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Efficiencies of Fast Algorithms of Phylogenetic Inference Under the Criteria
of Maximum Parsimony, Minimum Evolution, and Maximum Likelihood
When a Large Number of Sequences Are Used

Kei Takahashi and Masatoshi Nei
Institute of Molecular Evolutionary Genetics and Department of Biology, The Pennsylvania State University

In phylogenetic inference by maximum-parsimony (MP), minimum-evolution (ME), and maximum-likelihood (ML)
methods, it is customary to conduct extensive heuristic searches of MP, ME, and ML trees, examining a large
number of different topologies. However, these extensive searches tend to give incorrect tree topologies. Here we
show by extensive computer simulation that when the number of nucleotide sequences (m) is large and the number
of nucleotides used (n) is relatively small, the simple MP or ML tree search algorithms such as the stepwise addition
(SA) plus nearest neighbor interchange (NNI) search and the SA plus subtree pruning regrafting (SPR) search are
as efficient as the extensive search algorithms such as the SA plus tree bisection-reconnection (TBR) search in
inferring the true tree. In the case of ME methods, the simple neighbor-joining (NJ) algorithm is as efficient as or
more efficient than the extensive NJ1TBR search. We show that when ME methods are used, the simple p distance
generally gives better results in phylogenetic inference than more complicated distance measures such as the Has-
egawa-Kishino-Yano (HKY) distance, even when nucleotide substitution follows the HKY model. When ML meth-
ods are used, the simple Jukes-Cantor (JC) model of phylogenetic inference generally shows a better performance
than the HKY model even if the likelihood value for the HKY model is much higher than that for the JC model.
This indicates that at least in the present case, selecting of a substitution model by using the likelihood ratio test
or the AIC index is not appropriate. When n is small relative to m and the extent of sequence divergence is high,
the NJ method with p distance often shows a better performance than ML methods with the JC model. However,
when the level of sequence divergence is low, this is not the case.

Introduction

Most of the currently used methods of phylogenetic
inference from molecular data are based on some form
of optimization principle (Nei 1996; Swofford et al.
1996). Under this principle, the preferred tree is deter-
mined by assigning an optimality score to all possible
topologies (or all potentially correct topologies) accord-
ing to a certain procedure and choosing the topology
that shows the highest or lowest optimal score. For ex-
ample, in the case of maximum-parsimony (MP) meth-
ods (Eck and Dayhoff 1966; Fitch 1971), the minimum
number of evolutionary changes that explains the entire
sequence evolution (tree length [TL]) is computed for
each topology, and the topology showing the smallest
TL value is chosen as the preferred tree (MP tree). Sim-
ilarly, in minimum-evolution (ME) methods (Edwards
and Cavalli-Sforza 1963; Saitou and Imanishi 1989;
Rzhetsky and Nei 1992), the total sum of branch length
estimates (S) is used as the optimality score, and the
topology showing the smallest S value is chosen as the
preferred tree (ME tree). In contrast, maximum-likeli-
hood (ML) methods use the log likelihood value (lnL)
for each topology as the optimality score, and the tree
showing the highest lnL is chosen as the ML tree (Fel-
senstein 1981).

One problem with the methods based on the opti-
mization principle is that an enormous amount of com-
putational time is required when the number of sequenc-
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es is large, especially with ML methods. For this reason,
a number of heuristic search algorithms that attempt to
find the optimal tree are currently used (Swofford and
Begle 1993). Yet, it is customary for many researchers
to make heroic efforts to find the optimal tree, spending
a large amount of computer time (Maddison 1991;
Chase et al. 1993; Wainright et al. 1993; Rice, Dono-
ghue, and Olmstead 1997). However, it should be noted
that the tree with the optimal score is not necessarily
the true tree. Nei, Kumar, and Takahashi (1998) showed
that when the number of nucleotides examined (n) is
small and the number of sequences (m) is large, the
optimality scores of the MP and ME trees are always
smaller than or equal to those of the true tree, whereas
the optimality score of the ML tree is always greater
than or equal to that of the true tree. This indicates that
the optimization principle tends to give incorrect topol-
ogies when n is small relative to m. Nei, Kumar, and
Takahashi (1998) also showed that for obtaining the true
tree (not the optimal tree), simple topology search al-
gorithms are often as efficient as extensive search al-
gorithms. In the case of ME methods, a simple algo-
rithm called neighbor joining (NJ; Saitou and Nei 1987)
was shown to be as efficient as the standard ME method
in almost all cases examined. However, the simple al-
gorithms used for MP and ML methods were ad hoc
and did not work well under certain conditions.

