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Abstract

This article addresses under which conditions filtering can visibly improve the image quality. The key points are the

following. First, we analyze filtering efficiency for 25 test images, from the color image database TID2008. This

database allows assessing filter efficiency for images corrupted by different noise types for several levels of noise

variance. Second, the limit of filtering efficiency is determined for independent and identically distributed (i.i.d.)

additive noise and compared to the output mean square error of state-of-the-art filters. Third, component-wise and

vector denoising is studied, where the latter approach is demonstrated to be more efficient. Fourth, using of

modern visual quality metrics, we determine that for which levels of i.i.d. and spatially correlated noise the noise in

original images or residual noise and distortions because of filtering in output images are practically invisible. We

also demonstrate that it is possible to roughly estimate whether or not the visual quality can clearly be improved

by filtering.
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1. Introduction
A huge amount of color images is acquired nowadays by

professional and consumer digital cameras, mobile

phones, remote sensing systems, etc., and used for var-

ious purposes [1-5]. A large percentage of these images

are of appropriate quality and need no processing for

enhancement. However, there are quite many images

which are degraded. One of the main factors affecting

color image quality is the noise that might be of different

types and have various characteristics. Typical sources of

noise are low exposure in bad conditions of image acqui-

sition, thermal and shot noise [2], etc. Thus, image filter-

ing (also often called denoising) is widely used to remove

undesirable noise while preserving the useful information

in images. The purposes of filtering can be image

enhancement (in the sense of better visual quality) and

achieving better pre-conditions for image classification

and compression, object detection, [6-9], etc.

A large number of filters have been proposed so far

(see [6,8-12] and references therein). Such a variety of

approaches is explained by several reasons. One reason is

the fact that users and customers are often unsatisfied by

achieved results. This may come from the known fact

that alongside the positive effect of noise suppression any

filter more or less distorts useful information, such as

details, edges, texture. The second reason is historical.

New mathematical fundamentals for filtering have

appeared steadily during the last 40 years as robust esti-

mation theory in 70 and 80th [10,13], wavelets, PCA and

ICA in 90th of the previous century [11,14] have been

developed. Also, many new methods of locally adaptive

and non-local techniques of image filtering have been

designed recently (see [8,15-17] and references therein).

The third reason is that more accurate and adequate

models of noise have been designed and new practical

situations for which the already designed filters perform

poorly have been found [18-21]. Next, for many applica-

tions there is a need to carry out image processing in

automatic (fully blind), robust, adaptive, intelligent way,

better suited for solving any final task [22-25]. This is

especially crucial when there is a need to process a large

number of images, e.g., multichannel images and/or

remote data on-board. The fifth reason is that new visual

quality metrics (criteria, indices) have been developed

recently to assess visual quality of data [26-32]. But they

are seldom used in filter design and efficiency analysis.

The sixth reason is that images to be filtered can be one-

channel (grayscale) [10,13], three-channel (as color

images in RGB representation) [1,2,6], and multichannel
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(e.g., multi- and hyperspectral) [3,4]. For filtering multi-

channel images, two approaches are possible, namely,

component-wise denoising and vector or 3D processing

taking into account inter-channel correlation of image

data [1,2,6,12,33,34]. Each of them has advantages and

shortcomings. A thorough analysis of results is needed

for deciding which filter to apply.

In this article, we focus the four latter problems with

application to color image filtering. One problem is that

in most books and papers that address color image fil-

tering, noise is supposed to be independent and identi-

cally distributed (i.i.d.) [6,12,33]. This is an idealization

that leads to overestimation of (expected) filtering effi-

ciency that is reachable in practice [35-37]. Therefore,

along considering the i.i.d. noise case, we also study the

case of spatially correlated noise, which is more realistic

for color images [20].

It is also worth noting that nature and statistics of

noise in color images is not yet well described and mod-

eled. Although in many references, noise is considered

to be Gaussian and pure additive, this, strictly saying,

does not hold in practice [18-21,38]. The noise in origi-

nal (raw) images is clearly signal dependent [1,21,38].

After nonlinear operations with data in image proces-

sing chain [2], the assumption on noise Gaussianity and

approximately constant variance of noise holds only for

component image fragments with local mean intensity

from about 20 till about 230...235 [18,39]. Moreover,

even for such fragments, noise variance can slightly dif-

fer for R, G, and B components where for G component

it is usually the smallest. For fragments with local mean

values outside these limits, noise variance is usually

smaller and clipping effects can take place. This makes

the analysis of filtering efficiency problematic. To sim-

plify situation and comparisons, below we analyze addi-

tive Gaussian noise with variance values equal for all

three components.

Besides, we pay main attention to visual quality of ori-

ginal and filtered images. Note that considerable

advances have taken place in design of new visual qual-

ity metrics (indices) in recent years. It has been demon-

strated many times that mean square error (MSE) is not

an adequate metric for characterizing visual quality of

original and processed images [26-31,40-42]. Experi-

ments with a large number of observers have demon-

strated that a peak signal-to-noise-ratio (PSNR) increase

by 3 dB (or, equivalently, MSE reduction twice) because

of filtering does not guarantee improvement of filtered

image visual quality compared to original noisy one

[38]. Many quality metrics, i.e., DCTune, WSNR, SSIM,

MSSIM, PSNR-HVS-M, have been designed recently

and shown to be more adequate than MSE and PSNR in

characterizing visual quality of original noisy and filtered

images. Thus, below analysis of filtering efficiency is

carried out using PSNR, PSNR-HVS-M [31], and, in

some cases, MSSIM [27]. The two latter metrics are

able to take into account for several valuable specific

features of human vision system (HVS) and they have

been demonstrated to be among the best ones for the

considered application [29].

One more problem with filter design and comparison is

that for many years there were no established theoretical

limits of filtering efficiency. Thus, it was not clear how

large gain in image quality can be provided because of fil-

tering even in terms of output MSE lower bound. Fortu-

nately, a breakthrough paper [43] has appeared recently. It

has answered, at least, some important questions for the

case of filtering grayscale images (or component-wise pro-

cessing of color images) corrupted by i.i.d. noise. Below we

will give more insight to this aspect.

A drawback of many publications dealing with image fil-

tering is the use of a limited set of standard images. Mean-

while, recent research results show that “old” standard

images as, e.g., Lena, are, in fact, not noise-free [44,45].

This causes problems in correct estimation of filtering effi-

ciency and careful comparison of filter performance.

Therefore, our goal is to test filters for a larger number of

real-life color images which are practically noise-free. The

set of natural color images of Kodak http://r0k.us/gra-

phics/kodak/ and the image database TID20008 [29]

http://www.ponomarenko.info that is based on the Kodak

set provide an opportunity of such thorough testing.

Finally, starting from the paper [46], two approaches to

color image filtering began to be developed and analyzed

in parallel, component-wise, and vector (3D). A lot of vec-

tor filters that allow exploiting inherent inter-channel cor-

relation of color image components have been proposed

since then [6,12]. In this article, we basically consider

DCT-based filters [15,33,35,47] since they have shown

themselves to be quite simple, efficient, and easily adapta-

ble to processing grayscale and color images corrupted by

i.i.d. and spatially correlated noise. We give some results

for other state-of-the-art filters for comparison purposes.

