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Abstract Hospitals traditionally segregate resources into centralized functional
departments such as diagnostic departments, ambulatory care centers, and nursing
wards. In recent years this organizational model has been challenged by the idea that
higher quality of care and efficiency in service delivery can be achieved when services
are organized around patient groups. Examples include specialized clinics for breast
cancer patients and clinical pathways for diabetes patients. Hospitals are struggling
with the question of whether to become more centralized to achieve economies of
scale or more decentralized to achieve economies of focus. In this paper we examine
service and patient group characteristics to study the conditions where a centralized
model is more efficient, and conversely, where a decentralized model is more effi-
cient. This relationship is examined analytically with a queuing model to determine
the most influential factors and then with simulation to fine-tune the results. The trade-
offs between economies of scale and economies of focus measured by these models
are used to derive general management guidelines.
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372 P. T. Vanberkel et al.

1 Introduction

Health care facilities are under mounting pressure to both improve the quality of care
and decrease costs by becoming more efficient. Efficiently organizing the delivery of
care is one way to decrease cost and improve performance. At the national level this is
achieved by aggregating services into large general hospitals in major urban centers,
thereby gaining efficiencies through economies of scale (EOS). At the same time,
some hospitals are becoming more specialized and offer a limited range of services
aiming to breed competence and improve service rates (Leung 2000). Such strategies
aim to improve performance through focus.

At the hospital level, similar strategies to exploit focus are being considered (Tiwari
and Heese 2009; Schneider et al. 2008). Rather than organizing departments around
function (e.g., radiology, phlebotomy, etc.), departments dedicated to treating a par-
ticular patient population are being created. Examples include focused departments
for back patients (Wickramasinghe 2005), cancer patients (Vanberkel et al. 2010;
Langabeer and Ozcan 2009), outpatients (McLaughlin et al. 1995), trauma patients
(Hyer et al. 2009) and inpatients (Wolstenholme 1999; Huckman and Zinner 2008). In
these studies the benefits of increased focus have shown mixed results, leading to con-
fusion over whether to become more centralized to achieve EOS or more decentralized
to achieve economies of focus (EOF). In this paper we formulate a model to measure
and compare the performance of both settings. More specifically we examine service
and patient population characteristics to determine under which circumstances the
functional department, and conversely the patient focused department provides better
patient access times.

The paper is organized as follows. Section 2 introduces the principles of pooling
and focus and frames the debate between centralized and decentralized departments.
Using this background information, the motivation and focus of the paper is further
clarified in Sect. 3. Section 4 introduces the model used to measure the EOS lost
in an unpooled system. Section 5 describes a rough analytical approximation used
to identify the main factors influencing these losses. In Sect. 6, results from simula-
tion experiments are used to provide further perspective on these factors, to fine-tune
the results and to evaluate the accuracy of the approximation. Section 7 summarizes
the results and provides guidelines for hospital managers. Section 8 briefly discusses
potential future research.

2 The principles of pooling and focus

The pooling principle as described in Cattani and Schmidt (2005), is the, “pooling of
customer demands, along with pooling of the resources used to fill those demands”
in order to “yield operational improvements.” This implies that a centralized (pooled)
clinic that serves all customer types may achieve shorter waiting times than a number
of decentralized (unpooled) clinics focusing on a more limited range of customer
types. The intuition for this principle is as follows. Consider the situation in the
unpooled setting, when a customer is waiting in one queue while a server for a differ-
ent queue is free. Had the system been pooled in this situation, the waiting customer
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could have been served by the idle server, and thus experience a shorter waiting time.
The gain in efficiency is a form of EOS.

Statistically, the advantage of pooling is credited to the reduction in variability due
to the portfolio effect (Hopp and Spearman 2001). This is easily demonstrated for cases
where the characteristics of the unpooled services are identical. For this discussion see
Joustra et al. (2010), van Dijk (2000), van Dijk and van der Sluis (2009), Ata and van
Mieghem (2009). However, pooling is not always of benefit. There may be situations
where the pooling of customers actually adds variability to the system thus offsetting
any efficiency gains, see van Dijk and van der Sluis (2004). Furthermore when the
target performances of customer types differ it may be more efficient to use dedicated
capacity (i.e. unpooled capacity), see Joustra et al. (2010), Blake et al. (1996). And
finally, in the pooled case all servers must be able to accommodate all demand. This
flexibility may be expensive and, as is more directly related to this paper, may actually
cause inefficiencies as servers are no longer able to focus on a single customer type.