The main purpose of this paper is to examine the
efficiencies of various search algorithms for MP, ME,
and ML trees when the number of sequences used is
large and to find simple algorithms for inferring the true
tree with a reasonably high level of accuracy. We study
this problem by computer simulation and by examining
the relationships between the efficiencies of inferring the
optimal and the true trees. We also examine the effi-
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1252 Takahashi and Nei

FIG. 1.—Six different model trees used for computer simulation. Trees A–C represent the cases of constant-rate evolution, and trees D–F
represent the cases in which the substitution rate varies with evolutionary lineage. These trees were randomly generated by the methods described
in the text.

ciencies of inferring the true tree when wrong nucleotide
substitution models are used.

Methods of Computer Simulation
Model Trees

To study the efficiencies of various tree-building
algorithms, we need model trees with which we can sim-
ulate the evolution of nucleotide sequences. Once the
sequence data at the final stage of evolution are ob-
tained, we can construct an MP, ME, or ML tree follow-
ing a given tree-building algorithm and then compare
the topology of the tree with that of the model tree (Nei
1991). We used six different model trees of 48 sequenc-
es, which are presented in figure 1. Model trees A, B,
and C represent the cases of constant-rate (CR) evolu-
tion, and model trees D, E, and F represent the cases in
which the evolutionary rate varies from branch to
branch (varying rate [VR]). The model trees with CR
evolution were randomly generated by the branching
process method described by Kuhner and Felsen-
stein(1994). The model trees with VR evolution were
produced by modifying the branch lengths of the CR
trees obtained by Kuhner and Felsenstein’s (1994) meth-
od. This modification was done by replacing each
branch length by a random variable that followed a gam-
ma distribution with the mean equal to the original
branch length and the gamma shape parameter (a) equal
to 10 (see Tateno, Nei, and Tajima [1982] for a similar
method). The six model trees used here were generated
independently. We also considered two levels of se-

quence divergence: high divergence (model trees A, C,
D, and F) and low divergence (model trees B and E).
High divergence refers to the case in which the expected
number of nucleotide substitutions per site from the root
to the tip of the tree is 0.5, and thus the expected number
of substitutions between two most distantly related se-
quences (dmax) is 1.0. Low divergence refers to the case
in which the expected number of substitutions from the
root to the tip is 0.05 and dmax is 0.1.

Our simulations were not done for all combinations
of sequence levels and tree topologies because of the
prohibitive amount of computer time required. However,
our preliminary study indicated that different model
trees with a constant rate or a varying rate give essen-
tially the same results for a given level of sequence di-
vergence, apparently because all of the model trees were
generated at random.

Models of Nucleotide Substitution

We used two different models of nucleotide sub-
stitution to generate sequence data that are commonly
used for phylogenetic reconstruction: Jukes and Cantor’s
(1969) (JC) model and Hasegawa, Kishino, and Yano’s
(1985) model with a gamma distribution of substitution
rate among different nucleotide sites (HKY1G). In the
latter model, we used two different sets of substitution
parameters. In the first set, we assumed that the transi-
tion/transversion rate ratio (k) was equal to 4, and the
equilibrium frequencies of nucleotides A, T, C, and G
were as follows: gA 5 0.15, gT 5 0.15, gC 5 0.35, and
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gG 5 0.35, respectively. The gamma parameter (a) used
in this case was 1.0. In the second set, we assumed k 5
10, gA 5 0.10, gT 5 0.10, gC 5 0.40, gG 5 0.40, and
a 5 0.5. Note that in the present model, k 5 2R, where
R is the standard transition/transversion ratio (Kumar,
Tamura, and Nei 1993; Nei and Kumar 2000). The num-
bers of nucleotides used (n) were 300 for high sequence
divergence and 1,000 for low sequence divergence. For
each model tree, we generated 100 random sets of se-
quence data and constructed MP and ME trees for each
data set. However, for ML methods, we used only the
first 50 data sets, because the computational time was
prohibitively long.

