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The relative efficiencies of different protein-coding genes of the mitochondrial genome and different tree-building 

methods in recovering a known vertebrate phylogeny (two whale species, cow, rat, mouse, opossum, chicken, frog, 

and three bony fish species) was evaluated. The tree-building methods examined were the neighbor joining (NJ), 

minimum evolution (ME), maximum parsimony (MP), and maximum likelihood (ML), and both nucleotide se- 

quences and deduced amino acid sequences were analyzed. Generally speaking, amino acid sequences were better 

than nucleotide sequences in obtaining the true tree (topology) or trees close to the true tree. However, when only 

first and second codon positions data were used, nucleotide sequences produced reasonably good trees. Among the 

13 genes examined, Nd5 produced the true tree in all tree-building methods or algorithms for both amino acid and 

nucleotide sequence data. Genes Cytb and Nd4 also produced the correct tree in most tree-building algorithms when 

amino acid sequence data were used. By contrast, Co2, ZVdl, and Nd4Z showed a poor performance. In general, 

large genes produced better results, and when the entire set of genes was used, all tree-building methods generated 

the true tree. In each tree-building method, several distance measures or algorithms were used, but all these distance 

measures or algorithms produced essentially the same results. The ME method, in which many different topologies 

are examined, was no better than the NJ method, which generates a single final tree. Similarly, an ML method, in 

which many topologies are examined, was no better than the ML star decomposition algorithm that generates a 

single final tree. In ML the best substitution model chosen by using the Akaike information criterion produced no 

better results than simpler substitution models. These results question the utility of the currently used optimization 

principles in phylogenetic construction. Relatively simple methods such as the NJ and ML star decomposition 

algorithms seem to produce as good results as those obtained by more sophisticated methods. The efficiencies of 

the NJ, ME, MP and ML methods in obtaining the correct tree were nearly the same when amino acid sequence 

data were used. The most important factor in constructing reliable phylogenetic trees seems to be the number of 

amino acids or nucleotides used. 

Introduction 

It is well known that the phylogenetic trees recon- 

structed from different genes for the same set of organ- 

isms are often different (e.g., Goodman et al. 1982; 

Hedges 1994). This is true even with mitochondrial 

DNA (mtDNA), where all genes are inherited together 

without recombination and there is no confusion of or- 

thologous and paralogous genes (e.g., Cao, Adachi, and 

Hasegawa 1994; Cao et al. 1994; Simon et al. 1994; 

Honeycutt et al. 1995). The differences between phy- 

logenetic trees reconstructed may be caused by sampling 

error of nucleotides or codons, different patterns of nu- 

cleotide or amino acid substitutions, etc., but in most 

cases it is difficult to know which of the reconstructed 

trees is the correct one because the true tree is unknown. 

It is possible that some genes are more suitable for re- 
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constructing a phylogenetic tree than others, but it is 

usually difficult to know which gene is the best. 

This problem can be solved if the true phylogeny 

of the organisms is known. Hillis, Huelsenback, and 

Cunningham (1994) studied the accuracy of a recon- 

structed tree by producing an artificially generated phy- 

logeny in phages, inducing mutation by chemical mu- 

tagens. While this experiment is interesting, it is desir- 

able to examine the accuracy of the trees reconstructed 

by using existing organisms. Actually, there are organ- 

isms of which the phylogeny is firmly established by 

fossil records and morphological characters. For exam- 

ple, no one would dispute the phylogenetic relationships 

of humans, chimpanzees, macaques, marsupials, birds, 

and bony fishes. If we use these groups of organisms, it 

is possible to determine how reliable a particular gene 

is for obtaining the correct tree. 

One of the purposes of this paper is to study this 

problem by using 13 protein-coding genes in the mito- 

chondrial genome for a group of vertebrate species, of 

which the phylogeny is known. Because the number of 

codons and the extent of sequence divergence differ 

considerably among the genes, it is possible to examine 

their effects on the phylogenetic tree reconstructed. In 

this paper we are also interested in studying the effi- 
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FIG. l.-The known tree used in this paper. The phylogenetic 

relationships of the 11 vertebrate species are based on morphological 

characters and fossil records. The branch lengths are least-squares es- 

timates of the neighbor-joining tree with Poisson-correction distance. 

p: Balaenoptera physalus. m: B. muse&s. 

ciencies of different tree-building methods or algorithms 

in recovering the correct tree, though this scope is some- 

what limited because there are only 13 genes. Our pri- 

mary interest is in the trees constructed from amino acid 

sequences, as the organisms used are distantly related 

and synonymous substitutions are apparently saturated 

(Cao et al. 1994). However, we will also examine phy- 

logenetic trees constructed from DNA sequences for the 

sake of comparison with protein sequence trees. 

Materials and Methods 

Organisms and Sequence Data 

There are now many complete mtDNA sequences 

from diverse groups of organisms. For our study, we 

have chosen sequences from 11 vertebrate organisms for 

which the evolutionary relationships are established and 

the complete sequence is available. The organisms used 

(and the source of the sequences with the GenBank ac- 

cession numbers) are two whale species (Balaenoptera 

physalus-X61145, Amason, Gullberg, and Widegren 

199 1; Balaenoptera musculus-X72204, Arnason and 

Gullberg 1993), cow (Bos taurus-VO0654 and 501394, 

Anderson et al. 1982), mouse (Mus musculus-V00711, 

Table 1 

Bibb et al. 1981), rat (Rattus norvegicus-X14848, Gad- 

aleta et al. 1989), opossum (Didelphis virginiana- 

229573, Janke et al. 1994), chicken (Gallus gallus- 

X52392, Desjardins and Morais 1990), African clawed 

frog (Xenopus Zaevis-X02890, M 102 17, X0 1600, and 

X01601, Roe et al. 1985), rainbow trout (Oncorhynchus 

mykiss-L2977 1, R. Zardoya, J. M. Bautista, and A. 