The principle of focus advocates for departments to limit the range of services they
offer in order to reduce complexity and allow the department to concentrate on doing
fewer things more efficiently. This philosophy has been the basis for operating modern
manufacturing plants which are often referred to as focused factories. Skinner (1985)
argues that focus, simplicity and repetition in manufacturing breeds competence. The
gain in efficiency due to focus is referred to in this paper as EOF.

To exploit the principle of focus in health care, it is suggested that hospitals
aggregate patients with similar diagnoses together into dedicated departments (Hyer
et al. 2009). For example the principle of focus recommends that hospitals eliminate
a centralized phlebotomy department and instead have phlebotomy services located
in or near diagnosis based care department. By locating all the patient services in one
department or area reduces the complexity of the process and allows care givers to
oversee the complete care process from start to finish.

It is clear that pooling is offered as a potential method to improve a system’s per-
formance without adding additional resources. Interestingly, the principle of focus
which “advocates for hospitals to abandon functional, discipline-focused departments
(e.g., radiology, nursing, etc.) in favor of a design organized around patients and their
diagnoses” (Hyer et al. 2009; Kremitske and West 1997; Newman 1997), implies the
same. In this paper we aim to enhance understanding of these seemingly contradictory
view points in health care.

Other service industries have considered whether or not (or to which extent)
resources should be pooled. van Dijk and van der Sluis (2004) show that general
perceptions regarding the benefits of pooling in call centers may not be in line with
results from queueing theory literature. A number of practical and theoretical scenarios
encountered in call centers are considered and compared numerically by van Dijk and
van der Sluis (2009). Pooling of resources in the courier industry is considered by Ata
and van Mieghem (2009) where the authors use Brownian approximation models to
contrast approaches used by two competing firms to provide regular and express cou-
rier services. Pooling has been studied outside of the practical domain to obtain general
results. Mandelbaum and Reiman (1998) considers stations in a Jackson network of
queues and encourages practitioners to take care when making pooling decisions as the
effect (good or bad) can be unbounded. Whitt (1999) uses approximations for M/G/s
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queueing systems to compare various splits of pooled systems. For more detailed
reviews of pooling literature see van Dijk and van der Sluis (2004), Mandelbaum and
Reiman (1998), Ata and van Mieghem (2009).

Pooling resources to serve homogeneous demand is the common example used to
illustrate the benefits of pooling. In practice however, demand tends to be heteroge-
neous, in which case, these benefits are not guaranteed. Further complicating the study
of the pooling of heterogeneous demands is that they tend to be analytically intrac-
table and therefore approximate analysis is the norm (Ata and van Mieghem 2009).
Finally, most models consider continuous systems, and as discussed in Sect. 3, the
clinics studied in this paper are not continuous. In this paper and in general, the terms
pooled and centralized are analogous when describing the makeup of a department or
clinic. In the same way, the terms unpooled, decentralized and focused are analogous
for describing the opposite makeup.

3 Motivation and scope

An initial case study (Vanberkel et al. 2010) which provides the motivation for this
paper, was completed at the Netherlands Cancer Institute–Antoni van Leeuwenhoek
Hospital (NKI–AVL). The hospital is considering the use of focused factories to treat
patients with similar diagnoses. From a patient satisfaction perspective this setup is
preferred, however, hospital managers want to know whether additional resources are
required to compensate for any losses caused by unpooling the functional departments.
Using a simulation approach, the case study offered a methodology for determining
resource requirements in focused factories. This allowed the hospital to compare the
performance of existing functional departments with focused factory proposals.

From the case study it became apparent that numerous clinic attributes influence
the losses from unpooling, such as appointment length, clinic load, number of rooms,
patient demand, etc. Furthermore, many of these attributes are interrelated meaning
that identifying one attribute’s influence in isolation from the others was an extremely
difficult task using simulation. The approach was robust but the results were specific
to each problem instance. In this paper, we combine results from an analytical model
and a simulation model to derive more general results.