Phylogenetic Reconstruction

In this paper, we used five different algorithms for
constructing MP trees that are available in the computer
program PAUP* (Swofford 1998). The simplest algo-
rithm used was stepwise addition with the closest option
(SA). This algorithm is a rough search of MP trees, and
it often fails to find the true optimal (MP) tree. There-
fore, the tree obtained by this algorithm is usually sub-
jected to various branch-swapping algorithms. The
branch-swapping algorithms generally used are nearest-
neighbor interchange (NNI), subtree pruning and re-
grafting (SPR), and tree bisection-reconnection (TBR)
(see Swofford and Begle [1993] for the actual proce-
dures). Among these algorithms, the simplest one is
NNI, and the most extensive one is TBR. In this paper,
these algorithms are denoted by SA1NNI, SA1SPR,
and SA1TBR. To search for the most likely MP tree,
however, researchers often repeat the TBR search many
times starting with different SA trees obtained by rear-
ranging the input order of sequences. We therefore used
an algorithm in which the TBR search was repeated 100
times. This algorithm is denoted by 100SA1TBR.

For ME methods, we used the NJ method as the
fast algorithm, because this method is known to be very
fast and as efficient as or more efficient than the ex-
haustive ME method in obtaining the true tree when the
number of sequences used is small (Saitou and Imanishi
1989; Kumar 1996; Gascuel 1997; Nei, Kumar, and Tak-
ahashi 1998). As the extensive search algorithm, we
used the NJ1TBR algorithm, in which the NJ tree is
subjected to the TBR search. We used this algorithm
because the TBR search does not require much com-
putational time for ME trees. For computing pairwise
distances, we used p and JC distances when the JC mod-
el was used for generating sequence data and p, JC, and
HKY1G distances when the HKY1G model was used
for sequence generation. The HKY1G distance was es-
timated by the maximum-likelihood algorithm available
in PAUP*.

For ML methods, we used primarily the SA (‘‘as
is’’ option), SA1NNI, and SA1SPR search algorithms.
The SA1TBR search was used only for a few cases
because this algorithm required an enormous amount of
computer time. When the JC model was used for gen-
erating sequence data, we used the same model for con-
structing trees. When sequence data were generated by

the HKY1G model, we used both the JC and the
HKY1G models for tree reconstruction. For the
HKY1G model, we first constructed an ML tree using
the SA algorithm with the JC model and obtained ML
estimates of parameters k and a and nucleotide frequen-
cies. Using these parameter estimates, we then con-
structed ML trees with the HKY1G model using the SA,
SA1NNI, and SA1SPR algorithms. We used this sim-
plified method to save computer time.

Accuracies of Estimated Tree Topologies

Since we used randomly generated model trees of
48 sequences and some of the interior branches of a
realized tree (Nei and Kumar 2000) often had 0 nucle-
otide substitutions, the probability of obtaining the true
topology was negligibly small. We therefore measured
the accuracy of the estimated topology by the topolog-
ical distance (dT) between the estimated tree and the true
tree (Robinson and Foulds 1981; Penny and Hendy
1985; Rzhetsky and Nei 1992). In practice, since our
simulations were replicated 100 or 50 times, we used
the average dT value. This dT value is roughly twice the
number of branch interchanges that are required to ob-
tain the true topology from the estimated tree when both
trees are bifurcating. For MP methods, several equally
parsimonious trees were often obtained for the same
data set. In this case, we computed the average dT value
for all parsimonious trees for each replication and then
obtained the average of this average dT value for all
replications. An alternative method is to construct the
strict-consensus tree for all MP trees for a given data
set and to compute dT between this consensus tree and
the true tree using Rzhetsky and Nei’s (1992) formula.
We can then take the average of this dT for all replica-
tions. In practice, however, these two methods give very
similar average dT values, so we present only the former
average here.

The main purpose of this paper is to find relatively
simple algorithms that are as efficient as extensive
search algorithms in inferring the true tree. However, to
examine the efficiencies of various optimization algo-
rithms, we also computed the average optimality scores
of MP, ME, and ML trees obtained by the simple and
extensive search algorithms.

