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Traditional data envelopment analysis (DEA) models �nd the most desirable weights for each decision-making unit (DMU) in
order to estimate the highest e	ciency score as possible. �ese e	ciency scores are then used for ranking the DMUs. �e main
drawback is that the e	ciency scores based on weights obtained from the standard DEA models ignore other feasible weights;
this is due to the fact that DEA may have multiple solutions for each DMU. To overcome this problem, Salo and Punkka (2011)
deemed each DMUas a “Black Box” and developedmodels to obtain the e	ciency bounds for eachDMUover sets of all its feasible
weights. In many real world applications, there are DMUs that have a two-stage production system. In this paper, we extend the Salo
and Punkka’s (2011) model to a more common and practical case considering the two-stage production structure. �e proposed
approach calculates each DMU’s e	ciency bounds for the overall system as well as e	ciency bounds for each subsystem/substage.
An application for nonlife insurance companies has been discussed to illustrate the applicability of the proposed approach and
show the usefulness of this method.

1. Introduction

Data Envelopment Analysis (DEA), �rst developed by
Charnes et al. [1], has been proven as an e
ective tool
for performance evaluation and benchmarking. �is tech-
nique makes no assumptions on the production function
and imposes no subjective weights on multiple inputs and
multiple outputs. DEA has been widely applied in many
areas [2]. �e DEA technique allows a DMU to choose the
most favorable weights to achieve the best possible relative
e	ciency. However, the standard e	ciency scores do not
consider all the possible weights as they only consider the
weights most favorable to each DMU. �e main issue that
has been ignored in the past literature is that the e	ciency
score of a DMU relative to other DMUs can change over
di
erent weights when applying the DEA models. Hence, it
is important to consider all possible weights to evaluate each
DMU.

To overcome this problem, Salo and Punkka [3] have
proposed a procedure to obtain the e	ciency bounds by
taking into account all possible weights (see also [4]). �at is
to say, the e	ciency bounds show how the DMUs’ e	ciency
ratios relate to each other for all feasible weights, rather
than for those weights only for which the data envelopment

analysis (DEA) e	ciency score of some DMU is maximized.
�ey have introduced an e	ciency bound for all possible
e	ciency scores that is determined by the lower and upper
bounds of the e	ciency scores. �e e	ciency bounds show
howmuchmore e	cient a givenDMUcan be relative to some
other DMU or a subset of other DMUs. For this purpose,
Green et al. [5] developed a new model by putting the CCR
model into a mixed-binary linear programming framework
to obtain the e	ciency bounds in data envelopment analysis.
Entani and Tanaka [6] proposed the interval DEA model to
obtain an e	ciency interval consisting of evaluations from
both the optimistic and pessimistic viewpoints. Wang and
Yang [7] proposed a pair of bounded DEAmodels tomeasure
the overall performances of a group of decision-making units
(DMUs), which were characterized by interval e	ciencies.
To overcome the problem of these models incapable of
determining an e	ciency interval for any DMU when there
is a zero value for each output, Azizi and Wang [8] proposed
a pair of improved bounded DEA models to overcome the
drawback. All these methods for obtaining the e	ciency
bounds treated each DMU as a “Black Box”. �us, they
ignored the internal structure of the production system.

