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Abstract

High coverage whole genome sequencing provides near complete information about genetic variation. However, other
technologies can be more efficient in some settings by (a) reducing redundant coverage within samples and (b) exploiting
patterns of genetic variation across samples. To characterize as many samples as possible, many genetic studies therefore
employ lower coverage sequencing or SNP array genotyping coupled to statistical imputation. To compare these
approaches individually and in conjunction, we developed a statistical framework to estimate genotypes jointly from
sequence reads, array intensities, and imputation. In European samples, we find similar sensitivity (89%) and specificity
(99.6%) from imputation with either 16sequencing or 1 M SNP arrays. Sensitivity is increased, particularly for low-frequency
polymorphisms (MAFv5%), when low coverage sequence reads are added to dense genome-wide SNP arrays — the
converse, however, is not true. At sites where sequence reads and array intensities produce different sample genotypes,
joint analysis reduces genotype errors and identifies novel error modes. Our joint framework informs the use of next-
generation sequencing in genome wide association studies and supports development of improved methods for genotype
calling.
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Introduction

High coverage whole genome sequencing gives maximum

information about individual-level genetic variation for use in

disease gene mapping [1–6] or population genetics [7–12].

However, due to cost limitations, most population-based studies

have estimated sample genome sequences through incomplete

data collection with SNP arrays [13,14], low coverage whole

genome sequencing [15,16], or high coverage targeted sequencing

[17–20]. To increase power, such studies often combine sample

genotypes with well-characterized public reference panels

[9,10,21] and use statistical imputation [22,23] to predict missing

or unassayed genotypes. It is as yet unclear how much power is

lost, and how much efficiency is gained, by these incomplete data

collection strategies.

The literature on analytical methods for low coverage

sequencing and SNP arrays has until now been largely non-

overlapping [14,24–29]. Past studies have investigated the power

and efficiency of each technology separately: how well subsets of

common variants [30–33] or commercially available SNP arrays

[34] ‘‘tag’’ common variants in the genome and empower

genome-wide association studies [35,36], the power of low

coverage sequencing relative to high coverage sequencing [37],

differences in performance of whole-genome sequencing technol-

ogies [38], and the performance of imputation [39] and its impact

on power [25,40,41]. As most investigators must decide among

these technologies, we sought to compare their power and

efficiency within a unified analytical framework. Moreover, as

genome wide association studies (GWAS) have been performed on

hundreds of thousands of valuable clinical samples, and as

investigators now must choose whether to collect additional data

on these samples with next-generation sequencing, we sought to

evaluate the benefit of combined sequence and SNP array data

collection strategies. Finally, we sought to exploit the existence of

sequencing and array data in a common set of samples to identify

error modes and thereby improve genotype calling algorithms.

Specifically, we asked four questions: (1) as a baseline, how does

power (sensitivity and specificity of genotype calls) vary based on

sequence read depth and SNP array density, with and without

imputation; (2) do combinations of different technologies have

improved performance relative to each data type alone; (3) when

sequencing and arrays disagree, is it possible to identify the

incorrect technology; and (4) can we learn and ultimately resolve

new error modes based on these disagreements?
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Results

We first developed a statistical framework that can jointly

estimate genotypes from array intensities, sequence reads, and

imputation (Figure 1). The framework first estimates genotype

likelihoods for each SNP independently from array intensities

and/or sequence reads and then combines these likelihoods to

produce joint likelihoods. The array genotype cluster locations

and the joint likelihoods are iteratively re-estimated using an

Expectation-Maximization algorithm with haplotype phasing and

imputation (Materials and Methods). In this manner, sequence

reads, intensities from SNP arrays, and haplotype phasing jointly

inform the genotype likelihood for each site in each individual

(Figure S1). We developed an implementation of this framework

that uses published methods for SNP array clustering [14],

sequence SNP calling [27], and imputation [42] to call sample

genotypes (Figure S2); source code is available from the authors

upon request.

This framework produces an integrated estimate of the

sequence variation in each individual, enabling comparisons

among technologies. We used it to perform a series of experiments,

modeling different array or sequence data collection strategies.

Using raw array intensities and sequence reads from the Hapmap

[9,21] and 1000 Genomes (1000 G) projects [10], we evaluated six

SNP arrays (five genome-wide with 100 k to 2.5 M SNPs, one the

custom Metabochip), four levels of whole-genome Illumina

sequence coverage (.56 - 46reads per base), and all combinations

thereof. In each analysis we called genotypes on chromosome 20

for 382 unrelated European samples from phase 1 of the 1000 G

Project. In our primary analysis, we only called genotypes with

posterior probability above 90%; the remainder were considered

missing (no-calls). In addition, the current experiments evaluate

SNPs only (i.e. they do not consider insertions, deletions, or

structural variation) and are limited to autosomal chromosomes.

Full details of our experimental setup are given in Materials and

Methods; analysis of the impact of different parameters, such as

the number and ethnicity of samples genotyped, is provided in

Text S1.

To evaluate performance (relative to high coverage whole

genome sequencing), we compared the resulting genotype calls for

a single test sample to ‘‘gold-standard’’ genotypes, published from

multiple high coverage sequencing technologies by the 1000

Project Pilot, for the same sample. We focused our metrics only on

non-reference alleles. To measure sensitivity (how well a strategy

identifies all true non-reference alleles) we defined SensDirect

(SensD) and SensImputation (SensI) as the fraction of non-reference

gold-standard genotypes with identical called genotypes (without

and with imputation respectively). Conversely, to measure

specificity (how well a strategy identifies only true non-reference

alleles), we defined SpecDirect (SpecD) and SpecImputation (SpecI) as

the fraction of non-reference called genotypes with identical gold-

standard genotypes (without and with imputation). Further details

of our experimental procedure are given in Materials and Methods

and Figure S3.