One more goal of testing DCT-based filters for a large

number of color images and noise variances is to find

practical situations for which filtering is desirable or not

expedient. Note that, in our opinion, filtering of color

images meant for visual inspection is not needed in two

cases: (1) if noise in an original noisy image is not visible;

(2) an applied filter does not improve visual quality of pro-

cessed (output) image compared to the corresponding ori-

ginal one.

The rest of this article is structured as follows. First, we

give a brief description of TID2008 and the possibilities

offered by it in Section 2. Then, potential limits of filter-

ing efficiency and the results provided by known filters

are considered in Section 3. Thorough efficiency analysis

for additive white (i.i.d.) Gaussian noise (AWGN) and
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spatially correlated noise is carried out in Sections 4 and

5, respectively. Finally, the conclusions are drawn.

2. Tampere image database 2008 (TID) and used
noise models
The color image database TID2008 was created in 2008.

The main goal of its creation was to provide wider

opportunities for performance analysis of different visual

quality metrics and their comparison to other databases

of distorted images as, e.g., LIVE [48] that contains

images with five types of degradations. The database

TID2008 contains 25 distortion-free test color images

(see Figure 1) and 1,700 distorted ones. Seventeen types

of distortions have been simulated including AWGN

(the first type of distortions), spatially correlated noise

(the third type of distortions), and other ones, in parti-

cular, distortions in filtered images because of residual

noise and imperfection of filters. Four levels of distor-

tions are provided adjusted so that PSNR values are

about 30, 27, 24, and 21 dB for each color image (see

[29,40] for more details).

Nowadays people use the TID2008 for some other pur-

poses than it was originally created [49,50]. Since this

image database already contains noisy and reference

images, it can be also exploited for testing image filtering

efficiency. Moreover, having noise-free images at disposal,

it is easy to add noise to them with any required variance

and, in general, any type and statistical characteristics.

Note that all the images, in opposite to original Kodak

database, are of equal size that provides additional benefits

in their processing and analysis. The images are of differ-

ent content and complexities (complexity here means a

percentage of pixels that belong to image homogeneous

regions). In this sense, the images ##3 and 23 (Figure 1)

are the simplest whilst the images ##13, 14, 5, 18 are the

most complex ones. The image #25 is not from Kodak

database. It was synthesized by the authors of TID2008 to

test metric performance for artificial images. In general,

1 2 3 4 5

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 

Figure 1 Noise-free test color images of TID2008 (each image has 384 rows and 512 columns, 24 bits per pixel).
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no obvious differences between metric performance for

real life and artificial images have been observed in

experiments.

The PSNR values equal to 30, 27, 24, and 21 dB men-

tioned above are provided for AWGN and spatially corre-

lated noise by setting variance values s2 equal to 65, 130,

260, and 520, respectively, for images with 8-bit represen-

tation in each color (R, G, and B) component. Noise

independence in color components has been assumed.

Spatially correlated noise has been obtained by filtering

2D AWGN by 3 × 3 mean filter with further setting a

required noise variance. After adding noise, noisy image

values have been returned into the limits 0...255, i.e., clip-

ping effects are observed in noisy images.

The case of noise variance equal to 65 (distortion level

1) is the most interesting from practical point of view

since the noise is clearly visible for most images and,

thus, it is desirable to apply filtering. The same relates

to noisy images with noise variance s2 = 130. Mean-

while, noise variances 260 and 520 seldom met in prac-

tice. Thus, let us concentrate on more thorough

studying the cases of noisy images with s
2 = 130, 65,

and less. For all the values of noise variance smaller

than 65, images corrupted by i.i.d. and spatially corre-

lated noise have been obtained similarly as for TID2008

images.

Let us illustrate some effects observed for noisy images.

Figure 2a shows the test image #16 corrupted by i.i.d.

noise with variance 65. Noise is visible in homogeneous

image regions but masked in textural regions. The same

test image corrupted by spatially correlated noise with the

same variance is presented in Figure 2b. It is obvious that

the visual quality of the latter image is worse. Noise is well

seen in practically all parts of this image. For both images,

the values of input PSNR defined as PSNRinp = 10 log10
(2552/s2) are equal to 30 dB. For the image in Figure 2a,

the metric PSNR-HVS-M [31] equals to 33.2 dB whilst for

the image in Figure 2b PSNR-HVS-M = 26.6 dB (larger

PSNR-HVS-M relates to better visual quality). Thus, also

from example one can see that PSNR-HVS-M charac-

terizes image visual quality more adequately than conven-

tional PSNR.

The reason is that the metric PSNR-HVS-M accounts

for two important features of HVS. First, it exploits the

fact that sensitivity to distortions in low spatial frequen-

cies is larger than to distortions in high spatial frequen-

cies. Second, masking effect (worse ability of human

vision to notice distortions in heterogeneous and tex-

tural image areas) is taken into account.

3. Potential limits and preliminary analysis of
filter efficiency
As it has been mentioned in Section 1, there is a possi-

bility to derive lower bound output MSE (further

denoted as MSElb) for denoising a grayscale image cor-

rupted by i.i.d. noise [43] under condition that one

also has the corresponding noise-free image. This

allows determining MSElb for component-wise proces-

sing of color images in TID2008 for the first type of

distortion (i.i.d. Gaussian noise). The obtained results

for 11 color images from TID2008 (s2 = 65) are pre-

sented in Table 1. We have selected for analysis the

most textural images (##13, 14, 5, 6, 8, 18), the sim-

plest structure test images (##10 and 23), one example

of typical (middle complexity) images (#11), and the

artificial image #25.

The analysis shows the following:

1. For a given image, the values MSElb are close to

each other, this is explained by known high similar-

ity (inter-component correlation) of information

content in component R, G, and B images;

a b 

Figure 2 The test image #16 corrupted by i.i.d. (a) and spatially correlated (b) noise with s
2 = 65.
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2. The values MSElb can differ by up to 10 times

depending upon image complexity (compare MSElb
values for the test images ##13 and 23); this conclusion

is in good agreement with data presented in the article

[43] where it has been shown that the difference can

be even larger;

3. The larger MSElb values are observed for more com-

plex-structure images, for the image #13 MSElb is only

about 1.55 times smaller than s
2 = 65; thus, even

potential quality improvement because of filtering in

terms of output MSE or output PSNR (PSNRout) is

quite small;

4. Meanwhile, for other images improvement of PSNR

(that can be characterized by PSNRout-PSNRinp) can

be considerable, up to 11 dB for the test image #23.

For our further study, it is important to recall some

conclusions resulting from the previous analysis [40]. To

provide better visual quality of a filtered image com-

pared to the corresponding noisy one, it is necessary to

ensure that PSNR improvement because of filtering is,

at least, 3...6 dB (the smaller PSNR for noisy image, the

larger PSNR improvement should be). The latter conclu-

sion is based on the analysis of averaged mean opinion

score (MOS) [40] but it can be different for particular

images.