Comparing the efficiency of the two clinic makeups requires a definition for effi-
ciency. In this paper, to be consistent with the goals and constraints of the proposed
focused factories at NKI–AVL, access time is the main measure of efficiency. Access
time is influenced by two things, the arrival rate of new patients and the throughput of
the clinic. Naturally, the arrival rate is assumed to be the same regardless of the clinic
makeup. However the throughput of patients depends on the clinic makeup. Focused
clinics are more specialized with standard practices, specialized equipment, etc., typ-
ically leading to shorter and less variable appointment durations. However, they are
smaller and have less EOS than their pooled counterpart. The analytical and simu-
lation models described in this paper evaluate the efficiency of both clinic makeups
while reflecting the different throughput expected from each. Specifically, the models
approximate the appointment length for the unpooled system that achieves the same
access time as in the equivalent pooled system. This improved service time repre-
sents the amount of improvement due to focus (or EOF) necessary to offset the losses
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of EOS. The approximation, along with simulations of typical clinic environments,
provides the insight from which we develop general management guidelines.

The model and framework can represent any hospital department where the service
time is less than one day and where the system empties between days. This includes
outpatient clinics, diagnostic clinics and operating theaters. Since these departments
empty at night, continuous time queueing models, which are typically used to study
the effects of pooling, are not appropriate. In place of a continuous time model, a
discrete time slotted queueing model is used. To our knowledge such a robust model
for measuring the effects of pooling and unpooling has not been developed before.

4 Model

A discrete time slotted queueing model is used to evaluate the tradeoff between EOS
and EOF. We describe the queueing model using language from an ambulatory clinic
setting. For example, referrals for appointments are considered new arrivals, appoint-
ment length is the service time, the number of consultation rooms reflects the number
of servers and finally, the time a patient must wait for a clinic appointment (often
referred to as access time in health care literature) is the waiting time in the queue. In
this paper we use the following notation:

λ = Average demand for appointments per day

D = Average appointment length in minutes

V = Variance of the appointment length

C = Coefficient of variation for the appointment length

(
C =

√
V/D2

)

M = Number of rooms

ρ = Utilization of the rooms

t = Working minutes per day

W = Expected waiting time in days.

A subscript “AB” corresponds to the pooled case and a subscript “A” or “B” corre-
sponds to the unpooled case for patient groups “A” or “B” respectively. The schemes
of the pooled and unpooled systems are shown in Fig. 1.

When combined, the parameters of the unpooled system must equal the parameters
of the pooled system. The parameters of the two patient groups describe the patient
mix. How the patient mix parameters in the unpooled system relate to the parameters
in the pooled system is described below.

MAB = MA + MB (1)

λAB = λA + λB (2)

DAB = q DA + (1 − q)DB (3)

VAB = q(VA + D2
A) + (1 − q)(VB + D2

B) − D2
AB (4)

where q = λA/λAB.
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Fig. 1 Scheme of the pooled and unpooled systems

These division “rules” imply that no additional resources become available in the
unpooled setting and that patients are strictly divided into one or the other group.
Although we limit our analysis to splitting a department into two groups, the results
are general. This is true since splitting a department into more than two groups, can be
seen as splitting the original department into two groups, then splitting the resulting
groups into two additional groups and so on.

Initially the waiting times in the three queueing systems depicted in Fig. 1 are
evaluated separately. The structure of the three systems is the same and as such the
same model is used to evaluate them (the input parameters are changed to reflect the
pooled and unpooled systems). The approach used to evaluate the waiting times is
described in Sects. 4.1 and 4.2, where the subscripts “A”, “B” and “AB” are left out for
clarity. In Sect. 4.3 we introduce a metric to compare the waiting time of the pooled
and unpooled systems.

4.1 Modeling arrivals, services, and workload

The mean (D) and variance (V ) of appointment lengths is readily available in most
ambulatory clinics. Relying only on these data, we use renewal theory approximations
to estimate the number of appointments completed during one clinic day. Let N (t)
be the number of appointments that fit into the schedule of one room between [0, t].
In fact, N (t) is a renewal process with interarrival times distributed as appointment
lengths. Further, let M be the number of rooms and Ni (t) the number of completed
appointment in room i = 1, . . . , M . We assume that Ni (t)s are independent and dis-
tributed according to N (t). Let S be the total number of completed appointments per
clinic day for a clinic with M rooms. Then:

S =
M∑

i=1

Ni (t). (5)
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We assume that the number of arrivals per day is Poisson distributed with para-
meter λ. Then E[X ] = λ, VX = λ and C2

X = 1/λ, where VX and CX , are, respectively,
the variance and the coefficient of variation of X .

