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Efficiency at maximum power of minimally nonlinear irreversible
heat engines

Y. Izumida and K. Okuda

Division of Physics, Hokkaido University - Sapporo, 060-0810, Japan

PACS 05.70.Ln – Nonequilibrium and irreversible thermodynamics

Abstract – We propose the minimally nonlinear irreversible heat engine as a new general theo-
retical model to study the efficiency at the maximum power η∗ of heat engines operating between
the hot heat reservoir at the temperature Th and the cold one at Tc (Tc ≤ Th). Our model is based
on the extended Onsager relations with a new nonlinear term meaning the power dissipation. In
this model, we show that η∗ is bounded from the upper side by a function of the Carnot efficiency
ηC ≡ 1− Tc/Th as η∗ ≤ ηC/(2− ηC). We demonstrate the validity of our theory by showing that
the low-dissipation Carnot engine can easily be described by our theory.

Introduction. – Facing with the recent worldwide
problems such as the global warming and the depletion of
energy resources, we have been urged to a low-carbon sus-
tainable society. Demands for more efficient and greener
heat engines have rapidly been rising since heat engines
convert heat energy into useful work by utilizing only tem-
perature difference, which is abundant in the earth’s en-
vironment: geothermal power generation, solar thermal
power generation, etc. might be promising candidates, for
example. To evaluate and control performance of heat en-
gines, it must be important to know the upper bound of
the energy conversion efficiency of them. The efficiency η
for a heat engine is defined as η ≡ W/Qh, where Qh and
W denote the heat transferred from the hot heat reservoir
at the temperature Th and the work output, respectively.
Defining Qc as the heat transferred from the cold heat
reservoir at the temperature Tc (≤ Th), we can express
W as W ≡ Qh + Qc. Thermodynamics tells us that η is
bounded from the upper side as

η ≤ 1− Tc

Th
≡ ηC , (1)

where ηC denotes the Carnot efficiency and the equal-
ity holds only when the heat engine is infinitely slowly
(quasistatically) operated to satisfy reversibility. Because
the heat engine realizing the Carnot efficiency takes in-
finte time to output a finite amount of work, its power
(work output per unit time) is absolutely 0 and thus it
is of no practical use. Motivated by this fact, Curzon
and Ahlborn [1] proposed a phenomenological finite-time
Carnot cycle model and derived that the efficiency at the

maximum power η∗ of their model is given by an appealing
expression as

η∗ = 1−
√

Tc

Th
≡ ηCA, (2)

which reminds us of the Carnot efficiency. Historically
and strictly speaking, the formula 1 −

√
Tc/Th itself was

derived by others [2, 3] more previously than [1]. But
it is usually called the Curzon-Ahlborn (CA) efficiency.
We also call it the CA efficiency here in accord with
the custom. The paper by Curzon and Ahlborn trig-
gered subsequent studies on the efficiency at the maxi-
mum power of various heat engine models [4–37]. Among
recent studies on the CA efficiency, it is an important
progress that Van den Broeck [12] proved that the CA
efficiency ∆T/(2T ) = ηCA + O(∆T 2) is the upper bound
of the efficiency at the maximum power for the heat en-
gines working in the linear response regime. Here, we
have defined the temperature difference ∆T ≡ Th − Tc,
which is assumed to be small, and the averaged temper-
ature T ≡ (Th + Tc)/2, respectively. Those heat engines
working in the linear response regime, which we call the
linear irreversible heat engines, are described by the fol-
lowing Onsager relations [38,39]:

J1 = L11X1 + L12X2, (3)

J2 = L21X1 + L22X2, (4)

where X1 ≡ F/Tc ≃ F/T with an external force F , J1 ≡ ẋ
with the conjugate variable x of F , X2 ≡ 1/Tc − 1/Th ≃
∆T/T 2, J2 ≡ Q̇h and Lij ’s are the Onsager coefficients
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with the reciprocity L12 = L21. The dot denotes the quan-
tity per unit time. Regarding X1 as the control parameter
for the maximization of the power P = −Fẋ = −J1X1T ,
we can see that the maximum power P ∗ and the efficiency
at the maximum power η∗ of the linear irreversible heat
engines described by eqs. (3) and (4) are given by