Evaluation of sensitivity and specificity
We first assessed the sensitivity of each technology. Figure 2a

and Figures S4, S5, S6, S7, S8, S9 show that values of SensD vary

widely, increasing roughly linearly with array density from 1.7% to

Figure 1. A statistical framework for joint genotype calls. We
developed a statistical framework to jointly estimate sample genotypes
from array intensities, sequence reads, and haplotype phasing. The
framework first estimates genotype likelihoods independently for each
SNP from array and sequence data, given initial parameters for
genotype cluster locations and sequence read error rates. It then
multiplies the likelihoods for each SNP to obtain joint likelihoods, inputs
these to haplotype phasing and imputation, and then uses the output
likelihoods to re-cluster intensities for all SNPs. The process is iterated,
and upon termination genotype likelihoods are converted to posterior
genotype probabilities. The framework can estimate genotypes given
only sequence data or array data as well as with or without imputation
— many of these special cases are similar in principle to previously
described genotyping algorithms (Text S1).
doi:10.1371/journal.pcbi.1002604.g001

Author Summary

In this work we address a series of questions prompted by
the rise of next-generation sequencing as a data collection
strategy for genetic studies. How does low coverage
sequencing compare to traditional microarray based
genotyping? Do studies increase sensitivity by collecting
both sequencing and array data? What can we learn about
technology error modes based on analysis of SNPs for
which sequence and array data disagree? To answer these
questions, we developed a statistical framework to
estimate genotypes from sequence reads, array intensities,
and imputation. Through experiments with intensity and
read data from the Hapmap and 1000 Genomes (1000 G)
Projects, we show that 1 M SNP arrays used for genome
wide association studies perform similarly to 16 sequenc-
ing. We find that adding low coverage sequence reads to
dense array data significantly increases rare variant
sensitivity, but adding dense array data to low coverage
sequencing has only a small impact. Finally, we describe an
improved SNP calling algorithm used in the 1000 G
project, inspired by a novel next-generation sequencing
error mode identified through analysis of disputed SNPs.
These results inform the use of next-generation sequenc-
ing in genetic studies and model an approach to further
improve genotype calling methods.

Efficiency and Power of Genotyping Strategies
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31.51% (r2~:948) and roughly linearly with sequence coverage

from 4.55% to 61.34% (r2~:999). However, SensI values are

dramatically higher than, and increase less steeply with, density

and coverage (26–92% for arrays, 84%–95% for low coverage

sequencing). Strikingly, even low depths of sequence coverage

(0.56) provide high values for SensI (83.33%). These results reflect

that most genetic variation in any given European individual is

common and redundant due to LD, and such variation is

extracted effectively using imputation with access to data from

the 1000 G Project.

Based on the clear value and wide availability of methods and

data for statistical imputation, from this point forward we discuss

only calls made using imputation.

We next assessed the specificity of each technology. Using a

90% posterior probability no-call threshold, SpecI values are

above 99% for almost all assays. Completely eliminating the no-

call threshold increases SensI substantially but at the cost of SpecI
decreased to &98% (Figures S10, S11). While overall specificity

remains high, the specificity of marginal calls added due to the

reduced threshold is lower (&95%). Based on individual aims,

investigators must thus choose posterior probability thresholds to

trade off sensitivity for specificity.

Our analysis allowed direct comparison of low coverage

sequencing and SNP arrays within a common framework

(Figure 2ab). For example, we find that 0.56 sequence coverage

is more sensitive than 500 k SNP arrays (84% vs. 70% SensI), that

16 sequencing is comparable to a 1 M SNP array (89% SensI),

and that 26 sequencing is similar to 2.5 M SNP arrays (93% vs.

92% SensI). Although all technologies have higher sensitivity for

variants with non-reference homozygous genotypes than at

variants with heterozygous genotypes, the relative sensitivities of

the technologies are roughly the same for both variant classes

(Figure S12). Thus, sequencing to one-half or one-quarter of

coverage previously proposed for complex trait association studies

[37] gives comparable sensitivity to SNP arrays used successfully

for GWAS.

Figure 2. Sensitivity and specificity of data collection strategies. For different combinations of array and sequence data, we produced joint
genotype calls on chromosome 20 for 382 European samples from the 1000G project. For a single test sample, we obtained ‘‘gold-standard’’
genotypes from high coverage multi-technology sequencing published by the 1000G project. We then measured non-reference site sensitivity and
specificity with imputation (SensI, SpecI) and without (SensD, SpecD). (a) SensD (left) and SensI (right) of calls from five array densities and four
sequence coverages. The first row of each table contains results for strategies with only sequence data, and the first column contains results for
strategies with only array data. A common color scheme is used across all tables, with white corresponding to 100%, red corresponding to v20%,
and yellow corresponding to 80%. (b) SpecI of calls; SpecD is given in Figure S9. (c) SensI for three variant frequency ranges, with frequency
estimated from the non-test samples. Private variants have frequency 0% in the non-test samples. (d) SensI for four sequence coverages, with
separate lines that correspond to joint calls made with each SNP array. (e) SensI for four array densities, with separate lines that correspond to joint
calls made with each sequence coverage. No Array: from sequence data alone; 06: from array data alone; .56-46: mean number of sequence reads
per genomic position; array abbreviations are defined in Materials and Methods.
doi:10.1371/journal.pcbi.1002604.g002

Efficiency and Power of Genotyping Strategies
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Notably, performance is different for coding variants — which

constitute v1% of variant sites in our test sample but are a high

priority for some genetic studies [5]. In this setting, w1M SNP

arrays and 46 sequencing have significantly higher sensitivities for

coding variants relative to noncoding variants (Figure S13). In

contrast, v1M arrays arrays or ƒ2x sequencing have slightly

lower sensitivities for coding variants relative to noncoding

variants. As a result, for coding variants alone, 26 sequencing

(in contrast to 16 sequencing) is comparable to a 1 M SNP array.

We observe that different methods, even those with similar

sensitivities across all variants, perform differently across the

frequency spectrum (Figure 2c, Figure S14). In particular, for low

frequency polymorphisms (MAF .5-5%), low coverage sequencing

far outperforms current SNP arrays after imputation with v400

European samples. For example, 16 coverage provides similar

SensI (&70%) and SpecI (99.5%) to the densest current arrays

(2.5 M SNPs), and 46coverage far outperforms both (SensI 86%,

SpecI 99.5%).

Based on the different sensitivities of SNP arrays and sequencing

across the frequency spectrum, we asked if calls made jointly from

the two technologies might have higher sensitivity and specificity

than calls from either technology alone. We find that, regardless of

the array density or sequence coverage, joint calls uniformly have

higher SensI and SpecI than calls made using only a single

technology. However, for any allele frequency, the effect of added

array data is exceedingly small once sequence coverage is 26 or

greater (Figure 2d). In contrast, addition of sequencing data to first

generation (500 k) arrays has substantial benefits across the entire

allele frequency spectrum, and even addition to the densest

current arrays (2.5 M) substantially increases performance at sites

with minor allele frequency v5% (Figure 2d).