Garrido-Pertierra, unpublished data), loach (Crossosto- 

ma Zacustre-M9 1245, Tzeng et al. 1992), and carp 

(Cyprinus carpio-X6 10 10, Chang, Huang, and Lo 

1994). The phylogenetic tree of these organisms is 

known (Car-i-01 1988, pp. 11,605-606; Gingerich, Smith, 

and Simons 1990; Gingerich et al. 1994) and is given 

in figure 1. The nucleotide sequences were retrieved 

from the GenBank, except the carp sequence, which was 

taken from the EMBL databank. 

Protein-coding nucleotide sequences were convert- 

ed into amino acid sequences according to the mam- 

malian mitochondrial genetic code. The amino acid se- 

quences for two subunits of adenosine triphosphatase 

(genes Atp6 and Atp8), cytochrome b (Cytb), three sub- 

units of cytochrome c oxidase (Cal, Co2, and Co3), and 

seven subunits of nicotinamide adenine dinucleotide de- 

hydrogenase (Ndl, Nd2, Nd3, Nd4, Nd41, Nd5, and Nd6) 

were then aligned for each protein separately by using 

the CLUSTAL V computer program (Higgins, Bleasby, 

and Fuchs 1992) with the default option. All sites with 

alignment gaps were removed from data analysis. The 

numbers of codons used for each gene and the entire set 

of 13 genes are given in table 1. 

In the analysis of DNA sequences, we used the 

nucleotide sequences of each gene determined by the 

alignment of amino acid sequences. Therefore, the num- 

ber of nucleotides for each gene is three times the num- 

ber of codons. In this study the nucleotide sequences for 

rRNAs, tRNAs, control region, and intergenic regions 

were not used. 

Phylogenetic Analysis 

To reconstruct phylogenetic trees from the 13 genes 

and the entire set of genes, we used four commonly used 

Some Statistical Properties of 13 Mitochondrial Genes for Amino Acid Sequence Data 

Genes Atp6 Atp8 Co1 co2 co3 Cytb Ndl Nd2 Nd3 Nd4 Nd41 Nd5 Nd6 All 

Number of codons . . . . . . . 219 52 511 224 259 377 312 342 112 457 97 582 138 3,682$ 

Minimum distance p (%) . . 5 10 1 1 1 3 1 5 0 7 3 3 5 3 

Maximum distance p (%) . . 50 79 14 33 25 28 33 58 44 60 42 44 67 37 

Gamma parameter . . . . . . . . 2.1 13.3 0.5 1.6 0.7 0.9 1.1 3.4 1.1 1.7 4.7 1.6 8.1 1.2 

Parsimony sites* . . . . . . . . . 119 44 8 1 68 64 121 117 207 54 212 51 278 92 1,508 

RCI (%)t . . . . . . . . . . . . . . . 71 73 55 72 71 54 54 57 71 59 76 54 71 61 

* Phylogenetically informative sites for parsimony analysis. 

t RCI stands for the average resealed consistency index for the reconstructed unweighted parsimony tree(s). 

$ There are small proportions of overlapping codons between Afp6 and A@8 and between Nd4 and Nd41, but they were treated as though they were independent 

codons. 
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tree-building methods: neighbor joining (NJ) (Saitou 

and Nei 1987), minimum evolution (ME) (Rzhetsky and 

Nei 1992), maximum parsimony (MP) (Eck and Day- 

hoff 1966, p. 165), and maximum likelihood (ML) (Fel- 

senstein 198 1). 

Amino Acid Sequences 

The NJ and ME methods are so-called distance 

methods and require pairwise distances. For amino acid 

sequence data, we used three different distance mea- 

sures: proportion of amino acid differences (p distance), 

Poisson-correction distance, and gamma distance (see 

MEGA; Kumar, Tamura, and Nei 1993). The gamma 

distance takes into account the heterogeneity of evolu- 

tionary rates among different amino acid sites, and the 

extent of heterogeneity is measured by the gamma pa- 

rameter a. The a value was estimated by using the com- 

puter program GAMMA (S. Kumar, personal commu- 

nication), which is based on parsimony analysis (Kocher 

and Wilson 1991). GAMMA requires an input tree, and 

we used the known tree in all cases. NJ trees were con- 

structed by using MEGA, whereas ME trees were con- 

structed by the program METREE (Rzhetsky and Nei 

1994). ME trees were constructed only for p distance 

and Poisson-correction distance, because METREE does 

not compute gamma distance. In the search for ME 

trees, we examined only the NJ tree or trees whose to- 

pological distance (dT; see below) from the NJ tree (not 

the true tree) was 2 or 4, since the ME and NJ trees are 

known to be very similar to each other (Rzhetsky and 

Nei 1992). In the present case the number of trees with 

dT = 2 is 16, but the number of trees with dT = 4 varies 

with the topology of the NJ tree (Rzhetsky and Nei 

1992). In the case of the true tree in figure 1 the number 

is 160. 

Maximum-parsimony trees were constructed by us- 

ing the default option of the branch and bound search 

of the software PAUP (Swofford 1993). Both weighted 

and unweighted MP trees were produced. Unweighted 

parsimony generated a single most parsimonious tree for 

all genes except for Atp6, Atp8, and Cal, where 3, 3, 

and 2 equally parsimonious trees were produced, re- 

spectively. When two or more parsimonious trees were 

obtained, we constructed a strict consensus tree. Weight- 

ed parsimony was performed by using the resealed con- 

sistency index (Farris 1989) as a weighting factor for 

each parsimony site. This index varies from 0 (high de- 

gree of homoplasy) to 1 (no homoplasy). (Homoplasy 

is equivalent to parallel and backward mutations.) In this 

study we applied this weighting procedure only for one 

cycle. Weighted parsimony always produced a single 

most parsimonious tree. 

To produce ML trees, we used Adachi and Hase- 

gawa’s (1994) program ProtML. Because the ML meth- 

od for protein data requires a large amount of computer 

time, we first used the star decomposition (SD) algo- 

rithm, which generates one final tree, as in the case of 

the NJ method. This tree (SD tree) may not be the real 

ML tree, so we also used the specific-tree algorithm, 

which examines any set of specified trees. We examined 

all trees whose topological distance from the SD tree 

was equal to 2 or 4 and chose the tree showing the 

highest likelihood as the ML tree. This algorithm is sim- 

ilar to that of finding ME trees (Rzhetsky and Nei 1992). 