However, as discussed inmany DEA studies, in many real
application, DMUs have a two-stage structure, i.e., outputs
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from the �rst stage become the inputs to the second stage.
Outputs from the �rst stage are referred to as intermedi-
ate measures. Seiford and Zhu [9] use the standard DEA
approach to measure the pro�tability and marketability of
US commercial banks which does not address potential
con�icts between the two stages arising from the intermediate
measures. For example, the second stage may have to reduce
its inputs (intermediate measures) in order to achieve an
‘e	cient’ status, which imply a reduction in the �rst stage
outputs. In a survey by Cook et al. [10], they pointed
out that the approaches of modeling DMUs with a two-
stage production process can be categorized as four types,
i.e., standard DEA methodology, e	ciency decomposition
methodology, networkDEA, and game-theoretic approaches.
�e standard DEA methodology simply uses the standard
DEA model, i.e., two separate DEA models to calculate the
e	ciencies of two stages (e.g., Seiford and Zhu [9]; Zhu [11];
and Sexton and Lewis [12]); the e	ciency decomposition
methodology is that given the e	ciency scores of stage 1 and
stage 2, the overall e	ciency could be de�ned as the product
or the arithmetic mean of two substages’ e	ciencies (e.g.,
Kao and Hwang [13]; Chen et al. [14], and Chen et al. [15]);
the network DEA approach extends the two-stage process to
more general situation (e.g., Tone and Tsutsui [16]; Tone and
Tsutsui [17]; Izadikhah et al. [18]); game-theoretic approaches
introduce game theory to the e	ciency evaluation of two-
stage structure (e.g., Liang et al. [19]; Zha and Liang [20]; Li et
al. [21]; Guo and Zhu [22]; and Izadikhah et al. [18]). Except
for the standard DEA approach, all other approaches attempt
to correct for the above-referenced con�ict issue. And, two-
stage DEA has been extensively applied to many areas, such
as hotels ([23, 24]; Huang et al. [25]), R&D departments
(Li et al. [21]; Liu and Lu, [26]), information technology
(Shao and Lin [27]; Chen and Zhu [28]; and Kao and Hwang
[29]), insurance companies (Yang [30]; Kao and Hwang [13]),
industry (Wu et al. [31]; Chen et al. [32]; and Li et al. [33]), and
banks (Paradi et al. [34]; Huang et al. [23, 24];Wang et al. [35];
and Zhu et al. [36]).

In this paper, we develop a method to obtain the e	-
ciency bounds for the classic two-stage production systems
as discussed by Seiford and Zhu [9], Chen and Zhu [28],
and Kao and Hwang [13]. �at is, the �rst subsystem uses
inputs to produce outputs that then become the inputs to the
second subsystem to produce the �nal outputs.�e proposed
model calculates each DMU’s e	ciency bounds for the
overall system as well as two subsystems. Unlike conventional
e	ciency scores, the results show how the DMUs’ e	ciency
ratios for the overall system and two subsystems relate to each
other for all feasible weights. We believe that this process
provides more accurate information for decision makers by
identifying the best (and/or worst) DMUs in the overall
system and both subsystems over all feasible weights. Besides,
the proposed approach provides information regarding the
sensitivity of the DMU’s e	ciency bounds for the overall
system and both two subsystems over sets of all feasible
weights.

�e remainder of this paper is organized as follows.
In the next section, the procedure of e	ciency bounds by
Salo and Punkka [3] has been reviewed brie�y. �en, in

Section 3, a method is developed to obtain the e	ciency
bounds considering the two-stage production systems.�is is
followed by illustration example in Section 4. An application
is also given in this section to show the usefulness of the
proposed procedure. Finally, conclusions and direction for
future research are given in Section 5.

2. Efficiency Bounds by Salo and Punkka [3]

Assume that there are � DMUs denoted as DMU�(� =
1, . . . , �). Each DMU uses inputs ���(� = 1, . . . , �) to produce
outputs ���(� = 1, . . . , 	). Based on the de�nition of Charnes
et al. [1], the e	ciency of 
��� is calculated by the CCR
multiplier form as follows:


���� (�, V) = max
∑��=1 �����
∑	�=1 V����

(1)

s.t.
�
∑
�=1

����� −
	
∑
�=1
V���� ≤ 0 ∀� (2)

�� ≥ 0 ∀�
V� ≥ 0 ∀� (3)

�e model could be transformed into linear program-
ming model by use of the Charnes-Cooper transformation
[37]. �∗� (� = 1, . . . , 	) and V

∗
� (� = 1, . . . , �) are the optimal

solution of model (2) and the associated optimal output and
input weights. 
��� is termed e	cient if and only if the
optimal objective is equal to one and the optimal weight

vectors are all larger than zero; i.e., 
���� (�∗, V∗) = 1 and
�∗� > 0, V∗� > 0. For any feasible weights ��(� = 1, . . . , 	)
and V�(� = 1, . . . , �), Salo and Punkka [3] de�ned e	ciency
dominance between DMUs based on the e	ciency scores of
model (2).