Under the assumptions above the workload of the clinic (ρ) is computed by ρ =
λ/E(S) = λ/(M E[N (t)]).

4.2 Waiting times

With the input parameters described above, our system is a single server system where
the department as a whole is considered the server with capacity determined according
to S. As such the expected queue length can be computed using Lindley’s recursion
(Cohen 1982). Consider subsequent days 1, 2, . . ., and let Ln be the queue length at
the beginning of day n. Further, let Xn be the number of arrivals on day n, and Sn

the number of services that can possibly be completed on day n. We assume that Xn

and Sn, n > 1, are independent and distributed as described above. The number of
appointment requests on day n is then Ln + Xn , and the dynamics of the queue length
process is given by:

Ln+1 = (Ln + Xn − Sn)+; n > 1 (6)

where x+ = x if x ≥ 0 and x+ = 0 otherwise. When E[Xn] < E[Sn] then for
n → ∞ the expectation of Ln converges to equilibrium, denoted by L (Cohen 1982).

To compute the expected waiting time W we use Little’s Law (W = L/λ). A related
model described in Vanberkel et al. (2010) explains how to compute the waiting time
distribution through a similar recursion. In general, (6) is hard to solve analytically.
A variety of techniques, such as Wiener–Hopf factorization, have been developed but
they usually lead to explicit solutions only in special cases. In Sect. 5 we provide
a rough two-moment approximation for the average waiting time (see (15)). In the
experiments of Sect. 6 we compute the average waiting time with simulations.

4.3 Required change in service time

To compare the performance of the pooled and unpooled systems, we wish to deter-
mine a new appointment length (D′

A) required to make WA = WAB. As a standard
measure we define ZA as the proportional difference between DA and D′

A (likewise
for D′

B and ZB). Ignoring the subscripts “A” and “B” we formally define Z as follows:

Z = D′

D
− 1. (7)

Z essentially measures the EOF needed to make the access time in the pooled and
unpooled systems equal. Z can be both negative and positive. When Z is negative it rep-
resents the amount the appointment length must decrease (attributed to the increased
focus on a single patient group) in order to overcome any EOS losses resulting from
unpooling. When Z is positive it indicates that the appointment length can increase
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and still maintain the same service level as in the pooled system. This happens when
the number of rooms assigned to one of the patient classes is disproportionately large.
Although practically less relevant, the positive Z value does help illustrate how the
tradeoff between EOS and EOF is influenced by the distribution of rooms.

The convenience of metric Z is that the pooled and unpooled system can be com-
pared without any additional input. Furthermore stakeholders can easily interpret its
meaning and decide if it is possible to obtain the necessary EOF to justify changing to
an unpooled setup. In the simulation experiments of Sect. 6, ZA and ZB are computed
numerically. In order to identify the system parameters that affect ZA most, in the next
section we carry out a crude analysis to obtain a simple two-moment approximation
(17) for ZA.

5 Rough analytic approximation for ZA

As ZA depend on (6), which can only be obtained analytically in very special cases,
we apply a simple two-moment approximation to get a rough idea about the influence
of various system parameters on ZA.

5.1 Two-moment approximation

To obtain the approximation formula for ZA, we use asymptotic results from renewal
theory, and thus we must assume that the appointment length is much shorter than
the clinic day, i.e., D � t . Further, N (t) in our model is a number of events on
[0, t] when times between events are independent identically distributed appointment
lengths. Thus, by definition, N (t) is a renewal process, and with D � t it follows
from renewal theory (Tijms 2003, p. 315) that:

E[N (t)] ≈ t

D
+ 1

2
(C2 − 1). (8)

Here, obviously, t/D is the main term, and the last term is a correction which in
fact, will be neglected in the approximation (15) for the waiting time.

Now, for the total possible number S of completed appointments, using (5) we
obtain:

E[S] ≈ M E[N (t)] ≈ Mt

D
+ M

2
(C2 − 1). (9)

Let VN (t) and VS be the variance of N (t) and S respectively. From Tijms (2003),
the two-moment renewal theory approximation for VN (t) and VS is as follows:

VN (t) ≈ V 2t

D3 = C2t

D
(10)

VS ≈ MVN (t) = MC2t

D
. (11)
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We note that (8), (9), (10) and (11) are based on the assumption D � t . In a contrary
situation (e.g., chemotherapy, where appointments may last half the day), the influence
of D, V, C on S is not so direct and the above approximations cannot be used, but the
general model is still valid (Vanberkel et al. 2010).