So, let us briefly look at output MSE values (MSEout)

provided by some recently proposed filters applied com-

ponent-wise. Consider first a standard DCT-based filter

with 8 × 8 fully overlapping blocks and hard thresholding

with the threshold T = 2.6s [47] where s is supposed to

be known a priori. The obtained output MSEs denoted

as MSEDCT are presented in Table 1. Their analysis

allows us to draw the following preliminary conclusions:

1. There is an obvious correlation between MSElb

and MSEDCT: to larger MSElb corresponds the larger

MSEDCT;

2. For larger MSElb, the ratio MSEDCT/MSElb is smal-

ler, i.e., the standard DCT filter provides efficiency

close to the potential limit; the same tendency has

been observed in [43] where it has been demonstrated

that the state-of-the-art filters possess efficiency close

to the reachable maximum for complex-structure

images especially if noise variance is large; for such

situations there is a very limited room for further

improvement of filter performance;

3. Considerable room for further improvement of fil-

ter performance exists for the simplest-structure

images (e.g., ##23 and 10, but MSEDCT for them is

already quite small; thus, further improvement of fil-

ter performance is not so crucial);

4. The results for artificial image #25 are similar to

those ones for typical real-life images as the image

#11.

One can argue that the standard DCT-based filter is

not the best. Because of this, for comparison purposes we

also present some results [51] for a more elaborated filter

BM3D [16] shown to be the best in [43]. For s2 = 65 and

R component of color images, the BM3D filter produces

MSEs equal to 27.8, 28.3, 45.0, 29.4, 27.5, and 11.5 for

the images ##5, 8, 13, 14, 18, and 23, respectively. Com-

parison of these data to the corresponding data in Table

1 shows that the BM3D is slightly more efficient than the

DCT-based filter and it produces closer output MSEs to

MSElb. However, the difference is not significant. It is

noted that thorough comparison of different filters is not

the main goal of this article. Here, it is important that

DCT-based filters perform close to currently reachable

limit.

We have also determined MSElb for the cases s
2 = 130

and 260. For a given test image, MSElb for the case s2 =

130 is about 1.7...1.8 times larger than MSElb for s
2 = 65.

Similarly, MSElb values for s2 = 260 are about 1.7...1.8

times larger than the corresponding MSElb values for

Table 1 Lower bound MSE and output MSE for the DCT-based filter for components of color images in TID2008.

Image index in TID2008 R component G component B component

MSElb MSEDCT MSElb MSEDCT MSElb MSEDCT

1 28.9 36.8 29.9 36.5 28.9 36.8

5 27.5 30.4 28.0 30.9 26.4 30.8

6 23.7 31.2 23.5 31.2 22.4 30.8

8 23.2 32.5 23.3 32.1 22.6 32.0

10 7.1 17.6 7.5 18.1 7.3 17.8

11 16.4 26.4 16.2 26.3 15.3 25.8

13 41.0 46.6 42.6 46.2 37.2 46.3

14 20.7 31.0 20.0 30.6 19.5 30.7

18 21.4 28.7 20.4 28.1 17.4 28.3

23 4.6 12.9 4.7 12.7 4.8 12.6

25 14.7 19.4 14.0 18.2 13.5 18.3
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s
2 = 130. The same tendency has been observed [43] for

grayscale test images. The ratios MSEDCT/MSElb for lar-

ger noise variances are even smaller than for s2 = 65.

Thus, let us mainly concentrate on considering s2 = 65

and smaller values as more realistic and interesting in

practice. An interested reader can find some additional

data for s2 = 130 in [51,52].

Unfortunately, the method and software [43] do not

allow determining potential limits of filtering efficiency for

vector filtering of color images. However, there are initial

results showing that MSElb values in this case should be

considerably smaller than in the case of component-wise

processing [51,53]. We present results (output MSE3DDCT)

for the 3D DCT based vector filter [33] that uses “spectral”

DCT to decorrelate color components and then applies

2D DCT (see data in Table 2 for noise variances s2 = 65

and s2 = 130). Let us, for example, consider MSE3DDCT

for the test image #13. They are again quite close for R, G,

and B components and are approximately equal to 23 for

s
2 = 65. This is almost twice less than MSElb for compo-

nent-wise processing case (see data in Table 1). The values

MSE3DDCT occur to be smaller than the corresponding

MSElb for the test images ##5 and 8 as well (compare data

in Tables 1 and 2). Only for the simplest test image #23

the values MSE3DDCT are larger than the corresponding

MSElb values although all MSE3DDCT are sufficiently smal-

ler than the corresponding MSEDCT.

Some other vector (3D) filters as C-BM3D [53] are

able to produce even smaller output MSE than

MSE3DDCT [54]. Besides, as it has recently been demon-

strated in [54], lower bounds for vector filtering is about

twice smaller than the corresponding MSElb values if

noise is independent in color components.

One should not be surprised by the fact that MSE3DDCT
and output MSE for some other vector filters can be

smaller than the corresponding MSElb. This does not

mean that MSElb values derived according to [43] are

incorrect. This only demonstrates two things. First, the

use of inter-component correlation being taken into

account by a filter allows considerable improvement of

filtering efficiency. Second, it is worth trying to derive

lower bound MSE for multichannel filtering in the future.

Table 2 also presents the results for s2 = 130. It is

seen that for a given image and color component, the

values of MSE3DDCT for s2 = 130 are about 1.5...1.7

times larger than for s
2 = 65. Thus, the tendency

described above remains.

One should also keep in mind that nowadays there are

quite many blind (automatic) methods for estimation of

noise variance needed to set filter’s parameter (thresh-

old), see, e.g., [55-57] and references therein. For i.i.d.

additive noise case, these methods allow estimating noise

variance or standard deviation accurately enough even

for highly textural images as, e.g., the test image #13.

These methods can be applied if noise variance in color

components is not known in advance creating the basis

for fully automatic processing [58]. If noise in color

images has specific properties described in Section 1 and

the articles [18,39], we recommend using in blind estima-

tion of noise variance only the image fragments (blocks,

scanning windows) with local mean from 25 till 230.

4. Filter efficiency analysis for the TID2008 color
images, AWGN case
Let us start from brief description of the used quantita-

tive criteria of filtering efficiency. The filter output

MSEs for color image components are calculated as

σ
2
k out =

I
∑

i=1

J
∑

j=1

(I
f
kij − Itrue

kij )2/IJ (1)

where I
f
kij

is ijth sample of filtered kth component of a

color image in RGB representation, Itrue
kij denotes true

(noise-free) value of ijth pixel of kth component, k =

1,2,3; I, J define a processed image size (384 rows and

512 columns for TID2008 color images).