We used four different ProtML substitution models 

for constructing trees, i.e., the Poisson, Dayhoff, JTT, 

and JTT-f models. The Poisson model uses a Poisson 

model of amino acid substitution, whereas the Dayhoff 

and JTT algorithms use the empirical amino acid sub- 

stitution models based on the data compiled by Dayhoff, 

Schwartz, and Orcutt (1978) and Jones, Taylor, and 

Thornton (1992), respectively. The JTT-f model uses 

Jones, Taylor, and Thornton’s substitution model under 

the assumption that the relative frequencies of the 20 

different amino acids in a sequence are identical with 

the average observed frequencies for all sequences and 

remain the same for the entire evolutionary process. Ac- 

tually, we also used the Poisson and Dayhoff models 

with the observed amino acid frequencies, but this mod- 

ification hardly affected the topologies of the trees ob- 

tained. Therefore, we shall not consider these models in 

this paper. 

Nucleotide Sequences 

To compare the utility of DNA sequences for phy- 

logenetic construction with that of amino acid sequenc- 

es, we constructed phylogenetic trees for all genes by 

using either all three codon positions of the sequences 

or first and second codon positions only. In both sets of 

data we again used the NJ, ME, MP, and ML methods. 

The distance measures used for NJ were the p, Jukes- 

Cantor, Kimura-2-parameter, and gamma distances (see 

Nei 1991). The values of gamma parameter a were also 

computed by using the program GAMMA. In the case 

of the ME method we used only the p, Jukes-Cantor, 

and Kimura-2-parameter distances. The NJ and ME 

trees were constructed by MEGA and METREE, re- 

spectively. In the case of MP trees, we again used PAUP 

for both unweighted and weighted parsimony. Weight- 

ing was done by using the resealed consistency index. 

The ML trees were constructed by using the NucML 

program by Adachi and Hasegawa (1994). We again 

used the SD algorithm and the specific-tree algorithm 

for trees with dT = 2 and 4. The substitution models 

used were the Poisson, proportional, and HKY (Hase- 

gawa, Kishino, and Yano 1985) models (see Adachi and 

Hasegawa 1994). 
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Table 2 

Pairwise p Distances (p X 100) for Atp6 Amino Acid Sequences from 11 Vertebrate Or- 

ganisms 

2 3 4 5 6 7 8 9 10 11 

1 Whale-p . . . . 5 
2 Whale-m . . . . 
3 cow . . . . . . . . 
4 Rat . . . . . . . . . 

5 Mouse . . . . . . 
6 Opossum . . . . 
7 Chicken . . . . . 
8 Xenopus . . . . 
9 Trout . . . . . . . 

10 Loach . . . . . . 

11 carp . . . . . . . 

23 29 26 30 45 48 49 47 

22 27 25 30 46 47 47 46 

23 21 24 44 45 47 47 

5 28 48 50 49 48 

27 47 49 48 48 

42 43 44 45 

31 27 27 

20 25 

13 

48 

47 

49 

49 

48 

46 

27 

25 

12 

8 

NOTE.-All insertions/deletions were removed from the entire data set, and the distances were computed by using the 

remaining 219 amino acid sites. p, Buluenopteru physalus; m, Buluenopteru musculus. Note that mammalian species show 

similar distances from chicken, Xenopus, and fishes. This makes it difficult to obtain the correct tree. 

Accuracy of the Topology Obtained 

The accuracy of the tree topology obtained was 

measured by the topological distance of the tree ob- 

tained from the true tree. This distance (dr) is based on 

the work by Robinson and Foulds (198 1) and Penny and 

Hendy (1985) and is given by the following formula 

(Rzhetsky and Nei 1992). 

do = 2[min(q,&) - rl + 14r - %I, 

where qr and qt are the total numbers of ways of se- 

quence partitions (equal to the number of interior 

branches) for the tree reconstructed from a given data 

set and for the true tree, respectively, and r is the num- 

ber of partitions (interior branches) that are identical for 

the two trees. For bifurcating trees, dT is equal to twice 

the number of sequence partitions for which the two 

trees compared are different (incorrect interior branches 

of the reconstructed tree). Thus, dT = 0 means that the 

tree obtained is the same as the true tree, and as dr 

increases, the deviation from the true tree increases. In 

the case of MP trees we also computed the average res- 

caled consistency index (RCI) for all parsimony sites to 

examine the reliability of the tree obtained. 

To compare the efficiencies of different tree-build- 

ing methods, we used the sum of dr for all genes and 

the number of genes generating the correct topology (nc) 

among the 13 genes examined. 

Results 

Statistical Properties of Different Genes 

Table 1 shows various statistical properties of the 

13 mitochondrial genes used in this study. The number 

of codons or amino acids encoded varies from 52 (Atp8) 

to 582 (Nds), and thus we can examine the effect of 

gene size on the accuracy of the tree reconstructed. The 

minimum and maximum p distances indicate that some 

genes (e.g., Co1 and Co3) are highly conserved whereas 

others (e.g., Atp8 and N&) are quite divergent. Of 

course, the distance value varies with sequence pair, and 

table 2 shows the magnitude of variation in p among 

different pairs of sequences for the gene Atp6 as an ex- 

ample. The gamma parameter also varies from gene to 

gene, but the extent of heterogeneity of substitution rate 

(l/u) is not so great as in the case of the control region 

of mtDNA sequences, where a = 0.15 has been obtained 

(Kocher and Wilson 1991). The number of amino acid 

sites that are informative for parsimony analysis (par- 

simony sites) varies from 44 to 278, suggesting that 

some genes are much more useful for parsimony anal- 

ysis than others. The average resealed consistency index, 

which is supposed to be negatively correlated to the ex- 

tent of parallel or backward mutations, varies from gene 

to gene, but this index seems to have no correlation with 

the maximum p distance. 