Results

Table 1 shows the average topological distances
from the true tree (dT) and the average TLs of MP trees
obtained by five different algorithms. When model tree
A (CR model) is used and the sequence data are gen-
erated by the JC model, the dT value for the simplest
algorithm, SA, is 10.9, and it declines to 9.5 when the
next-simplest algorithm, SA1NNI, is used. However,
when the more extensive search algorithms SA1SPR,
SA1TBR, and 100SA1TBR are used, dT remains vir-
tually the same. This means that in the present case, the
SA1NNI search is quite efficient in inferring the true
tree, and there is no need to conduct more extensive
searches. However, the SA1NNI search is better than
the SA search. The most extensive search,
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Table 1
Average Topological Distances from the True Tree (dT) (6SE) and Tree Lengths (TLs) of Inferred Trees Under the
Maximum-Parsimony Criterion

SA

dT TL

SA1NNI

dT TL

SA1SPR

dT TL

SA1TBR

dT TL

100SA1TBR

dT TL

JC model: high divergence (dmax 5 1.0)
CR (tree A) . . 10.9 6 0.3 2,299.0 9.5 6 0.3 2,292.8 9.4 6 0.3 2,291.5 9.4 6 0.2 2,291.5 9.6 6 0.3 2,291.5
VR (tree D) . . 9.8 6 0.4 1,457.0 10.2 6 0.3 1,453.2 9.9 6 0.3 1,452.7 9.7 6 0.3 1,452.7 9.8 6 0.3 1,452.6

JC model: low divergence (dmax 5 0.1)
CR (tree B) . . 5.3 6 0.3 1,762.2 4.6 6 0.2 1,761.4 4.6 6 0.2 1,761.4 4.58 6 0.2 1,761.4 4.58 6 0.2 1,761.4
VR (tree E) . . 6.9 6 0.3 1,742.8 5.9 6 0.2 1,741.8 5.9 6 0.2 1,741.8 5.9 6 0.2 1,741.8 5.9 6 0.2 1,741.8

HKY1G model: k 5 4, gA 5 0.15, gC 5 0.35, gG 5 0.35, gT 5 0.15, a 5 1, dmax 5 1.0
CR (tree C) . . 18.0 6 0.5 2,011.4 16.6 6 0.5 2,002.0 16.0 6 0.4 2,000.0 16.0 6 0.4 2,000.0 16.1 6 0.4 1,999.9
VR (tree F). . . 16.6 6 0.5 1,998.7 15.3 6 0.4 1,990.6 14.7 6 0.4 1,989.6 14.8 6 0.4 1,989.5 14.6 6 0.4 1,989.3

NOTE.—Results are from 100 replicate simulations. Average TLs are also shown. SA 5 stepwise addition; NNI 5 nearest-neighbor interchange; SPR 5 subtree
pruning and regrafting; TBR 5 tree bisection-reconnection; CR 5 constant-rate model; VR 5 varying-rate model; JC 5 Jukes-Cantor; HKY 5 Hasegawa-Kishino-
Yano.

100SA1TBR, gave a value of dT 5 9.6, which is slight-
ly higher than that for less extensive searches (except
SA). This happened because the MP trees identified by
this extensive search algorithm were not necessarily
closer to the true tree.

Note that in the present case, the minimum and
maximum possible values of dT are 0 and 90, respec-
tively, because there are 45 interior branches for an un-
rooted tree of 48 sequences (Nei and Kumar 2000). Note
also that dT 5 10.9 means an error in branching pattern
(sequence partition) for 5.5 interior branches, whereas
dT 5 9.5 means an error for about 5 interior branches.
Therefore, the difference in dT between 10.9 and 9.5 is
rather small biologically, although the difference is sta-
tistically significant.

Table 1 also shows the average TLs for MP trees.
This value is highest for SA and becomes smaller for
SA1NNI and SA1SPR, but the TLs for SA1SPR,
SA1TBR, and 100SA1TBR are essentially the same.
In the present case, therefore, even TL does not decrease
when extensive search algorithms are used.

When the high-divergence and VR model (tree D)
is used, the dT values are nearly the same as those for
model tree A. In this case, however, there are no sig-
nificant differences in dT between different search al-
gorithms. Actually, the SA1NNI search shows a slightly
higher dT value (10.2) than the SA search (9.8), although
the difference is not statistically significant. This indi-
cates that in the present case, the SA search is as effi-
cient as the 100SA1TBR search. This is so despite the
fact that the average TL is smaller for 100 SA1TBR
than for SA.