De�nition 1. 
��� dominates 
��� (denoted by
��� ≻
���) if and only if


� (�, V) ≥ 
� (�, V) ∀ (�, V) ∈ (��, �V)

� (�, V) > 
� (�, V) for 	��� (�, V) ∈ (��, �V)

(4)

�us, if 
��� ≻ 
���, the e	ciency ratio of 
��� is
at least as high as that of 
��� for all feasible weights, and
moreover, there exist some weights for which its e	ciency is
strictly higher.

�e dominance relation in De�nition 1 could be calcu-
lated based on the following pairwise e	ciency ratio:


�,� (�, V) = 
� (�, V)

� (�, V) . (5)

However, the relative e	ciency ratio (5) is nonlinear in
weights (�, V). Salo and Punkka [3] proposed the following
model to maximize and minimize the ratio through linear
programming.
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�eorem2. �e optimum of the maximization (minimization
problem)

max�,V (min�,V )
�
∑
�=1

�����

	.�.
�
∑
�=1

�����
	
∑
�=1

V����
	
∑
�=1

V���� = 1

��, V� ≥ 0, ∀�, �

(6)

is the maximum of (minimum)
�,�(�, V) for all weight scenar-
ios, i.e.,
�,� and
�,�.

�e optimization problems inmodel (6) obtain the upper
and lower bounds on how e	cient 
��� can be relative
to 
��� across feasible weights. It is worth noting that if

the benchmark set � contains all DMUs, then 
�,�(or 
�,�)
is equal to the CCR-DEA score. If 
��� is not contained
in the benchmark set �, 
�,�(or 
�,�) is the super e	ciency
of 
��� relative to this set of DMUs (see, e.g., [38]). For
example, if 
�,� = 1.2, the e	ciency score of 
��� is at
least 20% higher than that of 
���. And, if 
�,� = 1.5, the
e	ciency score of
��� can be at most 50% higher than that
of 
���. If the minimum 
�,� is greater than one, 
���
dominates 
���. If the minimum 
�,� is less than one, the
dominance does not hold. If the minimum is equal to one, we
could judge the dominance relation by further maximizing
the linear program of model (6). If the resulting maximum


�,� is greater than one, the dominance holds, but if not, then

��� and 
��� have the same e	ciency score (2) for all
feasible weights.

Based onmodel (6), the lower e	ciency bound of
���,
which is the e	ciency of 
��� relative to the most e	cient
DMUs in the benchmark group for di
erent inputs/outputs
weights. �us, the lower bound of 
���’ e	ciency scores
denoted by
�,
 is min�∈

�,�, i.e.,
�,
 = min�∈

�,�.

�e following proposition shows how to �nd the upper

bound of e	ciency scores, denoted as 
�,
, which is relative
to the most e	cient DMUs in the benchmark group for

���.
�eorem3. 
�,
 is the optimum of the maximization problem

max�,V

�
∑
�=1

�����

	.�.
�
∑
�=1

����� ≤
	
∑
�=1

V����, � ∈ �

	
∑
�=1

V���� = 1

��, V� ≥ 0, ∀�, �.

(7)

�e optimal value of model (7) is the upper bound of

���’ e	ciency scores over sets of all feasible weights.
�e upper bound of 
���’ e	ciency scores de�ned as the
maximum of values of how e	cient 
��� is relative to the
most e	cient DMUs in the benchmark group for di
erent
input/output weights. Based on models (6) and (7), the e	-

ciency bounds [
�,
, 
�,
] of 
��� can be computed. �ese
models treat the production systems as “Black Box”.

�e approach can be generalized to systems composed of
two subsystems connected in series. In the next section, we
will discuss how to calculate the e	ciency bounds for each
DMU with a two-stage production system.

