2
-), for anaerobic respiration (160-163). 

 

Dysbiosis and infectious diseases  

A disintegration of the gut microbial community rendering a breakdown of 

colonization resistance is apparently a key step for enteropathogenic infection. 

Increasing evidence has demonstrated that pathogenic Proteobacteria are 

capable of triggering host immune responses and then exploiting inflammatory 

milieu to outcompete the indigenous microbiota and therefore subvert 

colonization resistance in order to infect the host cell (161, 162, 164, 165). For 

example, S. Typhimurium can convert reactive oxygen species generated during 

inflammation and endogenous luminal thiosulphate into tetrathionate. The 

pathogen then uses tetrathionate as a respiratory electron acceptor to gain 
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growth advantage and consequently overcomes colonization resistance (162). 

Consistent with these findings, microbial imbalance in which the community 

structure is shifted toward an increased prevalence of Proteobacteria has been 

observed in individuals with intestinal inflammatory disorders such as 

inflammatory bowel diseases (IBD) (166-168) and necrotizing enterocolitis in 

preterm infants (169-171).  

In addition to pathogen-inducing inflammation that diminishes colonization 

resistance, antibiotic treatments that cause collateral damage to sensitive 

members of the gut microbiota could similarly contribute to the collapse of the 

microbial defense system and, in consequence, increase susceptibility to enteric 

infection. Antibiotic-associated disruption of the gut microbiota has been found to 

trigger infection by various antibiotic resistant pathogens and pathobionts, 

including Clostridium difficile (172), vancomycin-resistant Enterococcus faecium 

(VRE) (131), and Gram-negative bacilli of Enterobacteriaceae family (173). The 

decrease in abundance and activities of sensitive microbial residents allows 

resistant pathogenic microbes to occupy emptied niches and therefore expand 

their population and virulence factors, which is a key for their success in invading 

host cells (127, 134, 159, 174). For example, both S. typhimurium and C. difficile 

can exploit a spike in host-derived free sialic acid for their expansion in the 

antibiotic-treated murine gut in which indigenous sialic acid utilizers are 

eradicated (175).  
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Roles of probiotics in promoting colonization resistance 

Capacity of probiotics to enhance colonization resistance against pathogen 

invasion could protect the healthy host from enteropathogenic diseases (176).  

This probiotic property becomes of the utmost importance when the gut is devoid 

of the properly established microbiota, for example during the succession of the 

microbial community in preterm infants or during community restoration after 

antibiotic treatments (134). Numerous experimental studies have disclosed the 

potential of probiotic strains to increase colonization resistance through the 

competition for nutrients (competitive exclusion), secretion of antimicrobial 

compounds (metabolic exclusion), interference in virulence factor expresssion, 

and/or stimulation of host immune and mucosal defenses (176, 177). 

 Colonization resistance mediated by direct competition for nutrients has 

been primarily demonstrated in probiotic E. coli strain Nissle capable of 

outcompeting S. Typhimurium for iron in the inflamed murine gut. Whereas other 

tested strains of commensal E. coli fail to counteract colonization of S. 

Typhimurium, E. coli Nissle can employ multiple iron-acquisition systems 

superior to those of S. Typhimurium in overcoming iron sequestration mediated 

by a siderophore-binding protein highly expressed during host inflammation. 

Hence, the probiotic minimizes iron availability, thereby suppressing the 

pathogen colonization (178).   

 The second mode of direct antagonistic actions involves the secretion of 

antimicrobial compounds that display bacteriostatic or bactericidal activities 

against enteropathogens (176). Thus far, a few in vivo studies employing infected 
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mouse models and non-antimicrobial compound-producing mutants for controls 

have demonstrated the potential of probiotic strains to produce bacteriocin at the 

site of infection and in adequate amounts to elicit anti-infective effects. For 

example, Lactobacillus salivarius UCC118 capable of producing Abp118 

bacteriocin can control Listeria monocytogenes infection in mice. This anti-

infective effect was abrogated when a Abp118-negaitve mutant was tested or 

when mice were infected with an L. monocytogenes strain expressing the 

cognate Abp118 immunity protein, thereby confirming that the probiotic elicits the 

colonization resistance through the in vivo production of a bacteriocin (179). 

Similarly, only Peddiococcus acidilactici MM33 able to produce pediocin PA-1 

could reduce VRE colonization in the mouse gut, while a non-pediocin-producing 

mutant showed no anti-VRE effect. This result thereby suggests that the capacity 

of MM33 to produce pediocin in vivo underlie its antagonism against a VRE strain 

(180). 

  Another example that showed the anti-infective potential of an 

antimicrobial compound-producing probiotic strain involves reuterin production in 

L. reuteri MM4-1A. Several human-isolated strains of L. reuteri are capable of 

reducing glycerol to reuterin (3-hydroxypropionaldehyde, 3HPA) that has been 

showed to exhibit bactericidal activity against various enteropathogens including 

enterohemorrhagic E. coli, enterotoxigenic E. coli, Salmonella enterica, Shigella 

sonnei, and Vibrio cholera in a pathogen overlay assay (181). Reuterin appears 

to exert the bactericidal effect by modifying thiol groups in proteins and small 

molecules of target microbes, which induces oxidative stress and ultimately leads 

to cell death (182, 183). A study using three-dimensional organotypic model of 
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human colonic epithelium has demonstrated that glycerol-stimulated MM4-1A 

caused a significantly higher reduction of S. Typhimurium adhesion and invasion 

as compared to the pduC mutant unable to produce reuterin. This finding 

thereby suggests reuterin secretion as a mode of L. reuteri antagonistic action 

against S. Typhimurium infection (184). However, it remains unclear whether the 

probiotic is able to produce reuterin from glycerol in the gut.  

 One further example of metabolite-mediated colonization resistance 

involves antagonistic activity of potential probiotic Clostridium scindens against 

C. difficile expansion. It has been recently showed that C. scindens possesses 

an enzyme 7-hydroxysteroid dehydrogenase and is able to transform host-

derived bile salts into secondary bile acids, which inhibit C. difficile growth. As a 

result, C. scindens treatments can restore abundance of secondary bile acids in 

antibiotic-exposed mice, which thereby confers protection against C. difficile 

colonization (185).  

 Probiotic strains can also directly interfere the expression and functionality 

of virulence factors (176). This mode of antagonistic action has also been 

described in L. reuteri strains. L. reuteri RC-14, which displayed capability to 

inhibit Staphylococcus aureus infection in a rat surgical implant model (186), has 

showed potential to secrete small molecules that decreased the expression of a 

superantigen-like protein (SSL11) in S. aureus by repressing the SSL11 

promoter activity (187). Similarly, the cell-free supernatant of L. reuteri ATCC 

55730 cultures has displayed capacity to repress the expression of the locus of 

enterocyte effacement (LEE)-encoded regulator involved in the 
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attachment/effacement (A/E) lesion of enterocyte microvilli by E. coli O157:H7 

(188).  

By modifying pathogen virulence factors, certain probiotics have potential 

to inhibit enteroinvasive pathogens. For example, Lactobacillus acidophilus LB 

can produce a secretory factor that antagonizes intracellular S. Typhimurium 

infection. Treatment with cell-free LB supernatant can reduce the number of 

apical F-actin rearrangements in infected human enterocyte-like Caco-2/TC-7 

cells and therefore decrease transcellular passage of the pathogen (189). The 

capacity of probiotics to antagonist pathogens that already enter the host cell 

could become a practical alternative to antibiotics, several of which are only 

effective against extracellular pathogens (190).  

 In addition to direct antagonistic effects, probiotics may improve 

colonization resistance through the stimulation of host immune defenses. One 

such example is L. reuteri that shows capacity to transform dietary tryptophan to 

indole-3-aldehyde (IAld) that activates the aryl hydrocarbon receptor (AhR) in 

innate lymphoid cells (ILCs). In turn, ILCs secrete IL-12 that induces antimicrobial 

responses. As an ultimate result, L. reuteri treatment can provide colonization 

resistance to opportunistic pathogen Candida albicans in germ-free mice (191). 

However, while increased IL-12 abundance appears to antagonist C. albicans, it 

also has potential to promote S. Typhimurium infection. Such undesirable 

outcome results from IL-12-induced expression of antimicrobial protein lipocalin-2 

and calprotectin, able to sequester essential metal ions, including iron, zinc, and 

manganese, from pathogens as well as gut symbionts. S. Typhimurium, 
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however, can overcome the sequestration, while some of its indigenous gut 

competitors cannot, thereby allowing the pathogen to thrive in such gut milieu 

(192). Nevertheless, it is possible that the IL-12 inducer like L. reuteri can also 

evade the ion sequestration and therefore protect the IL-12-enriched 

environment it initiates from pathogenic invaders. 

In short, above findings emphasize the necessity of understanding mode 

of probiotic actions as well as pathogen lifestyles in order to develop competent 

probiotics that can battle with a target enteropathogen without compromising 

colonization resistance against other opportunistic invaders. 

  

Part II: Glycan metabolism in gut microbial symbionts and probiotic L. 

reuteri 

Activities central to microbial life in any environment are those that generate and 

conserve energy, maintain redox balance, and acquire carbon and nitrogen 

skeletons for biosynthesis of macromolecules such as proteins, nucleic acids, 

polysaccharides, and lipids (139). Members of the gut microbiota have evolved 

mechanisms to maximize energy and carbon acquisition from available 

substrates derived from indigestible food particles, host mucin, and microbial 

metabolites (4), which allows them to multiply at a rate equaling or surpassing 

peristalsis-driven washout rate and thereby maintain their population in the gut 

(193). Such mechanisms involve efficient acquisition of lumen substrates, 

maximization of ATP conservation, and maintenance of redox balance. Below, 

these mechanisms are discussed relative to metabolism of prebiotic -
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galactooligosaccharides (GOS) and its structurally related human-milk 

oligosaccharides (HMO). Mechanisms described in certain prototypical gut 

symbionts are compared with those characterized in probiotics, especially in L. 

reuteri (when available). The insight into lifestyle of gut symbionts and metabolic 

potential of probiotics could reflect how competent the probiotic is to establish 

themselves in the gut in relation to the symbiont and how to stimulate metabolism 

and therefore growth of the probiotic.  

 

Mechanisms for harvesting lumen energy and carbon sources: the GOS 

paradigm 

Glycan metabolism is a principal source of energy and carbon for gut bacteria 

(4). HMO appear to have no nutritive value to infants due to the absence of 

appropriate digestive enzymes (194). Nonetheless, they are the third most 

abundant solid component in human breast milk after lactose and lipids.  It is now 

know that they serve as substrates for a number of colonic bacteria, especially 

Bifidobacterium species, thereby substantially influencing the establishment of 

colonic microbial community in breast-fed infants (195, 196). Over 130 different 

HMO species have been identified, most of which are unique to humans and only 

trace amounts of which are present in bovine milk (197). GOS have been 

therefore synthesized and supplemented into bovine milk-based formulas to 

mimic the prebiotic and other biological effects of HMO (198). Commercial GOS 

typically are the mixture of disaccharides comprising one to two galactose 

moieties [Gal(1-3/4/6)Gal/Glc] excluding lactose [Gal(1-4)Glc] and 
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oligosaccharides mainly comprising terminal lactose linked to one to six 

galactose moieties [Gal(1-3/4/6)]1-6Gal(1-4)Glc] (199, 200).  

These structures only slightly resemble the more complex backbones of HMO, 

which consist of terminal lactose elongated with up to 25 repeats of either lacto-

N-biose [[Gal(1-3)GlcNAc(1-3)]1-25Gal(1-4)Glc] or N-acetyllactosamine 

[[Gal(1-4)GlcNAc(1-3)]1-25Gal(1-4)Glc] (201, 202).  Despite these structural 

differences, their fermentability by Bifidobacterium and Lactobacillus species of 

the human gut has been confirmed in vitro (203-205).  Likewise, their prebiotic 

ability to selectively promote growth of gut symbionts in vivo has also been 

demonstrated (206-210).  

It is worth noting that among GOS fermenters, their ability to growth on 

GOS does not only vary from genus to genus (204), but also from species to 

species (211) and even from strain to strain (203, 212). Such phenotypic 

variability appears to result from distinct metabolic systems that allow some GOS 

utilizers to gain excess to more varieties of GOS components. For example, 

among GOS-fermenting human isolates of Bifidobacterium brevis, several strains 

including B. brevis UCC2003 isolated from stool can consume most GOS 

components and reach higher final cell yields than strains incapable of utilizing 

GOS with a high degree of polymerization. This access to long-chain GOS is 

facilitated by an extracellular, cell membrane-bound, glycoside hydrolase family 

53 (GH53) endogalactanase (GalA) that cleaves GOS oligosaccharides with DP 

 4 and thereby allows shortened products to be internalized into the cytosol. In 

B. brevis UCC2003, this extracellular hydrolase works in conjunction with an 
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ABC transporter (GalCDE), which imports intact and GalA-cleaved GOS 

components into the cytosol, and an intracellular GH42 -galactosidase (GalG), 

which breaks down internalized GOS to monosaccharide moieties (212).  These 

three molecular elements whose coding genes are situated in the same cluster 

(galCDEGRA) are also responsible for the metabolism of plant-derived galactans 

in B. brevis (213). Moreover, GalA endoglycosidase has been described in infant-

isolated B. longum NCC2705 to have activity on both (1-4)galactans and (1-

4)GOS (214). These findings therefore suggest that molecular machinery that 

allows intestinal microbes to utilize GOS indeed have a biological role in 

metabolizing galactans derived from food plants.  

Although the GalA-GalCDE-GalG system is the principal contributor to 

GOS metabolism in B. brevis UCC2003, the strain also possesses the LacS-

LacZ and GosDEC-GosG system that aid in GOS metabolism. The former 

comprises LacS permease and GH2 -galactosidase LacZ and the letter consists 

of GosDEC ABC transporter and its associated GH42 -galactosidase GosG 

(212). This finding therefore indicates the cooperative actions of multiple 

transporters and -galactosidases on GOS metabolism. In B. lactis B1-04, GOS 

induces the expression of two different gene clusters encoding a putative MFS 

lactose permease-GH2 -galactosidase and an ABC transporter-GH42 -

galactosidase (215), thereby suggesting that GOS metabolism in this probiotic 

strain should also rely on the cooperative activities of two metabolic systems. 

The concerted activities of multiple transporters are in contrast to GOS transport 

system characterized in probiotic Lactobacillus acidophilus NCFM in which LacS 
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permease is the sole transporter for GOS and lactose (216). In L. acidophilus, 

after LacS imports GOS into the cytosol, two -galactosidases, i.e., GH42 LacA 

and GH2 LacLM, appear to be responsible for hydrolyzing internalized GOS to 

galactose and glucose moieties. However, the relative efficiency of this GOS 

metabolic system in comparison to the cooperative systems characterized in 

Bifidobacterium species remains to be evaluated. 

The findings described above clearly demonstrate that different probiotic 

bacteria and human gut symbionts could be equipped with distinct molecular 

tools for metabolizing prebiotic GOS.  Importantly, some pathways are more 

efficient than others.  Therefore, some strains are able to harvest and catabolize 

more varieties of GOS components and thereby have advantages in GOS-

enriched environments. Ultimately, the different GOS metabolic capacities 

between probiotic and human gut symbionts or between different gut symbiotic 

strains could have a major influence on the microbial composition during 

synbiotic or prebiotic interventions.  

The specific molecular elements involved in GOS metabolism may also 

have a role in HMO metabolism. For example, in B. bifidum, the GH2 -

galactosidase (Bbg), has activity toward GOS di- and trisaccharides and is 

highly active toward lactose (217).  This system, however, also contributes to the 

degradation of lacto-N-neotetraose [Gal(1-4)GlcNAc(1-3)Gal(1-4)Glc], a 

major core tetrasaccharide structure of HMO. First, Bbg liberates Gal and 

lacto-N-triose II [GlcNAc(1-3)Gal(1-4)Glc] from the HMO tetrasaccharide. 

Then, after a -N-acetylhexosaminidase cleaves lacto-N-triose II into GlcNAc and 
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lactose, Bbg acts again to hydrolyze lactose to galactose and glucose (218).  