These results are particularly relevant in light of the hundreds

of thousands of samples previously characterized using first

generation SNP arrays for GWAS [43]. As compared to

additional higher density genome-wide array-based genotyping,

low coverage whole genome sequencing appears to result in

greater improvement in sensitivity and specificity per individual

(post imputation; Figure 3, Figure S15). The performance

increase is greatest for low frequency polymorphisms, a high

priority target for many post-GWAS experiments [43–47]. We

note, however, that our metrics do not measure how many

samples have genotype calls at each variant site — arrays

genotype each sample at the same set of sites, while low coverage

sequencing may genotype each sample at a slightly different set of

sites. For some studies, the benefit of having a uniform set of sites

genotyped may outweigh the higher per-sample sensitivity of low

coverage sequencing.

Analysis of SNP array and sequencing error modes
In addition to increased sensitivity, joint analysis of low

coverage sequencing and array data in the same samples can

identify technology-specific error modes at the small number of

sites with disputed genotypes. Such analysis can reduce genotype

errors in these samples, through resolution of these disputes, but

Figure 3. Data collection strategies for studies with prior array data. For the (a) Affy 6 and (b) Ilmn 1 M arrays, we produced joint calls after
addition of each sequence coverage orw1m array; joint calls with multiple arrays include combined data from both arrays. The y-axis shows SensI ,
while the x-axis shows SensD of the additional data collected. SensD is a measure of the genotyping investment intrinsic to a technology that serves
as a proxy for cost. The blue point (None) shows SensI if no additional data is collected; the other points are labeled with the additional data
collected. Labels are defined in 2.
doi:10.1371/journal.pcbi.1002604.g003

Efficiency and Power of Genotyping Strategies
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more importantly can spur development of improved genotyping

algorithms for each technology.

We first asked if two specific error modes were resolved by joint

calls. First, we examined sites where low coverage sequencing

provided insufficient data to confidently call genotypes post

imputation. We hypothesized that joint calls, made with addition

of a high density SNP array, might significantly improve sensitivity

at these sites by providing high quality genotypes to better identify

haplotypes and inform imputation. We observe that joint calls do

have higher SensI than calls from low coverage sequencing alone

(Figure 2a), particularly for the lowest sequence coverages

considered (.56 and 16). However, the improvement in imputa-

tion quality is minimal when sequence coverage is§2x— evinced

by almost undetectably larger joint call SensI values at sites absent

from the array, where any increases are due solely to improved

imputation (Figure 4a, Figure S16).

We also examined sites where SNP arrays produce incorrect

genotype calls due to erroneous or poorly resolved genotype

cluster locations. We hypothesized that joint calls, informed within

our framework by low coverage sequencing data in the same

samples, might increase sensitivity through improved cluster

locations. Our results show that joint calls do reduce incorrect

genotype calls, with up to 75{90% reductions in false negatives

(1{SensI, Figure 4b, Figure S17) across all minor allele

frequencies (Figures S18). As previously reported, haplotype

phasing [25] further increases sensitivity (Figure 4b, Figure S19).

Thus, joint calls do reduce genotype errors due to improved

cluster locations, although we also find that additional sequence

data on the test sample has a significant impact (Figure S20).

To identify additional error modes, we searched for SNPs at

which array data frequently disagreed with 46 sequencing data

(§10% of samples with different genotypes). On the Metabochip

— a custom array with many low frequency or unvalidated SNPs

— we identified 3,262 such disputes. Analysis of these SNPs

revealed two error modes that suggested altered analytical

procedures for array or sequence genotyping.

First, 639 SNPs were called polymorphic in analysis of sequence

data but monomorphic in analysis of the same samples on the

Metabochip. In sequencing studies that genotype SNPs called

from sequence data on a custom array and require polymorphic

array genotypes to ‘‘validate’’ SNPs, these 639 SNPs would be

flagged as false-positives in the original sequence-based discovery.

Figure 4. Reduction in errors from joint genotype calls. (a) To assess the improvement in imputation quality afforded by joint genotype calls
with a SNP array (relative to calls based on sequence data alone), we measured sensitivity and specificity at sites absent from the array; errors at these
sites can be reduced only through improved imputation. The Metabochip is absent from this plot, as it is not a genome-wide array. Plotted are
1{SensI and 1{SpecI, the sum of which equals the number of sites where (1) the gold-standard or called genotype is non-reference and (2) the
gold-standard and called genotypes disagree. Normalized values (defined in Materials and Methods) are plotted to show visual trends; actual values
are given in Figure S16(b) To assess the reduction in erroneous genotype cluster locations afforded by joint genotype calls with sequence data
(relative to calls based on array data alone), we measured sensitivity and specificity at sites on the array. Red bars correspond to SpecD and SensD,
measured from calls without haplotype phasing; blue bars correspond to SpecI and SensI , measured from joint calls. As described in Materials and
Methods, these experiments used 82 additional unrelated samples, absent from our other experiments, to inform cluster locations.
doi:10.1371/journal.pcbi.1002604.g004

Efficiency and Power of Genotyping Strategies
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However, joint calls of these 639 SNPs predict that 331 are

actually polymorphic, while only 181 are monomorphic (127 are

no-calls; Figure S21). Joint calls thus partially address false-

negative genotype calls, a known SNP array error mode [21].

Second, through visual examination of a number of disputed

SNPs, we identified a recurrent sequencing error mode caused by

PCR errors in the library preparation stage of next-generation

sequencing [48] (Figure 5ab). Specifically, overlapping paired-end

reads both reflect the same PCR error, and assumed independence

of the read error rates leads to over-confident non-reference

genotype calls (Figure 5c). This error mode is increasingly common

given the growing length of sequencing reads (&100 bp and up)

relative to standard library sizes (&200{400 bp). Based on this

observation, we developed a new sequence genotype likelihood

calculation that properly accounts the dependency of overlapping

read pairs from the same DNA fragment. Briefly, the new method

models errors at the fragment construction stage separately from

errors during the sequencing stage, and it thus counts fragment

errors only once for each read pair. (Figure S22a). Experiments

showed that this new method improves both sequence genotyping

accuracy and SNP site discovery (Figure 5d, Figure S22b); as a

result, it has been incorporated into the Unified Genotyper of the

Genome Analysis Toolkit (GATK) [27] and applied to many

sequencing experiments including the production phase of the

1000 G Project.

Given the improvements that followed discovery of this novel

sequencing error mode, further analysis of disputed SNPs might

suggest additional unrecognized error modes and additional

improvements to genotyping algorithms. When gold-standard

genotypes are unavailable to serve as a filter between array and

sequence errors, joint calls can serve as a proxy — of the disputed

SNPs on Metabochip for which our test sample genotype is in

disagreement, 85.7% of joint calls are consistent with gold-

standard genotypes. Filtering SNPs with joint calls that closely

match calls from sequence data as apparent array errors, and the

remainder as apparent sequence errors (Figure S23a), classifies

70.5% of the disputed SNPs on the Metabochip as apparent

sequence errors. Based on tests of enrichment for 18 potential

error modes, this filtration strategy does in fact produce two

distinct classes of SNPs: apparent array errors are enriched for

DNA flanking regions of low complexity and flanking regions that

occur multiple times in the genome (Figure S23b; Figures S24,

S25), while apparent sequence errors are enriched for properties

such as DNA strand bias or flanking homopolymer runs (Figure

S23c). However, given that only 61% of the apparent array errors

and 49% of the apparent sequence errors are characterized by one

of the potential error modes we considered (Figure S26), analysis

of the remaining SNPs may provide a rich source of novel error

modes.