Output PSNR for the considered 8-bit representation

of each color component is determined as

PSNRk = 10log10(2552/σ 2
k out) (2)

Alongside with the standard PSNR, we have analyzed

the visual quality metric PSNR-HVS-M. For calculating

PSNR-HVS-M, weighted MSE σ
2
k HVS−M is derived first

(see details in [31]), and then

PSNR - HVS - Mk = 10log10(2552/σ 2
k HVS - M) (3)

The source code is available at http://www.ponomar-

enko.info/psnrhvsm.htm. Similar to PSNR, PSNR-HVS-M

Table 2 Output MSE for the 3D DCT based filter [33] for four color images in TID2008

Component Image

Test image #13 Test image #5 Test image #8 Test image #23

s
2 = 65 s

2 = 130 s
2 = 65 s

2 = 130 s
2 = 65 s

2 = 130 s
2 = 65 s

2 = 130

R 22.0 38.9 17.3 29.1 18.2 33.2 9.0 13.8

G 22.6 40.8 17.3 29.4 17.5 33.4 8.8 13.7

B 24.6 42.1 17.5 29.2 18.8 31.3 9.5 14.6
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is expressed in dB. Larger values correspond to better

visual quality. The cases PSNR-HVS-M > 40 dB relate to

almost perfect visual quality where noise and distortions

are practically not seen [59]. Also note that dynamic range

D of image representation should be used in (2) and (3)

instead of 255 if images are not in 8-bit representation.

Let us first consider the dependences PSNR-HVS-Mk

(n), where n denotes index in TID2008, before and after

filtering for s2 = 65 (see Figure 3a).

The lower group of three curves corresponds to input

(noisy) images and the upper group to the filtered ones,

respectively. There are several important observations

that follow from the analysis of these curves:

1. Again, the curves for all color components are

very similar; this relates to both the group of input

(noisy) images and output (filtered) ones.

2. For original (noisy) images, the lowest visual qual-

ity takes place for the simplest structure images (the

smallest values of PSNR-HVS-Mk (n) are observed

for the test images ##2, 3, 4, 15, 16, 20, and 23,

about 33 dB for all of them); this deals with the fact

that for textural images noise is considerably masked

while for simple structure images it is well seen in

homogeneous image regions.

3. For all the test images, their visual quality has

been improved; however, improvement is quite dif-

ferent, the largest improvement is observed for sim-

ple structure images as, e.g., the test images ##3, 15,

23; the smallest improvement takes place for the

most complex structure test images as, e.g., the test

images ##5, 13, and 14.

It is noted that different efficiencies of image filtering

result from the test image properties. For example, the

test image #13 is, obviously, more complex than the test

images #3 and #23. The problem of efficient filtering of

textural images is typical and crucial not only for DCT-

based filters but also for almost all the filters as well.

Generally speaking, this is one of the most complicated

problems in image filtering (see also data in Table 1).

Here, we would like to draw readers’ attention to

recently obtained results [59]. Visibility of distortions

has been analyzed for images compressed in a lossy

manner. It has been shown that for PSNR-HVS-M > 40

dB or MSSIM > 0.99 the distortions are practically non-

noticeable. We have checked this for color noisy and fil-

tered images as well as for images with watermarks. It

has been established that the aforementioned property

holds.

Keeping this in mind, it is possible to state that for

AWGN with s
2 = 65 noise is clearly visible in original

images (the values of PSNR-HVS-Mk (n) are within the

limits 33...36 dB, see the lower group of curves in Figure 3).

In processed images, residual noise and distortions intro-

duced by filtering are less noticeable but anyway visible.

We have also considered several values of AWGN

noise variance smaller than 65 (the corresponding noisy

images have been generated using the reference images

in TID2008). Consider the most interesting case of s2 =

25. It is noted that for s2 = 25 PSNRinp is equal to 34.1

dB for all noisy images. The results are presented in Fig-

ure 3b. The lower group of three curves relates to the

noisy images and the upper group corresponds to the

filtered ones. The main conclusions drawn from the

analysis of these curves are the same as conclusions 1-3

given above. The difference consists in the following.

The smallest values of PSNR-HVS-Mk (n) observed for

the noisy test images ##2, 3, 4, 15, 16, 20, and 23 are

within the limits 37.5...38 dB, i.e., considerably larger

n

( ), dB
k

PSNR HVS M n

n

( ), dB
k

PSNR HVS M n

a B 

Figure 3 PSNR-HVS-Mk (n) before (thin lines) and after filtering for s2 = 65 (a) and 25 (b), AWGN.
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than for the case of s2 = 65. For the most complex

structure images as, e.g., the test images ##5, 8, 13, and

14, the values of PSNR-HVS-Mk (n) are larger than 40

dB even for noisy (not filtered) images and there is no

need to process them to improve visual quality.

For almost all the filtered test images, the values of

PSNR-HVS-Mk (n) are larger than 40 dB. This means

that processed images are practically indistinguishable

from the corresponding reference ones. Moreover, if

more sophisticated filtering methods than component-

wise DCT-based denoising are applied, then it is possi-

ble to provide almost “ideal” visual quality of processed

images (PSNR-HVS-Mk > 40 dB) for values of noise var-

iance larger than 25. As examples, let us give data for

two images from TID2008: one of the simplest ones

(#3) and one of the most complex (#13). If the 3D DCT

filter [33] is applied to the test image #3 corrupted by

AWGN with s
2 = 35, the values of PSNR-HVS-Mk are

equal to 41.84, 41.94, and 41.47 dB for R, G, and B

components, respectively. Similarly, for the image #13

we have 42.66, 42.00, and 41.1 dB (all over 40 dB).

Thus, the upper limit of AWGN variance for which fil-

tered images are indistinguishable from reference ones

is even higher if efficient 3D filters are employed.

Our studies have also shown that if s2 ≤ 10...15, noise

is practically (with large probability) invisible in original

images. This means that there is no reason to apply fil-

tering if AWGN noise has variance s2 ≤ 10...15.

In terms of conventional PSNRk, the smallest values

for s2 = 25 are observed for the components of the

complex-structure test image #13 (about 35 dB) while

for the simplest test images (##3, 7, 20, 23, and 25) the

values of PSNRk reach 40 dB. Therefore, in terms of

PSNRk, component-wise DCT-based filtering is still effi-

cient. More complicated filters [33,53] are able to pro-

vide even larger increase of PSNR after denoising.

A practical question is then can anyone predict effi-

ciency of filtering or is it reasonable to perform filtering

for a given image? For this purpose, one has to be sure

that noise is i.i.d. Second, one has to be confident that

noise variance is smaller than 15 (then no filtering can

be performed), if component-wise DCT-based filtering

is to be applied and smaller than 35 if 3D DCT-based

denoising has to be carried out. Earlier, we mentioned

the methods for blind evaluation of noise variance

which are accurate enough. Thus, it could be also nice

to have a parameter allowing to establish is noise i.i.d.

or not.