However, GOS metabolic systems alone do not have the capacity to break down 

intact HMO without the aid of other glycosidases. Thus, fucosidases, N-

acetylhexosaminidases, and sialidases are necessary to sequentially hydrolyze 

the diverse glycosidic linkages commonly present in HMO (195).     

 

Extracting energy from the harvest: pathways for energy generation and 

redox balancing   

In nearly anoxic environments, such as the human gut lumen and colon (219) 

where oxygen is not available for respiration, many microbial inhabitants rely on 

fermentation to extract energy and carbon from available glycans.  The first step 

involves enzymatic hydrolysis of complex poly- and oligosaccharides into their 

monosaccharide moieties.  Then, saccharolytic microbes typically employ one or 

a combination of common glycolytic pathways, i.e., Embden-Meyerhof-Parnas 

(EMP), Entner-Doudoroff (ED), pentose phosphate (PP), and phosphoketolase 

(PK) to metabolize monosaccharides into the major metabolic intermediate, 

pyruvate (139, 220). During these metabolic processes, free energy is generated 

from redox reactions at the expense of NAD+ as an electron acceptor that is 

reduced to NADH. In fermentation, released free energy is conserved in form of 

ATP typically by substrate-level phosphorylation and NADH is re-oxidized to 

NAD+ by the reduction of pyruvate to any of a variety of fermentation products, 

such as organic acids, ethanol, CO2, and H2.  Reoxidation of NAD+ is essential to 

maintain redox balance, given the paucity of terminal electron acceptors (221). 
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However, some gut bacteria, for example Bacteroides species (139), have 

evolved anaerobic respiration systems employing alternative terminal electron 

acceptor such as fumarate, SO4
2-, and CO2. (i.e., rather than O2).  This allows 

these organisms to dispose electrons from NADH through an electron transport 

chain, and thereby generates a proton motive force that can drives ATP 

synthesis by the ATPase. In consequence, more net gain of ATP is achieved and 

NAD+ is re-generated. 

 Alternatively, some gut microbes employ an extracellular electron transfer 

(EET) system (222) to increase the net energy gain from metabolic processes. 

For example, one of the most abundant gut bacteria and a strict anaerobe, 

Faecalibacterium prausnitzii, is capable of employing riboflavin- and thiol-

mediated EET to shuttle electron from NADH to O2 present at mucosal surface, 

therefore converting O2 toxic to the cell into a terminal electron acceptor and 

gaining growth advantage from extra ATPs as a result (223, 224). 

Given the limited means by which fermentative bacteria can obtain energy 

from sugars, the ability to generate ATP from the same amount of GOS-derived 

monosaccharides could therefore dictate species abundance among GOS 

fermenters. Among well-documented GOS consumers, Bifidobacterium species, 

a prototypical gut symbiont, ferment hexose sugars through a unique glycolytic 

pathway, termed the “bifid shunt” (225). After hydrolysis of GOS into galactose 

and glucose, the latter monomer enters bifid shunt directly. The galactose moiety 

is presumably channeled through the Leloir pathway and converted to glucose-6-

phosphate before entering the bifid shunt (212). The bifid shunt allows 
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bifidobacteria to produce a net gain of 2.5 ATP per glucose fermented (225), 

which is more than the 2 ATP generated by homofermentative lactobacilli that 

ferment hexoses through the EMP pathway (220).  

In contrast, GOS-fermenting L. reuteri is heterofermentative, and obtains 

only 1 ATP per glucose fermented through phosphoketolase pathway (226, 227). 

This relatively poor energy yield compared to that of metabolic pathways 

operating in other GOS utilizers could thereby be a disadvantage for this species 

in colonizing a GOS-enriched gut. However, this disadvantage can be 

compensated for by the presence of external electron acceptors that allow the 

cell to re-oxidize NADH to NAD+ through an alternative pathway rather than 

through the reduction of acetyl phosphate to ethanol. Most of the acetyl 

phosphate can be channeled to produce acetate, thereby yielding up to one 

additional ATP per glucose fermented. In addition, the external electron 

acceptors re-oxidize NADH more rapidly than the ethanol pathway.  Thus, growth 

rates can increase by a factor of 2 to 3 (228, 229). Indeed, the ethanol branch of 

PK pathway has been suggested to be no more than a “salvage route” that 

permits growth in the absence of an external electron acceptor (230). In L. reuteri 

ATCC 55730, the relatively low ATP level accompanied by slow growth rate and 

low biomass yield was detected in glucose-growing cells even though a non-

limiting concentration of glucose was present. Such energy and growth limitation, 

however, could be alleviated by the presence of the electron acceptor fructose 

(227).  
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 In addition to fructose, L. reuteri is capable of using glycerol (1,2,3-

propanetriol) as an external electron acceptor (231).  The existence of glycerol 

during carbohydrate fermentations results in higher growth rates, increased cell 

yields, and the shift in end products from predominantly lactate, ethanol, and CO2 

to lactate, acetate, CO2, and 1,3-propanediol with decreased ethanol yields. The 

presence of glycerol enables L. reuteri to re-oxidize NADH through an alternative 

route.  First, glycerol is dehydrated by a coenzyme B12-dependent glycerol 

dehydratase to 3-hydroxypropionaldehyde (3-HPA).  The latter is then reduced to 

1,3-propanediol (1,3-PD) by a 1,3-PD:NAD+ oxidoreductase (1,3-propanediol 

dehydrogenase) using electrons donated by NADH (231, 232). With this effective 

alternate electron acceptor system, high-energy acetyl phosphate can be spared 

for ATP synthesis mediated by the acetate kinase, thereby allowing the cell to 

gain extra ATP for growth. 

Furthermore, L. reuteri strains appear to have a capacity to use 1,2-

propanediol (1,2-PD) directly as an energy source and/or as an external electron 

acceptor to regenerate NAD+. Sriramulu et al. (233) have demonstrated that L. 

reuteri DSM 20016 possesses a pdu (propanediol utilization) operon encoding 

enzymes for dismutation of 1,2-PD as previously characterized in S. 

Typhimurium (234, 235). This pathway enables the cell to convert 2 moles of 1,2-

PD to a propionaldehyde intermediate and then proportionately reduce and 

oxidize propionaldehyde to n-propanol and propionate respectively. These 

reactions yield approximately equal amounts of n-propanol and propionate as 

end products together with 1 ATP (Figure1). This energetic metabolism thereby 
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allows L. reuteri to employ 1,2-PD as an energy source, which was evidenced by 

the growth of L. reuteri DSM 20016 on 1,2-PD coexisting with a carbon and 

nitrogen source (233). 

In contrast to serving directly as a fermentation substrate, 1,2-PD could 

also serve an external electron acceptor that allows NADH, generated from the 

PK pathway, to dispose electrons through the reduction of propionaldehyde 

intermediate (the reduction arm of the 1,2-PD dismutation). Similar to the glycerol 

pathway, 1,2-PD can be dehydrated to propionaldehyde by a diol dehydratase. 

Then propionaldehyde accepts electron from NADH and is therefore reduced to 

n-propanol by the activity of a propanol dehydrogenase. In consequence, NADH 

is re-oxidized to NAD+ that can re-enter the glycolytic pathway.  

 

The fate of 1,2-propanediol  

1,2-PD could be present in the human gut as an excreted product of anaerobic 

fermentation of rhamnose (6-deoxy-L-mannose) and fucose (6-deoxy-L-

galactose) by Enterobacteriaceae (236, 237), Bacteroides (238), and 

Lactobacillus species (239). Rhamnose, which is a component of plant cell wall 

pectic polysaccharides (240) and diverse plant metabolites such as rhamnose-

containing flavonoids (241), can be introduced into the gut in form of food plants.  

Rhamnose can then be released from complex compounds by the activity of 

rhamnosidases secreted by Bifidobacterium ,  Bacteroides   (241-243), and 

Lactobacillus species (244).  
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 Another means by which 1,2-PD can be generated is via metabolism of 

fucose. Fucose is a common component of HMO (201) and mucin glycans (5) 

and can be released into the gut lumen by hydrolytic activity of fucosidases.  B. 

thetaiotaomicron has been found to be a major contributor to lumen fucose (245, 

246). It is capable of regulating epithelial fucosylated glycan synthesis by sensing 

fucose availability in the gut lumen and inducing the enterocyte production of 

1,2-fucosyltransferases when fucose is scarce (247). It also possesses 

extracellular -fucosidases that cleave fucosylated glycans and release fucose 

that its own can use as a carbon and energy source as well as a signaling 

compound and other intestinal microbes can also exploit (248-250).  

Rhamnose and fucose are fermented in E. coli through parallel pathways 

(251). Both pathways converge after each methyl pentose is phosphorylated and 

then cleaved into the same products, dihydroxyacetone phosphate (DHAP) and 

L-lactaldehyde. The former enters the EMP pathway, while the latter is reduced 

to 1,2-PD, which is excreted into environment, resulting in the re-oxidation of 

NADH to NAD+.  A similar pathway has been described for rhamnose metabolism 

in B. thetaiotaomicron (238) and fucose metabolism in L. rhamnosus GG (239). 

Given that 1,2-PD could be readily available in the human gut through the 

route described above, its utilization in L. reuteri presumably has evolved to favor 

intestinal colonization of the species. Without this metabolic capability, L. reuteri 

gains only minimal energy from glycan metabolism, which impedes its growth 

and therefore decreases its fitness in this competitive environment.  Furthermore, 

1,2-PD metabolism may enhance L. reuteri competiveness in several ways.  



 37 

First, it may promote competitive exclusion against 1,2-PD-fermenting enteric 

pathogens such as S. Typhimurium (235, 252, 253). Second, metabolism of 1,2-

PD may favor accumulation and excretion of glycerol-derived reuterin, a potent 

antimicrobial compound. The latter could otherwise be further reduced to 1,3-

propanediol for NADH re-oxidation (254, 255) in the absence of an alternative 

electron acceptor such as 1,2-PD.  Finally, the metabolic product, propionate, 

has beneficial immunological and physiological roles in host health (256), which 

may favor the existence of the species. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed pathway of 1,2-propanediol metabolism in L. reuteri. (Modified 

from Sriramulu et al.(233) 
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Abstract 

 The efficacy of three synbiotic approaches to improve persistence and metabolic 

activity of the probiotic strain Lactobacillus reuteri DSM 17938 in the human gut was 

determined in a single-blind, randomized, crossover, placebo-controlled trial. Synbiotic 

preparations consisting of 5 x 108 bacterial cells and 2 g of either GOS, rhamnose or the 

combination of both were given to 15 healthy adults daily for 7 days, followed by 10 

days during which only the corresponding carbohydrates were administered. Faecal 

samples were collected and quantitative real-time PCR was used to determine cell 

numbers and rRNA copy number.  Although L. reuteri DSM 17938 was detectable in 

faecal samples after consumption, the addition of GOS, rhamnose, and the mixture of 

the both did not increase faecal populations, nor did they enhance persistence after 

consumption of the probiotic had ended. However, based on rRNA per cell ratios, the 

combination of GOS and rhamnose significantly stimulated metabolic activity of the L. 

reuteri strain. In vitro growth experiments revealed a synergistic effect of GOS and 1,2-

propanediol (a product of bacterial fermentation of rhamnose in the gut).  In conclusion, 

the synbiotics used in this study did not enhance establishment and persistence of L. 

reuteri, but did increase metabolic activity.  
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Introduction 

The human gastrointestinal tract is colonized by a complex microbiota that 

plays a critical role in health and disease predisposition (1, 2). Aberrations of the 

gut microbiota have been associated with a large number of chronic 

inflammatory, autoimmune, and metabolic diseases (3, 4), as well as diseases 

with unknown etiology, such as infant colic (5). These connections provide a 

rationale for modulating the gut microbiota to redress aberrancies and 

imbalances linked to human disease (6). Current strategies by which the human 

gut microbiota can be modulated include probiotics (7, 8), prebiotics (9, 10), and 

synbiotics (9). The latter are comprised of both probiotic organisms and prebiotic 

ingredients.  According to Kolida and Gibson (11), synbiotics can be either 

complementary or synergistic.  For complementary synbiotics, the prebiotic is 

chosen based on its ability to stimulate selected members of the gut microbiota, 

independent of the probiotic.  In contrast, for synergistic synbiotics, the prebiotic 

is selected on the basis of its ability to enhance survival and growth, in vivo, of 

the specific probiotic.  Thus, combining probiotics with established health benefits 

with prebiotics that enhance ecological performance and activity of the specific 

strains could be a promising strategy to improve health outcomes. 

The species Lactobacillus reuteri is an inhabitant of the vertebrate 

gastrointestinal tract and has a long history of being used as a probiotic (12). 

Probiotic L. reuteri have been shown to have strain-specific health benefits in 

human trials (13), especially in the prevention of diarrhea (14-18), improvement 

of cholesterol metabolism (19, 20), and the reduction of infantile colic (21-23). 
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The health benefits are especially well established for L. reuteri ATCC55730 

(SD2112) (16, 21, 24-27), and its plasmid free derivative DSM 17938 (14, 18, 28-

30). Among others, L. reuteri DSM 17938 has been shown to reduce the 

incidence of NEC in neonates (31) and daily crying time in infants suffering from 

infantile colic (22, 23, 32-34). 

L. reuteri ATCC55730 possesses an array of adaptation factors that 

potentially confer resistance to physiologic stresses (low pH values, bile acids) 

during the passage through the GI tract (35, 36). Survival of L. reuteri 55730 and 

DSM 17938 in the human GI tract has been demonstrated in several clinical trials 

(27, 28, 37-40). Transient colonization in the stomach and small intestine of 

healthy subjects by these strains has also been reported (27). However, 

colonization in most subjects is only temporal, and even in subjects for whom the 

strain remained detectable for 4 weeks after consumption, persistence occurred 

at very low levels (approximately 103-104 CFU/g feces) (27, 37, 40). This 

phenomenon is evidently common for other exogenous lactobacilli, which are 

generally unable to colonize the human GI tract on a permanent basis due to 

niche exclusion and colonization resistance of the competing microbiota (41). 

Although the mechanisms by which L. reuteri promotes health are not well 

understood, it is likely that high levels of metabolically active cells are required. 

Based on the phenotypic characteristics of L. reuteri, several strategies can be 

envisioned to achieve greater survival, persistence, and activity in the human gut. 

First, almost all L. reuteri strains utilize the prebiotic galactooligosaccharides 

(GOS) as a growth substrate (42-44), and synbiotics containing GOS would be 



 63 

expected to enhance, in vivo, activity of GOS-fermenting strains.  In addition, 

although L. reuteri does not utilize rhamnose, it has been reported to use 1,2-

propandiol, a product of rhamnose fermentation by a number of enteric bacteria 

such as Escherichia coli (45) and Bacteroides thetaiotaomicron (46), as an 

energy source (47).  Thus, there is a rationale for an addition of rhamnose to L. 

reuteri-containing synbiotics to support in vivo growth and activity of L. reuteri 

strains. 

The aim of this study was to evaluate the potential of synbiotic 

formulations containing GOS, rhamnose, and a combination of the two to prolong 

persistence and promote metabolic activity of L. reuteri DSM 17938 in the human 

GI tract. The effectiveness of this approach was evaluated in a human crossover, 

placebo-controlled trial. The study revealed that although the prebiotics did not 

enhance persistence, the combination of GOS and rhamnose had a significant 

impact on rRNA levels, suggesting an increased metabolic activity of the L. 

reuteri cells.   

 

Materials and methods 

Synbiotic and prebiotic preparations. The synbiotic preparations contained 

freeze-dried powders of the probiotic Lactobacillus reuteri DSM 17938 (BioGaia, 

Sweden) and the prebiotic substrates or placebo (provided by BioGaia, Sweden).  

All were packaged in daily doses of 5 x 108 bacterial cells and 2 gram of the 

carbohydrate powders in airtight aluminum foil pouches. The four synbiotic 

treatments were: (1) L. reuteri DSM 17938 with GOS (Purimune GOS powder 
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containing 90-92% GOS, GTC Nutrition, USA); (2) L. reuteri DSM 17938 with 

rhamnose (L-(+)-rhamnose monohydrate, 99%, Symrise Bioactives, Germany); 

(3) L. reuteri DSM 17938 with GOS (1 g) and rhamnose (1 g); and (4) placebo 

control containing L. reuteri DSM 17938 and maltodextrin (Maldex G120, Syral, 

France). Prebiotic-only treatments consumed during the test of persistence 

period (see below) were also prepared in the same manner to deliver 2 g/d. All 

study products were kept refrigerated at all times up to the point of consumption.  