P ∗ =
q2L22∆T 2

4T 3
, (5)

η∗ =
∆T

2T

q2

2− q2
, (6)

respectively [12], where q is called the coupling strength
parameter and is defined as

q ≡ L12√
L11L22

. (7)

Since the positivity of the entropy production rate σ̇ ≡
J1X1 + J2X2, which is a quadratic form of the thermody-
namic forces, restricts the Onsager coefficients Lij ’s to

L11 ≥ 0, L22 ≥ 0, L11L22 − L12L21 ≥ 0, (8)

q should take −1 ≤ q ≤ 1. Thus η∗ in eq. (6) takes the
upper bound ∆T/(2T ) which is equal to the CA efficiency
up to the linear order of ∆T , when the tight-coupling con-
dition

|q| =
∣∣∣∣ L12√

L11L22

∣∣∣∣ = 1 (9)

holds. This condition is equivalent to saying that the two
thermodynamic fluxes become proportional as J2 ∝ J1.
Due to the generality of the theory, the study by Van
den Broeck renewed the interests in the CA efficiency
and inspired the studies on the efficiency at the maxi-
mum power of various heat engine models: it has been
indeed shown that η∗ of many heat engine models, rang-
ing from the steady-state brownian motors [13, 17, 18] to
the finite-time Carnot cycles [30, 31], is given by eq. (6)
in the linear response regime. Even when the system be-
gins to enter the nonlinear response regime, it is often
observed that η∗ agrees with the CA efficiency up to the
quadratic order of ∆T as η∗ = ∆T/(2T ) + ∆T 2/(8T 2) =
ηCA + O(∆T 3) [24–27, 34, 35]. This fact was firstly ob-
served in [24] and proposed as a conjecture in [25]. Later,
it was proved to be a precise result for the system which
satisfies the left-right symmetry condition in addition to
the tight-coupling condition in [27]. However, it is also
shown, for example in [19, 20, 24–29, 34, 35], that η∗ can
exceed the CA efficiency in the nonlinear response regime,
when those conditions do not hold. Therefore the CA ef-
ficiency is no longer the upper bound of η∗ for nonlinear
irreversible heat engines and we need to construct a gen-
eral theory to determine the upper bound of η∗ for them.
In this paper, we propose the minimally nonlinear ir-

reversible heat engine described by the extended Onsager
relations, where a new nonlinear term−γhJ1

2 meaning the

power dissipation is added to eq. (4) (see eq. (12)). The
addition of this new nonlinear term can be seen as a natu-
ral extension of the linear irreversible heat engine and we
formulate η∗ of such nonlinear irreversible heat engines.
Our new formula eq. (20) contains the coupling strength
parameter q and a parameter γc/γh, where γc and γh de-
note the degree of dissipation to the cold and hot heat
reservoirs, respectively. We show that our η∗ is bounded
from the upper side by a function of the Carnot efficiency
ηC as η∗ ≤ η+, where η+ ≡ ηC/(2 − ηC). Remarkably
this η+ was also mentioned in the previous studies on var-
ious finite-time heat engine models [24,32–35,40,41]. The
generality of our theory allows us to unify these previous
results and explain the universality of η+. For a demon-
stration of the validity of our theory, we show that a finite-
time Carnot cycle model, called the low-dissipation Carnot
engine [35], can be described by the extended Onsager re-
lations.

Extended Onsager relations. – Let us consider
that a general heat engine is working between the hot and
the cold heat reservoirs with the temperature difference
∆T = Th − Tc. Heat engines are generally classified into
two types: steady-state heat engines and cyclic heat en-
gines. Steady-state heat engines literally work in a steady
state since an external force applied on the heat engines
is time-independent and the hot and cold heat reservoirs
contact with the heat engines simultaneously. Cyclic heat
engines, in contrast, work cyclically in a time-dependent
way such that the hot and the cold heat reservoirs con-
tact with the heat engines alternately, not simultaneously.
Our theory below can treat both types of heat engines in
a unified manner. We can generally write the total en-
tropy production rate σ̇ of the heat engine as the entropy
increase rate of the heat reservoirs as

σ̇ = − Q̇h

Th
− Q̇c

Tc
= −Ẇ

Tc
+ Q̇h

(
1

Tc
− 1

Th

)
, (10)

where we do not need to consider the entropy increase
inside the heat engine since the heat engine itself is always
in a steady state or comes back to the original state after
one cycle. Note that the dot denotes the quantity per
unit time for steady-state heat engines and the quantity
divided by the one-cycle period τcyc for cyclic heat engines.