One such parameter has been proposed in [36]. The

methodology of its determination is the following. For

each block with its left upper corner characterized by

indices l and m, two local estimates of noise variance

are calculated in spatial domain as

σ
2
klm =

l+7
∑

i=l

m+7
∑

j=m

(Ikij − Īklm)2/63; Īklm =

l+7
∑

i=l

m+7
∑

j=m

Ikij/64 (4)

and in DCT domain as

(σ
sp

k lm)2 = (1.483med(
∣

∣

∣
Dlm

qs

∣

∣

∣
))2, (5)

where Dlm
qs , q = 0, ..., 7, s = 0, ..., 7, except q = s = 0

are DCT coefficients of lmth block of kth component of

a given color image. Then, for each block the following

ratio is calculated Rk lm = σklm/σ
sp
k lm

. The histogram of

these ratios is formed and its mode
⌢

rk (n) is determined

by the method given in [60]. The distribution of Rklm

for all k and almost all images has quasi-Gaussian com-

ponent with a maximum coordinate close to unity (for i.

i.d. noise) and a right-hand heavy tail where the ratios

relating to this tail are obtained in heterogeneous image

blocks.

Let us analyze the behavior of the estimates
⌢

rk (n).

The dependences of
⌢

rk (n) on n for all color components

are given in Figure 4 as the curves of the corresponding

color (for s2 = 65 and 25). As seen, these dependences

are very similar. Almost equal values of
⌢

rk (n) are

observed for R, G, and B components of a given test

color image and a fixed noise variance. Some sufficient

differences in the values
⌢

rk (n), k = 1, 2, 3 are only seen

for the test image #20. The reason is in considerable

clipping effects observed for this test image. The values
⌢

rk (n) for larger noise variance are slightly smaller (com-

pare these values for the same images in Figure 4a, b).

The most important observation is that the largest

values
⌢

rk (n) take place for the most textural images as

the test images ##5, 8, 13, 18. For other test images, the

values
⌢

rk (n) are quite close to unity. Thus, the para-

meter
⌢

rk (n) seems to be “correlated” with image com-

plexity and filtering efficiency. To check this

assumption, let us determine Spearman rank correlation

factor [61] (note that here rank correlation is used to

avoid fitting problems). First, we have calculated Spear-

man rank correlation RkSp for data arrays
⌢

rk (n) (Figure

4a) and PSNRk(n) at filter outputs, n = 1,...,25. For all

the color components, the values RkSp are in the range

-0.9...-0.8. The fact that the values of RkSp are negative

means that reduction of
⌢

rk (n) relates to an increase of

PSNRk(n). The fact that absolute values of RkSp are quite

large (close to unity) shows that there exists consider-

able and strict correlation between
⌢

rk (n) and PSNRk(n).

We have also calculated RkSp for data arrays
⌢

rk (n)

(Figure 4b) and PSNRk(n) at filter outputs, n = 1,...25 for

noise variance equal to 25. The values RkSp fall to the

same range. Thus, larger increase of PSNR can, most

probably, be provided if
⌢

rk (n) is small.
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Besides, if noise is i.i.d., then a considerable deviation

of
⌢

rk (n) from 1.0 (e.g.,
⌢

rk (n) is larger than 1.08) shows

that an image to be filtered is quite complex (is textural

and/or contains many fine details). In turn, it also

means that for this image it is difficult to expect effi-

cient filtering in the sense of considerable increase of

PSNR-HVS-M.

Sufficient correlation also exists between
⌢

rk (n) (Figure

4) and PSNR-HVS-Mk(n) before filtering (lower groups

of curves in Figure 3). The Spearman rank correlation

factors for these arrays RkSp are within the limits

0.8...0.9. Positive values mean that if
⌢

rk (n) is rather

small, then the corresponding PSNR-HVS-Mk(n) is

rather small too. Then, noise in a given image is not

considerably masked. Therefore, the parameter
⌢

rk (n)

that can be determined for an image in advance (before

filtering) can serve for characterizing image complexity

and noise masking effects as well as predicting efficiency

of filtering. Further analysis results and conclusions are

presented in the following section.

Here, we would like to give more insights on visual

quality of noisy and filtered images. For this purpose, let

us recall how the metric PSNR-HVS-M (3) is calculated

[31]. The first step is to determine s2HVS-M. This para-

meter is an average of local MSEs s
2
HVS-M lm:

σ
2
HVS - M =

I−7
∑

l=1

J−1
∑

m=1

σ
2
HVS - M lm/((I − 7)(J − 7)). Local MSEs

s
2
HVS-M lm are calculated in 8 × 8 blocks with left upper

corner defined by indices l and m and they are deter-

mined in DCT domain with taking into account contrast

sensitivity function and masking [31]. Local MSEs

s
2
HVS-M lm can be smaller or larger than noise variance.

The inequality s2HVS-M lm >s2 usually holds if noise is

spatially correlated (or realization of i.i.d. noise in a

given block exhibits such quasi-correlation) and/or there

is no masking for a given block (this mostly happens for

homogeneous image blocks).

Consider as one example the G component of the test

image #14 corrupted by i.i.d. noise with variance 25

(shown in Figure 5a). Noise can be hardly noticed in

homogeneous image regions as the gum boat surface. In

other places, as water surface noise is practically not

seen because of masking effects. These observations are

confirmed by the map of s2HVS-M lm for noisy (original)

image presented in Figure 5b (further denoted as s2HVS-

M or lm, brighter pixels correspond to blocks with larger

s
2
HVS-M or lm). The histogram of s2HVS-M or lm is shown

in Figure 6a. It is seen that there are values of s2HVS-M

or lm larger than 25 but this happens quite seldom and

mostly in homogeneous image regions (analyze the

noisy image in Figure 5a and the map of s2HVS-M or lm

in Figure 5b jointly).

Consider now the estimates s2
HVS-M or lm for the

image processed by the DCT-based filter (further

denoted as s2
HVS-M fi lm). The corresponding map is

presented in Figure 5c (brighter pixels correspond to

blocks with larger s2
HVS-M fi lm) and the histogram is

given in Figure 6b. Analysis of the histogram shows

that, on the average, the values of s2
HVS-M fi lm are

smaller than s
2
HVS-M or lm although there are s2HVS-M fi

lm larger than 25. This takes place in textural regions

and in edge/detail neighborhoods (analyze the noisy

image in Figure 5a and the map of s2HVS-M fi lm in Fig-

ure 5c jointly).

Finally, we have obtained the map of the ratio s2HVS-M

fi lm/s
2
HVS-M or lm (presented in binary form in Figure

5d) and the histogram of this ratio (see Figure 6c). His-

togram analysis demonstrates that mostly the ratios are

n

( )
k
r n

n

( )
k
r n

a b 

Figure 4 Dependences
⌢

rk (n) for components of color images for s2 = 65 (a) and 25 (b).
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smaller than unity, i.e., local improvement of visual

quality is provided by filtering. This mostly occurs in

homogeneous image regions. However, there are also

local degradations of visual quality when distortions

introduced because of filtering are larger than positive

effect of noise removal. The places where such degrada-

tions are the most considerable are shown by white in

the binary map in Figure 5d. Joint analysis of the noisy

image in Figure 5a and the binary map in Figure 5d

allows concluding that the largest local degradations of

a b

c d

Figure 5 Green component of noisy image # 14 (a), the map of s2HVS-M lm for noisy image (b), the map of s2HVS-M lm for filtered

image (c), the ratio map in binary form, black if s2HVS-M fi lm/s
2
HVS-M or lm < 1.5 and white otherwise (d).
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Figure 6 Histograms of s2HVS-M or lm for noisy image (a), s2HVS-M fi lm for filtered image (b), and s
2
HVS-M fi lm/s

2
HVS-M or lm (c).
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visual quality take place in heterogeneous image regions

(edge/detail neighborhoods, high contrast textures).