For low divergence (dmax 5 0.1), the dT values are
substantially smaller than those for high divergence, as
expected. In this case, the dT for SA is significantly
greater than that for SA1NNI or other search algo-
rithms. However, for inferring the true tree, SA1NNI is
sufficient for both CR and VR cases, and there is no
need to conduct the SA1TBR or 100SA1TBR search.

Table 1 also shows the dT values for the CR and
VR cases when sequence data were generated by the
HKY1G model with a high divergence level (dmax 5

1.0). The dT values are considerably greater than those
for sequence data generated by the JC model. This in-
dicates that the MP method is less efficient when the
pattern of nucleotide substitution is complex than when
it is simple. In this case, SA1SPR is slightly better than
SA1NNI, but the dT values for SA1TBR and
100SA1TBR are nearly the same as the dT for
SA1SPR.

Table 2 shows the values of dT and S for ME trees
when the sequence data were generated by the JC mod-
el. In this case, two distance measures, p distance and
JC distance, were used. For both distance measures, NJ,
a simplified ME method, always shows a smaller dT than
the NJ1TBR search. Note also that the p distance gives
a smaller dT than the JC distance in all cases, although
the sequence data were generated by the JC model. This
is true for both CR and VR models, irrespective of the
extent of sequence divergence.

Table 2 also shows the simulation results (dT and
negative log ML value [2lnL]) for ML methods. In this
case, SA is less efficient than SA1NNI and SA1SPR
in inferring the true tree. The latter two algorithms show
nearly the same dT value. Therefore, the SA1NNI
search appears to be sufficient for inferring the true tree
by ML methods. For the first 10 data sets (model tree
D), we conducted the SA1TBR search, but the dT value
was essentially the same as that for SA1NNI (data not
shown). (In the present case, the SA1TBR search for
an ML tree required a computational time of about 60
h for one replication with our 8500/132 PowerPC com-
puter.) The 2lnL value is also greater for SA than for
SA1NNI and SA1SPR, but the latter two algorithms
show essentially the same 2lnL value.

Table 3 shows the results for ME and ML methods
for the case in which the sequence data were generated
by the HKY1G model. Here, we considered only the
case of high divergence (dmax 5 1.0) with the first and
second parameter sets of the HKY1G model mentioned
earlier (see also table 3). Because the HKY1G model is
more complicated than the JC model, the dT values for
this model are higher than those for the JC model (table
2). For ME methods, the NJ algorithm again shows a
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Table 2
Average Topological Distances from the True Tree (dT) (6SE), Sums of Branch Lengths (S), and Negative Log
Likelihood Values (2lnL) of Inferred Trees Under the Minimum-Evolution (ME) and Maximum-Likelihood (ML)
Criteria

ME ML

NJ

dT S

NJ1TBR

dT S

SA

dT 2lnL

SA1NNI

dT 2lnL

SA1SPR

dT 2lnL

JC model: high divergence (dmax 5 1.0)
CR (tree A)

p. . . . . 8.7 1 0.3 6.26 9.1 6 0.3 6.25
JC . . . 11.6 6 0.4 9.32 12.0 1 0.4 9.29 12.8 6 0.5 9,763.8 9.0 6 0.4 9,752.3 8.9 6 0.4 9,752.2

VR (tree D)
p. . . . . 9.1 6 0.4 4.18 9.5 6 0.4 4.18
JC . . . 11.7 6 0.4 5.28 12.7 6 0.4 5.27 14.1 6 0.5 6,792.0 9.3 6 0.4 9,783.7 9.2 6 0.4 9,783.3

JC model: low divergence (dmax 5 0.1)
CR (tree B)

p. . . . . 5.4 6 0.2 1.66 5.7 6 0.2 1.66
JC . . . 5.5 6 0.2 1.83 6.2 6 0.3 1.83 5.4 6 0.4 11,309.0 4.2 6 0.3 11,308.2 4.3 6 0.3 11,308.2

VR (tree E)
p. . . . . 5.7 6 0.3 1.65 6.5 6 0.3 1.65
JC . . . 6.9 6 0.3 1.81 7.6 6 0.3 1.81 5.3 6 0.3 11,204.0 5.2 6 0.3 11,203.7 5.1 6 0.3 11,203.7

NOTE.—Results are from 100 and 50 replications for ME and ML, respectively. NJ 5 neighbor-joining; TBR 5 tree bisection-reconnection; SA 5 stepwise
addition; NNI 5 nearest-neighbor interchange; SPR 5 subtree pruning and regrafting; CR 5 constant-rate model; VR 5 varying-rate model; p 5 p distance; JC
5 Jukes-Cantor distance/model.