The power P ≡ Ẇ is expressed as P = −Fẋ for steady-
state heat engines where the time-independent external
force F is acting on its conjugate variable x, and as P =
W/τcyc for cyclic heat engines. From the decomposition
σ̇ ≡ J1X1+J2X2, we can define the thermodynamic force
X1 ≡ F/Tc and its conjugate thermodynamic flux J1 ≡ ẋ
for steady-state heat engines as well as X1 ≡ −W/Tc and
J1 ≡ 1/τcyc for cyclic heat engines. We can also define
the other thermodynamic force X2 ≡ 1/Tc − 1/Th and its
conjugate thermodynamic flux J2 ≡ Q̇h for both types of
heat engines. By using these thermodynamic fluxes and
forces, the power P is rewritten as P = −J1X1Tc. We
assume that these thermodynamic fluxes and forces satisfy
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Fig. 1: Schematic illustration of the minimally nonlinear irre-
versible heat engine described by eqs. (14) and (15).

the following extended Onsager relations:

J1 = L11X1 + L12X2, (11)

J2 = L21X1 + L22X2 − γhJ1
2, (12)

where the features of the Onsager coefficients Lij ’s in
eqs. (3) and (4) are assumed to hold also in eqs. (11) and
(12). In eq. (12), the new nonlinear term −γhJ1

2 is in-
troduced into the standard Onsager relation eq. (4) and
γh is assumed to be a positive constant as γh > 0. We
also assume that no other higher nonlinear terms arise in
eqs. (11) and (12) by considering that the coefficients of
higher nonlinear terms are too small to have effective con-
tributions to σ̇ compared to −γhJ1

2, as will be seen in
eq. (18). In our model, we also assume that X1 and X2

are not restricted to small values, unlike in the linear irre-
versible heat engine described by eqs. (3) and (4), where
the limit of X1 → 0 and X2 → 0 is taken.
Here we introduce the heat flux from the cold heat reser-

voir

Q̇c = P − Q̇h = −J1X1Tc − J2 ≡ J3. (13)

Then we can rewrite the heat fluxes eqs. (12) and (13) into
more suggestive and symmetrical forms as (see fig. 1)

J2 =
L21

L11
J1 + L22(1− q2)X2 − γhJ1

2, (14)

J3 = −L21Tc

L11Th
J1 − L22(1− q2)X2 − γcJ1

2, (15)

where q is defined in eq. (7) and γc is defined as

γc ≡
Tc

L11
− γh. (16)

We assume γc to be a positive constant as γc > 0. We
can use eqs. (14) and (15) to describe the heat engines
instead of eqs. (11) and (12), regarding J1 as the con-
trol parameter of the heat engines instead of X1 since J1
and X1 are uniquely related through eq. (11) when X2

is fixed. We call the heat engines described by eqs. (14)
and (15) (or the extended Onsager relations eqs. (11) and
(12)) the minimally nonlinear irreversible heat engines.
The term “minimally” implies that we take into account

only −γhJ1
2 and −γcJ1

2 as the nonlinear terms. As we ex-
plain below, those terms will turn out to be the inevitable
power dissipations accompanied by the finite-time motion
of the heat engines.

The power P = −J1X1Tc = J2+J3 can be rewritten as

P =
L21

L11
ηCJ1 −

Tc

L11
J1

2, (17)

by adding eqs. (14) and (15). Here we immediately no-
tice that the second terms in eqs. (14) and (15) do not
contribute to eq. (17) at all. They mean just the direct
heat transfer from the hot heat reservoir to the cold one,
which arises in the case of the non-tight coupling con-
dition |q| ̸= 1. Note that similar decomposition of the
power like eq. (17) is also given in [32]. The first term
in eq. (17) is proportional to ∆T through ηC , meaning
the power generation due to the temperature difference.
On the other hand, the second term in eq. (17) remains
nonzero even when ∆T = 0 and means the power dissipa-
tion which should necessarily be consumed once the heat
engine moves at a finite rate (J1 ̸= 0) regardless of how
small J1 is. The power dissipation results in the increase
of the total internal energy of the heat reservoirs. When
∆T = 0, this is nothing but the effect of Joule heating,
which is seen if we can consider that Tc/L11 and J1 in
eq. (17) correspond to resistance and electric current, re-
spectively.