 

Human trial. The study was performed as a single blind, randomized, crossover 

and placebo-controlled trial with fifteen healthy individuals.  Sample size was 

estimated based on data from Frese et al. (2012) (48) using the GPower 

software(49). The study was conducted assuming a power (1-) of 0.80 and  = 

0.05). 

The subjects (7 male and 8 female) were recruited on the University of 

Nebraska-Lincoln campus and were between 20 to 35 years of age.  None had 

been on antibiotics within three months before or during the study, and probiotic 

foods were not permitted during the study. The subjects were instructed to 

dissolve the synbiotic/prebiotic powders in a glass of cold water and then 

consume them immediately in one setting. Subjects were randomly assigned to 

different successions of the treatments without knowledge of the specific 

treatment contents.  Each treatment period (28 days) consisted of an 11-day run-

in/washout period in which a baseline fecal sample was collected at day 11, 

followed by a 7-day test period in which the synbiotic was administered. At the 
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last day of this period, a fecal sample was collected, which served as day 0 for 

the Test of Persistence (TOP) period. During the 10-day TOP period, the 

prebiotic-only treatment was continued and fecal samples were collected at day 

2, 4, 7 and 10. The experimental design is shown in Figure 1.  The study was 

approved by the Institutional Review Board of the University of Nebraska (IRB 

number: 20111012067EP approved on 10/07/2011). 

 

Analysis of gastrointestinal symptoms. Gastrointestinal symptoms were 

evaluated over the course of the study using the Gastrointestinal Symptom 

Rating Scale (GSRS) questionnaire comprised of 14 questions to assess reflux 

syndrome (heartburn and acid regurgitation), abdominal pain (abdominal pain, 

sucking sensations in the stomach and nausea) indigestion syndrome 

(borborygmus, abdominal distension, eructation and increased flatus), diarrhea 

(loose stools and urgent need for defecation) and constipation (passage of 

stools, hard stools and feeling of incomplete evacuation). Subjects were 

requested to rate each symptom on a four-point scale where 0 represents no 

symptoms. The GSRS questionnaire was filled out at the beginning of each 

treatment before synbiotic administration (Baseline), after 7 days of daily 

synbiotic consumption (Day 0 for TOP the persistence test) and after 10 days of 

prebiotic consumption (Day 10 of persistence test). 
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Processing of fecal samples. Fecal samples were processed within one hour of 

defecation. For DNA isolation, a ten-fold dilution of each sample in sterile 

phosphate-buffered saline (PBS), pH 7.0 was prepared and then subjected to a 

low-speed centrifugation at 180 x g for 5 min (Centrifuge 5810 R with Rotor A-4-

62, Eppendorf, Hamburg, Germany). The collected supernatant was centrifuged 

again at 300 x g for 5 min to separate faecal materials. The remaining fecal 

materials and bacterial cells were then pelleted from the supernatant at 14,000 x 

g for 5 min (Marathon 16KM Microcentrifuge, Fisher Scientific, USA).  The pellet 

was frozen at -80oC for later DNA extraction. For RNA isolation, the fecal sample 

was immediately mixed with RNAprotect bacterial reagent (Qiagen, Valencia, 

CA) at a ratio of 1 g feces: 5 ml RNAprotect. After a 5-minute incubation at room 

temperature, the mixture was centrifuged twice at low speeds, followed by a 

high-speed centrifugation as described above for DNA isolation.  The pellet was 

stored at -80oC until used for RNA isolation. 

 

DNA and RNA isolation. After washing twice with PBS buffer, pH 7.0 and once 

with sterile water, cell pellets were resuspended in 100 µl of lysis buffer, and 

DNA was isolated from the cell suspensions as described by Walter and 

coworkers (50) with the modification that the DNA solution after cell lysis was 

extracted three times instead of once with phenol-chloroform-isoamyl alcohol. 

Total RNA was isolated after the cell pellet was washed once with PBS buffer 

and resuspended in 100 µl of lysis buffer (30 mM Tris-HCl; 1 mM EDTA, pH 8.0; 

15 mg/ml lysozyme; 10 U/ml mutanolysin; and 100 μg/ml Proteinase K). After 
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incubation at 25oC for 10 min, 350 μl of Buffer RLT (RNeasy Mini Kit, Qiagen) 

containing 10 µl/ml -mercaptoethanol was added to the cell lysis. The mixture 

was then extracted once with 900 µl of acid phenol (phenol: chloroform: isoamyl 

alcohol [25:24:1], pH 4.3). After incubation at room temperature for 5 min and 

centrifugation at 14,000 x g, 4oC for 5 min, a 300-µl aliquot of the aqueous phase 

was separated and then extracted with 900 µl of chloroform-isoamyl alcohol 

(24:1).  The aqueous phase was collected following centrifugation at 14,000 x g, 

4oC for 5 min, and 200-µl aliquot was mixed with 700 μl Buffer RLT and 500 μl of 

ethanol. The mixture was transferred to a RNeasy Mini spin column. RNA 

cleanup and on-column DNase digestion using RNase-Free DNase Set (Qiagen) 

were then performed as described in the protocol of the RNeasy Mini Kit 

(Qiagen, Hilden, Germany). The purified RNA was subsequently treated with the 

TURBO DNA-freeTM kit according to the manufacture’s protocol (Applied 

Biosystems/Ambion, Austin, TX) to remove trace amounts of contaminated DNA. 

The DNA-free RNA was quantified using Qubit® RNA BR Assay Kit (Invitrogen, 

Carlsbad, CA) and RNA integrity was observed on a 1% agarose gel. 

 

Reverse transcription. The purified RNA was reverse transcribed using the 

SuperScript® VILO™ cDNA Synthesis Kit (Invitrogen, Carlsbad, CA). A 20-µl 

reaction mix containing 4 µl of 5X VILO™ Reaction Mix, 2 µl of 10X SuperScript® 

Enzyme Mix, and 4 µl (up to 2.5 µg) of the RNA extract was incubated for 10 

minutes at 25°C followed by 30 minutes at 50°C.  At the final step, the reaction 

was terminated by heating to 85°C for 5 minutes. The synthesized cDNA was 
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subsequently used for real-time PCR quantification of 16S rRNA in fecal 

samples. 

 

Determination of absolute cell numbers of L. reuteri DSM 17938 in fecal 

sample. Quantitative real-time PCR was used to determine absolute cell 

numbers of L. reuteri DSM 17938 in fecal samples. Strain specific PCR primers 

1694f (5-TTAAGGATGCAAACCCGAAC-3) and 1694r (5-

CCTTGTCACCTGGAACCACT-3) were used to detect a chromosome-located 

gene encoding a strain-specific surface protein (51). SYBR Green-based qPCR 

analysis was performed using a Mastercycler Realplex2 (Eppendorf, Hamburg, 

Germany). A PCR reaction mix (25 µl) consisting of 12.5 µl of 2X QuantiFast 

SYBR PCR Master mix (Qiagen, Valencia, CA), 1 µM of each primer and 1 µl of 

template DNA was amplified with the following program: 5 min at 95°C, 40 cycles 

with 10 s at 95°C and 30 s at 62°C. Melting curve analysis was performed 

thereafter, consisting of a denaturation step of 10 s at 95°C, a following step of 

30 s at 62°C, an increase from 62°C-95°C over a 20-min period, and a final step 

of 10 s at 95°C.  Standard curves were generated from DNA extracted from 

spiked feces containing known cell numbers of L. reuteri DSM 17938.  

 

Determination of metabolic activity of L. reuteri in fecal samples. To test if 

probiotic substrates can increase the metabolic activity of L. reuteri in the human 

GI tract, numbers of 16S rRNA molecules were determined based on the premise 

that the amount of rRNA is indicative of protein synthesis activities essential for 
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survival and growth of the bacterial cells (52) That is, the higher the number of 

16S rRNA copies the cell has, the more metabolically active the organism is. The 

copy number of 16s rRNA was determined using reverse-transcription quantitative 

PCR with L. reuteri specific, 16S rRNA-targeted forward primer 5-

GTACGCACTGGCCCAA-3 and reverse primer 5-ACCGCAGGTCCATCCCAG-

3. Primer specificity was checked with NCBI databases using Primer-BLAST 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and validated using DNA and 

cDNA of reference strains and baseline faecal samples. The cDNA template was 

amplified with the following program: 5 min at 95°C, 40 cycles with 10 s at 95°C 

and 30 s at 65°C. Thereafter melting curve analysis consisted of a denaturation 

step of 10 s at 95°C, a next step of 30S at 65oC an increase from 65-95°C over a 

20-min period, and a final step of 10 s at 95°C was performed. The number of L. 

reuteri 16S rRNA cDNA molecules was quantified using standard curves 

generated with known DNA amounts of 16S rRNA PCR amplicons. Values were 

normalized by dividing rRNA amounts by L. reuteri cell numbers determined by 

the strain specific real-time PCR as described above.   

 

In vitro fermentation of probiotic substrates. The ability of L. reuteri DSM 

17938 to utilize GOS, rhamnose and maltodextrin as growth substrates was 

determined by measuring growth in MRS in which glucose was replaced by the 

corresponding carbohydrates.  An overnight MRS culture of L. reuteri DSM 

17938 was transferred to modified MRS (mMRS) broth supplemented with 2% 

w/v of GOS, rhamnose, the mixture of GOS and rhamnose, and maltodextrin 
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(from the same batch used in the human trial). The basal mMRS consisted of 

(per liter) 5 g proteose peptone, 5 g beef extract, 2.5 g yeast extract, 1 g Tween 

80, 2.0 g ammonium citrate dibasic, 5.0 g CH3COONa, 2.0 g K2HPO4, 0.2 g 

MgSO4.7H2O, and 0.05 g MnSO4. The cell cultures were incubated at 37oC and 

the growth was monitored using a spectrophotometer  (Biomate3, Thermo 

Electron Coporation, Madison, WI).  

 

In vitro fermentation of 1,2-propanediol. Utilization of 1,2-PD alone and in the 

presence of GOS was determined for L. reuteri DSM 17938.  Cells grown 

overnight in MRS broth were harvested and washed with phosphate buffer saline 

pH 7.0 and then resuspended in the same volume of modified MRS (MOD-MRS) 

without glucose containing (per liter) 5 g Bacto-peptone, 4 g beef extract, 2 g 

yeast extract, 0.5 ml Tween 80, 1.0 g K2HPO4, 3.0 g NaH2PO4.H2O, 0.6 g 

CH3COONa, 0.3 g MgSO4.7H2O, and 0.04 g MnSO4.H2O (53).  The cell 

suspension was then used to inoculate (1%) fresh MOD-MRS supplemented with 

50 mM 1,2-PD and/or 1% w/v GOS.  Growth at 37oC under anaerobic conditions 

(5% CO2, 5% H2, and 90% N2) was monitored by spectrophotometry. 

 

TLC analysis of GOS consumption. L. reuteri was grown in mMRS 

supplemented with 1% GOS (Purimune) at 37oC. After incubation for 24 h, the 

spent fermentation media was separated from bacterial cells by centrifugation, 

heated at 95oC for 5 min to inactivate glycosylhydrolase activity, and filter 

sterilized through 0.22 m membranes.  Then, 5 l aliquots were spotted onto 
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high-performance TLC plates (Dynamic Adsorbents, Inc., Atlanta, GA).  Control 

(sterile GOS-supplemented mMRS) samples were also applied. The TLC plate 

was developed twice with a mixture of n-butanol/ acetic acid, and water at a 2:1:1 

ratio. The TLC plate was dried and sprayed with 0.5% -naphthol and 5% H2SO4 

in ethanol, and heated at 150oC for 10 min.  

 

Statistical analysis. One-way ANOVA with repeated measures was used to 

determine the significant difference in absolute cell numbers of L. reuteri DSM 

17938 between four synbiotic/prebiotic treatments. Wilcoxon matched pair test 

was used to test for differences in 16S rRNA copies/cell between the treatments 

and the placebo control.  

 

Results 

Utilization of probiotic substrates by L. reuteri DSM 17938. The ability of L. 

reuteri DSM 17938 to utilize the carbohydrates used in the human trial as growth 

substrates was tested in vitro. As shown in Figure 2, the strain grew on GOS but 

was unable to ferment rhamnose (an indirect substrate) or maltodextrin (a 

placebo). The result also showed that the mixture of GOS and rhamnose did not 

provide a growth advantage to the strain compared to GOS alone. TLC analysis 

revealed that L. reuteri DSM 17938 was able to utilize different species of GOS 

oligosaccharides ranging from DP 2 to DP 6 (Figure 3).  
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Human trial and tolerance of synbiotic supplements. To evaluate the 

potential of the different synbiotic approaches to support L. reuteri DSM 17938 in 

the human GI tract, we performed a human crossover, placebo-controlled trial 

study in which subjects received L. reuteri DSM 17938 with either GOS, 

rhamnose, a mixture of the two substrates, or a placebo (maltodextrin).  All 

fifteen subjects completed the trial without any significant increase in GSRS 

scores of any gastrointestinal symptom during any of the treatments (data not 

shown) with all mean scores range from 0 to 1. This result indicates no adverse 

effect of the treatments on gastrointestinal symptoms.  

 

Determination of absolute cell numbers of L. reuteri in fecal samples. As 

shown in Figure 4A, administration of a daily dose of 5 x 108 cells of L. reuteri 

DSM 17938 for 7 days resulted in the strain becoming detectable at 108 

cells/gram on average at the last day of synbiotic consumption.  After the 

discontinuous of probiotic consumption, cell numbers in fecal samples decreased 

10 fold at day 2 and below the detection limit (105 cells/gram) in the majority of 

subjects at day 4 and thereafter (Figure 14A and B). One-way ANOVA analyses 

showed no significant differences in fecal DSM 17938 populations between the 

control and prebiotic treatments, indicating that the synbiotic approaches did 

neither improve establishment nor persistence of the probiotic strain.  
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Determination of metabolic activity of L. reuteri in human fecal samples. L. 

reuteri specific rRNA templates were quantified in fecal samples by qRT-PCR 

with species-specific, RNA targeted primers, during baseline and at day 0 of the 

test of persistence. The amount of 16S rRNA templates per cell was determined 

based on the premise that metabolic activity of the cell is proportional to the 

number of rRNA molecules per cell. This analysis revealed higher rRNA per cell 

ratios at day 0 during the treatment with a combination of GOS and rhamnose 

compared to the control treatment (Figure 5C). Most subjects (11 out of 14) 

showed an increase ranging from two-fold to 800-fold compared to the control. 

By contrast, no significant change in L. reuteri metabolic activity was found with 

GOS or rhamnose alone (Figure 5A and B). No L. reuteri rRNA was detected 

during the baseline, indicating that only the probiotic strain was detected using 

the species-specific PCR approach employed here.  

 

Utilization of 1,2-propanediol by L. reuteri DSM 17938. Based on the 

observed increase in metabolic activity in response to the combination of GOS 

and rhamnose in vivo, we next tested whether GOS and 1,2-propandiol, a 

potential direct substrate derived from rhamnose fermentation by enteric 

bacteria, exert a synergistic effect on growth of L. reuteri DSM 17938. The in vitro 

fermentation results revealed that the strain was unable to utilize 1,2-PD as a 

single growth substrate when grown in MOD-MRS (Figure 6). However, a 

substantial synergetic effect on growth was observed when 1,2-PD was provided 
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in combination with GOS as demonstrated by a higher growth rate and a 

significant increase in final cell yield (Figure 6). 

 

Discussion 

According to Kolida and Gibson (11), rational selection of synbiotic 

combinations should be based, in part, on the ability of the prebiotic to “improve 

the survivability and implantation of the probiotic”. However, it is still unknown if 

synbiotic strategies can be formulated to achieve this goal as almost all studies 

that assessed the efficacy of synbiotic preparations to prolong persistence of 

probiotics did not compare the ecological performance of the probiotic strain in 

the presence and absence of the prebiotic (54-56).   