Reconstruction of Phylogenetic Trees 

Amino Acid Sequences 

Table 3 shows the topological distances (dT) of re- 

constructed trees from the true tree for different genes 

and different tree-building methods. Gene Nd5 produced 

the correct tree in all tree-building methods and algo- 

rithms used, and genes Cytb and Nd4 also produced the 

correct tree in all the methods except in a few ML al- 

gorithms. Co3 produced the correct tree in all parsimony 

and ML algorithms and in the NJ and ME methods with 

p distance. By contrast, genes Co2, Ndl, and Nd4Z gen- 

erated incorrect trees in all tree-building methods. The 

topologies produced by different tree-building algo- 

rithms were often the same or very similar, though there 

were several exceptions (Atp8, Co2, Nd3, Nd41, and 

Nd6). These results indicate that when a tree-building 



Mitochondrial Genes and Tree-building Methods 529 

Table 3 

Topological Distances (&) of Reconstructed Trees from the True Tree 

Genes Atp6 Atp8 Co1 co2 co3 Cytb Ndl Nd2 Nd3 Nd4 Nd41 Nd5 Nd6 All Sum n, 

NJ 

P .............. 2 

Poisson ........ 2 

Gamma ........ 2 

ME 

P .............. 2 

Poisson ........ 2 

MP 

Unweighted ..... 1 

Unweighted-b ... 1 

Weighted ....... 2 

Weighted-b ..... 1 

ML star decom. 

Poisson ........ 0 

Dayhoff ........ 2 

JTT ........... 0 

JTT-f .......... 0 

ML specific-trees 

Poisson ........ 0 

Dayhoff ........ 2 

JTT ........... 0 

JTT-f .......... 0 

Sum ............ 25 

2 

0 

0 

2 

0 

2 

4 

2 

6 

31 

2 

0 

0 

2 

2 

2 

1 

2 

2 

0 

0 

0 

2 

0 

0 

0 

0 

21 

4 

4 

4 

0 

2 

2 

4 

4 

0 

2 

8 0 

8 0 

8 0 

8 0 

10 0 

10 0 

4 0 

4 0 

99 6 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

2 

4 

2 

2 

2 

2 

2 

2 

1 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

45 

0 

2 

2 

2 

0 

0 

0 

0 

0 

2 

2 

4 

2 

2 

2 

2 

0 

0 

2 

2 

2 4 0 6 

0 2 0 8 

0 2 2 4 

0 2 2 4 

26 48 8 66 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 16 6 

0 0 14 7 

0 0 16 7 

0 0 18 5 

0 0 18 5 

0 

na 

0 

na 

21 

21 

20 

21 

0 

0 

2 

2 

28 

18 8 

26 5 

22 6 

24 4 

26 7 

28 7 

20 5 

24 5 

Nom.-Unweighted-b stands for unweighted bootstrap consensus trees and weighted-b weighted bootstrap consensus trees. na: Because of a large amount of 

computer time required, the tree was not constructed. n,: Numbers of genes that produced the true tree. The dT values in boldface letters indicate that the ML value 

for the tree obtained is lower than that of the true tree. 

method produces a given topology other methods or al- 

gorithms also tend to produce the same topology, wheth- 

er it is correct or not. This finding is similar to that 

observed in Saitou and Imanishi’s (1989) computer sim- 

ulation with respect to DNA sequences. 

If the differences in dT among different tree-build- 

ing methods are primarily caused by sampling error of 

nucleotides, one would expect that large genes tend to 

produce the correct tree more often than small genes. 

There is certainly such a tendency, but some large genes 

(e.g., Cal) sometimes produced incorrect trees. There- 

fore, there must be some other factors that affect the 

accuracy of the tree reconstructed. One such factor could 

be the pattern of amino acid substitution. If this pattern 

varies from gene to gene, different genes may produce 

different topologies. We therefore examined this pattern 

by estimating the transition matrix of amino acids for 

each gene. In this study we used Yang’s (1995) com- 

puter program PAML to estimate all the elements of the 

20 X 20 transition matrix under the assumption of the 

general reversible amino acid substitution model. How- 

ever, all genes produced very similar transition matrices. 

Therefore, it was difficult to explain the differences in 

dT by different amino acid substitution patterns. In the 

case of Col, however, the small extent of sequence di- 

vergence (table 1) is probably responsible for its rela- 

tively poor performance. 

Among different tree-building methods, NJ tends 

to show small &‘s, whereas ML tends to show large 

&‘s. The other methods show intermediate dT values. 

Table 3 also includes the number of genes that produced 

the correct topology (nc). According to this criterion, 

the ML star decomposition with the Poisson model is 

best in topology construction and is followed by NJ with 

Poisson-correction distance and gamma distance. How- 

ever, because the number of genes examined is small, 

the differences in nc are not statistically significant. 

Clearly, we need more genes to compare different tree- 

building methods, including nuclear genes. 

In both NJ and ME methods, we used two or three 

different distance measures, but they had little effect on 

the topology of the tree reconstructed. One might expect 

that a distance measure that is proportional to the num- 

ber of amino acid substitutions performs better in phy- 

logenetic reconstruction than other distances and thus 

either Poisson-correction distance or gamma distance is 

better than p distance. However, for the reconstruction 

of phylogenetic trees the variance as well as the linearity 

of a distance measure with the number of substitutions 

plays an important role (Nei, Tajima, and Tateno 1983; 

Goldstein and Pollock 1994; Tajima and Takezaki 1994). 

Therefore, a simple measure such as p distance or Pois- 

son-correction distance often shows a better perfor- 
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Table 4 present case. However, this result might have been ob- 
AIC Values for Different ML Substitution Models tained because we used the SD algorithm, which does 

Atp6 co1 co2 Ndl Nd5 Nd6 not examine a large number of trees. Indeed, when we 

Poisson . . 779 843 547 1,024 2,011 674 
computed the likelihood for the true tree, the value was 

Dayhoff . . 313 319 185 468 1,007 330 higher than that of the SD tree in eight cases (dr values 

JTT . . . . . 222 234 110 294 650 236 in boldface letters in table 3). Therefore, the inefficiency 

JTT-f . . . . * * * * * * of the ML criterion observed in table 3 may be due to 

Nom.-The minimum AIC value was observed for JTT-f for 

the differences from this minimum are given for other models. 

all genes, and 

mance. In our case all three distance measures showed 

more or less the same results. 