Table 3
Average Topological Distances from the True Tree (dT) (6SE), Sums of Branch Lengths (S), and Negative Log
Likelihood Values (2lnL) of Inferred Trees Under the Minimum-Evaluation (ME) and Maximum-Likelihood (ML)
Criteria with Different Nucleotide Substitution Models

ME ML

NJ

dT S

NJ1TBR

dT S

SA

dT 2lnL

SA1NNI

dT 2lnL

HKY1G model: k 5 4, gA 5 0.15, gC 5 0.35, gG 5 0.35, gT 5 0.15, a 5 1, dmax 5 1.0
CR (tree C)

p . . . . . . . . . . . . . 12.9 6 0.6 5.36 13.2 6 0.5 5.35
JC . . . . . . . . . . . . 16.0 6 0.6 7.21 16.3 6 0.6 7.18 19.9 6 0.7 8,868.8 16.6 6 0.7 8,857.1
HKY1G . . . . . . . 27.4 6 0.7 12.63 32.6 6 0.9 12.21 20.8 6 0.7 8,590.6 16.6 6 0.7 8,581.1

VR (tree F)
p . . . . . . . . . . . . . 9.8 6 0.6 5.34 9.9 6 0.4 5.34
JC . . . . . . . . . . . . 10.6 6 0.6 6.99 11.5 6 0.5 6.98 14.3 6 0.5 7,331.8 10.7 6 0.6 7,322.2
HKY1G . . . . . . . 18.4 6 0.7 12.53 20.0 6 0.7 12.21 15.7 6 0.7 7,097.1 11.6 6 0.5 7,088.8

HKY1G model: k 5 10, gA 5 0.10, gC 5 0.40, gG 5 0.40, gT 5 0.10, a 5 0.5, dmax 5 1.0
CR (tree C)

p . . . . . . . . . . . . . 15.2 6 0.5 5.25 15.6 6 0.5 5.24
JC . . . . . . . . . . . . 16.3 6 0.5 6.87 16.9 6 0.5 6.85 21.2 6 0.7 8,677.6 17.6 6 0.7 8,662.6
HKY1G . . . . . . . 28.9 6 0.8 15.42 36.3 6 1.1 14.87 23.8 6 0.9 7,534.4 19.1 6 0.9 7,526.1

VR (tree F)
p . . . . . . . . . . . . . 16.7 6 0.6 5.04 17.3 6 0.5 5.03
JC . . . . . . . . . . . . 18.0 6 0.6 6.45 17.8 6 0.6 6.42 21.5 6 0.7 8,533.9 18.5 6 0.7 8,517.8
HKY1G . . . . . . . 28.7 6 0.8 18.46 30.8 6 0.8 18.00 24.1 6 0.7 7,409.9 18.7 6 0.9 7,401.3

NOTE.—Results are from 100 and 50 replications for ME and ML, respectively. NJ 5 neighbor-joining; TBR 5 tree bisection-reconnection; SA 5 stepwise
addition; NNI 5 nearest-neighbor interchange; HKY 5 Hasegawa-Kishino-Yano; CR 5 constant-rate model; VR 5 varying-rate model; p 5 p distance; JC 5
Jukes-Cantor distance. p, JC, and HKY1G distances and JC and HKY1G models were used for ME and ML, respectively.

smaller dT than NJ1TBR in all cases, irrespective of the
distance measure. One of the surprising results is that
the distance measure (HKY1G) based on the same mod-
el as the one used for generating sequence data shows
a much poorer performance than p or JC distance. This
again indicates that a simple distance measure often
shows a better performance than complex distance mea-
sures in inferring the true tree.

For ML methods, we present the results for only
two search algorithms, SA and SA1NNI, because an
enormous amount of computer time was required for
SA1SPR, and the simulation results in table 2 show that
SA1SPR gives essentially the same results as those ob-
tained by SA1NNI. (Actually, we constructed ML trees
for SA, SA1NNI, and SA1SPR for the first 10 data
sets for model tree F with the first parameter set of the
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HKY1G model, but the latter two algorithms gave es-
sentially the same dT value.) Here, however, we used the
JC model as well as the HKY1G model to construct
ML trees. The results show that the SA1NNI search
gives a significantly smaller dT than does SA in all cas-
es. Therefore, at least the SA1NNI search should be
performed for inferring the true tree.