Using (9) we approximate the room utilization ρ as follows:

ρ ≈ λ

Mt
D + M

2 (C2 − 1)
= λD

Mt

1

1 + D
2t (C

2 − 1)
. (12)

From (12) we observe 1/(1+ D
2t (C

2 −1)) ≈ 1 when D � t , which is true in our case.
From this observation we introduce ρ0 as an estimate of ρ and define it as follows:

ρ0 = λD

Mt
. (13)

The average queue length (L) in our slotted queueing model is analogous to the
average waiting time of a GI/GI/1 queue because both are measured by Lindley’s
Recursion. In particular (6) corresponds to a GI/GI/1 queue with Poisson distributed
service times and interarrival times distributed as S in (5). The waiting time of a
GI/GI/1 queue can be approximated with the Allen–Cunneen approximation (Allen
1990) thus leading to an approximation for L in our slotted model. Using (9) and (11)
we obtain C2

S = VS/(E[S])2 and write the approximation formula for L as:

L ≈ λ
ρ

1 − ρ

C2
S + (1/λ)2

2
= λ

ρ

2(1 − ρ)

(
1

λ
+ MC2t

D

1

M2
( t

D + 1
2 (C2 − 1)

)2

)

≈ ρ

2(1 − ρ)

(
1 + C2

ρ0

)
. (14)

Using Little’s Law and (14) we approximate the expected waiting time by:

W ≈ ρ

2(1 − ρ)λ

(
1 + C2

ρ0

)
. (15)

If λ grows and ρ remains the same then we observe a decreasing waiting time,
which is credited to the EOS. Indeed, if λ → ∞, then proportional capacity growth
results in W = 0, see e.g. Janssen et al. (2008) for the asymptotic analysis of a similar
slotted model with S equal to a constant.

Using our estimation (15) for W , we can also estimate the Z values based on (7).
First we assume ρ0 ≈ ρ and define ρ′

0 as the load in the unpooled clinic A with
appointment length D′

A. Formally we define ρ′
0 as follows:

ρ′
0 = λA D′

A

MAt
.
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Next we set the waiting time approximations (15) for the pooled and unpooled system
A equal to each other:

ρ′
0

2(1 − ρ′
0)λA

(
1 + C2

A

ρ′
0

)
= ρ0

2(1 − ρ0)λAB

(
1 + C2

AB

ρ0

)
(16)

We also assume the servers are divided between the pooled and unpooled clinics in
such a way that the clinic load remains the same. The load in the two clinics may not
be exactly equal since MAB and MA must be integers. From this it follows:

ρ0 = DABλAB

MABt
≈ DAλA

MAt
.

Finally, with algebra and by ignoring second order and higher terms of (1 − ρ0) we
solve (16) for D′

A/DA to obtain:

ZA = D′
A

DA
− 1 ≈

(
1 − 1 + C2

A

1 + C2
AB

λAB

λA

)
(1 − ρ0). (17)

Similarly (17) can be rewritten to obtain ZB = D′
B/DB −1. Using (4) it can be shown

that either ZA or ZB in (17) is negative. This proves that splitting a pooled clinic will
negatively impact the access time of at least one of the unpooled clinics.

While deriving formula (17) we made a number of simplifying assumptions and
ignored second order and higher terms of (1 −ρ0) and the first order and higher terms
of D/t . Thus, one can expect that (17) gives an accurate approximation for ZA only in
some special cases, e.g., when ρ0 is close to one. However, the main goal of deriving
this formula is to reveal the main parameters that influence ZA and to identify the
relative importance of these parameters in reasonable hospital settings. To this end,
our calculations show that ρ0, λA/λAB, and (1 + C2

A)/(1 + C2
AB) are the most influ-

ential factors. Furthermore, the absences of MAB and DAB in (17) implies that their
influence is minimal. This is also confirmed by simulation experiments in Sect. 6.2.3.
Thus, in the rest of the paper we focus on the most influential factors appearing in
(17).