Discussion

While high coverage sequencing remains the most accurate

genotyping technology available, combinations of less compre-

hensive technologies can increase study efficiency and enable more

samples to be genotyped. To this end, we developed a statistical

framework that combines data from sequencing and array-based

genotyping platforms, as well as imputation, to produce an

integrated estimate of genetic variation within each individual. In

this study we applied the framework to quantify the efficiency and

power of strategies for data collection that include one or both of

these technologies. As the pace of sequencing or other genotyping

technology development quickens [48,49], this work provides a

foundation to call genotypes for samples analyzed on one or more

new technologies — particularly those samples with prior data

already available.

Our experiments with this framework measure the number of

variant sites assayed in a single European individual and closely

model the scenario where 1000 G Project data is used as a

reference panel for imputation. The strategies we considered will

likely assay fewer variant sites in non-European ethnicities,

particularly those with less complete reference panels available

(Text S1). The SensI and SensD metrics we used in our

experiments also have limitations. In some cases the total number

of variant sites assayed across all individuals, a metric influenced

far more by rarer variants, may be more relevant; no strategy we

considered is a good assay of very rare or private variants

(MAFv:5%), which are the focus of diagnostic studies [5].

Another relevant metric might be the power to associate disease

alleles, which is influenced not only by sensitivity and specificity

but by the total study size, the number of samples genotyped at

each disease allele, and the disease architecture [35]. Further work

is needed to fully understand the performance of each data

collection strategy under these alternate metrics. Further work is

also needed to quantify the ability of each strategy to assay small

insertions or deletions [50] as well as larger structural variants

[51,52], which our experiments do not directly measure.

In addition, our experiments provide a snapshot in time of the

quantitative performance of each strategy. As technologies

improve and reference panel sizes increase, the absolute and

relative values of our metrics will change. Higher sequence

coverage or improved algorithms for read mapping and variant

calling, which occur continuously, would increase sequencing

performance relative to SNP arrays — not only through increased

coverage but also through increased imputation performance due

to fewer genotyping errors. Reduction in the already small error

rates for SNP arrays will improve sensitivity and specificity only

slightly, implying that the relatively slower increase in array

density will offer the most significant improvements in array

performance. Larger reference panels, which will soon have more

than ten times as many samples as the reference panel used in our

experiments, will improve the performance of all strategies — for

lower frequency variants in particular.

Nonetheless, our results suggest that, for studies that character-

ize European samples and use the 1000 G reference panel for

imputation, low coverage 16 sequencing assays a similar number

of sites in each individual as the 1 M SNP arrays used for GWAS,

while 26 sequencing out-performs even the highest density arrays

currently available. This confirms low coverage sequencing,

although of depth even lower than previously suggested or used

[10,37], as an attractive genotyping strategy relative to SNP arrays

for samples characterized de novo. Based on the approximately

2.75 M non-reference genotypes in our European test sample, our

metrics translate to about 300 k false negative and 15 k false

positive genotypes per genome for 16 sequencing or 1 M SNP

arrays, 200 k false negative and 8 k false positive genotypes for 26

sequencing, and 100 k false negative and 4.5 k false positive

genotypes for 46 sequencing with a 2.5 M SNP array.

For studies with samples previously genotyped on genome-wide

SNP arrays, addition of low coverage sequencing substantially

improves performance — for lower frequency sites in particular.

As a result, addition of 16or even .56sequence coverage provides

more novel information than additional dense genome-wide array-

based genotyping.

At the small number of sites where sequencing and array

genotypes disagree, joint calls significantly reduce error rates.

Array genotype errors due to incorrect or poorly resolved

genotype cluster locations are reduced by as much as 75–90%.

Efficiency and Power of Genotyping Strategies
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Figure 5. A novel next-generation sequencing error mode. (a) We identified a novel error mode based on visual examination of disputed
SNPs. As shown in the cluster plot, one of the samples is called homozygous reference (Hom-ref) based on analysis of array data but homozygote
non-reference (Hom-var) based on analysis of sequence data (shown by the sample outlined in green within the red cluster). This unusual error mode
contrasts with the more common error mode, due to low sequence coverage, of samples called heterozygous (Het) based on array data but
homozygous reference or non-reference based on sequence data (shown by samples outlined in pink or green within the blue cluster). (b) Inspection
of the sequence reads in the Integrated Genomics Viewer (IGV) [54] shows that the sample in question has only two reads that cover this SNP, and
these reads are pairs sequenced from the same underlying DNA fragment. (c) This error mode is introduced in the shearing and library preparation
stage of next-generation sequencing and as a result is reflected in both reads from the same DNA fragment. Depending on protocol details, the error
rate is around 1/10,000. During genotype calling, independent treatment of reads (read-based) results in much more confident (here 1006) non-
reference genotype calls than analysis at the fragment level (fragment-based). (d) To account for these effects, which can be large for low coverage
sequencing projects like the 1000G Project, we implemented a fragment based genotyping algorithm in the Unified Genotyper of the Genome
Analysis Toolkit (GATK). Use of this new caller has a significant impact on SNP call quality, shown by a smaller number of novel SNP calls and a higher
Transition:Transversion ratio (proxies for accuracy [27]). The effect is pronounced for populations such as MXL and ASW, which have a higher fraction
of newer Illumina sequencing data with longer reads (e.g., AWS data is&75%w76bp reads, while YRI has less than&25%), which results in greatly
increased rate of overlapping reads and associated errors. Abbreviations are as defined in the 1000G Project.
doi:10.1371/journal.pcbi.1002604.g005
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In contrast, sequence genotype errors due to poor imputation are

also reduced but only by only a small amount.