Let us see what improvement of image visual quality

can be produced by the BM3D filter [16] applied compo-

nent-wise. Figure 7a shows the histogram of the ratio

s
2
HVS-M fi lm/s

2
HVS-M or lm for this filter. It is similar to

the histogram in Figure 6c. Figure 7b demonstrates the

ratio binary map. Its comparison to the binary map in

Figure 5d shows that the number of white pixels (for

which s2HVS-M fi lm/s
2
HVS-M or lm > 1.5 and, thus, BM3D

filtering introduces considerable distortions) is smaller

than for the conventional DCT-based filter. Note that the

values of PSNR-HVS-Mk(14) for the BM3D filter are only

by 0.3...0.4 dB larger than for the DCT-based filter. Thus,

visual quality improvement is not large while complexity

of BM3D is sufficiently greater.

Consider now another, simpler structure, test image #3

corrupted by AWGN with larger noise variance equal to

65. It’s noisy green component is represented in Figure

8a. The noise is well seen, especially in homogeneous

image regions. The map of s2
HVS-M or lm for this noisy

image is shown in Figure 8b (brighter pixels correspond

to blocks with larger s2
HVS-M or lm). Masking effect is

well observed for edge neighborhoods (dark pixels that

appear on them show that the values of s2HVS-M or lm are

considerably smaller than in other places). The corre-

sponding histogram of s2
HVS-M or lm is given in Figure

9a. It is seen that there are values of s2HVS-M or lm larger

than 65 although this happens very seldom, mostly in

homogeneous image regions (analyze the noisy image in

Figure 8a and the map in Figure 8b jointly).

The estimates s2HVS-M fi lm for the image processed by

the DCT-based filter component-wise are presented in

Figure 8c, the corresponding histogram is shown in Figure

9b. The histogram analysis clearly demonstrates that, on

the average, the values of s2
HVS-M fi lm have become

considerably smaller than s2HVS-M or lm although there is

still a small percentage of s2HVS-M fi lm larger than 65.

Such blocks occur in neighborhoods of high contrast

edges and fine details (from the joint analysis of the noisy

image in Figure 8a and the map in Figure 8c). The

obtained map of the ratio s2HVS-M fi lm/s
2
HVS-M or lm is

presented in binary form in Figure 8d, the histogram of

this ratio is given as well (Figure 9c). The analysis of the

histogram shows that for a large percentage of pixels

(blocks) the ratios are smaller than unity. This means that

a local improvement of visual quality is provided due to

the filtering. This improvement is sufficient since there are

many values of the ratio smaller than 0.5. As it can be

expected, sufficient improvement of local visual quality

takes place mainly in homogeneous image regions.

However, even for the considered simple structure test

image, there exist local degradations of visual quality as

well. The map in Figure 8d shows that distortions intro-

duced because of filtering are large for sharp edge and

detail neighborhoods (shown as white in the binary map

in Figure 8d). This conclusion once more stresses the

known drawback of the DCT-based filter to introduce

distortions in places of sharp transitions in images

[25,62]. It means that if visual quality of filtered images is

of prime importance, the attention in filter design should

be paid to the preservation of edges and fine details in

the first order. In this sense, non-local filtering methods

are able to provide certain benefits w.r.t. DCT-based fil-

tering. It is noted that attention of observers to edge/

detail neighborhoods has been stated in several articles

and used in design of visual quality metrics [28,30,63].

5. Filter efficiency analysis: spatially correlated
noise case
Having studied the i.i.d. noise case, let us consider now

filtering of images corrupted by spatially correlated noise.
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Figure 7 The histogram of the ratio s
2
HVS-M fi lm/s

2
HVS-M or lm (a) and its binary map (b) for the BM3D filter.
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First, there are less filters designed and tested for spatially

correlated noise removal (see [35,36,64-67] and refer-

ences therein). Second, under the assumption of spatially

correlated noise presented in images, several questions

arise immediately: what is a model for spatially correla-

tion noise, what a priori information on characteristics

(statistical, spatial spectrum) is available, are 2D spatial

spectrum or correlation function the same for all parts of

a processed image (does an assumption on stationarity of

noise or invariance of its characteristics hold)?

These are questions of additional studies and answers

to them depend on practical application at hand. To

a B

c d

Figure 8 Green component of noisy image # 14 (a), the map of s2HVS-M lm for noisy image (b), the map of s2HVS-M lm for filtered

image (c), the ratio map in binary form, black if s2HVS-M fi lm/s
2
HVS-M or lm < 1.5 and white otherwise (d).
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Figure 9 Histograms of s2HVS-M or lm for noisy image (a), s2HVS-M fi lm for filtered image (b), and s
2
HVS-M fi lm/s

2
HVS-M or lm (c).
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simplify the situation, let us assume that spatially corre-

lated noise is pure additive and stationary in the sense

that its 2D spatial spectrum is the same for all parts of

images to be processed. However, even in this case

there is a wide variety of possible variants of 2D spectra

of spatially correlated noise. To partly alleviate this

uncertainty, we, first, assume that noise spectrum (in

DCT domain for 8 × 8 blocks) is known in advance or

estimated in a blind manner with appropriate accuracy

[64]. Second, in our simulations we consider two models

of spatially correlated noise that differ from each other

by 2D spatial DCT spectra in terms of their shape or,

equivalently, main lobe width of 2D spatial autocorrela-

tion function (ACF). In other words, we carry out brief

analysis how the main properties of spatially correlated

noise ACF influence original image visual quality and

efficiency of DCT-based filtering.

For spatially correlated noise case, thresholds for the

corresponding modification of the DCT-based filter

(MDCT-based filter) should be frequency dependent as

T(n, m) = 2.6σ

√

Wnorm(n, m) where Wnorm (n, m) is the

normalized DCT spectrum for the block size used, n

and m are frequency indices. It is noted that the DC

coefficients in blocks are not thresholded (changed)

while carrying out filtering [35,37].

It is noted that in the case of additive spatially corre-

lated noise, its spatial correlation should be taken into

account. The standard DCT-based filter with fixed (fre-

quency independent) threshold is not efficient for

removal of spatially correlated noise. This has clearly

been demonstrated in terms of output PSNR [35,37]

and in terms of the metric PSNR-HVS-M [35,52]. The

difference in output PSNR for the standard and MDCT

filters can be from 1 to 4 dB [35,37,52]. The increase is

the smallest for complex-structure images as the test

image #13 (about 1.5 dB) but it can reach 4 dB for sim-

ple-structure images as the test image #3 for noise var-

iance equal to 65. However, the provided values of

PSNRk(n) for the MDCT-based filter are smaller than

for i.i.d. noise case for each of the analyzed test images

[62]. This shows that removal of spatially correlated

noise is a more difficult task than AWGN filtering.

The difference of the metric PSNR-HVS-M values for

the considered standard (with frequency independent

threshold) and MDCT filters is sufficient (up to 3 dB).