To clarify the physical meaning of each term in eqs. (14)
and (15) in more detail, we rewrite the total entropy pro-
duction rate σ̇ = −Q̇h/Th − Q̇c/Tc = −J2/Th − J3/Tc

as

σ̇ = L22(1− q2)X2
2 +

J1
2

L11
− γhJ1

2X2, (18)

by using eqs. (14) and (15). The first term means the en-
tropy increase rate of the heat reservoirs due to the direct
heat transfer. The second term comes from the inevitable
work consumption due to the finite-time operation. The
third term in eq. (18) arises due to the presence of −γhJ1

2

in eq. (12). In the case of the linear irreversible heat engine
described by eqs. (3) and (4), the third term is suppressed
and the non-negativity of σ̇ restricts the Onsager coeffi-
cients Lij ’s to eq. (8). Even in our model, we assume that
the restriction eq. (8) still holds although X1 and X2 are
not restricted to small values. Then the non-negativity
of eq. (18) is always guaranteed since it is rewritten as
σ̇ = L22(1−q2)X2

2+(γh/Th+γc/Tc)J1
2 by using eq. (16):

the first term is always non-negative due to eq. (8) and the
second one is also always non-negative due to the assump-
tions γh > 0 and γc > 0.

Efficiency at maximum power. – We consider the
efficiency of the heat engine η = W/Qh = P/Q̇h = P/J2,
where P and J2 are given in eqs. (17) and (14), respec-
tively. When X2 and Lij ’s are given, the maximum power
is realized at J1 = L12X2/2 as a solution of ∂P/∂J1 = 0
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and then we obtain the maximum power P ∗ and the effi-
ciency at the maximum power η∗ as

P ∗ =
q2L22∆T 2

4Th
2Tc

, (19)

η∗ =
ηC
2

q2

2− q2 (1 + ηC/(2(1 + γc/γh)))
, (20)

respectively. The formula eq. (20) is the main result of
this paper. We notice that it includes the formula eq. (6)
of the linear irreversible heat engine as the linear term of
ηC ≃ ∆T/T in the limit of ∆T → 0. We also notice that
eq. (20) has the lower bound ηq− and the upper bound ηq+
at a fixed q as

ηq− ≡ ηC
2

q2

2− q2
≤ η∗ ≤ ηC

2

q2

2− q2 (1 + ηC/2)
≡ ηq+, (21)

by taking the asymmetrical dissipation limits γc/γh →
∞ and γc/γh → 0, respectively. Moreover ηq+ takes the
maximum value

ηq+ ≤ ηC
2− ηC

≡ η+, (22)

when the tight-coupling condition |q| = 1 is satisfied in
ηq+. Therefore this η+ is the upper bound of η∗ for the
minimally nonlinear irreversible heat engines.
We note that η+ has also been found in the previous

studies on the efficiency at the maximum power: in a
finite-time heat engine model [40], where the heat fluxes
are assumed to obey a specific conduction law, η+ arises
as a limiting case. In a Feynman ratchet model [41], η+
has been obtained as Feynman efficiency under the no heat
leak condition between the heat reservoirs. In a few finite-
time Carnot cycle models [24, 34, 35], η+ has been found
as the upper bound of η∗ in the asymmetrical dissipation
limit. Finally in [32] (see also [33]), η+ has been proved to
be the upper bound of η∗ in the asymmetrical dissipation
limit in a general and model-independent way. But the
proof in [32] is limited to the case of stochastic steady-
state heat engines. Our theory can be applicable to cyclic
heat engines as well and unify these previous results.
Here we stress physical importance of η+: if the effi-

ciency at the maximum power of a finite-time heat engine
exceeds η+, it implies that the heat engine works under
higher degree of nonequilibrium. In fact, we can see that
η∗ of the finite-time Carnot cycle model of ideal gas re-
ported in [28,29] exceeds η+ due to the higher nonequilib-
rium effect [42]. Therefore η+ could be a criterion for de-
termining the degree of nonequilibrium of finite-time heat
engines.