It is interesting to note that in the cases of genes 

Co1 and Nd3 with Poisson-correction distance the NJ 

method identified the correct topology, whereas the ME 

did not. This indicates that the criterion of minimum 

evolution led to choosing an incorrect topology rather 

than to improving or keeping the NJ tree. This may have 

happened by chance (Rzhetsky and Nei 1992), but it 

seems that an optimization process such as the ME cri- 

terion does not always work well with real data (see 

Discussion). 

We have used four different algorithms to produce 

MP trees, but in most of the genes used the four algo- 

rithms produced essentially the same topology. This 

raises a question about the efficiency of weighted par- 

simony with the RCI. It is also interesting to note that 

there is virtually no correlation between RCI and dT in 

parsimony methods. The dT value is generally small 

when the number of parsimony sites is large, but the 

correlation between the two quantities is not very high. 

duce different ML trees, the most likely tree should be 

chosen by using the Akaike information criterion (AIC), 

which is defined as -2 X (estimated log likelihood) + 

2 X (number of free parameters) (Akaike 1974). The 

tree with the smallest AIC value is supposed to be the 

best. The number of free parameters in AIC is the same 

The four different models for the ML star decom- 

position algorithm produced the same tree for six genes 

but different trees for the others. Kishino and Hasegawa 

(1989, 1990) suggested that when different models pro- 

the inefficiency of the SD algorithm. However, when we 

examined all trees that are different from the SD tree by 

dT = 2 or 4, the dT value of the ML tree did not always 

decrease. Rather it increased in some genes. The nc val- 

ue also remained nearly the same. Interestingly, many 

of the ML trees obtained were not the true tree, but all 

of them had a likelihood value higher than that for the 

true tree. These results suggest that the ML criterion 

may not always be very efficient in obtaining the correct 

topology for protein sequences. 

The reliability of a phylogenetic tree reconstructed 

is expected to increase as the number of codons used 

increases. To examine whether this expectation is true 

or not, we constructed a tree based on the entire set of 

genes using all statistical methods except the bootstrap 

consensus trees by parsimony. The bootstrap consensus 

trees required too much computer time to be completed 

in a reasonable time. As is seen from table 3, the trees 

obtained showed the correct topology regardless of the 

method used. When the bootstrap test (Felsenstein 1985) 

was applicable, all interior branches had a bootstrap val- 

ue of lOO%, and the interior branch test (Rzhetsky and 

Nei 1992) gave a confidence probability of 99.9% or 

higher for all interior branches. This clearly supports the 

idea that the number of codons (or characters) used is 

very 

tree. 

important for constructing a reliable phylogenetic 

Nucleotide Sequences 

for the Poisson, Dayhoff, and JTT models, but the num- 

ber for the JTT-f is greater than that for the others by 

19, because the amino acid frequencies are estimated 

from data. 

Table 4 shows the AK values for a few genes for 

the four different substitution models. It is clear that 

AIC is smallest for the JTT-f model and largest for the 

Poisson model. Actually, this was the case for all genes. 

However, table 3 shows that JTT-f is not efficient in 

obtaining the correct tree and the Poisson model is 

slightly better. Therefore, AIC does not seem to be a 

good criterion to choose the correct tree at least in the 

all three codon positions of nucleotide sequences for 

constructing trees for distantly related organisms. Some 

As mentioned earlier, synonymous substitutions be- 

authors have used only first and second codon positions, 

tween mammalian and nonmammalian sequences are al- 

because these positions are less affected by synonymous 

substitutions than third codon positions (Cao, Adachi, 

most certainly saturated or near saturation. Therefore, 

and Hasegawa 1994; Cao et al. 1994). It is therefore 

interesting to examine the efficiencies of these approach- 

nucleotide sequences are expected to be subject to a 

es in obtaining the correct topology. 

large extent of noise. However, a number of authors 

(e.g., Cummings, Otto, and Wakeley 1995) have used 

Table 5 shows the dT values of the trees obtained 

for each gene for the cases of all three codon positions 

data and first two codon positions data (the latter in 

parentheses). When all codon positions are used, many 
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Table 5 

Topological Distances (&) of Reconstructed Trees from the True Tree for Nucleotide Sequence Date 

Genes Atp6 Atp8 co1 co2 co3 Cytb Ndl Nd2 Nd3 Nd4 Nd41 Nd.5 Nd6 All Sum II, 

NJ 

P . . . . . . . . . . . 4(O) 2(2) 2(4) 4(2) 4(2) O(2) 2(2) 2(2) 2(O) O(0) 2(4) O(0) O(0) O(0) 24(20) 4(5) 

JC* . . . . . . . . . 4(O) 2(2) 2(4) 4(2) 4(2) 2(2) 2(2) 2(2) 4(O) O(0) 2(4) O(0) O(0) O(0) 28(20) 3(5) 

Kimura . . . . . . 4(O) 2(2) 2(4) 4(2) 4(2) 2(2) 2(2) 2(2) 4(O) O(0) 2(4) O(0) O(0) O(0) 28(20) 30) 

Gamma . . . . . 4(O) 2(2) 2(4) 4(4) 4(2) 2(2) 2(2) 2(2) 4(O) O(2) 2(4) O(0) O(0) O(0) 28(24) 3(4) 

ME 

P . . . . . . . . . . . 2(O) 2(2) 2(4) 4(2) 2(O) 2(4) 2(2) 2(2) 2(O) O(0) 2(4) O(0) O(2) O(0) 22( 22) 3(5) 

JC . . . . . . . . . . 2(O) 2(2) 2(4) 4(4) 2(O) 4(4) 2(2) 2(2) 2(O) 2(2) 2(4) O(0) O(2) O(0) 26(26) 2(4) 

Kimura . . . . . . 2(O) 2(2) 2(4) 4(4) 2(O) 4(4) 2(2) 2(2) 4(O) 2(2) 2(4) O(0) O(2) O(0) 28(26) 2(4) 

MP 

Unweighted . . 4(O) 6(4) 6(5) 6(3) 4(l) 4(2) 2(4) 4(O) 2(2) 2(O) 2(4) O(0) 2(2) na 44(27) l(4) 

Weighted . . . . 4(O) 6(4) 4(6) 6(4) 4(O) 4(2) 2(4) 4(O) 2(2) 2(O) 2(4) O(0) 2(2) na 42(28) l(5) 

ML star decom. 