Two error modes identified through analysis of disputed SNPs

illustrate how our framework can suggest paths to improve

technology-specific genotype calling algorithms. SNPs called

monomorphic on a custom array may be false negatives of the

array — sequencing false positive rates need thus be assessed

through joint data analysis, rather than through use of array data

as gold-standard. As another example, a novel class of sequencing

errors inspired development of a sequence genotyping method that

has improved SNP discovery and genotyping accuracy in the

production phase of the 1000 G project.

At present, a framework for joint genotype estimation facilitates

study design and reduces genotype errors. In the future, as

hundreds of thousands of valuable samples already genotyped on

genome-wide SNP arrays are targeted for further genotyping, we

suggest that joint calls may be the most informative analytical

strategy. At a minimum, such frameworks provide a principled

approach to compare and combine the wider variety of data types

that will inevitably be developed.

Materials and Methods

A statistical framework for joint genotype calls
We developed a statistical framework to compute genotypes for

N total samples at M total biallelic SNPs, given intensity data I

and sequence data S. Imn and Sm
n represent data for sample n and

SNP m, In and Sn represent data for all SNPs for sample n, and I
m

and S
m represent data for all samples for SNP m; missing values

are allowed for any Imn or Sm
n . For each sample n and SNP m, we

estimate Pr Gm
n DI,S

� �

, the posterior probability of the three

genotypes, conditional upon intensity and sequence data for all

samples and all SNPs.

The framework uses a naive Bayes model for sequence and

intensity data — that is, Sm
n and Imn are conditionally independent

given Gm
n . Thus, dependencies — between sequence and intensity

data, across samples, or across SNPs — occur only because true

genotypes are unknown. Values for Imn are 2-vectors that

correspond to probe intensities for the two alleles of SNP m in

sample n; they are modeled under a mixture of 2-dimensional

normal distributions, with a different mean (m), covariance (S), and

prior probability (p) for each of the three genotype classes. The

intensity model is thus

Pr(Imn ; pm,mm,Sm)~
X

3

i~1

pmi f Imn ; mmi ,S
m
i

� �

,

where f is the two-dimensional normal distribution. Sequence

data is not modeled directly and is assumed to depend on

parameters estimable without sample genotype knowledge. To

allow any model for Sm
n that satisfies this requirement, the

framework accepts likelihood values L Gm
n ;Sm

n

� �

~Pr Sm
n DGm

n

� �

as

input.

To call genotypes, the framework aims to maximize

L m,
X

,p;S,I
� �

~Pr S,IDm,
X

,p
� �

~

X

G

Pr S,I,GDm,
X

,p
� �

,

the likelihood of all parameters given observed sequence and

intensity data for all samples and all SNPs. It employs an

Expectation-Maximization (EM) algorithm which proceeds in

iterations [53].

Initialization. Initial values for hm(1)
: mm(1),Sm(1),pm(1)
� �

are

estimated for each SNP. We implemented this step with the

Birdseed algorithm [14], which estimates parameters separately

for each SNP given intensity data.

E-step. Given current values of hm(t)
: pm(t),mm(t),Sm(t)
� �

, the

E-step computes

Q(hmDhm(t))~E
GDS,I;hm(t) log L hm;S,I,Gð Þ½ � ð1Þ

~

X

n

X

3

i~1

Pr Gm
n ~iDS,I; hm(t)

� �

log pmi zlog f Imn ; mmi ,S
m
i

� �� �

, ð2Þ

which requires estimates of Pr GDS,I; hm(t)
� �

. To obtain these

estimates for each SNP, we first compute

Pr Sm
n ,I

m
n DGm

n ; pm,mm,Sm
� �

~Pr Imn DGm
n ; pm,mm,Sm

� �

|Pr Sm
n DGm

n

� �

,

where values for Pr Imn DGm
n ; pm,mm,Sm

� �

are given by the normal

distribution density function, and values for Pr Sm
n DGm

n

� �

are given

as input and remain constant throughout the algorithm by

assumption. To estimate Pr GDS,I; hm(t)
� �

then requires a haplotype

phasing and imputation algorithm, because Pr Gm
n DS,I; hm(t)

� �

=

Pr Gm
n DSm,Im; hm(t)

� �

due to LD relationships between nearby SNPs.

We implemented the phasing and imputation step with 20 iterations

of the Beagle 3.3.0 algorithm [42], which accepts genotype

likelihoods Pr S,IDG; hm(t)
� �

as input and calculates values of

Pr Gm
n DS,I; hm(t)

� �

as output.

M-step. The parameters mm, S
m, and pm are updated

through maximization of the equation that results from the E-step:

hm(tz1)
~ arg max

hm
Q hmDhm(t)
� �

,

which yields

pm(tz1)
~

1

N

X

N

n~1

Pr Gm
n jS,I

� �

m
m(tz1)
i ~

PN
n~1 Pr Gm

n ~ijS,I
� �

Imn
PN

n~1 Pr Gm
n ~ijS,I

� �

S
m(tz1)
i ~

PN
n~1 Pr Gm

n ~ijS,I
� �

Imn {m
m(tz1)
i

� �

Imn {m
m(tz1)
i

� �T

PN
n~1 Pr Gm

n ~ijS,I
� �

The E-step and M-step are iterated multiple times, and, upon

termination, final values of Pr Gm
n DS,I

� �

are returned as genotype

calls. We used three iterations to obtain our experimental results.

We did not explore the value of additional iterations, but we

expect genotype accuracy to improve with additional iterations at

the cost of added computational burden.

Experimental data and procedure
For our experiments, we used our framework to call joint

genotypes for combinations of intensity and read data from the

Efficiency and Power of Genotyping Strategies
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Hapmap [9,21] and 1000 G [10] projects (Figure S3). We tested

five different density genome-wide SNP chips — the Affymetrix

100 K (Affy 100 k; 116,199 SNPs) and 500 K (Affy 500 k;

500,668 SNPs) GeneChip Mapping Sets, the Affymetrix Genome-

Wide Human SNP Array 6.0 (Affy 6; 906,600 SNPs), the Illumina

Human1M-Duo (Ilmn 1 M; 1,199,187 SNPs), and the Illumina

HumanOmni2.5–8 (Omni 2.5, 2,450,000 SNPs) — one custom

SNP chip — the Illumina Cardio-Metabo Chip (Metabochip;

196,725 SNPs) — and four different levels of whole-genome

sequence coverage — an average of one-half (.56), one (16), two

(26), and four (46) reads aligned to each base in the genome.