One of the most paradoxical results in this study is
that the use of the correct model, HKY1G, does not
necessarily give a better topology (a smaller dT value)
than the use of an incorrect model, JC. Actually, the JC
model generally gives a better performance than the
HKY1G model, particularly when the SA algorithm is
used. Interestingly, however, the average lnL value is
much higher for HKY than for JC, with the difference
being more than 1,000 for the second set of HKY1G
parameters. Obviously, if we conduct the likelihood ra-
tio test for individual data sets, the difference will be-
come highly significant. In other words, if we choose a
substitution model by applying the likelihood ratio test
to this type of data set (Swofford et al. 1996), we will
certainly choose the HKY1G model, yet this model
does not give a better performance for topology
reconstruction.

Discussion
Fast Heuristic Algorithms

The primary purpose of this paper was to examine
the efficiencies of several fast heuristic algorithms of
phylogenetic inference under the MP, ME, and ML cri-
teria when a large number of sequences are used. For
the ME criterion, we reached the conclusion that the
simple NJ algorithm is almost always better than other
sophisticated algorithms in inferring the true tree. This
is consistent with the results obtained by Kumar (1996),
Gascuel (1997), and Nei, Kumar, and Takahashi (1998).

Currently, the most popular methods for obtaining
MP and ML trees use extensive search algorithms such
as SA1TBR or 100SA1TBR. This is based on the gen-
eral belief that the MP or ML tree is likely to be the
true tree or close to it. However, when the number of
sequences (m) is large and the number of nucleotides
examined (n) is relatively small, this is incorrect, and
the MP and ML trees tend to give incorrect topologies,
as was shown by Nei, Kumar, and Takahashi (1998). In
this study, we have shown that relatively simple search
algorithms such as SA1NNI or SA1SPR are sufficient
for inferring the true tree.

Of course, when m is large and n is relatively small,
it would be very difficult to find the true tree by any
method. In this case, the important thing is to identify
the major branching patterns of the tree and leave the
other branching patterns unresolved. This can be done
easily if we use the bootstrap test (Felsenstein 1985).
For this purpose, a simple search algorithm has an added
bonus, because it does not take much computer time.

Nevertheless, it should be noted that the results ob-
tained by this type of simulation study depend on the
model trees used. Although we used several model trees
that were generated at random and our conclusion was

largely independent of the model tree used, these model
trees still represent only a small proportion of many pos-
sible trees. It is therefore desirable to examine more dif-
ferent topologies and to find general properties of dif-
ferent algorithms in the future. Note also that the pattern
of nucleotide substitution in real data is much more
complicated than the models used in this paper.

Models of Nucleotide Substitution

We have shown that for the ME or NJ method, the
simple p distance is more efficient than the JC or
HKY1G distance in inferring the true tree. The superi-
ority of the p distance over the JC distance in phylo-
genetic reconstruction has been noted by Saitou and Nei
(1987), Sourdis and Krimbas (1987), and Tajima and
Takezaki (1994), but our results indicate that it is also
superior to the HKY1G distance even when the se-
quence data are generated by the HKY1G model. This
superiority is apparently caused by the small variance
of this distance compared with the variances of other
distance measures. In recent years, a number of inves-
tigators have used ML estimates of the HKY or
HKY1G distance to construct an NJ or ME tree (e.g.,
Berntson, France, and Mullineaux 1999; Silberman et
al. 1999; Zardoya, Economidis, and Doadrio 1999). Our
study suggests that this practice should be discouraged.
It appears that the HKY or HKY1G distance is useful
only when the evolutionary rate varies extensively with
evolutionary lineage and the number of nucleotides ex-
amined is very large (.10,000) (Takezaki and Gojobori
1999).