In this study, we formulated substrate-directed synbiotic strategies with the 

goal to enhance the persistence and to stimulate metabolic activity of the 

probiotic L. reuteri DSM 17938 in the human gut, and tested the formulations in a 

human crossover trial.  We hypothesized that GOS and/or rhamnose could serve 

as carbon and energy sources for the growth and metabolic activity of L. reuteri 

DSM 17938 and improve persistence of this strain in the gut. However, our study 

revealed that the synbiotic approaches did not increase implantation and 

persistence of the probiotic strain. Our findings are therefore consistent with 

those of Alander and coworkers (57), who reported no significant differences in 

the prevalence or numbers of Bifidobacterium lactis Bb-12 between the 

GOS+Bb-12 and Bb-12 group.  
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Similarly, Tannock et al. (58) also reported that 2.5 g doses of GOS did not 

cause changes in the microbiota of healthy human subjects when measured by 

selective culture or nucleic acid-based analysis.  In contrast, these authors did 

report that changes in specific members of the microbiota could be detected 

using RNA-based methods.  Specifically, RNA-amplified denaturing gradient gel 

electrophoresis (DGGE) profiles were altered in the majority of subjects who had 

consumed these relatively low doses of GOS. 

For our study, GOS was specifically selected for use in the synbiotic 

combinations due to the ability of L. reuteri DSM 17938 to efficiently grow on this 

substrate in vitro (Figure 2).  It also had the metabolic capacity to consume 

oligomers ranging from 2 to 6 monomers (Figure 3). While the in vivo availability 

of GOS constituents in the gut has not been determined, consumption of a wide 

range of GOS species could provide the strain a competitive advantage over 

GOS-fermenting residents that have a more narrow substrate preference (59, 

60). Despite these in vitro results, the GOS-based synbiotic did not enhance 

persistence of L. reuteri DSM 17938 in the GI tract of the adult subjects.  Nor was 

metabolic activity increased in the GOS group compared to the placebo control 

containing L. reuteri plus maltodextrin (Figure 4 and 5A). This neutral impact may 

be due in part to the low dosage of 2 g GOS powder per day (approximately 1.82 

g GOS) that was used in this study. Indeed, results from a previous prebiotic 

human feeding trial indicated that 5 grams of GOS were necessary to induce a 

detectable bifidogenic effect (61). However, we used the lower dose in this 

synbiotic study due to the expectation that co-delivery of GOS and L. reuteri 
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would increase substrate availability to the cell. We also expected that GOS 

combined with rhamnose would exert a synergistic effect on growth and 

metabolic activity of the strain.  

In the human gut, rhamnose can be fermented by other enteric microbes, 

generating 1,2-propanediol (46, 62).  The 1,2-propanediol can be utilized by 

human-derived L. reuteri DSM 20016 via the dismutation pathway facilitated by 

pdu operon-encoding enzymes, generating one ATP at the expense of NAD+ with 

no metabolites diverted into central metabolic pathways (47). Based on these 

findings, 1,2-PD was suggested to be an energy source for L. reuteri (47).  

However, the pathway is also suggested to regenerate the NAD+ by conversion 

of the intermediate propionaldehyde to propanol thus reflecting the role of 1,2-PD 

as an electron acceptor. Interestingly, L. reuteri DSM 17938, which possesses an 

almost identical pdu operon, was unable to utilize 1,2-PD as the sole growth 

substrate (Figure 6). However, when grown in the presence of GOS, 1,2-PD led 

to a higher growth rate and significant increase in total cell mass (Figure 6), 

indicating that the substance can act as an electron acceptor in the presence of 

fermentable sugar. The role of 1,2-PD as an external electron acceptor is 

supported by a recent observation in which a favored NAD+-regenerating flux 

toward propanol production was detected in L. reuteri DSM 20016 during glucose 

fermentation (63). The influence of external electron acceptors, such as fructose 

and glycerol, on stimulating growth during sugar metabolism has been already 

well described in several L. reuteri strains (64, 65).   

In this human trial, rhamnose was supplemented alone and in combination 
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with GOS. As a single substrate, rhamnose had no effect on persistence or 

metabolic activity (Figure 4 and 5B). Although this result may be due to the low 

dose used in this study, it is also possible that providing L. reuteri with rhamnose 

as an additional energy source might not be sufficient to facilitate growth, in the 

absence of additional carbon and nitrogen sources. In contrast, when combined 

with a carbon source like GOS, the synbiotic preparation contributed to the 

stimulation of metabolic activity of L. reuteri DSM 17938 in most subjects (Figure 

5C). This result is consistent with the synergistic effect of the 1,2-PD-GOS 

mixture observed for in vitro growth experiments.   

 

Conclusion 

We show here that the well-tolerated 2-gram dosages of direct (GOS) and 

indirect (rhamnose) growth substrate showed no efficacy in enhancing 

implantation and persistence of the probiotic strain L. reuteri DSM 17938.  

However, the combination of GOS and rhamnose may increase metabolic activity 

of the strain in the human gut, as reflected by higher 16S rRNA/cell ratios in fecal 

samples. This finding is relevant as, if the beneficial effects of L. reuteri DSM 

17938 require the bacteria to be metabolically active in the gut, enhanced health 

benefits could be achieved by the GOS/rhamnose approach.  Interestingly, 

Tannock et al. (58) also suggested that while GOS consumption may not result in 

a numerical increase in bifidobacteria (or other GOS-responding bacteria), GOS 

may still cause an increase in metabolic activity, as we observed in this study.  

Clearly, the findings merit further investigations on dose-effect of GOS/rhamnose 
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on ecological performance of DSM 17938, and the impact of the synbiotic into 

future human trials that access health outcomes.  

 

 

 

Fig. 1. (A) Set-up of the synbiotic treatment; White arrow, the sampling point of 

baseline samples; black arrows, the sampling points during the test of 

persistence (TOP). (B) Synbiotic and prebiotic preparations used in four 

treatments. Each of 15 subjects received all four treatments in a random order.  
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Fig. 2. Growth of L. reuteri DSM 17938 on mMRS supplemented with 2% GOS 

(); 2% rhamnose (); 2% mixture of GOS and rhamnose (); 2% maltodextrin 

(); and unsupplemented ().  Results are expressed as means ± SD obtained 

from three independent replicates. 
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Fig. 3. TLC analysis of GOS consumption by L. reuteri DSM 17938. Spent media 

collected at 24 hour of GOS fermentation (lane 1-3) and a control mMRS + 1% 

GOS (lane 4) incubated and prepared under the same conditions were analyzed 

on a TLC plate.  
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Fig. 4. (A) Changes in mean numbers of fecal L. reuteri DSM 17938 cells before 

and over the test of persistence, determined by qPCR and present as the 

average log10 cells per gram feces  standard deviation. Undetectable 

measurements were transformed to 1 x105 cells/ g feces and included in One-

way ANOVA analysis. (B) Prevalence of DSM 17938 among subjects with 

detectable cell levels (> 1 x105 cells/ g feces).  
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Fig. 5. Changes in L. reuteri metabolic activity as determined by reuteri 16S 

rRNA/ DSM 17938 cell ratios after 7-consecutive-day consumption of L. reuteri 

DSM17938 with GOS (A), DSM17938 with rhamnose (B) and DSM17938 with 

GOS and rhamnose (C) in comparison to the control (DSM 17938 without 

prebiotic) (*p < 0.05; Wilcoxon matched pair test). 
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Fig. 6. Growth of L. reuteri DSM 17938 on MOD-MRS supplemented with 50 mM 

1,2-propandiol (); 1% GOS (); 50 mM 1,2-propandiol and 1% GOS (); and 

unsupplemented (). Results are expressed as means ± SD obtained from three 

independent replicates. 
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Abstract 

The ability of probiotic Lactobacillus reuteri to produce antimicrobial 

compounds and secrete immunosuppressive factors has been associated with its 

metabolic exclusion against enteropathogen infection and anti-inflammatory 

properties. In this regard, supplementing L. reuteri with galactooligosacchride 

(GOS) to serve as a carbon and energy source during the gut transit could 

enhance survivability and metabolic activity and consequently prompt the 

probiotic to engage in beneficial activities. The optimization of GOS metabolism 

in L. reuteri cells requires the knowledge of GOS metabolic machinery and its 

regulation. Here we characterized such molecular elements and disclosed that 

GOS metabolism in L. reuteri is inducible and under the influence of carbon 

catabolite repression. The metabolic system relies on LacS permease and a 

second transporter to import diverse GOS species into the cytosol where two -

galactosidases, GH42 LacA and GH2 LacLM, sequentially break down GOS 

oligosaccharides as well as concertedly hydrolyze GOS disaccharides.  The 

system is regulated by repressor protein LacR and fully activated only in the 

presence of inducer lactose and in the absence of glucose. Furthermore, such 

metabolic system appears to be operational in the gut environment as evidenced 

by a growth advantage only the wild type strain, but not the GOS metabolic gene-

deficient mutant, gained in the GOS-enriched murine gut. The application of 

these findings in the preparation of GOS-based synbiotics may favor the 

establishment of L. reuteri in the human gut and thereby potentiate its probiotic 

properties.  
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Introduction 

 
  Interconnection between humans and intestinal microbes has been woven 

through millennia of coevolution (1, 2). From birth till death, life-long microbial 

partners profoundly influence our physiology, metabolism, immune function, and 

defense mechanism against pathogenic organisms. Instantaneously after birth, 

the first microbial settlers we inherit from the maternal microbiota and/or acquire 

from surrounding environment rapidly occupy empty niches in the gut (3, 4). 

Following the interaction with new species and host selective pressures, founder 

microorganisms diversify and ultimately turn to a dynamic complex microbial 

community (5, 6), which during our infancy, protects us from detrimental 

pathogen invasion, assists in intestinal maturation (7), and fosters the 

development of immune system (8, 9).  

At adulthood, our individual gut becomes home to a relatively more 

structurally stable microbial community of approximately 1014 microorganisms 

(10) categorized into at least 160 bacterial species (11).  These symbiotic 

microbes harvest energy and biosynthesis building blocks from streams of 

diverse indigestible food particles and host-derived glycans (12, 13). In return, 

the symbionts fuel our intestinal epithelial cells and peripheral tissues with their 

predominant fermentation products, short chain fatty acids (SCFAs) (14, 15), 

which also exert trophic effects on intestinal epithelium (16, 17), reduce colonic 

epithelial permeability (18), and regulate gut motility and ion absorption (19).  

Furthermore, SCFAs can interact with G-protein-coupled receptors (GPRs) and 

inhibit histone-deacetylase (HDAC) activity, thereby enabling gut symbionts to 
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modulate a wide array of host biological responses, including anti-inflammation, 

antitumorigenic activities, lipogenesis, and satiety (20-22). In addition to 

carbohydrate metabolism, the intestinal microbes actively engage in diverse host 

metabolic pathways, including bile acids, choline, xenobiotic, and drug 

metabolism (23, 24), and therefore can serve as a major contributor of 

biologically active metabolites that have a vital role in our health and disease 

(25).  

The gut symbionts are also capable of stimulating antimicrobial protein 

production by intestinal epithelial cells (26), IgA secretion by B cells (27), and 

pro-inflammatory TH17 cell proliferation (28, 29) as well as promoting the 

development of naïve T cells into anti-inflammatory Treg cells with their antigenic 

signals (30) and SCFA metabolites (31-33). These immunomodulatory activities 

set the fundamental role of the symbiotic microbes in our immune homeostasis 

by engendering the defense system to be tolerant of symbiotic antigens yet 

responsive to pathogenic invaders (34, 35).  

Furthermore, metabolic and immunomodulatory activities of the gut 

microbial community lay the foundation for direct and immune-mediated 

colonization resistance against invading species (36-40). Competition for similar 

metabolic niches (41-43), secretion of bacteriocins (44-47), and modification of 

the gut into unfavorable environments for pathogen growth and virulence gene 

expression (48-51) all are antagonistic mechanisms microbial residents directly 

initiate to protect their gut niches from invading species. Furthermore, their 
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cellular and metabolic signals can recruit essential host pro- and anti-

inflammatory responses to reinforce such protective system (37). 

Intricate connection between humans and microbial partners entitles 

status of the microbial community to drive our health into either healthy or 

diseased states (52). The gut microbial community that services us with balance 

energy, activated drugs, and detoxified xenobiotics as well as immune and 

intestinal homeostasis can shape us into healthy hosts. However, when the 

community is disturbed to the point that it loses structural stability and, in 

consequence, cannot properly provide such vital services, this dysbiosis can put 

us at risk of a wide array of gastrointestinal and extraintestinal diseases (53). 

Loss in colonization resistance within a collapsing gut microbiota predisposes 

human hosts to enteropathogenic infection by various pathogens (54-58) and 

pathobionts such as Clostridium difficile (59) and vancomycin-resistant 

Enterococcus faecium (60). Lack of symbiont-mediated immune development in 

relation to the loss of particular microbial residents such as Helicobacter pylori 

increases risk for allergic diseases (61, 62). Disintegration of host-symbiont 

mutualism and immune homeostasis is implicated in the pathogenesis of 

noninfectious intestinal inflammatory disorders such as Crohn's disease and 

ulcerative colitis (63, 64). Alterations in the gut microbiota that promote gut 

permeability and metabolic endotoxemia can trigger low-grade chronic 

inflammation in intestinal and peripheral metabolic tissues (e.g. adipose, 

muscles, liver, pancreas, and brain) that contributes to the development of 
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obesity and associated metabolic disorders such as insulin resistance and 

nonalcoholic fatty liver disease (65-67). 

Growing evidence for unhealthy outcomes of the microbial imbalance 

urges therapeutic approaches to regain its equilibrium states, leading to the 

emergence of microbiota-targeted therapies as attempts to redress microbial 

communities from degrading to healthy states or maintain intestinal homeostasis 

to prevents dysbiosis from emerging in the first place (68, 69). Probiotic is a class 

of microbe-based therapies that harnesses cellular and metabolic properties of 

benign microorganisms to promote colonization resistance against the expansion 

of pathogenic species within the gut microbiota (70-72) as well as modulate host 

immune responses essential for maintaining gut homeostasis (73, 74). Thus far, 

probiotics, in a strain-specific manner, have showed promise in treatment of 

various diseases, including antibiotic-associated diarrhea (75), necrotizing 

enterocolitis in preterm infants (76), IBD (77, 78), metabolic disorders (79), and 

nonalcoholic fatty liver disease (67). 

In order to support the gut microbiota in maintaining colonization 

resistance and eliciting essential host immune responses, probiotics need to stay 

metabolically active to exert competitive exclusion and efficiently produce 

immune-stimulating metabolites. To establish themselves in the gut, probiotics 

have to face two major challenges. First, they have to surmount various gut 

physical barriers and defense mechanisms such as peristalsis, low acidity, bile 

salts, and antimicrobial peptides as well as host inflammatory immune responses 

(71). Second, they have to compete with earlier colonizers for nutrients sufficient 
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for driving metabolic activities, which is apparently a formidable hurdle as both 

indigenous and pathogenic microbes seem to allow only a minimal, if any, 

nutrient leak into the gut environment; indigenous inhabitants usually fill available 

nutritional niches and establish interspecies cross-feeding webs that actively 

sequester their nutritional metabolites from foreign species (13, 80) and 

pathogenic settlers have evolved superior mechanisms that allow them to 

efficiently scavenge limited intestinal resources for growth (58, 81, 82). 

A synbiotic concept of closely supply probiotics with fermentable prebiotics 

to selectively support growth and activity of probiotic components in the gut (83) 

is therefore a rational approach to cope with nutrient starvation. However, its 

proof of efficacy in promoting survivability and activity of target probiotics in the 

gut remains scarce and controversial (84-87) and its translational research is 

facing a fundamental challenge of how to stimulate probiotics to utilize 

supplemented prebiotics during their passage through the gastrointestinal tract. 