Poisson . . . . . 2(2) 4(O) 4(6) 4(4) 2(2) O(0) 2(2) O(2) 2(O) O(2) 2(2) O(0) O(2) O(0) 22(24) 5(4) 

Proportion? . . 4(2) 4(O) z(6) 4(4) 4(2) O(0) 2(2) O(2) 2(O) O(0) 2(2) O(0) O(2) O(0) 24(22) 5(5) 

HKY . . . . . . . 4(O) 4(O) O(4) 2(4) 2(2) O(0) 2(2) O(2) O(0) O(0) 2(2) O(0) O(2) O(0) 16(18) 7(6) 

ML specific-trees 

Poisson . . . . . 2(O) 4(4) 4(6) 4(4) 2(2) 2(2) 2(2) O(0) 2(2) O(2) 4(2) O(0) O(4) O(0) 26(30) 4(3) 

Proportion . . . 2(O) 4(4) 2(6) 4(2) 4(2) 2(2) 2(2) O(0) 2(2) O(0) 4(2) O(0) O(2) O(0) 26(24) 4(4) 

HKY . . . . . . . 2(O) 4(4) 2(6) 2(2) 4(2) 2(2) 2(2) O(0) 2(2) O(0) 4(2) O(0) O(2) O(0) 24(24) 4(4) 

Non.-The dT values for all three codon positions and those for first and second positions (in parentheses) are given separately. See the footnote to table 2 

for boldface letters. 

* JC: Jukes and Cantor’s distance. 

t Proportion: proportional model (Adachi and Hasegawa 1994). 

genes show a higher dT value than that for amino acid 

sequences. This suggests that nucleotide sequences are 

less appropriate for constructing trees for distantly re- 

lated organisms. However, Nd.5 again shows dT = 0 for 

all tree-building methods and algorithms. Nd4 and Nd6 

also show dT = 0 or 2 for all algorithms. Actually, Nd6 

performs slightly better for nucleotide sequences than 

for amino acid sequences, but this is exceptional. The 

dT values for first and second codon positions data are 

generally slightly smaller than those for all three posi- 

tions data as expected, but they are still generally higher 

than the values for amino acid sequence data. Some 

genes such as Atp6 and Nd3 tend to show a smaller dT 

value for this case than for the case of amino acid se- 

quences. 

Table 5 shows that when all three codon positions 

are used the MP method shows high dT and low nc 

values, whereas the ML star decomposition algorithm 

tends to have low dT and relatively high ~2~ values. In 

the present case the difference between nc = 1 and nc 

= 7 is significant at the 5% level if we use Fisher’s 

exact test. Therefore, the ML star decomposition algo- 

rithm is significantly better than the MP method in ob- 

taining the correct tree. It seems that MP is affected by 

substitution noise more strongly than the other methods. 

However, when only first and second codon positions 

are used, all tree-building methods show similar dT and 

IZ~ values, and thus all methods seem to be equally ef- 

ficient. 

As in the case of amino acid sequences, the effi- 

ciencies of NJ and ME in obtaining the correct tree does 

not improve by using distance measures that are sup- 

posed to reflect the number of nucleotide substitutions 

better than p distance. Similarly, in ML a more sophis- 

ticated model does not necessarily give the correct tree 

more often than the others. In the present set of data the 

HKY model showed the lowest AIC value among the 

three models for all genes (data not shown). The HKY 

model has some tendency to generate a better tree par- 

ticularly in the case of the SD algorithm. However, the 

merit of this model is small and could be due to chance. 

The ME method examined about 180 trees in ad- 

dition to the NJ tree. However, this algorithm has hardly 

affected the final tree chosen. In other words, the NJ and 

ME trees were the same in most cases. In the case of 

ML, the specific-tree algorithm examined a large num- 

ber of trees including the true tree in most cases, but the 

performance of the algorithm in terms of dT and nc was 

also no better than that of the SD algorithm. Actually, 

the former algorithm chose an incorrect tree slightly 

more often than the latter, and the incorrect tree chosen 

always had a higher likelihood value than the true tree. 

As in the case of amino acid sequence data, when 

all 13 genes were used, the correct tree was obtained in 
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all cases examined. However, the bootstrap value was 

about 70% for one branch of the NJ trees when all three 

codon-positions data were used, though the CP value 

was 99.9% or higher. (No bootstrap tests were done for 

the ME, MP, and ML methods.) 

Discussion 

Comparison of Genes 

As mentioned earlier, one of the purposes of this 

paper is to find mitochondrial genes that are suitable for 

constructing phylogenetic trees for distantly related or- 

ganisms. Our results have shown that amino acid se- 

quences are generally more informative than nucleotide 

sequences for constructing reliable trees and that Nd5 is 

the most appropriate gene for this purpose. The next best 

genes are Nd4 and Cytb. Actually, Nd5 seems to be most 

appropriate even for nucleotide sequences. By contrast, 

genes Co2, Ndl, and Nd4Z seem to be least appropriate. 

This conclusion is consistent with the results obtained 

by Cao et al. (1994), though their purpose was not to 

find appropriate genes. These authors conducted ML 

analysis of protein sequences to study the phylogenetic 

relationships of cow, fin whale, harbor seal, human, 

mouse, and rat. Genes Cytb, Nd4, and Nd5 produced the 

same tree as the genome tree obtained by using all 

genes, whereas Co2, Ndl, and Nd4Z did not. This result 

did not change when blue whale and gray seal were 

added (Cao, Adachi, and Hasegawa 1994). However, 

note that in this case the true tree is not well established 

(Novacek 1992), and thus this conclusion is dependent 

on the assumption that the genome tree is identical with 

the true tree. 