Example: low-dissipation Carnot engine. – For
a demonstration of the validity of our theory, we show that
the low-dissipation Carnot engine [35] is described by the
extended Onsager relations eqs. (11) and (12). Here the
low-dissipation Carnot engine is a heat engine model pro-
posed as a finite-time extension of the quasistatic Carnot

cycle. It assumes the specific form of the heats transferred
from the heat reservoirs during the isothermal processes
as

Qh = Th∆S − ThΣh

τh
+ · · · , (23)

Qc = −Tc∆S − TcΣc

τc
+ · · · , (24)

where ∆S is the quasistatic entropy change inside the heat
engine during the isothermal process in contact with the
hot heat reservoir, τh and τc are the durations during the
isothermal processes in contact with the hot heat reser-
voir and the cold one, respectively, and Σh and Σc are
positive constants. We consider that the constants Σh

and Σc contain the details how the engine deviates from
the quasistatic limit. The assumption eqs. (23) and (24)
means that the lowest deviation from the quasistatic heat
should be proportional to the inverse of the duration. In
a stochastic finite-time Carnot cycle model [24] analyzed
by the Fokker-Planck equation, such a τ−1 term indeed
arises [cf. eq. (16) in [24]]. In a finite-time Carnot cy-
cle model of ideal gas analyzed by the molecular kinetic
theory [28], it is also confirmed that the lowest deviation
is proportional to τ−1 [cf. eq. (11) in [28]]. Finally such
a τ−1 term also arises in a quantum dot Carnot engine
model [34] analyzed by the master equation approach [cf.
eq. (28) in [34]]. Therefore the assumption of the specific
form of the heats eqs. (23) and (24) has microscopically
been justified in these models. Additionally, we neglect
higher order terms such as O(τ−2) in eqs. (23) and (24)
in this low-dissipation approximation.

We can express the power P = (Qh + Qc)/(τh + τc) of
this engine as P = (∆T∆S−ThΣh/τh−TcΣc/τc)/(τh+τc)
by using eqs. (23) and (24). Maximizing this power by the
durations τh and τc as ∂P/∂τh = ∂P/∂τc = 0, we find the
physically relevant solutions as

τh =
2ThΣh

(Th − Tc)∆S

(
1 +

√
TcΣc

ThΣh

)
≡ τh

∗, (25)

τc =
2TcΣc

(Th − Tc)∆S

(
1 +

√
ThΣh

TcΣc

)
≡ τc

∗. (26)

Then by using the definition η = (Qh + Qc)/Qh and
eqs. (23), (24), (25) and (26), we can obtain the efficiency
at the maximum power η∗ as

η∗ =
ηC

(
1 +

√
TcΣc

ThΣh

)
(
1 +

√
TcΣc

ThΣh

)2
+
(
1− Σc

Σh

)
Tc

Th

. (27)

We can easily notice that eq. (27) is bounded from the
lower side and the upper side as

ηC
2

≤ η∗ ≤ ηC
2− ηC

, (28)

by taking the asymmetrical dissipation limits Σc/Σh → ∞
and Σc/Σh → 0, respectively [35] (see also [34] for the
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derivation of these bounds in a quantum dot Carnot en-
gine model). In [35], it is stated that observed efficien-
cies of various actual power plants tend to locate between
these two bounds. It is also interesting to see that the
same bounds were derived in a different finite-time heat
engine model based on a specific heat conduction law [40].
By comparing eq. (28) with eq. (21), we may consider
that the tight-coupling condition |q| = 1 holds in this low-
dissipation Carnot engine. We can prove it by writing
the extended Onsager relations of this engine explicitly as
follows.
First, we consider the total entropy production rate