5.2 Approximation results for ZA

To illustrate the relative importance of terms ρ0, λA/λAB, and (1 + C2
A)/(1 + C2

AB)

in (17), consider the following typical ranges for each of them: ρ0 ∈ [0.7, 0.99];
λA/λAB ∈ [0.3, 0.7], as having values outside of this range implies a very small un-
pooled department which would be impractical (Vanberkel et al. 2010); C2

A, C2
B ∈

[0.5, 3]. Note also that (1 + C2
A)/(1 + C2

AB) depends on λA/λAB through (4). Table 1
shows twelve scenarios reflecting the border values of these three influential factors.

We clearly observe that when ρ0 is large it dominates ZA and appears to be the most
influential factor. It follows that the busier the clinic is, the smaller the loss in EOS.
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Table 1 Relative importance of factors influencing ZA, according to (17)

No. Clinic description ρ0
λA
λAB

1+C2
A

1+C2
AB

ZA

1 Busy Clinic, λA 	 λB, VA � VB 0.99 0.7 0.32 0

2 Busy Clinic, λA 	 λB, VA = VB 0.99 0.7 1 −0.01

3 Busy Clinic, λA 	 λB, VA 	 VB 0.99 0.7 1.36 −0.01

4 Busy Clinic, λA � λB, VA � VB 0.99 0.3 0.17 0

5 Busy Clinic, λA � λB, VA = VB 0.99 0.3 1 −0.03

6 Busy Clinic, λA � λB, VA 	 VB 0.99 0.3 2.58 −0.08

7 Quite Clinic, λA 	 λB, VA � VB 0.7 0.7 0.32 0.16

8 Quite Clinic, λA 	 λB, VA = VB 0.7 0.7 1 −0.13

9 Quite Clinic, λA 	 λB, VA 	 VB 0.7 0.7 1.36 −0.29

10 Quite Clinic, λA � λB, VA � VB 0.7 0.3 0.17 0.13

11 Quite Clinic, λA � λB, VA = VB 0.7 0.3 1 −0.7

12 Quite Clinic, λA � λB, VA 	 VB 0.7 0.3 2.58 −2.28

This is consistent with van Dijk and van der Sluis (2009), who states that “pooling is
not so much about pooling capacity but about pooling idleness” implying that unpo-
oled systems with less idleness can expect less EOS gains when pooled. Next consider
that a high value of λA/λAB forces (1 + C2

A)/(1 + C2
AB) close to 1 diminishing the

effect of (1 + C2
A)/(1 + C2

AB) on ZA. However, for the corresponding smaller group,
this factor becomes increasingly important (see rows 9 and 10 from Table 1).

The main goal of deriving formula (17) is to reveal the main parameters that influ-
ence Z and their relative importance. In the next section we use simulation to fine-tune
the results for Z in a wide range of realistic scenarios. Furthermore, in Sect. 6.3 we
evaluate the accuracy of approximation (17), as compared to the simulated results, for
the same range of scenarios.

6 Simulation experiments

To gain further perspective on the factors that influence the loss in EOS and to vali-
date the inferences drawn from (17) a number of numeric experiments are conducted.
Section 6.1 describes the Monte Carlo simulation and the range of the experiments.
Section 6.2 provides and discusses the results of the experiments. Section 6.3 compares
results of the simulation experiments with (17).

6.1 Simulation description

We model the appointment length as random variables with phase-type distributions
(Tijms 2003; Fackrell 2009) where expectation and variance are fitted in the data. We
opt for a two moment approximation, instead of a more involved distribution fit (e.g.,
empirical distribution), because mean and variance data for appointment lengths are
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typically available. As such it is easily transferable to other settings and the likelihood
of implementation is increased (Vanberkel et al. 2010).

If the appointment length duration has C ≤ 1 then the appointment length is
assumed to follow an Erlang(k,μ) distribution where μ = k/D and k is the best integer
solution to k = D2/V . The completed patients per day (S) is computed by considering
that an Erlang(k,μ) distribution is equal to a sum of k independent exponential random
variables (phases) with parameter μ and the number of such phases completed in t
time units is Poisson with mean μt . It follows that N (t) = �Poisson(μt)/k�. If C > 1
the appointment length is assumed to follow a hyperexponential phase type distribu-
tion. The appointment length is distributed according to pExpo(μ1)+(1− p)Expo(μ2)
and the total number of complete patients per day (S) is computed by Monte Carlo
Simulation where:

p = 1

2

⎛
⎝1 +

√
C2 − 1

C2 + 1

⎞
⎠, μ1 = 2p

D
, μ2 = 2(1 − p)

D
.