3. Efficiency Bounds for Two-Stage
Production Systems

Suppose the operation of a DMU can be divided into two
subsystems or processes, as depicted in Figure 1. For 
���,
subsystem 1 applies inputs ��� (� = 1, ..., �) to produce
the intermediate products  �� (! = 1, ..., 
). All these
intermediate products are then used by subsystem 2 to
produce the �nal outputs ��� (� = 1, ..., 	). Based on the
de�nition of Kao and Huang [13], 
���’s e	ciency scores
for the overall system and two subsystems are de�ned as


� = ∑� �����
∑� V���� (8)


1� =
∑� "1� ��
∑� V����

(9)


2� =
∑� �����
∑� "2� ��

(10)

where ��(� = 1, ..., 	) and V�(� = 1, ..., �) are the output
weights and input weights, respectively. Accordingly,"1� (! =
1, ..., 
) and "2� (! = 1, ..., 
) are the weights attached to
the intermediate measures for subsystem 1 and subsystem 2,
respectively. Similar to Kao and Hwang [13] and Liang et al.
[19], we assume that the weights attached to the intermediate
outputs in both subsystem 1 and subsystem2 are the same, i.e.,

"1� = "2�. �is assumption represents the serial relationship
between the two subsystems [14]. If we solve the two-stage
DEA without this assumption, then our method is identical
to independently employing the model for each subsystem.

�erefore, this paper assumes "1� = "2� = "�.

3.1. E	ciency Bounds of a DMU for the Overall System. As
discussed in Section 2, choosing di
erent weights may lead to
di
erent e	ciency scores for a “Black Box” DMU. Similarly,
choosing di
erent weights may result in di
erent e	ciency
scores for a DMU with a two-stage production system.

Proposition 4. �e optimum of the maximization (or mini-
mization) problem
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Sub-system 1 Sub-system 2
xij(i = 1, . . . , m) zdj (d = 1, . . . , D) yrj(r = 1, . . . , s)

Figure 1: Two-stage production system.

max�,V,� (min)
�,V,�

�
∑
�=1

�����

	.�.
�
∑
�=1

����� =
�
∑
�=1

"� ��

�
∑
�=1

"� �� =
	
∑
�=1

V����
	
∑
�=1

V���� = 1

��, V�, "� ≥ 0, ∀�, �, !

(11)

is the maximum (or minimum) of 
�,�(�, ", V) for all weight
scenarios, i.e., 
�,�(�, ", V) (or 
�,�(�, ", V)). �e proof of this
proposition is given in the Appendix.

In the following model, the optimum of the maximization

problem, i.e., 
�,
, is the upper e	ciency bound of 
���
considering each DMU’ two-stage production structure.

Proposition 5. 
�,
 is the optimum of the maximization
problem

max�,V

�
∑
�=1

�����

	.�.
�
∑
�=1

����� ≤
�
∑
�=1

"� ��, � ∈ �

�
∑
�=1

"� �� ≤
	
∑
�=1

V����, � ∈ �

	
∑
�=1

V���� = 1

��, V� ≥ 0, ∀�, �.

(12)

By solving model (12), the upper e	ciency bound 
�,

could be obtained. �e proof of this proposition is given in the
Appendix.

3.2. E	ciency Bounds of a DMU for Both Subsystems. In this
section, we discuss the e	ciency bounds of DMUs for two
subsystems.

Proposition 6. �e optimum of the maximization (minimiza-
tion problem)

min
V,�

�
∑
�=1

"� ��

	.�.
�
∑
�=1

"� �� =
	
∑
�=1

V����
	
∑
�=1

V���� = 1

"�, V� ≥ 0, ∀!, �

(13)

is the minimum of 
1�,�(", V) for subsystem 1 for all weight
scenarios.

Based on model (13), the lower bound of 
���’s e	-
ciency scores for subsystem 1, which is the e	ciency of
���
relative to the most e	cient DMUs in the benchmark group
for di
erent inputs/outputs weights. �us, the lower bound

of 
���’s e	ciency scores for subsystem 1 denoted by 
1�,

is min�∈

1�,l, i.e., 
1�,
 = min�∈

1�,l. �e proof of this

proposition is similar to the proof of �eorem 3 in Salo and
Punkka [3].