Similarly, we have shown that in phylogenetic in-
ference by ML methods, the HKY1G model is less ef-
ficient than the JC model even if the HKY1G model is
used for generating sequence data. Somewhat similar
results were obtained by Yang (1997) and Bruno and
Halpern (1999) when they compared the efficiencies of
topology reconstruction by the JC and the JC1G models
for various model trees of four to eight sequences. Com-
plex relationships between substitution models and the
efficiency of topology construction have also been noted
by Tateno, Takezaki, and Nei (1994) and Gaut and Lew-
is (1995). It appears that these results are partly caused
by a larger number of parameters to be estimated in
complex models than in simple models and are partly
due to the complex nature of phylogenetic inference by
ML methods as discussed by Nei (1987, 1996), Yang,
Goldman, and Friday (1995), and Yang (1997). Note
that the mathematical basis of phylogenetic analysis by
ML methods is quite different from the standard param-
eter estimation in a single probability space (Yang,
Goldman, and Friday 1995; Nei 1996). The pattern of
nucleotide substitution in real sequence data is also
much more complicated than the HKY1G model, and
for this reason some authors (e.g., McArthur and Koop
1999; Silberman et al. 1999; Waits et al. 1999) have
used even more complicated models. It has also been
suggested that selection of a model to be used for con-
structing ML trees should be determined by conducting
the likelihood ratio test (Swofford et al. 1996; Huelsen-
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beck and Crandall 1997) or by using the Akaike infor-
mation criterion (AIC) (Hasegawa and Kishino 1989).
The present study raises serious questions about these
procedures. A more careful study of the theoretical foun-
dation of phylogenetic inference by ML methods is
necessary.

In this paper, we were concerned primarily with
topology construction, and our conclusion does not ap-
ply to the estimation of branch lengths for a given to-
pology. For estimating branch lengths, it would be better
to use a model close to the real substitution pattern.

Efficiencies of Different Tree-Building Methods

Although it was not our primary purpose to com-
pare the efficiencies of different tree-building methods
in inferring the true tree, our study provides some in-
formation on this problem. First, our study indicates that
the efficiencies of the NJ and the ML methods depend
on the mathematical model (or distance measure) used
and that the correct model does not necessarily give the
highest efficiency. Therefore, comparison of different
tree-building methods should be done using the model
that is most appropriate for each method. Our results
showed that in the case of high divergence, the NJ al-
gorithm with p distance generally gives a smaller dT
than the MP1NNI and the ML1NNI algorithms, par-
ticularly when the HKY1G model is used for generating
nucleotide sequences. In this case, even NJ with JC dis-
tance shows a better performance than MP and ML
methods.

When the extent of sequence divergence is low and
dmax 5 0.1, however, NJ with p distance tends to give
a slightly higher dT than the MP1NNI and ML1NNI
methods. This is understandable, because a phylogenetic
tree for closely related sequences with a relatively small
n is expected to have many multifurcating nodes, and
for identifying multifurcating nodes, MP and ML meth-
ods are superior to NJ, since the latter is intended to
construct a bifurcating tree (Nei and Kumar 2000). In
practice, of course, an inferred tree is usually subjected
to the bootstrap test, and these multifurcating nodes are
judged as unresolved in the inference of bifurcating
trees. Therefore, it is difficult to compare the efficiencies
of different tree-building methods in terms of dT alone
when dmax is low and n is small.

As mentioned above, the relative efficiencies of dif-
ferent tree-building methods depend on the model tree,
the substitution model, the number of nucleotides, etc.,
and it is very difficult to make any general conclusions
from a limited number of computer simulations. In the
past, it was customary to compare different tree-building
methods by using the same substitution model for all of
the methods and a small number of sequences. Our
study shows that this is not the right method of com-
parison if we want to have conclusions that can be used
for practical application. In any theoretical study of phy-
logenetics, it is important to find the best method of
analysis for each tree-building method and then compare
different methods. Also, the mathematical models cur-
rently used in phylogenetic analysis are crude approxi-

mations to reality. Therefore, we should not make un-
warranted extrapolations of simulation results to real se-
quence data. Actually, many recent empirical studies
with real data sets (Andersson et al. 1999; Honda, Yok-
ota, and Sugiyama 1999; Marko and Vermeij 1999; Mei-
reles et al. 1999; Tan et al. 1999) suggest that MP, NJ,
and ML methods generally give essentially the same
phylogenetic inference when the bootstrap test is ap-
plied. Phylogenetic inference is a biological problem
rather than a mathematical one, and it is important to
use biological information in the final judgment of the
reliability of inferred trees.
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