With this service rate distribution and under the assumption that the arrival rate is Pois-
son distributed, the waiting time and Z values (as described in Sect. 4) are obtained
by simulation. The average queue length, described by Lindley’s Recursion, is deter-
mined by simulating 10,000 clinic days of which 100 are used as a warm up. Little’s
Law is used to compute the average waiting time. To compute the Z values, the input to
the simulation is systematically changed and the output compared. More specifically,
ZA is computed by incrementally decreasing [or increasing] DA by a small amount,
until WA ≤ WAB [WA ≥ WAB]. The percentage change (ZB) for patient group B is
computed in the same manner. All computations are automated with Microsoft Visual
Basic. Each of the simulated scenarios is described by the patient mix and clinic
environment as introduced below.

Patient mix: The patient mix is described by two factors: λA/λAB, and DA/DAB.
The chosen values for λA/λAB are 0.3, 0.4, 0.5, 0.6, and 0.7. This represents the range
of situations where patient group A is 30% [group B is 70%] of the pooled group up to
the situation where group A is 70% [group B is 30%] of the pooled group. The chosen
values for DA/DAB are 0.5, 1, 1.5 and 2 representing situations where the appointment
length for Group A is half that of the pooled group, and up to and including the case,
where it is two times longer. The appointment length of Group B can be computed
easily from (3).

Clinic environments: To represent different clinic environments, the parameters for
the pooled clinic are changed to represent busier clinics, smaller clinics, more variable
clinics, etc. Specifically we change the values of parameters MAB, DAB, λAB, ρ0, CA
and CB. The scenarios considered are listed in Table 2 and are meant to encompass
a wide range of typical clinic environments. The italicized values of Table 2 indicate
the parameters which are changed relative to the Base Clinic, which is described in
row 1 of Table 2.
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Table 2 Parameters for different clinic environment scenarios

Clinic environments MAB DAB λAB ρ0 CA, CB

1 Base Clinic 20 30 282 0.88 0.5, 0.5

2 Busier Clinic 20 30 310 0.97 0.5, 0.5

3 Smaller Clinic 10 30 141 0.88 0.5, 0.5

4 Shorter appointment lengths 20 15 564 0.88 0.5, 0.5

5 Higher appointment length variability 20 30 282 0.88 2.0, 2.0

6 Different coefficient of variance 20 30 282 0.88 2.0, 0.5

Fig. 2 Z values for various room allotments for the Base Clinic environment where λA/λAB = 0.5, and
DA/DAB = 1

Server allotment: As discussed in Sect. 4 we wish to have the same total number
of servers (rooms) in the unpooled system as in the initial pooled system. The number
of rooms to allot to each of the unpooled clinics needs to be decided. To illustrate
how this decision impacts ZA and ZB consider the results in Fig. 2 where the clinic
environment is consistent with the Base Clinic and the patient mix parameters are
λA/λAB = 0.5, and DA/DAB = 1.

As illustrated in Fig. 2, the smallest total loss in EOS corresponds with a room
allotment of 10 rooms for each of the unpooled clinics. This is also the room allotment
where the difference between ρAB, ρA and ρB is minimized. Let such a division be
called the proportional room division, where ρAB = ρA which implies:

λAB DAB

t MAB
= λA DA

t MA

MA = λA

λAB

DA

DAB
MAB, MB = MAB − MA. (18)

Practically speaking this division represents the most equitable way to divide the rooms
such that the difference in workload for staff in the two unpooled clinics is minimized.
For cases where CA = CB, it also represents the most equitable way to divide the
rooms such that the difference in waiting time for both patient groups is minimized.
The high degree by which Z depends on the room division is observable in all the
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Table 3 Base Clinic results (MAB = 20, DAB = 30, λAB = 282, CA = CB = 0.5)

λA
λAB

DA/DAB = 0.5 DA/DAB = 1.0 DA/DAB = 1.5 DA/DAB = 2.0

0.3 −10%(3), −4%(17) −12%(6), −4%(14) −12%(9), −3%(11) −12%(12), −2%(8)

0.4 −7%(4), −5%(16) −9%(8), −5%(12) −9%(12), −4%(8) −2%(16), 6%(4)

0.5 −4%(5), −7%(15) −6%(10), −6%(10) −7%(15), −4%(5)

0.6 −3%(6), −9%(14) −5%(12), −8%(8)

0.7 −2%(7), −13%(13) −4%(14), −11%(6)

evaluated clinic environments. For sake of brevity, in the following subsections, results
are only provided for the proportional room divisions.