In the followingmodel, the optimum of themaximization

problem, i.e., 
1�,
, is the upper bound of 
���’ e	ciency
score for subsystem one.

Proposition 7. 
1�,
 is the optimum of the maximization
problem

max�,V

�
∑
d=1

"� ��

	.�.
�
∑
�=1

"� �� ≤
	
∑
�=1

V����, � ∈ �

	
∑
�=1

V���� = 1

"�, V� ≥ 0, ∀!, �.

(14)

�e optimal value of model (14) may be greater than 1 or
less than one or equal to 1. If the optimal value is greater than
1, then 
��� dominates 
���. �e proof of this proposition
is similar to the proof of �eorem 4 in Salo and Punkka [3].

Similarly, the lower and upper bound of
��� ’ e	ciency
scores for subsystem 2 are calculated by the following two
linear programs.
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Table 1: Ranking intervals for each nonlife insurance company.

DMU
NO. Our approach Salo & Punkka [3]’s model


�,
 (�, ", V) 
�,
 (�, ", V) 
�,
 (�, V) 
�,
 (�, V)
Taiwan Fire 1 0.1253 0.6992 0.1626 0.9840

Chung Kuo 2 0.1565 0.6248 0.1161 1.0000

Tai Ping 3 0.0374 0.6900 0.0485 0.9884

China Mariners 4 0.0317 0.3042 0.0535 0.4882

Fubon 5 0.6035 0.7670 0.2282 1.0000

Zurich 6 0.1057 0.3897 0.127 0.5938

Taian 7 0.1118 0.2766 0.1984 0.4698

Ming Tai 8 0.1587 0.2752 0.2004 0.4148

Central 9 0.0673 0.2233 0.1296 0.3270

�e First 10 0.1413 0.4660 0.1672 0.7807

Kuo Hua 11 0.0047 0.1639 0.0154 0.2826

Union 12 0.2005 0.7596 0.1182 1.0000

Shingkong 13 0.0568 0.2078 0.1167 0.3527

South China 14 0.0847 0.2886 0.1812 0.4696

Cathay Century 15 0.1415 0.6138 0.299 0.9793

Allianz President 16 0.0504 0.3202 0.1372 0.4717

Newa 17 0.0948 0.3600 0.2454 0.6349

AIU 18 0.0418 0.2588 0.1616 0.4271

North America 19 0.0119 0.4112 0.184 0.8220

Federal 20 0.0068 0.5465 0.302 0.9351

Royal&Sun Alliance 21 0.0017 0.2008 0.1202 0.3328

Asia 22 0.0011 0.5895 0.285 1.0000

AXA 23 0.0008 0.4203 0.0011 0.5990

Mitsui Sumitomo 24 0.0043 0.1348 0.0517 0.2571

Proposition 8. �e optimum of the minimization problem

min�,�

�
∑
�=1

�����

	.�.
�
∑
�=1

����� =
�
∑
�=1

"� ��

�
∑
�=1

"� �� = 1

��, V�, "� ≥ 0, ∀�, �, !

(15)

is the minimum of
2�,�(�, V) for all weight scenarios.
Based on model (15), the lower bound of 
���’s e	-

ciency scores for subsystem 2, which is the e	ciency of

��� relative to the most e	cient DMUs in the benchmark
group for di
erent inputs/outputs weights. �us, the lower
bound of 
���’s e	ciency scores for subsystem 2 denoted

by
2�,
 is min�∈

2�,l, i.e.,
2�,
 = min�∈

2�,l.�e proof of this

proposition is similar to the proof of �eorem 3 in Salo and
Punkka [3].

Proposition 9. 
2�,
 is the optimum of the maximization

problem

max�,V

�
∑
�=1

�����

	.�.
�
∑
�=1

����� ≤
�
∑
�=1

"� ��, � ∈ �

�
∑
�=1

"� �� = 1

��, V� ≥ 0, ∀�, �.