Intensity data for the Affy 100 k and Affy 500 k arrays were

downloaded from the International Hapmap Project website

(http://hapmap.ncbi.nlm.nih.gov) and formatted for input with

the Affymetrix Power Tools (APT) Software Package. To obtain

intensity data for the Affy 6, Ilmn 1 M, Omni 2.5, and

Metabochip arrays, we genotyped 180 Hapmap samples on each

array using standard lab protocols; for the Omni 2.5 array, we also

genotyped an additional 381 European samples from the 1000 G

June 2011 Integrated Phase 1 Variant Release. For the Illumina

arrays, raw data (in the form of IDAT files) was converted to

normalized intensity data using a custom implementation

IDATConverter of the Illumina normalization algorithm (algo-

rithm details kindly provided by Illumina). Illumina normalized

intensity data were then scaled by a factor of 2000 to be within the

range expected for Birdseed allele intensity input files. Affymetrix

raw intensity data were normalized with the quantile normaliza-

tion method in the APT program apt-probeset-summarize.

Sequence data for the 180 Hapmap samples were downloaded

from the 1000 genomes project Pilot 1 release, and data for the

381 European samples were downloaded from the Integrated

Phase 1 Variant Release (http://www.1000genomes.org). Se-

quence data for each sample was roughly 46 coverage, and to

approximate .56, 16, or 26 coverage, was down-sampled with

the GATK [27] to randomly keep 12.5%, 25%, or 50% of the

sequence reads.

We downloaded sequence and genotype data for our test sample

(Hapmap sample NA12878) from the 1000 G Pilot 2 release. The

genotype data was used as gold-standard data. We used the

sequence data to approximate 46coverage for our test sample: we

kept reads from a sufficient number of read groups such that the

average depth was as close as possible to 46 genome-wide, with

read groups preferentially chosen to include those with the latest

sequencing technology. We then further down-sampled this data

with the GATK to approximate .56 (12.5%), 16 (25%), or 26

(50%) sequence coverage for our test sample.

Sequence likelihoods Pr SDGð Þ input to the joint calling

framework were obtained from the downloaded or down-sampled

sequence data with the Unified Genotyper (UG) module of the

GATK. We ran the UG with its default arguments.

For each experiment, we jointly called genotypes for our test

sample together with the 381 European samples. For all

experiments we used 46 sequence coverage and Omni 2.5

intensity data for the 381 samples, while we varied the sequence

and intensity data used for the test sample.

Because only our test sample had intensity data for the Affy

100 k, Affy 500 k, Affy 6, or Ilmn 1 M arrays, we needed to use

additional samples to learn cluster locations for experiments with

these arrays (a single sample cannot be clustered). These additional

samples were 41 unrelated European and 41 unrelated African

samples from among the 180 Hapmap samples genotyped on the

arrays. For experiments that solely evaluated calls at sites on each

array, we used joint calls from these 82 samples together with our

test sample. For experiments that evaluated overall sensitivity and

specificity, we used these 82 samples to obtain cluster locations

that we then input to the joint calling framework.

Sensitivity and specificity were computed for each experiment

as described in the main text. We report numbers computed only

from SNPs on chromosome 20. We also omitted A/T or G/C

SNPs when we computed our metrics to avoid possible DNA

strand ambiguities.

Normalized SensI and SpecI
For our analysis of the improvement in imputation due to joint

calls with array data, we analyzed SensI and SpecI at sites absent

from the array. Because each array contains a different set of sites,

different SNPs were used to compute metrics for each array.

Therefore, to show visual trends for this analysis, we plotted

normalized rather than raw values of 1{SensI or 1{SpecI.

Normalized values are computed separately for each sequence

coverage in three steps. First, raw joint call values (SensI or SpecI)

are computed for each array at sites absent from the array. These

values are then divided by the corresponding value for calls from

sequence data alone, computed at the same set of sites. Finally,

these values are scaled by the corresponding value for calls from

sequence data alone, computed over all sites. Actual values of

1{SensI or 1{SpecI are given in Figure S16.

Statistical analysis of discordant SNPs
We defined 18 potential error modes (5 binary, 13 continuous)

and tested whether apparent sequence errors or apparent array

errors were enriched for each. For the 5 binary error modes, we

computed the fraction of apparent sequence errors and apparent

array errors with the error mode and then assessed differences

between the groups with Fisher’s exact test; for the 13 continuous

error modes, we used a Kruskal-Wallis one-way analysis of

variance to test for differences between the apparent sequence

error and apparent array error distributions. Nominally significant

p-values (Pv:05) resulting from the test were taken as evidence

that either apparent sequence errors or apparent array errors were

enriched for the error mode.

To identify novel error modes, we filtered our apparent

sequence errors and apparent array errors that were characterized

by an error mode. We used one of two procedures for this; the goal

was to flag disputes that could potentially (although not

necessarily) be caused by an error mode. We considered a SNP

as characterized by a binary error mode (value 0 or 1) if it had

value 1 for the error mode. For continuous error modes, we used

kernel density estimation as implemented in the R software

package to fit separate probability density functions to SNPs not in

dispute (fc), apparent sequence errors (fs), and apparent array

errors (fa). We then considered a SNP with value v for the error

mode as characterized if

L~log10
f (v)

fc(v)

� 	

§2,

with f~fs for apparent sequence errors and f~fa for apparent

array errors.

Supporting Information

Figure S1 Sequence data and haplotype phasing inform
SNP array cluster locations. Our joint calling framework uses

an iterative algorithm to estimate genotypes from sequence reads,

SNP array intensities, and imputation. To call genotypes from

intensity data requires estimation of cluster locations — the

expected distribution of intensities given each genotype — which

Efficiency and Power of Genotyping Strategies

PLoS Computational Biology | www.ploscompbiol.org 9 July 2012 | Volume 8 | Issue 7 | e1002604



can be challenging for SNPs with low population frequencies or

cluster locations that differ from prior expectations. Our

framework estimates cluster locations conditional on not only

SNP array intensity data, as do many array clustering algorithms,

but also on sequence data and linkage disequilibrium relationships

with nearby SNPs. As shown for this illustrative SNP, as more data

informs the joint calls, the cluster locations typically improve. Each

circle represents a sample, and the two axes represent probe

intensities for each allele. Red, blue, and green colors correspond

to the three genotypes (gray or black indicates no-calls): ovals

represent cluster locations based on array calls, the outline of each

circle represents the sequence calls, and the fill of each circle

represents the joint call. (a) Cluster locations given only array data;

no genotypes can be called. (b) Genotypes given only sequence

data; most genotypes can be weakly called. (c) Genotypes obtained

by multiplying SNP array and sequence genotype likelihoods;

some genotypes can be called but the cluster locations do not

change. (d) Genotypes given sequence and array data for this SNP

only; most genotypes can be called and cluster locations begin to

resolve. (e) Genotypes given sequence and array data for all SNPs;

all genotypes can be called and cluster locations mostly resolve.