These highlight the need for the evidence for the in vivo capacity of probiotics to 

metabolize prebiotics under suboptimal growth conditions to propel the synbiotic 

concept forward as well as the need for the better understanding of molecular 

mechanisms underlying prebiotic metabolism, especially how such metabolic 

processes are regulated, which would be valuable for the formulation of synbiotic 

preparations that ensure the maximal expression of metabolic machinery for 

rapid and effective utilization of prebiotic substrates upon their arrival in the gut.  

In this study, we sought to identify metabolic and regulatory elements 

responsible for -galactooligosaccharide (GOS) metabolism in probiotic 
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Lactobacillus reuteri MM4-1A and validate the capability of the strain to utilize 

GOS in the gut, which would lay the foundation for synbiotic development to 

improve therapeutic effects of this probiotic species.  Probiotic strains of L. reuteri 

have showed promise in the prophylactic therapy against infantile colic (88-91), 

NEC in preterm infants (92), and antibiotic-associated diarrhea (93) as well as 

the treatment of children diarrhea (94, 95), ulcerative colitis (96), and 

hypercholesterolemia (97) . Although exact mechanisms underlying such 

beneficial effects remain obscure, the probiotic L. reuteri strains inherit a number 

of traits that could promote colonization resistance against enteropathogen 

infection and suppress host inflammatory responses.  Such traits include the 

production of biologically active molecules (i.e. antimicrobial compound reuterin 

(98-100), acetate (101), and propionate (102), the expression of mucus-binding 

proteins that bind receptor sites on the mucus layer (103), the capacity to induce 

Treg responses (104, 105), and the ability to suppress pro-inflammatory cytokines 

through their secretory histamine (106, 107).  

The in vitro capacity of the probiotic L. reuteri strains to ferment GOS 

was observed elsewhere (108), but its underlying molecular mechanism has 

never been experimentally disclosed nonetheless. In this study, we first analyzed 

genomes of GOS-fermenting strains in comparison to a non-GOS-fermenting 

strain of L. reuteri to identify genes potentially involved in GOS metabolism. We 

then generated single- and double-gene-deficient mutants and studied their 

phenotypes afterwards. Different phenotypic analyses allowed us to characterize 

transporters, -galactosidases, a regulatory element, and an inducer of the 
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GOS metabolism in L. reuteri as well as assemble them into a coherent 

metabolic model. Furthermore, colonization of germ-free mouse gut with a 

mixture of the wide type and a mutant deficient in GOS metabolism enabled us 

to confirm the capability of L. reuteri to utilize GOS in the gut environment.  

 

Materials and methods 

Lactobacillus reuteri cultures. L. reuteri MM4-1A was obtained from BioGaia 

AB, Sweden. The strain and its GOS-metabolic-gene-deficient mutants 

generated in this study were routinely prepared from frozen stock cultures. Stock 

cultures were streaked onto De Mann, Rogose, and Sharp (MRS, Difco 

Laboratories) agar plates and incubated at 37oC for 36-48 h under anaerobic 

conditions consisting of 5% CO2, 5% H2, and 90% N2. Single colonies isolated on 

the plates were transferred into MRS broth. Cultures were anaerobically 

cultivated at 37oC for 16-24 h and then subcultured into fresh MRS at 1%. After 

12-hour incubation, cell inoculums were ready for the following experiments.  

 

Beta-galactooligosaccharides (GOS) and fractionated GOS components. 

Purimune GOS provided by GTC Nutrition, USA (now Ingredion, Inc., 

Westchester, Illinois), was used for phenotypic assays.  The GOS powder is 

comprised of 90-92% GOS with varied degree of polymerization, 7-10% lactose, 

0-1% glucose, and 0-0.5% galactose (109). The detailed description of the GOS 

powder was included in Supplementary Table S1.  
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Di- and oligosaccharide components of the GOS powder was fractionated 

and then used for -galactosidase activity assay and gene expression analysis.  

Different GOS fractions were separated by size exclusion chromatography 

performed on a Sephadex G-10 (Sigma-Aldrich) column. For each separation, 5 

ml of 30% (w/v) GOS solution was applied to the column (96 x 2.5 cm), and 

fractions were eluted with Nanopure water at a flow rate of 0.16 ml/min. After the 

void volume (195 ml) was eluted, 1-ml fractions were collected and immediately 

monitored for the presence of carbohydrate using a refractometer (Reichert 

Rhino BRIX30). Approximately 70 fractions were collected from each run.  

Saccharide compositions were subsequently identified by thin-layer 

chromatography (TLC) on HPTLC silica gel 60 plates  (Merck KGaA, Darmstadt, 

Germany) developed twice using a solvent mixture containing 50% n-butanol, 

25% acetic acid, and 25% water. After the second run, TLC plates were dried at 

room temperature, sprayed with 0.5% -naphthol and 5% H2SO4 in ethanol, dried 

again, and then heated at 150oC until separated spots became visible. Fractions 

containing the desired DP were pooled and then freeze-dried. Freeze-dried 

products were re-analyzed again by TLC to confirm that purified components 

were obtained. The TLC analysis of the fractionated products is shown in 

Supplementary Figure S1. 
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Genomic analysis for annotated genes potentially involved in GOS 

metabolism in L. reuteri. Genome sequences of four human-derived, GOS-

fermenting L. reuteri strains, including L. reuteri MM4-1A (ATCC PTA 6475), L. 

reuteri ATCC 55730 (SD2112), L. reuteri F275  (JCM 1112, DSM 20016), and L. 

reuteri MM2-3 (ATCC PTA 4659) as well as one swine-derived, poor-GOS-

fermenting L. reuteri ATCC 53608 were compared and searched for genes 

functionally annotated as -galactosidases using the Integral Microbial Genome 

(IMG) Platform (http://img.jgi.doe.gov/) (110). DNA loci surrounding identified -

galactosidase-encoding genes were further examined for neighboring genes 

annotated with functions related to carbohydrate metabolism. Gene clusters 

potentially involved in GOS metabolism were then analyzed for the presence of 

promoter and regulatory elements. Promoter prediction was performed with 

BPROM (online analysis tool, SoftBerry, Inc., Mount Kisco, NY). A catabolite-

responsive element (CRE) was identified using the program DNA-pattern at 

Regulatory Sequences Analysis Tools (RSAT) website (http://rsat.ulb.ac.be) 

(111) with a query sequence, WTGNAANCGNWNNCW (112).   

 

Generation of mutants deficient in GOS metabolic genes. Genes predicted to 

be responsible for GOS metabolism in L. reuteri were subjected to targeted point 

mutations generated by oligonucleotide-mediated recombineering using a 

protocol described by van Pijkeren and Britton (113). Briefly, recombineering 85-

mer oligonucleotides were designed to resemble nucleotide sequences of target 

genes except for five non-homologous bases at the center where a stop codon 

http://img.jgi.doe.gov/
http://rsat.ulb.ac.be/
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was incorporated. The oligonucleotides were electroporated into competent L. 

reuteri MM4-1A cells expressing RecT ssDNA-binding protein that promotes 

annealing of oligonucleotides and complementary sequences on the host 

chromosome. Following the electroporation and cultivation of transformed cells, 

colonies growing on MRS agar plates were screened for desired mutants by 

Mismatch Amplification Mutation Assay (MAMA)-PCR (113, 114) using specific 

primers homologous to mutated gene sequences, but containing five mismatches 

at the 3 end to wild-type sequences. Five mutants with a nonsense mutation in a 

single gene and one with a double-gene mutation were generated in this study. 

Recombineering oligonucleotides harboring stop codons, targeted gene 

sequences, and primers for MAMA PCR are listed in Table 1.  

 

Phenotypic confirmation in GOS-metabolic-gene-deficient mutants 

Growth on different carbon sources. The ability of the mutants and the wild 

type to utilize GOS was determined by measuring growth in modified MRS 

(mMRS) broth supplemented with GOS or other carbon sources. The mMRS 

medium was devoid of glucose and contained only half amounts of complex 

ingredients present in standard MRS to minimize the carbon-source content. The 

basal mMRS consisted of (per litre) 5 g proteose peptone, 5 g beef extract, 2.5 g 

yeast extract, 1 g Tween 80, 2.0 g ammonium citrate dibasic, 5.0 g CH3COONa, 

2.0 g K2HPO4, 0.2 g MgSO4.7H2O, and 0.05 g MnSO4. Twelve-hour cultures 

prepared as described above were used as the source of the inoculum.  These 

cultures were then inoculated at 1% (v/v) into pre-warmed mMRS broth 
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supplemented with either 1% GOS (GOS-mMRS), 1% lactose (Lac-mMRS), 1% 

glucose (Glc-mMRS), or a mixture of 0.076% lactose, 0.008% glucose, and 

0.003% galactose.  The latter represented the approximate amount of 

contaminating sugars present in Purimune GOS powder. After inoculation, cell 

cultures were incubated at 37oC under an anaerobic atmosphere. Growth on 

different carbon sources was determined by optical density measurement at 600 

nm (Biomate3, Thermo Electron Corporation, Madison, WI).  

 

GOS utilization. GOS utilization by the lacS mutant and the wild type MM4-1A 

was determined by TLC analysis of spent fermentation media. Log-phase cells 

were prepared by inoculating 12-hour inoculums into pre-warmed MRS at 1% 

and anaerobically incubating cell cultures at 37oC for 5 h or until obtaining OD600 

of 1.5-2.5. Log-phase cells were harvested by centrifugation at 3,220 x g for 10 

min (Centrifuge 5810 R, Eppendorf AG, Hamburg, Germany), washed twice with 

PBS buffer (pH 7.4), and resuspended in PBS buffer to obtain a cell 

concentration at the OD600 of 10. Three milliliters of cell suspensions were 

inoculated into 27 ml of pre-warmed GOS-mMRS so that an initial cell 

concentration of approximately 109 cells/ml (OD600 of 1) was obtained. A high cell 

concentration was used to ensure that the number of the mutant cells was high 

enough for cell activity to be observed. After an anaerobic incubation at 37oC for 

0, 2, 4, 6, 9, 12, and 24h, spent fermentation media were separated from cell 

cultures by centrifugation and filter sterilized through 0.22 m membranes.  Five-

microliter aliquots of spent media were spotted onto HPTLC silica gel plates 
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(Dynamic Adsorbents, Inc., Atlanta, GA) that were subsequently developed and 

visualized as described previously. 

 

-galactosidase activity. In vitro hydrolysis was performed using cell-free 

extracts of the lacA and lacM mutant to determine the hydrolytic activity of the 

LacA and LacLM -galactosidase on di- and oligosaccharide components of 

GOS as well as lactose. GOS-grown cells of the lacA and lacM mutant were 

prepared by inoculating 12-hour inoculums at 1% into pre-warmed GOS-mMRS. 

After cell cultures were anaerobically incubated at 37oC for 9 h, log-phase cells 

were harvested by centrifugation at 3,220 x g, 4oC for 10 min and washed twice 

with ice-cold sodium phosphate buffer (PB), pH 6.5. Cell pellets were 

resuspended in PB with 10% w/v glycerol and 1 mM dithiothreitol (DTT) to obtain 

a cell concentration at OD600 of 10. One-milliliter aliquots of cell suspensions 

were transferred into ice-cold 2-ml microtubes containing 400 mg of 0.1 mm 

glass beads (Zirconia/Silica, BioSpec Products, Inc., Bartlesville, OK). Cells were 

then disrupted with a bead beater (Mini-Beadbeater, BioSpec Products, Inc., 

Bartlesville, OK) at a maximum speed for three 1 min intervals, each separated 

by 1 min on ice. Cell-free extracts were separated from cell debris by 

centrifugation at 14,000 x g, 4oC for 10 min. The protein content of cell-free 

extracts was measured using Qubit Protein Assay Kit (Life Technologies, Grand 

Island, NY) and adjusted to 0.5 mg protein/ml.  Enzyme assay reaction mixtures 

(200 l in total) consisted of 20 l of either 50 mg/ml GOS components or 10 

mg/ml lactose, 160 l PB pH 6.5, and 20 l of cell-free extracts with 0.5 mg/ml 
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protein content.  Reaction mixtures were incubated in an incubator shaker 

(Thermomixer R, Eppendorf AG, Hamburg, Germany) at 37oC, 200 rpm for 2, 4, 

6, and12 h and then immediately heated at 95oC for 5 min to terminate the 

reactions. Five- microliter aliquots of reaction mixes were spotted onto TLC 

plates and analyzed as described previously. 

 

Gene expression analysis  

Expression levels of GOS metabolic genes in response to different 

carbohydrates were quantified in the wild type and the lacR mutant to observe 

the inducibility of GOS gene clusters, identify inducers, and confirm the 

regulatory role of the LacR protein. 

 

Induction of gene expression. Mid-log-phase cells growing in MRS medium 

were harvested, washed twice with PBS buffer (pH 7.4), and resuspended in 

PBS buffer to obtain a cell concentration at OD600 of 10.  One-milliliter aliquots of 

cell suspensions containing approximately 1010 cells were transferred to 8 ml of 

pre-warmed basal mMRS (80% water content). Cell cultures were anaerobically 

incubated at 37oC for 3 h to allow cells to consume all carbon sources present in 

basal mMRS.  After 3 hours, 1 ml sterile water or 1 ml of 10% solutions of either 

GOS disaccharides, GOS oligosaccharides, lactose, glucose, mellibiose, or 

lactose (10%) plus glucose (1%) was added to each cell culture.  The cultures 

were allowed to incubate for 30 min and then 1-ml aliquots were mixed with 3 ml 

of RNAprotect reagent (Qiagen, Valencia, CA) to stabilize RNA.  



 106 

RNA isolation and purification. After 10-minute incubation in RNAprotect, cells 

were harvested by centrifugation at 3,220 x g for 10 min, washed once with 

RNase-free PBS buffer (pH 7.4), and suspended in 100 µl of RNase-free lysis 

buffer (30 mM Tris-HCl; 1 mM EDTA, pH 8.0; 15 mg/ml lysozyme; 10 U/ml 

mutanolysin; and 100 μg/ml Proteinase K). After incubation at 25oC for 10 min, 

350 μl of Buffer RLT (RNeasy Mini Kit, Qiagen) containing 10 µl/ml -

mercaptoethanol was added to the cell lysis. The mixture was then transferred 

into a 2-ml ice-cold microtube containing 100 mg of acid-washed 30 m glass 

beads (Sigma-Aldrich Co., St. Louis, MO). Enzymatically-lysed cells were further 

disrupted in a bead beater at a maximum speed for 2 min. Homogenized 

mixtures were then extracted once with 900 µl of acid phenol (phenol: 

chloroform: isoamyl alcohol [25:24:1], pH 4.3). After incubation at room 

temperature for 5 min and centrifugation at 14,000 x g, 4oC for 5 min (Centrifuge 

5424 R, Eppendorf AG, Hamburg, Germany), 300-µl aliquots of the aqueous 

phase were extracted with 900 µl of chloroform-isoamyl alcohol (24:1) and then 

200-µl aliquots were mixed with 700 μl Buffer RLT and 500 μl of ethanol. 

Mixtures were transferred to RNeasy Mini spin columns. RNA cleanup and on-

column DNase digestion using RNase-Free DNase set (Qiagen, Hilden, 

Germany) were then carried out as described in the manual of RNeasy Mini Kit 

(Qiagen, MD). Purified RNA was subsequently treated with the TURBO DNA-

freeTM kit according to the manufacture’s protocol (Applied Biosystems/Ambion, 

Austin, TX) to remove trace amounts of contaminated DNA.  
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DNA contamination in RNA extracts was assessed by real-time PCR 

quantification of the 16S rRNA gene using L. reuteri-specific forward primer 5-

GTACGCACTGGCCCAA-3 and reverse primer 5-ACCGCAGGTCCATCCCAG-

3. Twenty five-microliter reaction mixes consisting of 12.5 µl of 2X QuantiFast 

SYBR PCR Master mix (Qiagen, Valencia, CA), 0.5 µM of each primer, and 1 µl 

of RNA extracts were amplified with the following program: 5 min of initial heat 

activation at 95°C followed by 40 cycles of 10 s denaturation at 95°C and 30 s 

combined annealing/extension at 63°C. Melting curve analysis, carried out 

thereafter, consisted of 10 s at 95°C, 30 s at 63°C, a step of temperature 

increase from 63° to 95°C over a 20-minute period, and a final step of 10 s at 

95°C. Following the DNA contamination check, 5-µl aliquots of DNA-free RNA 

extracts were used for total RNA quantification using Qubit® RNA HS Assay kit 

(Invitrogen, Carlsbad, CA) and RNA integrity was examined on 1% agarose gels. 