Dependences PSNR-HVS-Mk(n) for components of

color images before filtering (the lower group if three

curves) and after image denoising by the standard DCT-

based filter (the upper group of three curves, s2 = 65)

are presented in Figure 10a. It is seen that the presence

of spatially correlated noise leads to a larger degradation

of image visual quality than that with the presence of

AWGN under condition that noise variance is the same

(compare the lower groups of curves in Figures 10a and

3a). As can be seen also, the standard DCT-based filter-

ing produces improvement of visual quality of processed

images for all the test images. The increase of PSNR-

HVS-M after filtering ranges from 0.7 dB for the most

textural images to 2.5 dB for the simplest test images.

Dependences PSNR-HVS-Mk(n) for the output of the

MDCT filter are represented in Figure 10b. Comparison

to the upper group of curves in Figure 10a demonstrates

that the MDCT filter produces considerably larger

improvement of output image visual quality. However,

the worst results (the smallest values of PSNR-HVS-Mk

(n) are observed for the most textural (complex-struc-

ture) test images ##1, 5, 13, 14, and 18.

Thus, it is reasonable for applying the MDCT-based

filtering with frequency-dependent thresholding adapted

to DCT spectrum of spatially correlated noise. Because

of this, below we consider only this filter. The main

attention is paid to the values of noise variance smaller

than 65, since, as it is seen for plots in Figure 10, noise

is clearly seen in original and filtered images for the

case of s2 = 65 (the values of PSNR-HVS-M are suffi-

ciently smaller than 40 dB).

As it was mentioned above, it is worth analyzing spa-

tially correlated noise with different spatial spectra.

Images in TID2008 are corrupted by spatially correlated

noise obtained by applying the 3 × 3 mean filter to 2D

AWGN. In this section, we continue to simulate spa-

tially correlated noise in this manner but with variance

smaller than 65 (this case is treated as considerable cor-

relation noise–CCN). Besides, we simulate middle corre-

lation noise (MCN) by applying to 2D AWGN the

linear 3 × 3 scanning window FIR filter with weights

⎡

⎣

1/4 1/2 1/4

1/2 1 1/2

1/4 1/2 1/4

⎤

⎦

Such filter is characterized by wider spectrum and,

respectively, narrower main lobe of 2D ACF. By simulat-

ing large size 2D arrays of pure spatially correlated noise

in this way, it is possible to estimate Wnorm (n, m) used

in MDCT-based filter quite accurately. The 8 × 8

matrices of (Wnorm (n, m))0.5 for both variants of spa-

tially correlated noise are given below. It is seen that the

values of (Wnorm (n, m))0.5 for low frequencies (upper

left corner) and high frequencies (lower right corner)

differ a lot, especially for CCN case. Matrix elements

symmetrical with respect to the main diagonal are prac-

tically equal to each other. Difference of their values is

explained by a finite size of 2D arrays of simulated noise

used for spatial spectrum estimation.

Since spatially correlated noise with s
2 = 65 is clearly

visible in original and filtered images, let us consider

Fevralev et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:41

http://asp.eurasipjournals.com/content/2011/1/41

Page 13 of 19



sufficiently smaller values of noise variance. Figure 11

shows the dependences of PSNR-HVS-Mk(n), dB for

components of color images for noise variance equal to

nine for CCN and MCN. As previously described, lower

groups of curves correspond to the original (noisy)

images while the upper groups relate to the filtered

images.

The curves’ behavior is very similar. The only differ-

ence is that, for a given test image, its visual quality is

slightly better for MCN case than for CCN both before

and after filtering. As it can be expected, visual quality

improves because of filtering although this improvement

is small for complex-structure images and it can reach

up to 4 dB for simple-structure images. For both CCN

and MCN, noise is visible in all original the test images

since PSNR-HVS-Mk(n) < 40 dB. However, even after

filtering residual noise and introduced distortions

remain visible in most output images. This means that

the task of image filtering with the purpose of their

enhancement (visual quality improvement) is crucial for

spatially correlated noise case even for rather small

values of noise variance.

Consider now smaller values of noise variance, equal

to 6. The obtained dependences are represented in Fig-

ure 12. Analysis of these dependences shows the follow-

ing. Spatially correlated noise is still visible in most

original noisy images, especially simple structure ones

(visual inspection has shown that noise can be visible in

n

( ), dB
k

PSNR HVS M n

n

( ), dB
k

PSNR HVS M n

a b 

Figure 10 Dependences PSNR-HVS-Mk(n), dB for components of color images (spatially correlated noise, s2 = 65) before (thin lines)

and after filtering by the standard DCT-based filter (a) and by its modification with frequency dependent thresholds (b).
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Figure 11 Dependences PSNR-HVS-Mk(n), dB for components of color images (s2 = 9) before (thin lines) and after filtering by the

MDCT-based filter for CCN (a) and MCN (b).
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homogeneous regions of such images). However, accord-

ing to the rule PSNR-HVS-Mk(n) > 40 dB, residual noise

and introduced distortions become practically invisible

after filtering.

One can argue that we use DCT-based filters and

DCT-based visual quality metric PSNR-HVS-M in our

analysis and it is not fair enough. To avoid such possible

criticism, we have also analyzed the wavelet-based

metric MSSIM [27]. Recall that this metric is within the

limits from 0 (very bad quality) to 1 (perfect quality). If

MSSIM is larger than 0.985...0.99, distortions are practi-

cally not seen.

The dependences of MSSIMk(n) for MCN with s2 = 9

are shown in Figure 13a. Their analysis allows drawing

the same conclusions as for dependences PSNR-HVS-Mk

(n) in Figure 11b. For none original test image, its visual

quality is perfect (all MSSIM values are smaller than

0.99). For almost all the test images, residual noise and

distortions are visible after filtering. Thus, the metric

MSSIM indicates the same as PSNR-HVS-M does.

Consider now the behavior of the parameter
⌢

rk (n) for

a spatially correlated noise. Dependences for a particular

case of CCN with s
2 = 65 are represented in Figure

13b. These dependences for color components are very

similar. It is noted that, in contrast to AWGN case (see

Figure 4), the values
⌢

rk (n) are about 1.55 for almost all

test images (the values
⌢

rk (n) are a little bit smaller for

the MCN case). It is noted that for s2 = 6, the values
⌢

rk (n) are in the limits 1.24...1.93 for CCN and

1.15...1.96 for MCN. In any case, the main observation

is that for spatially correlated noise, the values
⌢

rk (n) are

considerably larger than unity.

Joint analysis of
⌢

rk (n) in Figures 4 and 13 indicates

that its rather small values, e.g., not exceeding 1.05 are

observed for simple-structure images corrupted by noise

close to i.i.d. Then, it is reasonable to expect high effi-

ciency of denoising by the standard DCT filter. In con-

trast, i.e., when
⌢

rk (n) exceeds 1.05...1.1, the situation is

not so clear and it is difficult to distinguish complex-

structure images corrupted by i.i.d. noise and images

corrupted by spatially correlated noise. Then, it is worth

estimating spatial spectrum of the noise. This can be

performed automatically by the methods given in

[35,64]. More details on how to use such blind estimates

in filtering can be found in the literature [35].