(PDF)

Figure S2 Algorithm overview. We implemented our

framework in a Python program. The program accepts a set of

partially overlapping intensity files, with SNP array data, and VCF

files, with sequence genotype likelihoods. It initializes cluster

locations and sample genotypes using the Birdseed algorithm, and

then iteratively re-estimates sample genotypes and cluster

locations. It uses the Beagle algorithm for phasing and imputation

and a modified version of Birdseed to estimate cluster locations

conditional on current genotype estimates, intensity data, and

sequence data. After a number of iterations, the program produces

a VCF file with posterior probabilities of all genotypes for all input

samples at all input sites.

(PDF)

Figure S3 Experimental procedure. Schematic of the

procedure used for our experiments. Details are given in Materials

and Methods.

(PDF)

Figure S4 Sensitivity and specificity of data collection
strategies: 41 sample European reference panel. Shown is

data analogous to Figure 2 but for a 42 European samples rather

than 382 samples. As described in Text S1, this closely models the

use of a 41 European sample reference panel for imputation (just

as our main experiments closely model the use of a 381 European

sample reference panel). While the test sample remains the same as

in Figure 2, we used different sequence data for this experiment —

therefore, the SensD values differ. (a) Sensitivity of calls. (b)
Specificity of calls. (c) SensI by variant frequency. (d) SensI for

four sequence coverages. (e) SensI for four array densities.

(PDF)

Figure S5 Sensitivity and specificity of data collection
strategies: 41 sample African reference panel. Shown is

data analogous to Figure S4 but for an African reference panel

rather than a European reference panel. (a) Sensitivity of calls. (b)
Specificity of calls. (c) SensI by variant frequency. (d) SensI for

four sequence coverages. (e) SensI for four array densities.

(PDF)

Figure S6 Sensitivity and specificity of data collection
strategies: no reference panel. Shown is data analogous to

Figures S4, S5 but absent a reference panel — all samples were

sequenced to the depth and genotyped on the array referenced in

the table. (a) 42 European samples sequenced. (b) 42 African

samples sequenced.

(PDF)

Figure S7 Impact of reference panel on sensitivity and
specificity. We constructed a reference panel in three different

ways: from 46 sequence data (Seq panel), from 46 sequence data

and the array data used to genotype the test sample (Seq and array

panel), and from 46 sequence data and Omni 2.5 data (Seq and

Omni panel). We then assessed sensitivity and specificity when the

test sample was called with all combinations of sequence and array

data. (a) a 381 European sample reference panel; (b) a 41

European sample reference panel; and (c) a 41 African sample

reference panel. We find that the use of array data on top of 46

sequence data to build the reference panel has a small but

significant effect on sensitivity for low coverage sequencing or

small reference panels.

(PDF)

Figure S8 Sensitivity gains from investment. Shown are

SensI values for all combinations of array and sequence data.

Points are colored according to the array data collected and

labeled with the sequence data collected. The x-axis plots SensD, a

measure of genotyping investment intrinsic to a technology. SensD

correlates, though not strictly, with cost. (a) 381 European sample

reference panel. (b) 41 European sample reference panel. (c) 41
African sample reference panel.

(PDF)

Figure S9 Specificity with and without imputation.
Shown is data analogous to Figure 2b but with SpecD in addition

to SpecI. (a) 381 European sample reference panel. (b) 41

European sample reference panel. (c) 41 African sample reference

panel.

(PDF)

Figure S10 Impact of no-call threshold on sensitivity
and specificity without imputation. Shown are SensD and

SpecD values, as computed in Figure 2a and Figure S9a, for

different Phred-scaled genotype quality thresholds; if the genotype

quality is X, the posterior probability of the most likely genotype is

1–102X. For our main analysis, we called genotypes only at sites

where the genotype quality exceeded 10. (a) No genotype quality

thresholds; calls at all sites where most likely genotype probability

exceeds 33.3%. (b) Genotype quality threshold of 10: calls at sites

where the most likely genotype probability exceeds 90%. (c)
Genotype quality threshold of 20: calls at sites where the most

likely genotype probability exceeds 99%.

(PDF)

Figure S11 Impact of no-call threshold on sensitivity
and specificity with imputation. Shown are numbers

analogous to Figure S10 but for SensI and SpecI rather than

SensD and SpecD. (a) No genotype quality thresholds. (b)
Genotype quality threshold of 10. (c) Genotype quality threshold

of 20.

(PDF)

Figure S12 Sensitivity and specificity at heterozygous
and homozygous variants. Shown are data analogous to

Figure 2ab but with sensitivity and specificity computed separately

for variants at which the test sample has a heterozygous and

homozygous genotype. (a) Heterozygous genotypes. (b) Homozy-

gous non-reference genotypes.

(PDF)

Figure S13 Sensitivity and specificity in coding regions.
Shown are data analogous to Figure 2ab but broken into metrics

Efficiency and Power of Genotyping Strategies
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for coding and noncoding variants. (a) Coding variants. (b)
Noncoding variants.

(PDF)

Figure S14 Sensitivity and specificity by minor allele
frequency: 381 European sample reference panel. Shown
are data analogous to Figure 2c but with SpecI in addition to

SensI.

(PDF)

Figure S15 Impact of prior array data on sensitivity:
381 sample European reference panel. Shown are data

analogous to Figure 3 but with an additional array (Affy 500 k). (a)
All variants. (b) Variants with minor allele frequency (MAF)

between .5 and 5%. (c) Variants with MAF.5%.

(PDF)

Figure S16 Sensitivity and specificity at sites not on the
array: actual values. Shown is data analogous to Figure 4a but

with actual values rather than normalized values. Calls based on

sequence data (Seq) calls are plotted in red, joint (Joint) calls are

plotted in blue. The red bars differ in size because the sites

analyzed depend on the array. (a) 381 European sample reference

panel. (b) 41 European sample reference panel. (c) 41 African

sample reference panel.