 

Reverse transcription and real-time PCR analysis of target gene 

transcripts. Purified RNA was reverse transcribed using the SuperScript® 

VILO™ cDNA Synthesis Kit (Invitrogen, Carlsbad, CA). Twenty-microliter 

reaction mixes containing 4 µl of 5X VILO™ Reaction Mix, 2 µl of 10X 

SuperScript® Enzyme Mix, and 5 µl (up to 2.5 µg) of RNA extracts were 

incubated for 10 minutes at 25°C, followed by 30 minutes at 50°C.  At the final 

step, the reaction was terminated by heating to 85°C for 5 minutes.  
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 Synthesized cDNA was used for subsequent relative real-time PCR 

quantification of GOS-metabolic-gene transcripts. Real-time PCR reaction mixes 

and the PCR program were set as described previously in the DNA 

contamination assay except that 1 µl of cDNA products were used as templates 

rather than RNA extracts. Target and reference genes and their specific primers 

used in this transcriptional analysis were listed in Supplementary Table S2. 

Expression levels of target genes in response to different carbon sources were 

present as fold changes relative to the expression level detected in cells 

incubated in basal mMRS without an additional carbohydrate. The relative 

changes in gene expression was determined using the 2
-Ct

 method (115) and 

recA as the reference gene.  Expression of the recA gene, encoding 

recombination protein RecA was previously observed and found to be 

considerably stable in all of the experimental conditions studied.  

 

In vitro co-culture of the wild type and mutant depleted in GOS metabolic 

machinery 

In vitro co-culture. An in vitro co-culture of L. reuteri MM4-1A and the 

lacSlacM mutant with impaired ability to utilize GOS was performed to test for 

the impact of GOS metabolism on the growth advantage of GOS-fermenting 

strains.  Wild-type and mutant cells were harvested from 12-hour inocula as 

descripted previously. After centrifugation at 3,220 x g for 10 min, cell pellets 

were washed twice with PBS buffer (pH 7.4) and resuspended in PBS buffer to 
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obtain a cell concentration at OD600 of 1. The cell suspensions of the two strains 

were mixed together at a 1:1 ratio before the cell mixtures were inoculated at 1% 

into either 1%GOS-mMRS or 1%Glc-mMRS. Cultures were incubated 

anaerobically at 37oC and then subcultured into fresh media at 1% every 12 h 

until approximately 28 generations of the wild type on 1%GOS-mMRS was 

obtained. One-milliliter aliquots of mix cell cultures were collected at 0, 12, 24, 

36, and 48 h for future real-time PCR quantification of each cell type.  

 

DNA isolation. Cells were centrifuged, washed twice with 1 ml ice-cold PBS 

buffer (pH 7.4), and once with ice-cold water, and resuspended in 100 µl of lysis 

buffer consisting of 20 mg/ml lysozyme, 10 U/l mutanolysin, and 0.1 mg/ml 

RNase A in STE buffer [6.7% Sucrose, 50 mM Tris-Cl (pH 8.0), and 10 mM 

EDTA (pH 8)].  These suspensions were incubated at 37oC for 1 h and then 6 µl 

of 20% SDS and 5 µl of 15 mg/ml Proteinase K were added into cell lysates. The 

lysates were incubated at 60oC for additional 30 min, cooled on ice, and diluted 

with 400 µl of 10 mM Tris-Cl, pH 8.0.  Next, cell lysates were extracted three 

times with 500 µl of phenol/chloroform/isoamyl alcohol (25:24:1). Following the 

phenol extraction, 250-µl aliquots of aqueous phase were collected and extracted 

three more times with 500 µl of chloroform/isoamyl alcohol (24:1). Then, DNA 

was precipitated by mixing 50 µl aliquots of aqueous phase with 375 µl (2.5 

volumes) of absolute ethanol and 15 µl (0.1 volume) of 3M sodium acetate and 

incubating the mixture at -20oC for at least 1 h. DNA pellets were collected by 

centrifugation at 14,000 x g, 4 oC for 20 min, washed once with 1 ml of ice-cold 
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70% ethanol, and spun down using the same centrifugation condition. After DNA 

pellets had been air-dried at room temperature, DNA was resuspended in 100 µl 

of 10 mM Tris-Cl, pH 8.0.  

 

Real-time PCR quantification of wild-type and mutant cells. The population 

of the wild type and the lacSlacM mutant in co-cultures was quantified by real-

time PCR using primers listed in Supplementary Table S2. Reaction mixes were 

prepared as described previously in the DNA contamination assay but with 1 µl of 

DNA isolates as templates instead of RNA extracts. A similar PCR program with 

a lower annealing/extension temperature was used in this analysis. The program 

consisted of 5 min of initial heat activation at 95°C followed by 40 cycles of 10 s 

denaturation at 95°C and 30 s combined annealing/extension at 62°C. Melting 

curve analysis program consisted of 10 s at 95°C, 30 s at 62°C, a step of 

temperature increase from 62° to 95°C over a 20-minute period, and a final step 

of 10 s at 95°C. Standard curves prepared from pure cultures of each strain were 

used for the absolute quantification.  

 

GOS utilization in the murine gut. To assess ability of L. reuteri to utilize GOS 

in the gut environment, in vivo experiments were conducted in germ-free C3H 

mice. The experimental design is depicted in supplementary Figure S2. Twenty-

seven six-week-old female mice were randomly assigned into either a GOS-

feeding or control group. Mice were caged in small groups of two to three and fed 
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with a purified ingredient no-sucrose diet (D12450K DIO series diets, Research 

Diets Inc., New Brunswick, NJ). The special diet was used in this study to 

minimize amounts of alternative carbon sources L. reuteri strains could possibly 

utilize in addition to or instead of GOS. While 13 control mice were supplied with 

sterile Nanopure water, 14 mice in the GOS-feeding group were supplied with 

sterile GOS solution (30 mg/ml) as the drinking water. GOS feeding was begun 

24 hours prior to the inoculation of L. reuteri strains to allow GOS to enrich the 

gut and the amount of GOS consumed was monitored daily. 

 A mixture of wild type and lacSlacM cell suspension was prepared 

immediately before the inoculation. Cells were harvested from 14-hour MRS 

cultures (OD600  3) by centrifugation at 600 x g for 10 min and resuspended in 

PBS buffer, pH 7.4, to obtain a cell concentration at OD600 of 1.5 (ca. 5 x 109 

CFU/ml). The cell suspension of the wild type and the lacSlacM mutant were 

mixed together at a 1:1 ratio. A 100-µl aliquot of the resulting mixture was then 

orally gavaged to each mouse.  

 Fecal samples were collected at 12, 24, and 48 h after the. Samples were 

diluted 10-fold with PBS buffer, pH 7.4 and homogenized by vortexing. One-

milliliter or less of fecal suspensions was transferred into 2 ml safe-lock tubes 

containing 300 mg of glass beads. Fecal pellets were centrifuged at 10,000 x g 

for 5 min, washed twice with 1 ml ice-cold PBS buffer, and once with 1 ml ice-

cold water. Washed fecal pellets were mixed with 500 µl of the same lysis buffer 

described in the in vitro co-culture study and incubated at 37°C for 1 hour. 

Following this step, 30 µl of 20% SDS and 25 µl of 15 mg/ml Proteinase K were 



 112 

added into cell lysates  After incubated at 60°C for 30 min and cooled down on 

ice for 1 min, cell lysates were mixed with 500 µl of phenol/chloroform/isoamyl 

alcohol (25:24:1). Cell lysates were further disrupted in a bead beater at a 

maximum speed for 2 min. Cell homogenates were extracted with 500 µl of 

phenol/chloroform/isoamyl alcohol two more times and then with 500 µl of 

chloroform/isoamyl alcohol (24:1) three times. Next, 450-µl aliquots of aqueous 

phase were mixed with 2.5 volumes of ice-cold ethanol and 0.1 volume of 3M 

sodium acetate. DNA was allowed to precipitate at -20oC for at least 1 h before 

spun down by centrifugation at 14,000 x g for 20 min. DNA pellets were washed 

with 1 ml of ice-cold 70% ethanol, spun down, air-dried, and subsequently 

resuspended in 100 µl of Tris-Cl buffer, pH 8.0. One-microliter aliquots of DNA 

isolates were used for absolute real-time PCR quantification of the wild-type and 

mutant population using the same protocol as described in in vivo co-culture 

study. 
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Results  

In silico identification of potential GOS metabolic genes in L. reuteri 

genomes. Genome analysis based on IMG database revealed that all four 

human-derived, GOS-fermenting strains harbored a -galactosidase-encoding 

gene, lacA, which was absent from the genome of the poor-GOS-fermenting 

strain ATCC 53680 isolated from swine intestine (Table 2).  The lacA gene 

encoding an intracellular -galactosidase [EC:3.2.1.23]  assigned to the 

glycoside hydrolase family 42 (GH42) was situated in the same cluster as the 

lacR and lacS (Figure 1), both of which were also missing from the poor-GOS-

fermenting strain. The lacR and lacS genes were annotated in the L. reuteri 

genomes as LacI family transcriptional regulator LacR/lactose operon repressor 

and GPH family glycoside-pentoside-hexuronide:cation symporter/lactose 

permease respectively.  

In addition to the lacRSA gene cluster, the other DNA locus harboring lacL 

and lacM gene, encoding large and small subunit of a heterodimer GH2-family -

galactosidase was detected in all studied strains with more than 95% identity in 

amino acid sequences (Table 2). Although present in the poor-GOS-fermenting 

strain, their functional -galactosidase activity toward lactose has been 

previously evidenced in L. reuteri strains (116, 117) and their expression in L. 

acidophilus was found to be inducible by GOS (118). Hence the lacL and lacM 

were also considered potential GOS metabolic genes in this study. Organization 

of the two gene clusters potentially involved in GOS metabolism in L. reuteri was 

depicted in Figure 1.  
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Generation of single- and double-gene-deficient mutants. The functional 

roles of individual genes in GOS metabolism was determined by generating 

single- and double-gene-deficient mutants, and then assessing the phenotypes 

of these mutant strains.  Mutants were generated by ssDNA recombineering that 

introduced a stop codon into the coding region proximate to the start codon, 

thereby prematurely terminating translation of functional encoded proteins. The 

presence of an in-frame stop codon in the targeted gene locus was confirmed by 

DNA sequencing. Five mutants, i.e. lacS, lacA, lacL, lacM and lacR, 

harboring a single disrupted gene together with the lacSlacM with double 

mutation were generated in this study. All resultant mutants showed no 

difference in their growth on glucose-mMRS compared to the wild type (Figure 

2C), suggesting the absence of pleiotropic effect of the nonsense mutation.  

 

Role of functional proteins in GOS metabolism. To confirm the role of the 

annotated transporter, -galactosidases and transcriptional regulator in GOS 

metabolism, the ability of the lacS, lacA, lacL, lacM, lacR and lacSlacM 

mutants to utilize GOS were examined. Compared to the wild type MM4-1A, all 

mutants showed diminished growth on GOS-mMRS, indicating the essential role 

of operational encoded proteins in GOS metabolism. However, none of the 

individual gene disruptions completely abolished GOS fermentation (Figure 2A), 

suggesting that (1) LacS was not a sole transporter for GOS uptake and (2) 

hydrolytic activity of two -galactosidases, LacA and LacLM, was not 

interchangeable.  
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 Phenotypes of the mutants on lactose supported the possibility that a 

second transporter may be present. The lacS mutant grew on lactose at a 

noticeably slower rate, but eventually reached the same final cell yield as the wild 

type (Figure 2B). This second lactose transporter may also have affinity for GOS 

components with DP of 2 [-D-gal-(1,3)-D-glc;  -D-gal-(1,6)-D-glc; and -D-gal-

(1,4)-D-gal], and therefore enables the lacS mutant to partially grow on GOS.  

This hypothesis was supported by TLC analysis of GOS components 

remaining in spent mMRS medium containing GOS as a sole carbon source.  

The analysis revealed that GOS with DP of 2 was largely consumed by the lacS 

mutant, while the components with DP  3 remained almost the same after 24-

hour fermentation (Figure 3). This result confirmed the presence of the second 

transporter that has strong affinity for the disaccharide components of GOS.  

Based on genome analysis, the second transporter is potentially encoded 

by a gene [HMPREF0536_1595] also annotated as GPH family glycoside-

pentoside-hexuronide:cation symporter. This gene is present in all studied L. 

reuteri strains, including ATCC 53608, and its product and LacS are similar in 

size (650 vs 640aa) but share only 38% identity in amino acid sequences.   

Not only did growth of the mutants on GOS and lactose suggest the 

cooperation of LacS permease and the second transporter in the GOS uptake 

system, it also indicated distinct capabilities of two -galactosidases to hydrolyze 

GOS.  This was demonstrated by the difference in growth profiles on GOS 

between lacL/lacM and lacA mutant (Figure 2A).  A clear difference in the 

activity of these two enzymes was observed when the mutants were growing on 
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lactose (Figure 2B). Whereas the lacL and lacM mutant completely lost their 

ability to grow on lactose, the lacA grew almost as well as the wild type. This 

result indicated that the GH2 -galactosidase, LacLM, is essential for lactose 

[Gal(1-4)Glc] degradation, while the GH42 -galactosidase, LacA, is not. It also 

raised the question of whether the degradation of other disaccharides present in 

Purimune GOS, including Gal(1-3)Glc; Gal(1-6)Glc; and Gal(1-4)Gal, also 

relies primarily on the hydrolytic activity of the LacLM -galactosidase.  

To address this question, the activity of intracellular LacA and LacLM -

galactosidase on the disaccharide components of GOS as well as lactose was 

determined using cell-free extracts separated from the GOS-grown cells of the 

lacM and lacA mutants. TLC analysis of lactose hydrolysates clearly showed 

that unlike the lacA-cell-free extract which was as capable of hydrolyzing 

lactose as was the wild type, the lacM cell-free extract devoid of the functional 

LacLM -galactosidase completely lacked the ability to do so (Figure 4A). This 

TLC analysis confirmed that only LacLM, but not LacA, has cleavage specificity 

for the (1-4) linkage between galactose and glucose and suggested that the 

cleavage of terminal lactose from GOS with DP  3 be potentially achieved by 

the activity of LacLM.     

Despite losing the capacity to hydrolyze lactose, the lacM-cell-free extract 

still demonstrated an ability to degrade some other forms of GOS disaccharides 

and consequently release free glucose and galactose into the reaction mix 

(Figure 4B, lane 13-16). This result suggested that LacA which remains intact in 

the lacM mutant be capable of hydrolyzing either Gal(1-3)Glc, Gal(1-6)Glc, or 
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both, even though it cannot cleave the (1-4) linkage of lactose [Gal(1-4)Glc]. 

Furthermore, the absence of functional LacA in the lacA-cell-free extract 

noticeably diminished hydrolytic activity on the disaccharide fraction (Figure 4B, 

lane 9-12), emphasizing the indispensable role of the enzyme in the degradation 

of GOS disaccharides.  