(16)

�us, the e	ciency bounds ⌊
2�,
, 

2
�,
⌋ of 
��� for

subsystem 2 could be obtained by model (15) and model (16).

4. Empirical Illustration

To illustrate the proposed approach of e	ciency bounds for
two-stage production systems, we use the following example.
In this section, we take the data set of 24 nonlife insurance
companies from [13]. �ese nonlife insurance companies’
whole production system has a typical two-stage structure.
�e production system is divided into two subsystems:
premium acquisition and pro�t generation. �ese companies
are evaluated by using two inputs, two intermediates, and
two outputs. Table 1 reports the e	ciency bounds of each
DMU based on our approach and Salo and Punkka [3]’s
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Figure 2: E	ciency bounds for each nonlife insurance company
considering and without considering the two-stage production
system.

approach. Column 5 and column 6 in Table 1 report the
DMUs’ e	ciency bounds treating the production system as
a “Black Box”, which are represented graphically blue in
Figure 2. Column 3 and column 4 in Table 1 report the DMUs’
e	ciency bounds when considering the inner production
structure, which are represented graphically red in Figure 2.

From Figure 2, we can �nd that if we do not consider the
two-stage production structure, the best DMUs are Chung
Kuo (DMU 2), Fubon (DMU 5), Union (DMU 12), and Asia
(DMU 22) as they have the best e	ciency score of 1. �ough
these DMUs may have the best e	ciency score of 1, they
have wide e	ciency bounds. Among these �ve DMUs, Asia
(DMU 22) has the best performance as it has the narrowest
e	ciency bounds as well as the best e	ciency score of 1.
�e worst DMUs are Tai Ping (DMU 3), China Mariners
(DMU 4), Kuo Hua (DMU 11), AXA (DMU 23), and Mitsui
Sumitomo (DMU 24) as their lower e	ciency scores are less
than 0.1. Among these �ve DMUs, the upper e	ciency bound
of Mitsui Sumitomo (DMU 24) is 0.2571, which is smaller
than that of other fourDMUs.�us,Mitsui Sumitomo (DMU
24) is the worst DMU.

�e best performers (or worst performers) based on our
approach may not be the same as that of Salo and Punkka
[3]’s approach.�e red bar char in Figure 2 reports theDMUs’
e	ciency bounds when the two-stage structure is considered.
Figure 2 shows that Taiwan Fire (DMU 1) may be the best
DNU as its upper e	ciency has the largest e	ciency score of
0.6992. AXA (DMU 23) may be the worst DMU as its lower
e	ciency has the least e	ciency score of 0.0008.

Besides, we can compare some DMUs over sets of all
feasible weights. For example, Chung Kuo (DMU 2) has a
best e	ciency score of 0.6248 and a worst e	ciency score
of 0.1565, while Mitsui Sumitomo (DMU 24) has a best
e	ciency score of 0.1348 and a worst e	ciency score of

0.0043. �at is, 
24,
 < 
1,
 and 
24,
 < 
2,
 < 
2,
.
Hence, Chung Kuo (DMU 2) always performs better than
Mitsui Sumitomo (DMU 24) regardless of the choice of the
weights.

When the two-stage structure is considered, the e	ciency
bounds may be narrower based on our approach than that
of Salo and Punkka [3]’s approach. For example, as shown

in Column 3 and 4 in Table 1, it could be found that Taian
(DMU7) has the best e	ciency score of 0.2766 and the worst
e	ciency of 0.1118. However, as shown in Column 5 and 6 in
Table 1, it has the best e	ciency score of 0.4698 and the worst
e	ciency score of 0.1984 over all feasible weights. �us, the
e	ciency bounds based on Salo and Punkka [3]’s approach
are wider.

As for two subsystems, Table 2 shows the subsystem’s
e	ciency bounds of each insurance company. �e third and
fourth columns in Table 2 are the lower and upper e	ciency
scores for subsystem 1. �e ��h and sixth columns in Table 2
are the lower and upper e	ciency scores for subsystem 2.