(PDF)

Figure S17 Impact of additional sequence data on
sensitivity and specificity at sites on the array. We

evaluated joint calls from sequence and array data when different

fractions of samples had sequence data available; as in Figure 4b,

we called genotypes for a batch of 83 samples. We computed calls

with (blue) and without (red) haplotype phasing. For each SNP

array, we tested scenarios where no samples had sequence data

(0%), one sample had high coverage sequence data (1%), two

samples had high coverage sequence data (2%), 10%–50% of

samples had low coverage sequence data, all but the test sample

had low coverage sequence data (99%), and all samples had low

coverage sequence data (100%). The test sample had sequence

data only in the final case.

(PDF)

Figure S18 Sensitivity and specificity at sites on the
array by allele frequency. Sensitivity and specificity at sites on

each SNP array as a function of minor allele frequency. Joint calls

were made in the same manner as described in Figure 4b. Results

are stratified by SNP array and different colored lines represent

different data combinations: joint call SensI (blue), joint calls

SensD (cyan), array call SensI (green), and array call SensD (red).

(a) Sensitivity. (b) Specificity.

(PDF)

Figure S19 Impact of sequence data and phasing on
sensitivity and specificity for sites on the array. We

computed joint calls for 83 samples (as in Figure 4b) but in four

different ways: based on array data (Array only), based on array

data with haplotype phasing (Array+Phasing), based on array data

and sequence data without haplotype phasing (Array+Seq), and

based on array data and sequence data with haplotype phasing

(Joint).

(PDF)

Figure S20 Impact of new clusters and joint likelihoods
on sensitivity and specificity at sites on the chip. At sites
on the SNP array, joint calls have higher sensitivity and specificity

than array calls for two reasons: genotype likelihoods for the test-

sample are computed from both sequence and array data, and

genotype cluster locations are computed based on sequence data

and haplotype phasing (Figure 1, Figure S1). To quantify these two

contributions, we compared sensitivity and specificity for array

calls (Array only), for calls made from the joint likelihoods without

cluster re-estimation (Likelihoods only), for calls made from array

likelihoods but with cluster locations re-estimated from all data

(Cluster only), and for joint calls (Joint). We did not use haplotype

phasing to compute any genotype calls for this experiment. Joint

calls were made in the same manner as described in Figure 4b.

(PDF)

Figure S21 Analysis of SNPs initially classified as ‘‘false

positive’’. We identified 639 SNPs on the Metabochip

polymorphic based on sequence data but monomorphic based

on array data. Based on the joint calls, 127 SNPs are no-called and

therefore unresolved, 331 SNPs are polymorphic, and 181 SNPs

are monomorphic. The left plots show calls based on array data

(ovals represent genotype classes) and sequence data (outlines of

circles represent genotype classes); the right plots show joint calls

with colors and symbols as defined in Figure S1.

(PDF)

Figure S22 Genotype likelihoods of fragment-based

calling. (a) Mathematical formalism for fragment-based (rather

than read-based) SNP calling. The likelihood of a read pair given a

hypothesized genotype GTAB with alleles A and B is calculated

via a two-stage inference that weights the probability of each read

independently by the probability of a PCR (or other) error

occurring in the sequenced DNA fragment. In the above equation,

p refers to error rate of the fragment, f refers to the base in the

fragment, e refers to the error rate in the read, and b refers to the

base in the read. Thus, errors that occur during fragment

construction are counted only once, while errors that occur

during sequencing are counted independently. (b) Comparison of

the SNP genotype likelihood quality for GATK [27] SNP calls at

sites also on the Omni 2.5 array (chromosome 20 only). Ideally

calibrated likelihoods would follow the diagonal line. Fragment-

based likelihoods are more accurate at all confidence levels, but

the impact is most important for low confidence levels — which

correspond to points with less certain likelihoods.

(PDF)

Figure S23 Analysis of disputed SNPs. As described in the

text, we used our framework to resolve SNPs where array data

widely disagreed with 46 sequencing data. We classify disputes as

apparent sequence (or array) errors if the joint genotype calls

disagree with calls based on sequence (or array) data. (a) Example

disputed SNPs. The left plots show calls based on array data (ovals

represent genotype classes) and sequence data (outlines of circles

represent genotype classes); the right plots show joint calls with

colors and symbols as defined in Figure S1. (bc) We asked which

disputed SNPs were due to known or predicted error modes.

Plotted are values for six potential error modes, each stratified

across four classes of SNPs: agreed (sequence and array calls

disagree for ,10% of genotypes), disputed (sequence and array

calls disagree for $10% of genotypes), apparent array errors, and

apparent sequence errors. (b) Shown are the fraction of SNPs in

each class (1) with a DNA flanking region that occurs at multiple

genomic locations, (2) that lie within low complexity regions, and

(3) that lie within 50 bp of another SNP. Apparent array errors

have higher values for each of these metrics than apparent

sequence errors. (c) Shown are distributions over SNPs for (1) the

likelihood of forward/reverse DNA strand bias in sequence calls,

(2) the length of a neighboring homopolymer run, and (3) the

average (Phred-scaled) error rate of the reads supporting the

sequence call (higher values signify more confident SNP calls).
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Apparent sequence errors have higher values for each of these

metrics than apparent array errors.

(PDF)

Figure S24 Properties of resolved SNPs with greater
than 10% discordant genotypes. Distributions for all

potential error modes assessed on disputed SNPs, as in Figure

23bc.

(PDF)

Figure S25 Properties of resolved SNPs with greater
than 25% discordant genotypes. The same data as in Figure

S24 but for SNPs classified as disputed when array calls and

sequence calls disagree for more than 25% of sample genotypes.

(PDF)

Figure S26 Characterized disputed SNPs. We fit separate

distributions to each potential error mode for disputed and non-

disputed SNPs, as well as for each class of apparent error mode.

We considered a SNPs as characterized by an error mode

according to one of two criteria: if the error mode was binary, it

characterized a SNP if the SNP had value 1 for the error mode; if

the error mode was continuous, it characterized a SNP if the log of

the likelihood ratio (LOD) of the error mode distribution to the

non-disputed distribution exceeded two. (a) SNPs with greater

than 25% discordant genotypes. (b) SNPs with greater than 10%

discordant genotypes.

(PDF)

Text S1 Available as supporting supporting information are: (1)

calculations that show how previously described genotype calling

algorithms are similar in principle to the joint calling framework

when one or more of sequence reads, SNP array intensities, or

linkage disequilibrium is omitted; (2) sensitivity and specificity

calculations with a 41 sample European reference panel and a 41

sample African reference panel; and (3) investigation of the

increase of sensitivity with additional genotyping investment.

(PDF)
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