σ̇ = − Q̇h

Th
− Q̇c

Tc
= −Ẇ

Tc
+ Q̇h

(
1

Tc
− 1

Th

)
= − W

Tc(α+ 1)τh
+ Q̇h

(
1

Tc
− 1

Th

)
, (29)

where we have defined the parameter α as α ≡ τc/τh and
the dot denotes the quantity divided by the one-cycle pe-
riod τcyc = τh + τc = (α + 1)τh. From the decomposition
σ̇ = J1X1+J2X2, we can define the thermodynamic forces
X1 ≡ −W/Tc, X2 ≡ 1/Tc − 1/Th and their corresponding
thermodynamic fluxes J1 ≡ 1/((α+1)τh), J2 ≡ Q̇h. Using
eqs. (23), (24) and the definitions of the thermodynamic
forces and fluxes, we can easily calculate the Onsager co-
efficients Lij ’s and the constant γh of this low-dissipation
Carnot engine as

L11 =
Tc

(ThΣh + TcΣc/α)(α+ 1)
, (30)

L12 =
ThTc∆S

(ThΣh + TcΣc/α)(α+ 1)
, (31)

L21 =
ThTc∆S

(ThΣh + TcΣc/α)(α+ 1)
, (32)

L22 =
Th

2Tc∆S2

(ThΣh + TcΣc/α)(α+ 1)
, (33)

γh = ThΣh(α+ 1), (34)

respectively. γc is also given by

γc =
TcΣc(α+ 1)

α
, (35)

by using eqs. (30), (34) and (16). We notice that the
reciprocity L12 = L21 surely holds from eqs. (31) and
(32). Moreover we can confirm the tight-coupling con-
dition |q| = |L12/

√
L11L22| = 1 from eqs. (30), (31) and

(33) as expected. We can obtain η∗ of the low-dissipation
Carnot engine as

η∗ =
ηC
2

1

2−
(
1 + ηC/

(
2
(
1 + TcΣc

αThΣh

))) , (36)

by substituting |q| = 1, eqs. (34) and (35) into eq. (20).
We can also obtain P ∗ as

P ∗ =
∆S2∆T 2

4(ThΣh + TcΣc/α)(α+ 1)
, (37)

by substituting |q| = 1, eq. (33) into eq. (19). However we
notice that eq. (37) still contains the tunable parameter α
and can further be maximized as ∂P ∗(α)/∂α = 0, which
reduces to α =

√
TcΣc/(ThΣh) ≡ α∗. From eqs. (25) and

(26), we can see that α∗ = τc
∗/τh

∗ holds. Substituting this
α∗ into eq. (36), we finally reproduce eq. (27). Therefore
we can conclude that the low-dissipation Carnot engine is
exactly described by the extended Onsager relations. In
other words, the inclusion of the power dissipation term
−γhJ1

2 into the Onsager relation as in eq. (12) is justi-
fied by this explicit example, whose assumptions eqs. (23)
and (24) are consistent with the microscopically analyzed
models [24,34].

Summary and discussion. – We proposed the min-
imally nonlinear irreversible heat engine described by the
extended Onsager relations, where a new nonlinear term
meaning the power dissipation is added to the heat flux
from the hot heat reservoir in the standard Onsager rela-
tion and no other nonlinear terms are assumed to arise.
Thus our model can be regarded as a natural and mini-
mal extension of the linear irreversible heat engine. We
formulated the efficiency at the maximum power η∗ of
our model and showed that it is bounded from the up-
per side by ηC/(2 − ηC). This upper bound can be at-
tained when the heat engine satisfies the tight-coupling
condition |q| = 1 and the asymmetrical dissipation limit
γc/γh → 0 is taken. As a demonstration of the validity
of our theory, we explicitly wrote down the extended On-
sager relations of the low-dissipation Carnot engine [35]
and confirmed that it satisfies the tight-coupling condi-
tion |q| = 1. Though the low-dissipation Carnot engine is
an example of the cyclic heat engine, we should note that
the power dissipation terms arise also in a few steady-state
systems [43–45], where analytical calculations of the On-
sager coefficients Lij ’s, γh and γc are explicitly done based
on a molecular kinetic theory. These calculations and the
present example of the low-dissipation Carnot engine in
this paper could support the validity of our theory, which
treats the cyclic heat engines and the steady-state ones in
the unified manner. It will be a future challenge to find
the upper bound of the efficiency at the maximum power
for more general irreversible heat engines with higher non-
linear terms beyond our model.
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