It shows that Central (DMU 9), Union (DMU 12), Cathay
Century (DMU 15), North America (DMU 19), and Mitsui
Sumitomo (DMU 24) are the best performers in subsystem
1. As Union (DMU 12) has the narrowest e	ciency bound, it
is the best DMU for subsystem 1. �e source of ine	ciency
could also be identi�ed; for example, Fubon (DMU 5) has
the e	ciency bound of [0.6035, 0.7670]. It can be seen that
it performs well in subsystem 2 as the e	ciency bound
of subsystem 2 is [1, 1], while it does not perform well
in subsystem 1 as the e	ciency bound of subsystem 1 is
[0.4468, 0.8375].�erefore, the reason why Fubon (DMU 5)’s
overall e	ciency is so low is its bad performance in subsystem
1. As for the subsystem 2, Tai Ping (DMU 3), Fubon (DMU
5), Newa (DMU 17), and Asia (DMU 22) are the best DMUs
as their best e	ciency scores are all 1. AXA (DMU 23) and
Mitsui Sumitomo (DMU 24) may be the worst DMU as its
worst e	ciency score is the smallest.

5. Conclusions and Direction for
Future Research

In previous DEA literature, each DMU is evaluated by using
the most favorable weights. However, it ignores other feasible
weights. To overcome this problem, Salo and Punkka [3]
deemed each DMU as a “Black Box” and developed a series
of models to obtain the e	ciency bounds over sets of all
feasible weights. In this paper, we expand their method by
considering the internal structure of the DMUs. We extend
their method to compute e	ciency bounds for a two-stage
production system and illustrate the method by revisiting
reported DEA studies. �us, the “Black Box” is opened,
and more accurate information on the e	ciency bounds for
the overall system and both subsystems is provided to the
decision maker. Unlike conventional e	ciency scores, the
results show how the DMUs’ e	ciency ratios for the overall
system and two subsystems relate to each other for all feasible
weights. �e e	ciency measure used in this paper is radial;
some nonradial measures have also been proposed in the
literature, such as the slack-based measure [16, 17]. Obtaining
the e	ciency bounds for two-stage production systems based
on nonradial DEA is another interesting avenue to explore in
the future.

Appendix

Proof of Proposition 4. Choose the weight (�∗, "∗, V∗) sat-
isfying 
�,�(�∗, "∗, V∗) ≥ 
�,�(�, ", V), (�, ", V) are the
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Table 2: E	ciency bounds for two subsystems.