In the past Cal, Co2, and Cytb have been used 

extensively for phylogenetic analyses (e.g., Adkins and 

Honeycutt 1994; Cantatore et al. 1994), but Nd4 and 

Nd5 have not. Both Nd4 and Nd.5 are large genes, and 

their protein sequence divergences seem to be appropri- 

ate for constructing trees for distantly related organisms 

of higher vertebrates. We therefore recommend that 

these genes should be used more often. 

Comparison of Models and Algorithms 

We have seen that in the cases of the NJ and ME 

methods Poisson-correction and gamma distances, 

which are supposed to reflect the number of amino acid 

substitutions better than p distance, are no better than 

the latter distance in producing the correct topology. 

This seems to be strange. Using computer simulation, 

however, Saitou and Nei (1987), Sourdis and Krimbas 

(1987), Saitou and Imanishi (1989), and Nei (1991) have 

shown that in the case of DNA sequence data p distance 

produces the correct tree slightly more often than the 

Jukes-Cantor distance, unless the rate of nucleotide sub- 

stitution varies considerably with evolutionary lineage 

and sequence divergence is high. This is partly because 

p distance has a smaller variance relative to the mean 

than corrected distances. Similar results were obtained 

by Schiiniger and von Haeseler (1993) and Tajima and 

Takezaki ( 1994). 

Figure 1 shows that the sequences from the three 

fish species evolved considerably slower than the others. 

These three species formed one cluster outside the other 

sequences, and all mammalian sequences evolved nearly 

at the same rate. Furthermore, if we impose an artificial 

root in the middle of the branch between mammals and 

nonmammals, the tree looks like a linear tree with a 

molecular clock. This may have helped p distance to 

generate trees as good as those obtained by Poisson- 

correction or gamma distance. 

A somewhat similar statement can be made about 

the weighted and unweighted parsimony methods used. 

For the present data set, both methods showed essen- 

tially the same efficiency of obtaining the correct to- 

pology, though weighted parsimony is supposed to be 

better than unweighted parsimony. These results are 

somewhat different from those of Hillis, Huelsenback, 

and Cunningham (1994), Tateno, Takezaki, and Nei 

(1994), Huelsenbeck (1995), and Nei, Takezaki, and Sit- 

nikova (1995), who have shown that in the case of nu- 

cleotide sequence data weighted parsimony is often 

more efficient than unweighted parsimony in obtaining 

correct topologies. One possible reason for this differ- 

ence is that in our data set the extent of sequence di- 

vergence was not very large (tables 1 and 2) and in this 

case weighting does not give much advantage. 

In the case of likelihood methods we already in- 

dicated that the improvement of the substitution model 

in terms of the AIC value does not necessarily increase 

the chance of obtaining a better topology. Similar results 

have been obtained by Cao, Adachi, and Hasegawa 

(1994), Cao et al. (1994), and Yang, Goldman, and Fri- 

day (1994). These results are somewhat unexpected, be- 

cause the differences in AIC among different substitu- 

tion models are substantial. Using computer simulation, 

however, Gaut and Lewis (1995) showed that unless the 

extent of sequence divergence is very large the proba- 

bility of obtaining the correct topology for a less com- 

plicated substitution model is essentially the same as 

that for a more complicated one even if sequence data 

are generated by the latter model. Yang (1996) also 

showed that a simple model (Jukes-Cantor model) may 

give a higher probability of obtaining the correct topol- 

ogy than a sophisticated model (substitution rate varying 

among different sites) (depending on the model tree 

used) even when sequence data are generated by the 

latter model. These studies were done with nucleotide 

sequence data, but the same conclusion is expected to 

hold with amino acid sequence data as well. However, 
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conducting a computer simulation with the Huelsenbeck 

(1995) type trees of two very long branches and two 

very short branches, Hasegawa and Fujiwara (1993) 

produced examples in which the Dayhoff model recov- 

ers the correct tree more often than the Poisson and pro- 

portional models when amino acid sequences are gen- 

erated by the Dayhoff model. Therefore, if the rate of 

substitution varies extensively with evolutionary lin- 

eage, the above conclusion may not apply. 

So far we emphasized the effectiveness of simple 

distance measures or simple substitution models in ob- 

taining correct topologies. However, for estimating 

branch lengths or evolutionary times between sequenc- 

es, unbiased distances (unbiased estimators of substitu- 

tions) or correct substitution models generally give bet- 

ter results (Tateno, Takezaki, and Nei 1994). That is, a 

distance measure or substitution model that is appropri- 

ate for estimating branch lengths is not necessarily good 

for topology inference. In this case one can use different 

distance measures or substitution models for topology 

construction and branch length estimation (Nei, Tajima, 

and Tateno 1983; Nei and Takezaki 1994). For a data 

set similar to the present one, however, it is still advis- 

able to use corrected distances or appropriate substitu- 

tion models, because they would give more reliable 

branch length estimates though they may not improve 

topology construction. 

Optimization Principle in Phylogenetic Analysis 

In the present set of data, ME was no better than 

NJ in obtaining the correct topology. This is somewhat 

counterintuitive, because Rzhetsky and Nei (1993) have 

shown that the true topology has the smallest expected 

value of the sum of branch lengths when unbiased dis- 

tances are used and this has been the theoretical basis 

of the ME method. In practice, however, distance esti- 

mates are subject to sampling error, and for this reason 

the ME method is not necessarily better than the NJ 

method. 