 Further in vitro hydrolysis was conducted using a pool of fractionated GOS 

primarily containing trisaccharides [Gal(1-3, 4, or 6)Gal(1-4)Glc] and 

tretrasaccharides [Gal(1-6)Gal(1-4)Gal(1-4)Glc]. This fraction of GOS 

represents the substrate with a Gal-Gal linkage(s) and lactose terminus. The TLC 

analysis showed that, although disaccharide products were detected in the 

reaction mix of the lacA-cell-free extract, tri- and tetrasaccharide portion 

remained almost the same throughout the 12 hours of enzymatic reaction (Figure 

4C, lane 9-12). This result indicated that LacLM had only minimal hydrolytic 

activity on GOS with DP  3. In comparison to the lacA-cell-free extract, both tri- 

and tetrasaccharides in particular were remained to a lesser extent in the 

reaction mix of the lacM-cell-free extract (Figure 4C, lane 13-16), indicating the 

higher activity of LacA on such GOS components. Moreover, the accumulation of 

lactose as a hydrolysis product suggested that LacA cleave tri- and 

tetrasaccharides at Gal-Gal -linkages and consequently release a lactose 

terminus, which was resistant to LacA hydrolytic activity, into the reaction mix.  
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Regulation of GOS metabolic genes. The presence of the lacR gene 

functionally annotated as a LacI family transcriptional regulator/ lactose operon 

repressor in the upstream region of GOS metabolic genes, lacS and lacA, 

(Figure 2) suggesting the regulatory role of LacR. Sequence analysis of the LacR 

protein sequence for conserved domains using NCBI CD-Search interface 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) (119) revealed that LacR 

harbored a helix-turn-helix (HTH) DNA binding domain and a ligand-binding 

domain. This raised a hypothesis that the LacR repressor may negatively control 

the transcription of the metabolic genes by binding to an operator site situated 

upstream of lacSA, and therefore blocking the activity of RNA polymerase.  It 

also suggested that the LacR repressor should be released from the operation 

site in the presence of an inducer, which binds to the ligand-binding domain and 

consequently inactivates LacR by altering its conformation. Furthermore, DNA 

sequence analysis predicted the presence of a promoter region preceding a 

putative catabolite responsive element (CRE) site, which potentially serves as 

the operator site of the LacR repressor (120), in the upstream region of lacSA 

and downstream of lacR (Figure 1). Such organization of the lacRSA gene locus 

suggests that GOS metabolism is subject to negative regulation.  

 To experimentally determine whether the expression of lacSA is under the 

negative regulation, firstly, gene expression analysis in the wild-type L. reuteri 

MM4-1A was performed to assess the inducibility of the lacSA gene cluster as 

well as to identify an inducer(s). Secondly, the constitutive expression of the 

metabolic gene was determined in the lacR mutant to confirm the function of 
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LacR as a repressor protein.  In the wild type, the level of the lacS transcript was 

measured after the mMRS-grown cell had been stimulated by either 1% GOS 

components, 1% lactose, 1% melibiose [Gal(1-6)Glc, an GOS], 1% glucose, 

1% lactose plus 0.1% glucose, or no additional carbohydrate. The transcription 

analysis (Figure 5A) showed that in comparison to the basal level of the lacS 

transcript detected in mMRS-grown cell with no additional carbohydrate added, 

lacS was up-regulated approximately 20-fold exclusively by lactose stimulation, 

while the transcription at only the basal level was detected in response to other 

carbohydrates, including GOS disaccharides and components with DP  3.  This 

finding indicated that the expression of lacS and lacA is inducible and lactose, 

but not any other forms of GOS or GOS, is the inducer that regulates the 

transcription of such GOS metabolic genes. Furthermore, the transcriptional 

analysis in the wild type also revealed that metabolism of GOS in L. reuteri is 

controlled by carbon catabolite repression (CCR), as demonstrated by the 

repression of the lacS transcription when glucose coexisted with lactose (Figure 

5A).  

 Unlike the controlled expression in the wild type, no significant difference 

in the level of lacS transcript was detected from the lacR mutant in response to 

different carbohydrates (Figure 5B). The lacS gene was expressed at similar 

levels 13-fold, on average, higher than the basal transcriptional level found in the 

wild type upon the exposure to the inducer lactose, the CCR repressor glucose, 

melibiose, and even without sugar.  The absence of a functional LacR resulted in 

a constitutive mutant, confirming the function of LacR as a repressor protein that 
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controls expression of GOS metabolic genes.  

 

In vivo capacity to utilize GOS in the gut. To assess the ability of L. reuteri to 

metabolize GOS during its transit through the gut, we exploited the lacSlacM 

mutant, whose key GOS metabolic machinery was inactivated. The mutant and 

wild type L. reuteri MM4-1A were first co-cultured in vitro to determine if GOS 

metabolism conferred a growth advantage for the wild-type strain. Both strains 

were co-inoculated in 1% GOS-mMRS and continually subcultured into the fresh 

medium until the 28th generation of the wild type was achieved. Quantitative real-

time PCR analysis using strain-specific primers revealed that the wild type out-

competed the mutant and quickly became the dominant strain.  Indeed, the 

mutant was consistently diluted to near extinction at the end of the experiment 

(Figure 6A).  By contrast, no such growth advantage was observed when these 

strains were co-cultured in 1% glucose-mMRS (Figure 6B). This result 

established that GOS metabolism confers a significant growth advantage to the 

wild type in a favorable growth condition rich in GOS. 

 Next, we examined the in vivo capacity of the wild type to utilize GOS in 

the gut of gnotobiotic mice. We predicted that if the wild type consumes GOS, its 

population in the GOS-enriched gut should be higher than that in mice fed a 

control diet (i.e., without GOS), whereas the population of the mutant, which 

cannot take advantage of GOS, should be similar.  In addition, a purified 

ingredient diet was used to minimize the amount of fermentable sugars that could 

serve as an alternative carbon source and consequently could obscure the 
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impact of GOS. The fecal population of both strains was quantified by real-time 

PCR.  As predicted, the wild type colonized at higher levels in the presence of 

GOS, while no significant difference between populations of the mutant was 

observed (Figure 7). This result showed that the wild type L. reuteri was capable 

of utilizing GOS in the murine gut environment.  

 

Discussion  

Probiotic microroganisms can improve host health by one of several 

mechanisms. They can contribute to colonization resistance and modulate 

immune activities through the production of biologically active metabolites, such 

as antimicrobial compounds and SCFAs (121-123). Probiotic bacteria may also 

compete directly with enteropathogens for nutritional and physical niches (72, 73, 

124). These modes of action generally require metabolically active cells to exert 

the effects. However, nutrient sequestration by indigenous microbes could 

greatly deplete nutrient availability in the gut (13, 80, 81), thereby restraining 

probiotic organisms from engaging in beneficial activities. Theoretically, 

supplying probiotics with fermentable prebiotics in the form of synergistic 

synbiotics could promote survivability and enhance metabolic activity (83). 

Accordingly, development of appropriate synbiotic preparations requires 

knowledge of the molecular mechanisms responsible for metabolism of the 

prebiotic to ensure that the prebiotic substrates can support growth of the 

probiotic strain, in vivo, and ultimately enhance host health.   
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In this study, we identified the transport and metabolic genes and 

pathways used by L. reuteri to utilize the prebiotic, GOS. We first compared the 

genome of four human-isolated strains exhibiting strong GOS-fermenting 

capacity with that of a swine isolate deficient in GOS utilization. We also 

identified and compared genes encoding for putative -galactosidases within 

these genomes. Five potential genes were subsequently identified (Table 2) and 

mutants harboring in-frame nonsense mutations in those genes were generated.  

Phenotypic analyses of the resulting mutants confirmed that the LacS 

permease, GH42 -galactosidase (LacA), and GH2 heterodimeric -

galactosidase (LacLM) were necessary for GOS metabolism in L. reuteri. The 

growth of the lacS mutant on GOS, although impaired, was not completely 

abolished (Figure 2A), thereby indicating that the LacS permease was not the 

sole GOS transporter in L. reuteri.  Moreover, the absence of disaccharide 

species in the spent fermentation media of the mutant (Figure 3) suggested that 

a second transporter may import GOS disaccharides (including lactose).  Indeed, 

genome analysis revealed the presence of another lacS gene 

[HMPREF0536_1595] predicted to encode GPH-family LacS permease and 

share 38% amino acid homology with the lacS gene characterized in this study.  

Cooperative action between the -galactosidases, LacA and LacLM was 

also observed.  The inability of the lacM mutant to grow on lactose (Figure 2B) 

indicated that the LacLM -galactosidase had activity toward the Gal(1  4)Glc 

galactosidic linkage, including the terminal lactose of GOS oligosaccharides. The 

accumulation of lactose detected in the lacM-cell-free extracts on GOS tri- and 
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tetrasaccharides (Figure 4C, lane 13-16) further supports the hydrolytic activity of 

LacLM at the terminal lactose. In contrast, LacA does not possess lactose-

hydrolyzing activity, which was demonstrated by similar growth on lactose 

between the lacA mutant and the wild type (Figure 2B) as well as the 

degradation of lactose in the cell free extract devoid of LacA (Figure 4A, lane 8-

11). However, intact LacA present in the lacM-cell-free extract allowed 

hydrolysis of GOS tri- and tetrasaccharides and the liberation of galactose and 

lactose moieties (Figure 4C, lane 13-16), whereas its absence reduced these 

hydrolytic activities (Figure 4C, lane 9-12). These results thereby suggest the 

activity of LacA toward Gal(1 3, 4, and/or 6)Gal galactosidic linkages 

constituting GOS di- and oligosaccharides used in this study (Table S1). 

Furthermore, the liberation of glucose moieties from GOS disaccharides in the 

presence of LacA when LacLM was absent (Figure 4B, lane 13-16) and the 

reduced degradation of some disaccharide species in the absence of LacA 

(Figure 4B, lane 9-12) suggest potential LacA activity toward Gal(1 3 and/or 

6)Glc as well as Gal(1 4)Gal linkages.  

These observations indicate the cooperative action between LacA and 

LacLM in hydrolyzing different GOS disaccharides and different -galactosidic 

linkages constituting GOS oligosaccharides. Based on the observation that -

galactosidases are exoglycosidases that cleave -galactosidic linkages at the 

terminal -galactosyl residue [EGal-R  EGal + R] (125),  GOS 

oligosaccharides should be cleaved first by LacA at their terminal -galactosyl 

residue, eventually yielding free galactose and terminal lactose moieties. LacLM 
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with lactase activity then hydrolyzes liberated terminal lactose into galactose and 

glucose.  

The distinct hydrolytic activities of L. reuteri LacLM and LacA are 

congruent with different enzymatic properties between GH2 and GH42 -

galactosidases (EC 3.2.1.23) previously reported. The GH2 -galactosidases 

commonly have lactose as their natural substrate (125) and enzymes in this 

family, including the LacLM and LacZ type, have been frequently characterized in 

lactic acid bacteria associated with dairy fermentation (126) and in bifidobacteria 

of human intestinal origin (127). Evidence for GH2 enzyme collaboratively acting 

on oligosaccharides is present in Bifidobacterium bifidum whose extracellular 

GH2 -galactosidase (Bbg) appears to cooperate with a -N-

acetylhexosaminidase (Bbh) in sequential degradation of lacto-N-neotetraose 

[Gal(1-4)GlcNAc(1-3)Gal(1-4)Glc] backbone of human milk oligosaccharides. 

It has been suggested that, at first, Bbg, which is active on N-

acetyllactosamine [Gal(1-4)GlcNAc] and lactose (128, 129), liberates galactose 

and lacto-N-triose II [GlcNAc(1-3)Gal(1-4)Glc]. The enzyme Bbh then 

hydrolyzes lacto-N-triose II into GlcNAc and lactose that is subsequently cleaved 

by Bbg into galactose and glucose (129).  

 In contrast, the GH42 -galactosidases typically have weak affinity toward 

lactose and prefer to act on other galactose-containing glycosides (130-132). In 

Bifidobacterium adolescentis GH42 -galactosidase is highly active toward 

Gal(1-4)Gal and Gal(1-4)Gal-containing oligosaccharides derived from potato 

galactan (130, 133).  
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The cooperative action between GH2 LacLM and GH42 LacA in 

hydrolyzing GOS characterized here in L. reuteri is in agreement with other 

studies.  In B. bifidum NCIMB41171, the -galactosidases from these two 

families appear to preferentially break down different galactosidic linkages and 

thereby complementarily hydrolyze GOS (128, 132). The B. bifidum GH42 Bbg 

is highly active toward Gal(1-6)Gal and shows capacity to hydrolyze GOS tri- 

and tetrasaccharides. On the other hand, three GH2 -galactosidases including 

two intracellular Bbg and BbgV and one extracellular Bbg prefer lactose as a 

substrate (128, 132).  

Gopal et al. (134) were the first to associate the lactose permease/-

galactosidase system, one of the major mechanisms for lactose metabolism in 

lactic acid bacteria (126), with the ability of lactobacilli strains to utilize GOS.  

Specifically, they observed that all identified GOS-fermenting strains possess a 

-galactosidase. The involvement of the system was also supported by Andersen 

et al. (118) who employed microarray transcriptome analysis to study GOS 

metabolism in Lactobacillus acidophilus NCFM.  They subsequently identified 

LacS permease and two -galactosidases, LacA and LacLM, as being 

responsible for GOS metabolism.  In particular, the LacS permease was shown 

to be the sole transporter for GOS uptake in L. acidophilus NCFM. This 

permease shares 71% amino acid identity with the L. reuteri LacS permease. 

However, in L. reuteri, the LacS permease is not the only transporter for GOS 

uptake. Instead, it cooperates with a second transporter in accumulating GOS 

disaccharides and lactose as described previously 



 126 

Further support for the key role of LacS, LacA, and LacLM was reported 

for Lactobacillus ruminis (135). In this bacterium, two operons encode for 

systems involved in -galactoside utilization. One includes a lacIYZ predicted to 

encode a LacI-family transcriptional regulator, GPH-family lactose permease, 

and GH42 -galactosidase (LacA).  A second operon, lacYZ, encodes for a 

putative lactose permease and GH2 -galactosidase (LacZ).  Both of these 

operons are present only in the GOS-fermenting strain but not in the strain 

incapable of utilizing GOS and lactose, suggesting their fundamental role in GOS 

metabolism (135). 

In L. reuteri, the poor GOS-fermenting strain (ATCC 53608) does not 

possess the lacRSA but still maintains lacLM in its genome (Table 2). Not 

surprisingly, the absence of the former operon limits the transport and hydrolysis 

of most GOS components, as well as prevents terminal lactose from serving as a 

substrate of LacLM. These limitations can apparently explain the substantial 

decrease in GOS-fermenting capacity in the lacRSA deficient strain.  Gene 

expression analysis revealed that L. reuteri typically expresses a basal level of 

LacS and LacA (data not showed) and that the lacSA operon is inducible (Figure 

5A). It is important to note that only ‘lactose’ but none of GOS di- and 

oligosaccharides can act as an inducer that relieves repression of mRNA 

synthesis (Figure 5A). Furthermore, the transcriptional analysis in the lacR 

mutant confirms the function of LacR as a repressor protein whose inactivation 

completely abolished the repression of the lacSA transcription (Figure 5B).  
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Based on these findings and the presence of a putative operator and 

promoter site within the lacRSA locus (Figure 1), we argue that L. reuteri 

regulates GOS metabolism through the LacR-mediated negative control of 

metabolic gene transcription (136).  Accordingly, in the absence of the inducer 

lactose, the repressor protein LacR binds to the operator region (cre site, cis-

acting sequence) situated between the promoter region and the lacS start codon 

(Figure 1), thereby preventing the RNA polymerase from initiating DNA 

transcription. The transcription of GOS metabolic genes occurs only when the 

inducer lactose binds to LacR and therefore inactivates its DNA-binding capacity.  

Gene expression analysis also indicated that GOS metabolism is under 

carbon catabolite repression (CCR) (137).   The presence of glucose prevented 

the expression of GOS metabolic genes, even though lactose was concomitantly 

present (Figure 5A). Nevertheless, glucose could not repress gene transcription 

in the absence of the functional repressor protein LacR (Figure 5B), suggesting 

that L. reuteri elicits CCR through inducer exclusion (137, 138). We postulate that 

the presence of a preferred carbon source (i.e., glucose) inhibits LacS permease 

from transporting the inducer lactose, thereby preventing the activation of lacSA 

transcription and therefore GOS metabolism. Inhibition of LacS activity is 

presumably elicited by phosphorylation-dependent control of an Enzyme IIA-

homologous domain present at the C-terminus of LacS, adjacent to the N-

terminal carrier domain.  Regulation of non-PTS transport systems via PTS-

mediated phosphorylation of a IIA domain is well established in lactic acid 

bacteria (139).  In Streptococcus thermophilus, for example, a C-terminal IIA-
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homologous domain of lactose permease is phosphorylated by the PTS pathway.  

The phosphorylated IIA domain interacts with the lactose carrier domain, 

activating the permease for lactose transport (140, 141). 