DMU NO.
E	ciency bounds for sub-system 1 E	ciency bounds for sub-system 2


1�,
 
1�,
 
2�,
 
2�,

Taiwan Fire 1 0.2183 0.9926 0.1253 0.7134

Chung Kuo 2 0.4619 0.9985 0.1565 0.6275

Tai Ping 3 0.1427 0.6900 0.0374 1.0000

China Mariners 4 0.0947 0.7243 0.0317 0.4323

Fubon 5 0.4468 0.8375 1.0000 1.0000

Zurich 6 0.2426 0.9637 0.1057 0.4057

Taian 7 0.1639 0.7521 0.1118 0.5378

Ming Tai 8 0.2891 0.7256 0.1587 0.5113

Central 9 0.1392 1.0000 0.0673 0.2920

�e First 10 0.1285 0.8615 0.1413 0.6736

Kuo Hua 11 0.1639 0.7405 0.0047 0.3267

Union 12 0.2849 1.0000 0.2005 0.7596

Shingkong 13 0.2067 0.8107 0.0568 0.5435

South China 14 0.1186 0.7246 0.0847 0.5178

Cathay Century 15 0.1910 1.0000 0.1415 0.7047

Allianz President 16 0.1026 0.9072 0.0504 0.3847

Newa 17 0.0873 0.7233 0.0948 1.0000

AIU 18 0.2536 0.7935 0.0418 0.3737

North America 19 0.1231 1.0000 0.0119 0.4158

Federal 20 0.0336 0.9332 0.0068 0.9014

Royal&Sun Alliance 21 0.0103 0.7505 0.0017 0.2795

Asia 22 0.0037 0.5895 0.0011 1.0000

AXA 23 0.0127 0.8501 0.0003 0.5599

Mitsui Sumitomo 24 0.0607 1.0000 0.0043 0.3351

arbitrary weights. We de�ne V
�
� = V

∗
� / ∑	�=1 V∗� ���. So,

∑	�=1 V����� = 1. We then de�ne "�� = "∗� ∑	�=1 V�����/
∑��=1"∗� ��. �us, ∑��=1"�� �� = ∑	�=1 V�����. De�ne ��� =
�∗� ∑	�=1"�� ��/∑��=1 �∗����; thus, ∑��=1 ������ = ∑��=1"�� ��. �e

weights (��, "�, V�) satisfy �ve constraints in model (11). And
by Lemma 1 in Salo and Punkka [3], 
�,�(�∗, "∗, V∗) =

�,�(��, "�, V�) = ∑��=1 ������. So the maximum of model (11)
over the �ve constraints in model (11) is at least as high as

�,�(�∗, "∗, V∗).

Assume the maximum of model (6) is attained at
(�0, "0, V0). So, we have


�,� (�0, "0, V0) =

� (�0, "0, V0)

� (�0, "0, V0)

= ∑��=1 �����
∑��=1"� ��

∑��=1"� ��
∑	�=1 V����

∑��=1"� ��
∑��=1 �����

∑	�=1 V����
∑��=1"� ��

=
�
∑
�=1

�0����.

(A.1)

�e weights (�0, "0, V0) satisfy the �ve constraints in model
(11). �us, maximum of 
�,�(�, ", V) over all the feasible
weights would be larger or equal to the solution of the
maximization problem in model (11). �e proof of the

minimization problem could be shown in the analogous
way.

Proof of Proposition 5 . 
�,
(�, ", V) = 
�(�, ", V)/
max�∈

�(�, ", V). Let the maximum of 
�,
(�, ", V) be

'∗. �us, the optimum is attained at (�∗, "∗, V∗). �ere
then exists some �∗ ∈ � such that 
�∗(�∗, "∗, V∗) ≥

�(�∗, "∗, V∗) ∀� ∈ �. Choose V

�
� = V

∗
� /∑	�=1 V∗� ���, so that

∑	�=1 V����� = 1. Also, choose a constant *� > 0 so that

∑��=1"�� ��∗ = ∑	�=1 V�����∗ for "� = *�"∗. Also, choose a

constant *� > 0 so that ∑��=1 ������∗ = ∑��=1"�� ��∗ for �� =*��∗. For any � ∈ �, we have

1 ≥ 
�,�∗ (�∗, V∗) = 
�,�∗ (��, V�) =

� (��, V�)

�∗ (��, V�)

= ∑��=1 ������
∑��=1"�� ��

.∑
�
�=1"�� ��
∑	�=1 V�����

.∑
�
�=1"�� ��∗

∑��=1 ������∗
. ∑
	
�=1 V
�
����∗

∑��=1"�� ��∗
= ∑��=1 ������
∑��=1"�� ��

.∑
�
�=1"�� ��
∑	�=1 V�����

.

(A.2)

So, the constraints ∑��=1 ����� ≤ ∑��=1"� ��, � ∈ � and

∑��=1"� �� ≤ ∑	�=1 V����, � ∈ � are satis�ed by (��, "�, V�). By
construction, '∗ = max�,�,V
�,
(�, ", V) = 
�,�∗(��, V�) =
∑��=1 ������, which shows the maximum of model (12) is at
least as high as that of 
�,
(�, ", V).
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Conversely, assume that the maximum of model (12),
'�, is attained at (��, "�, V�), and choose �� ∈ � so that
the constraint in model (12) is binding ( such that �� exists,
for otherwise ��could be increased to improve the value
of the objective function, which would be in violation of
the optimality assumption). Now, max�,�,V
�,
(�, ", V) ≥

�(��, "�, V�)/
��(��, "�, V�) = '�, so that the maximum of

�,
(�, ", V)must be at least as high as that of model (12).
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