The criterion of maximum likelihood also does not 

always choose the correct topology. In fact, the ML spe- 

cific-tree algorithm used here showed a tendency to be 

inferior to the ML star decomposition algorithm. This is 

partly due to sampling error, because the difference in 

likelihood value between the ML tree and the true tree 

was not statistically significant in most cases when the 

topologies of the two trees were different and the dif- 

ferences were tested by Kishino and Hasegawa’s (1989) 

method. However, there seem to be some other factors 

that make the topology estimation by likelihood com- 

plicated. At the present time, the theoretical basis of 

likelihood method of topology estimation remains un- 

clear (Nei 1987, p. 324-325; Yang 1994, 1996; Yang, 

Goldman, and Friday 1995), and there seems to be no 

a 
0.1 0.5 c 

Model tree 
0.05 

b X 0.1 0.5 d 

No. NJ MP ha 

nucl. p JC K2P UW W 

50 92 58 55 18 89 51 

100 97 65 61 

200 100 76 72 

300 100 82 78 

400 100 87 83 

500 100 91 85 

1000 100 97 94 

89 98 

98 99 

56 

66 

99 100 72 

100 100 76 

100 100 79 

100 100 91 

2000 100 99 99 100 100 97 

FIG. 2.-Percent probabilities of obtaining the correct topology 

estimated by computer simulation. The model tree used is somewhat 

similar to that of Yang (1996) and consists of four nucleotide sequenc- 

es (a, b, c, and d). The value for each branch is the expected number 

of nucleotide substitutions per site, and a set of four sequences was 

generated by using pseudorandom numbers following the model tree 

(see Nei, Takezaki, and Sitnikova 1995). These sequences were then 

used to construct a tree by the NJ, MP, and ML methods. This was 

replicated 1,000 times, and the proportion of cases in which the correct 

topology was obtained (probability of obtaining the correct topology) 

was computed. p, JC, and K2P stand for the p, Jukes-Cantor, and 

Kimura-2-parameter (not modified Kimura) distances, respectively. 

Nucleotide substitution was simulated by using the K2P model of a 

transition/transversion rate ratio equal to 2. Weighted parsimony trees 

were constructed following Nei, Takezaki, and Sitnikova (1995). UW 

unweighted parsimony. W weighted parsimony. 

mathematical proof that the correct topology gives the 

highest expected likelihood value among all possible to- 

pologies, as will be discussed below. 

Comparison of Digerent Tree-building Methods 

It is a difficult and tricky problem to compare the 

relative efficiencies of different tree-building methods in 

obtaining correct topologies, because the theoretical ba- 

sis of each method is not well established. Recently Ed- 

wards (1995) stated that in the study of evolution, which 

is an “after-trial” evaluation, the ML method is known 

to be the best. However, it should be noted that the to- 

pology estimation in phylogenetic analysis is not the 

same as the estimation of parameters in the classical 

theory of the ML method, because the maximization of 

likelihood is conducted separately for different topolo- 

gies (different probability spaces) (Nei 1987, p. 323- 

325; Yang 1994, 1996). Indeed, it is not difficult to con- 

struct examples in which the ML method is inferior to 

the MP and NJ methods (Yang 1996; N. Takezaki and 

M. Nei, unpublished). Figure 2 shows one such exam- 

ple. Of course, a series of computer simulations have 

shown that ML is generally slightly better than other 

methods in many different situations (Saitou and Im- 
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anishi 1989; Fukami-Kobayashi and Tateno 1991; Has- 

egawa and Fujiwara 1993; Tateno, Takezaki, and Nei 

1994; Kuhner and Felsenstein 1994; Huelsenbeck 1995), 

but still we do not know the general property of this 

method (Yang 1996). 

If the results in table 3 give any guidance, simple 

methods such as the NJ and the ML star decomposition 

algorithms give as good results as the more time-con- 

suming ME, MP, and ML methods. This is an important 

finding in this paper. However, the latter methods have 

one advantage over the simple methods. That is, they 

give several alternative trees, and thus one can evaluate 

statistical significance between different topologies and 

identify a group of potentially correct trees (e.g., Kish- 

ino and Hasegawa 1989; Rzhetsky and Nei 1992). 

The present study has another important message; 

if a large gene or a good-behaving gene is used, it pro- 

duces a good tree whichever method is used. It is par- 

ticularly impressive that all tree-building methods pro- 

duced the correct tree when the entire set of genes was 

used. Note that it is not necessarily easy to obtain the 

correct tree in the present case, because mammalian spe- 

cies show similar distance values from chicken, Xeno- 

pus, and fishes (table 2). At any rate, the choice of a 

good gene or a large number of amino acids or nucle- 

otides seems to be more important than a choice of a 

particular tree-building method as long as the method 

has some theoretical justification. 

Amino Acid vs. Nucleotide Sequences 

Examining the efficiencies of protein-coding genes 

in estimating the topology of the genome tree for 

mtDNA, Cummings, Otto, and Wakeley (1995) con- 

cluded that the topology of the tree produced by a gene 

is a poor indicator of the topology of the genome tree. 

This conclusion is different from ours, and there are two 

reasons for this. First, it is still unclear whether their 

genome tree represents the true phylogenetic tree of the 

organisms used (whale, cow, seal, human, mouse, rat, 

frog, carp, and loach) (Novacek 1992), though recent 

molecular data tend to support it. If the genome tree is 

not the correct one, their conclusion is not very mean- 

ingful. Second, they used all three codon positions of 

nucleotide sequences and did not attempt to enhance the 

efficiency of any of the tree-building methods used (NJ, 

MP, and ML). Probably for these reasons, individual 

genes did not produce the genome tree (supposed to be 

the true tree) as often as in our data analysis. If they 

had used first and second codon positions only instead 

of all the three positions, they might have obtained bet- 

ter results. 

Data Set Used 

However, it should be mentioned that the results 

obtained in this paper are dependent on the data set 

used. As mentioned earlier, the unrooted version of the 

tree in figure 1 roughly satisfies the condition of a linear 

tree with a molecular clock, and probably for this reason 

we obtained the true tree when we used large genes or 

the entire set of genes. Actually, if several groups of 

fast-evolving sequences and slowly evolving sequences 

are mixed in the true tree, construction of the correct 

topology usually becomes more difficult, though theo- 

retically all the methods used here are supposed to take 

care of varying substitution rates. For example, if lam- 

prey and sea urchin sequences, which have evolved 

much faster than fish and Xenopus sequences, are in- 

cluded in our data set, we obtain an incorrect tree for 

all tree-building methods even if we use the entire set 

of genes. In this case the cluster of lamprey and sea 

urchin is attached to the interior branch connecting 

mammals and nonmammals and this branching pattern 

is statistically significant (data not shown). At the pres- 

ent time we do not know the real reason for this, but it 

suggests that we must be very careful about the tree 

obtained when many fast-evolving and slowly evolving 

sequences are mixed. We are now investigating this 

problem from a theoretical point of view. 
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