Thus, the image filtering can fully be blind (auto-

matic). The first stage is to obtain
⌢

rk (n) and to compare

it to the threshold (e.g., 1.08). Then, noise variance can

be estimated if it is a priori unknown. After this, noise

spatial correlation (spectrum) characteristics are to be

determined if needed (if
⌢

rk (n) exceeds the threshold).

Finally, the corresponding DCT-based filtering is to be

applied with taking into account available or obtained

data on noise variance and spatial correlation character-

istics. The automatic procedure is described roughly and

needs more thorough analysis in the future.

Let us give one example for illustrating an efficiency of

the modified DCT filter. The noise-free test image #7

from TID 2008 which is a typical representative of mid-

dle complexity color images is shown in Figure 14a. It’s

noisy version (s2 = 65, spatially correlated noise, CCN) is

given in Figure 14b. Noise has an appearance typical for

digital cameras of bad quality or operating in bad illumi-

nation conditions. The noise is well seen in homoge-

neous regions and its influence can be noticed in textural

regions. The output of the MDCT-based filter adapted to

spatial spectrum of noise (Figure 15a) is presented in Fig-

ure 14c. The noise is suppressed considerably although

n

( ), dB
k

PSNR HVS M n

n

( ), dB
k

PSNR HVS M n

a B 

Figure 12 Dependences PSNR-HVS-Mk(n), dB for components of color images (s2 = 6) before (thin lines) and after filtering by the

MDCT-based filter for CCN (a) and MCN (b).
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Figure 13 MSSIMk(n) for MCN with s
2 = 9 before (thin lines) and after filtering (a) and

⌢

rk (n) for CCN with s
2 = 65.

a b

c
d

Figure 14 The test color image #7: noise-free (a), noisy (b) and filtered by the component-wise (c) and 3-D MDCT (d).
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residual noise is visually seen compared to the image in

Figure 14a. Useful information (edges, textures, details) is

preserved well enough although there are some artifacts

in the neighborhoods of sharp edges which are notice-

able. This is in agreement with the value of PSNR-HVS-

M approximately equal to 30.7 dB for all the color com-

ponents (see data for the test image #7 in Figure 10b).

We have also modified 3D DCT filter to be able to

remove a spatially correlated noise. Modification is as

follows. Decorrelation of color components is carried

out first. Then, MDCT-based filter adapted to known

2D DCT spectrum of the noise is applied to the

obtained components. Then, inverse 3-element DCT is

performed. For the image filtered in this way, PSNR-

HVS-M has been determined. It is equal to 32.07, 32.36,

and 32.23 dB for R, G, and B components, respectively.

As seen, these values are, on the average, by 1.5 dB lar-

ger than for MDCT-based filter applied component-

wise. The obtained output image is represented in Fig-

ure 14d. Comparison of images in Figure 14c, d shows

that the latter one has better visual quality. This one

demonstrates more the benefits of vector (3D) proces-

sing of color images.

Concerning practical application of the obtained

results, it is worth mentioning the following.

First, the methods of blind evaluation of noise var-

iance and spatial spectrum [56,57,60,64] have not been

intensively tested for small values of noise variance (of

the order 5...20 for images with 8-bit representation). It

has been shown experimentally that the accurate estima-

tion of noise characteristics for less intensive noise is a

more complicated task than that for an intensive noise

[44,60]. Thus, such analysis should be done in the future

and, possibly, a design of new, more efficient, blind

methods will be needed.

Second, the results presented above rely on the simpli-

fied model of noise (pure additive). It is desirable to

study what happens if this assumption is used in proces-

sing real-life data or to design modified methods able to

take into account peculiarities of more realistic noise

models [68].

Third, it is worth thinking how PSNR-HVS-M or

MSSIM can be estimated without having a reference

image. Such studies have already been done for the

metric SSIM [69].

Fourth, although our studies deal with images with 8-

bit representation, the same conclusions are valuable for

images with wider dynamic ranges, i.e., hyperspectral

data [4]. In a more general form, PSNR-HVS-M is

defined as PSNR - HVS - Mk = 10log10(D2/ 2
k HVS - M)

where D defines dynamic range of data representation.

Then, if, e.g., PSNR-HVS-Mk > 40 dB, then it is possible

to suppose that a noise is invisible for a visualized kth

component (subband) image of hyperspectral data. The

simulation data provided above allow predicting when it

is possible to expect considerable improvement of image

quality due to a noise removal and when it is possible

to skip filtering stage.

6. Conclusions
We have extensively tested filtering efficiency of DCT-

based filters for color images of the database TID2008

2.69 2.37 2.04 1.51 0.93 0.51 0.59 0.81 

2.39 2.09 1.80 1.35 0.85 0.45 0.52 0.75 

2.04 1.80 1.53 1.14 0.72 0.38 0.43 0.62 

1.52 1.35 1.15 0.85 0.53 0.29 0.33 0.48 

0.93 0.85 0.70 0.53 0.33 0.18 0.20 0.29 

0.51 0.45 0.38 0.29 0.18 0.10 0.11 0.16 

0.58 0.52 0.44 0.33 0.21 0.11 0.12 0.18 

0.84 0.75 0.63 0.48 0.29 0.16 0.18 0.26 

a

2.40 2.25 1.95 1.61 1.18 0.76 0.40 0.16 

2.19 1.99 1.80 1.47 1.06 0.70 0.37 0.15 

1.99 1.80 1.60 1.31 0.96 0.63 0.32 0.13 

1.60 1.46 1.31 1.06 0.79 0.51 0.27 0.11 

1.17 1.09 0.98 0.78 0.58 0.38 0.19 0.08 

0.77 0.70 0.61 0.51 0.38 0.25 0.13 0.05 

0.41 0.37 0.33 0.27 0.20 0.13 0.07 0.03 

0.16 0.15 0.13 0.10 0.08 0.05 0.03 0.01 

b

Figure 15 Matrices of (Wnorm (n, m))0.5 for CCN (a) and MCN (b).
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and additional set of noisy images obtained using refer-

ence images of this database. The images were cor-

rupted by AWGN and spatially correlated noise with a

wide set of variance values. As it can be expected, filter-

ing efficiency considerably depends on image complexity

and noise variance. For rather simple images corrupted

by AWGN with rather large variance, filtering efficiency

is the highest according to the standard metric PSNR

and the metric PSNR-HVS-M suited for characterizing

visual quality. In cases of spatially correlated noise, high

complexity of images and small values of noise variance,

sufficient improvement of image quality due to filtering

is problematic. It is shown that if AWGN variance is

less than 20, noise is practically not seen. To be invisible

in original images, spatially correlated noise should have

about 3...4 times smaller variance. Residual noise and

distortions because of filtering can become invisible

after denoising if noise variance in original image is

small enough and efficient filtering, e.g., vector or 3D

filtering, is applied. In the future, it is worth paying

more attention to efficiency analysis and performance

improvement just for 3D filters.
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