Interestingly, in S. thermophilus, the action of -galactosidase co-

expressed with the lactose permease is essential for the control of transport 

activity and metabolic gene expression.  The S. thermophilus -galactosidase 

hydrolyzes lactose and supplies galactose to the permease for the exchange of 

external lactose (141). As for the L. reuteri -galactosidase, LacA, its inability to 

hydrolyze lactose may have evolved to facilitate the transcriptional regulation of 

GOS metabolic genes, lacSA, which require lactose to relieve the action of the 

repressor protein LacR.  Finally, we noted that L. reuteri typically expresses two 

key GOS metabolic proteins, LacS permease and LacA -galactosidase, at a 

basal level.  This enables the organism to respond rapidly to the availability of 

GOS.  

The phenotypic and gene expression analyses described above allow us 

to assemble a coherent model for GOS metabolism in L. reuteri (Figure 8). 

Accordingly, GOS is taken up into the cytosol by the activity of two different 

transporters, i.e., the LacS permease and a second transporter predicted to be 

another GPH-family symporter. The LacS permease has broad substrate 

specificity and is responsible for the transport of various GOS components, 

especially with a DP of 2 - 4, as well as lactose.  In contrast, the second 

transporter appears to have affinity mainly for lactose and GOS disaccharides. In 

the cytosol, LacA sequentially cleaves GOS oligosaccharides from the terminal 
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-galactosyl residue until all galactose moieties and terminal lactose are 

liberated.  The LacLM subsequently breaks down the terminal lactose into 

glucose and galactose. Both LacA and LacLM also cooperatively hydrolyze 

internalized GOS disaccharides by potentially targeting different -galactosidic 

linkages.  

This metabolic activity is regulated at the level of LacS transport activity 

and at the level of LacS and LacA expression.   The GOS metabolic machinery is 

fully active only in the presence of lactose and in the absence of glucose or other 

preferred carbon sources (Figure 8A). In this condition, LacS is presumably 

activated by PTS-mediated phosphorylation of its IIA-like domain triggered by a 

high level of PEP. As a result, LacS actively transports GOS and lactose into the 

cytosol where imported or GOS-liberated lactose binds to LacR repressor and 

thereby induces the lacSA transcription. When glucose is present (Figure 8B), 

LacS transport activity is inhibited presumably by elevated conversion of PEP 

into pyruvate and ATP in fast growing cells, which thereby represses LacS-IIA 

phosphorylation. Accordingly, lactose is excluded from the LacR repressor and 

lacSA transcription is repressed.   

Despite having characterized the molecular basis for GOS metabolism in 

L. reuteri, whether or not this machinery is operational in vivo (i.e., the gut) has 

not been established. We therefore addressed this question using a gnotobiotic 

mouse model. In the model, the presence of GOS significantly stimulated the 

growth of the wild-type strain, while no such effect was observed in the 

lacSlacM mutant deficient in GOS-fermenting capacity (Figure 7A and B). This 
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result thereby indicates the ability of L. reuteri to utilize GOS in the gut. However, 

the wild type did not quickly displace the mutant in the presence of GOS (Figure 

7C) as it did when co-cultured with the mutant in GOS-containing media (Figure 

6). Although a purified mouse feed was used to minimize the amounts of 

alternative fermentable carbohydrates, it seems likely that there were sufficient 

carbohydrates present in this diet to minimize any effect the GOS mutation may 

have had. Interestingly, when mice were fed with a standard chow diet (LabDiet 

5K67), the wild type appeared to outcompete the mutant regardless of GOS 

(Supplementary Figure S3), suggesting specificity of the GOS-metabolic system 

for other substrates. Such substrates may be beta-galactans that could be 

derived from plant ingredients (142) and be the potential targets of the GH42 -

galactosidase (130). 

The ability of probiotic strains to metabolize GOS (or other prebiotics) in 

the gut environment is an important criterion for development of rational, 

synergistic synbiotics (83). However, to successfully complete against other 

intestinal microbes (which may also utilize GOS (143, 144)), the targeted 

probiotic must express uptake systems and catabolic enzymes necessary for 

GOS metabolism. Based on the results obtained in this study, expression of 

these systems requires particular conditions, namely the presence of lactose and 

an absence of glucose. Hence, translational research aimed at using 

metabolically active cells of L. reuteri to promote host health should also consider 

how the L. reuteri-GOS mixture is prepared, so that GOS metabolism, in vivo, is 

optimized. 
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Table 1. Recombineering oligonucleotides and MAMA-PCR primers used to 

generate mutants deficient in potential GOS metabolic genes 

 

- Recombineering oligosaccharides are identical to antisense strands except for five 

mismatches showed in bold lowercase bases. Underlined bases denote introducing stop 

codons (TAG), and figures in parentheses indicate annealing sites relative to the first base of 

the start codons of the target genes.  

- MAMA-PCR forward primers are homologous to mutated sequences, but harbor three to five 

mismatches (in bold lowercase) with wild-type sequences.  Arrows illustrates the annealing 

sites of the forward primers.
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Table 2. Similarity among protein sequences encoded by GOS metabolic genes identified in different L. reuteri genomes 

 

a Locus tag as assigned in L. reuteri MM4-1A genome 

b Given symbols: lacR, lacS, and lacA as referred to in Andersen et al. (2011); lacL and lacM as assigned in the Integrated Microbial 

Genomes (IMG) system  

c %Similarity in comparison to MM4-1A query sequences 

Poor-GOS- 

fermenting

MM4-1A F275 MM2-3 ATCC 55730 ATCC 53608

659 lacR LacI family transcriptional regulator LacR 100%
c

100% 100% 95% absent

660 lacS Glycoside-pentoside-hexuronide:cation symporter 100% 100% 100% 96% absent

661 lacA GH42 β-galactosidase 100% 100% 100% 95% absent

317 lacL GH2 β-galactosidase large subunit 100% 100% 100% 98% 98%

316 lacM GH2 β-galactosidase small subunit 100% 100% 100% 96% 95%

L. reuteri strains

GOS-fermentingAnnotated gene product
Gene 

symbol
b

Locus tag
a 

HMPREF0536_

1
3

2
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Fig. 1. Organization of two gene clusters potentially responsible for GOS 

metabolism in L. reuteri. The predicted CRE/operator sequence is boxed in red 

and the predicted -35 and -10 sequence of the 70-promotor are underlined. The 

stop codon of lacR and the start codon of lacS are colored red and green 

respectively. The lacLM gene is located 33.3 kb downstream of the lacRSA 

cluster in L. reuteri MM4-1A genome.  
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Fig. 2. Growth of wild-type L. reuteri  MM4-1A (),  lacR (), lacS (), lacA 

(), lacL (), lacM (), and lacSlacM () on mMRS supplemented with (A) 

1% GOS ; (B) 1% lactose; (C ) 1% glucose; and (D) GOS-contaminating sugars. 

The red line represents the minimal growth observed when the lacSlacM mutant 

was grown on contaminating sugar-mMRS. Results are expressed as means ± SD 

obtained from three independent replicates. 
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Fig. 3. TLC analysis of GOS consumption by wild-type L. reuteri MM4-1A and the 

lacS mutant. Lanes 1 and 2:  spent medium of the wild type at 12 and 24 h; lanes 

3 and 6: standard 1% GOS-mMRS medium; and lanes 4 and 5: spent medium of 

the mutant at 12 and 24 h. DP: degree of polymerization 
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Fig. 4. TLC analysis to determine -galactosidase activities of cell-free extracts 

(CFEs) on different -galactosides. (A) Activity on lactose. Lane 1: glucose; lane 

2: lactose and galactose; lanes 3 and 16: lactose in the reaction mix; lanes 4-7: 

wt-CFEs at 2, 4, 6, 12h; lanes 8-11: lacA-CFEs at 2, 4, 6, 12 h; and lanes 12-15: 

lacM-CFEs at 2, 4, 6, 12 h. (B) Activity on GOS disaccharides. Lane 1: glucose; 

lane 2: lactose and galactose; lane 3: GOS; lanes 4 and 17: disaccharides in the 

reaction mix; lanes 5-8: wt-CFEs at 2, 4, 6, 12h; lanes 9-12: lacA-CFEs at 2, 4, 

6, 12 h; and lanes 13-16: lacM-CFEs at 2, 4, 6, 12 h. (C) Activity on GOS tri- 

and tetrasaccharides. Lane 1: glucose; lane 2: lactose and galactose; lane 3: 

GOS; lanes 4 and 17: oligosaccharides in the reaction mix; lanes 5-8: wt-CFEs at 

2, 4, 6, 12h; lanes 9-12: lacA-CFEs at 2, 4, 6, 12 h; and lanes 13-16: lacM-

CFEs at 2, 4, 6, 12 h.  

A B 

C 
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Fig. 5. Relative real-time PCR quantitative analysis of the lacS gene transcript in 

response to different carbon-sources.  (A) The lacS expression in wild-type L. 

reuteri MM4-1A and (B) in the lacR mutant.  Glc: glucose, Lac: lactose, DP2: 

GOS disaccharides, DP3,4: GOS tri- and tetrasaccharides. Results are expressed 

as means ± SD obtained from three independent replicates. Asterisks denote 

significant differences (p < 0.05) analyzed by Repeated Measures ANOVA with 

Tukey’s post test. 
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Fig. 6. Proportions of the total L. reuteri population comprised of wild-type L. reuteri 

MM4-1A and the ΔlacSΔlacM mutant during the in vitro co-culture in (A) 1%Glc-

mMRS and (B) 1% GOS-mMRS.  
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Fig. 7. Changes in fecal populations of wild-type L. reuteri MM4-1A and the 

ΔlacSΔlacM mutant, co-inoculated into the ex-germ-free C3H mouse gut. (A) Wild-

type populations in GOS-fed mice () and in control mice (). (B) Mutant 

populations in GOS -fed mice () and in control mice (). An asterisk denotes 

significant differences (p < 0.05) analyzed by one-way ANOVA with Tukey’s post 

test. Proportion of the total L. reuteri comprised of wild-type MM4-1A and the 

ΔlacSΔlacM mutant in the mouse gut in the presence (C: left panel) or absence of 

GOS (C: right panel).  
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Fig. 8. The proposed model for GOS metabolism in L. reuteri. (A) In the presence 

of lactose and the absence of glucose and (B) in the presence of glucose.  

A 

B 
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Table S1. Compositions of Purimune GOS powder (109) 
 

Composition Content (%) 

Monosaccharides Glucose 0.0-1.0 

Galactose 0.0-0.5 

Disaccharides Lactose [Gal(1-4)Glc] 7.0-10.0 

Gal(1-3)Glc, Gal(1-4)Gal 7.0-9.0 

Gal(1-6)Glc (allolactose) 9.0-12.0 

Trisaccharides Gal(1-4)Gal(1-4)Glc 16.0-20.0 

Gal(1-6)Gal(1-4)Glc 8.0-13.0 

Gal(1-3)Gal(1-4)Glc 14.0-19.0 

Tetrasaccharides and 
higher oligomers 

Gal[(1-6)Gal(1-4)]nGal(1-4)Glc 25.0-29.0 

 
 
 
Table S2. Real-time PCR primers used in the study 
 

Experiment Primer (5- 3) Target 

Gene expression 
analysis 

Fwd: TTTCTCGCGCTTCGTTTTGC 

Rev: TCCTGCAAACATTCCGCTTG 

lacS  

Fwd: TCCGCCATTCAAACGTTGTG  

Rev: TTGCCCAATACGTTCGCTAC 

recA (reference gene) 

Fwd: GTACGCACTGGCCCAA 

Rev: ACCGCAGGTCCATCCCAG 

16S rRNA gene, 16S 
rRNA 

In vitro co-culture 
and mouse 
experiment 

Fwd: CACAAGCGGAATGTTTGCA 

Rev: CGGGTCTTCGTATTATCAACAA 

Wild-type lacS in L. 
reuteri MM4-1A 

Fwd: CACAAGCGGAATGTAGTAG 

Rev: CGGGTCTTCGTATTATCAAC 

Mutated lacS in the 
ΔlacSΔlacM mutant 
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Fig. S1. TLC analysis of freeze-dried GOS fractions separated from Purimune 

GOS by Sephadex G-10 size exclusion chromatography. Lane 1:  lactose and 

galactose; lanes 2 and 8: standard Purimune GOS; lane 3: fraction with the 

degree of polymerization (DP)  4; lane 4: fraction with DP 3-5; lane 5:  tri- and 

tetrasaccharide fraction; lanes 6 and 7: disaccharide fraction. 
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Fig. S2. The experimental design for the in vivo determination of capability of L. 

reuteri to utilize GOS in the gut 
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Fig. S3. Proportions of the total fecal L. reuteri population comprised of wild-type L. 

reuteri MM4-1A and the ΔlacSΔlacM mutant after both strains were co-inoculated 

into germ-free C3H mouse fed with a standard chow diet with (left panel) or without 

GOS supplementation (right panel). 
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This study describes the efficacy of GOS and/or rhamnose-based synbiotic 

approaches aiming to enhance colonization persistence and metabolic activity of 

probiotic L. reuteri in the human gastrointestinal tract. It also describes the 

metabolic system equipping L. reuteri with the ability to ferment prebiotic GOS 

and regulate such metabolism. Key findings obtained are as the followings. 

 

 In a single blind, randomized, crossover, placebo-controlled human study, the 

addition of GOS, rhamnose, and the mixture of the both substances did not 

increase fecal L. reuteri populations, nor did they enhance its persistence 

after consumption of the probiotic had ended. 

 Although both L. reuteri/GOS (2 g/d) and L. reuteri/rhamnose (2 g/d) synbiotic 

failed to stimulate L. reuteri metabolic activity, daily administration of L. reuteri 

DSM 17938 (5 x 108 cells) and the mixture of GOS (1g) and rhamnose (1g) 

significantly increased metabolic activity of the probiotic in the human gut. 

 Correspondingly, GOS/rhamnose-derived 1,2-propanediol (1,2-PD) 

synergistically enhanced growth of L. reuteri in vitro, suggesting the ability of 

1,2-PD to complement GOS metabolism as an external electron acceptor or 

additional energy source. 

 The metabolic machinery enabling GOS metabolism in L. reuteri was 

characterized and a coherent model of GOS metabolism and regulation has 

been assembled. 

 According to the model in L. reuteri MM4-1A, the metabolic system relies on 

LacS permease and a second transporter to import diverse GOS species into 
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the cytosol where two -galactosidases, LacA and LacLM sequentially break 

down GOS oligosaccharides as well as concertedly hydrolyze GOS 

disaccharides.   

 Studies on system regulation revealed that GOS metabolism in L. reuteri is 

regulated by repressor protein LacR and subject to carbon catabolite 

repression (CCR). 

 The metabolic system was fully induced only in the presence of inducer 

lactose and in the absence of glucose (i.e., a preferred carbon source), 

whereas none of GOS di- and oligosaccharide components showed capacity 

to induce the GOS metabolic gene transcription.  

 This GOS metabolic system appears to be operational in the gut as 

evidenced by a growth advantage only the wild type strain, but not the GOS 

metabolic gene-deficient mutant, gain in the GOS-enriched murine gut.  

 Interestingly, the wild type strain could outcompete the GOS metabolic gene-

deficient mutant when mice were fed with a standard chow diet, irrespective 

of the presence or absence of GOS, suggesting the specificity of the GOS 

metabolic system for other carbohydrates.  

 

The findings on the potential of the GOS/rhamnose combination to stimulate 

L. reuteri metabolic activity and the inducibility of the GOS metabolic system 

could be valuable for the development of an effective synbiotic approach. The 

use of the lactose-activated L. reuteri cells/GOS/rhamnose combination may 

stimulate cell growth and activity by maximizing cell conversion of supplemented 
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carbohydrates into energy and carbon skeletons. This synbiotic approach 

therefore merits further investigation. Furthermore, the additional substrate(s) of 

the GOS metabolic system is worth characterizing. Such characterization may 

lead to the discovery of prebiotics that effectively stimulate probiotic activities of 

L. reuteri.  Such study may also disclose a true role of the GOS metabolic system 

in sustaining the existence of this autochthonous bacterium in the human gut.  
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