6.2 Experiment results

The results in this section are organized as follows. Initially the Base Clinic is analyzed
for the various patient mixes. Then the clinic environment parameters are changed one-
by-one and the results for each clinic environment are discussed in relation to the Base
Clinic.

6.2.1 Base Clinic

The parameters and results for the initial Base Clinic environment are shown in Table 3.
The patient mix factors λA/λAB, and DA/DAB represent the rows and columns respec-
tively. The results in each table cell are in the following format: ZA (MA), ZB (MB).
This represents the amount of change (ZA) in DA necessary, when the unpooled clinic
is allotted MA rooms (likewise for patient group B). As an example consider when
λA/λAB = 0.3 and DA/DAB = 0.5. The value in the corresponding cell is “−10%(3),
−4%(17)”. As noted by the numbers is parentheses, this represents the case where
three rooms are allotted to Group A and 17 to Group B. In this case, for the unpooled
systems to perform equally as well as the pooled systems, Groups A and B are required
to change their appointment length by ZA = −10% and ZB = −4% respectively. The
blank cells in the table are a consequence of excluding room divisions which result in
a |Z | value greater than 25%.

From Table 3 and as identified in (17), Z depends on the ratio λA/λAB. When Group
A is smaller than Group B (i.e. λA/λAB < 0.5), Group A requires less rooms but a
greater decrease in service time. The counter situation (i.e., λA/λAB > 0.5) holds
for Group B. It follows that larger patient groups retain EOS and require less EOF to
compensate. Practically this implies that making a small department to serve a small
patient population is not a good idea. This influence of λA/λAB is observable in all
tables in this section.

Although not identified by (17), from Table 3 it appears that Z depends on the
ratio DA/DB. This dependency is not easily characterized as it appears dependent on
λA/λAB. Within the range of values tested, the influence of DA/DB is small relative
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Table 4 Busier Clinic results (MAB = 20, DAB = 30, λAB = 310, CA = CB = 0.5)

λA
λAB

DA/DAB = 0.5 DA/DAB = 1.0 DA/DAB = 1.5 DA/DAB = 2.0

0.3 −4%(3), −3%(17) −3%(6), −2%(14) −6%(9), −2%(11) −8%(12), −3%(8)

0.4 −3%(4), −3%(16) −3%(8), −2%(12) −5%(12), −2%(8) 2%(16), 6%(4)

0.5 −3%(5), −6%(15) −2%(10), −2%(10) −5%(15), −3%(5)

0.6 −3%(6), −6%(14) −2%(12), −3%(8) −5%(18), −3%(2)

0.7 −2%(7), −9%(13) −2%(14), −3%(6)

to that of λA/λAB. This is observable in all the tables in this section except Table 4
where the factor ρ0 dominates.

6.2.2 Busier Clinic

To determine how ZA and ZB are influenced by how busy a clinic is, the demand
for appointments is increased to λAB = 310. Comparing Table 3 with Table 4 it is
clear that |ZA| + |ZB| is decreasing as the clinic load increases. This means, that the
EOS loss of unpooling is smaller for clinics of higher load. This is consistent with
the findings from (17). In the remaining scenarios ρ0 is kept constant with the Base
Clinic.

6.2.3 Smaller Clinic and Clinics with shorter appointment lengths

As expected from (17), the results for the clinic with fewer rooms showed only modest
changes in ZA and ZB and are therefore excluded from the text. However, it is impor-
tant to note that in smaller pooled clinics, it is less likely that (18) will result in a near
integer solution, hence there is a discretization effect. In (17) we assume ρ0,AB = ρ0,A

and overlook this influence. The tests for a clinic with shorter appointments found ZA
and ZB to also be insensitive to DAB which is again what is expected from (17).

6.2.4 Higher appointments length variability

Results for a clinic with higher appointments length variability are available in Table 5.
Relative to the Base Clinic, CA and CB were both increased from 0.5 to 2. Contrasting
Table 3 and Table 5 it is clear that |ZA| + |ZB| has increased considerably with CA
and CB. Although an increase was expected from (17) the extent of the increase is
greater than anticipated. This leads to the conclusion that changes in CA and CB have
a greater impact than (17) indicates. This is most easily illustrated by considering the
patient mix λA/λAB = 0.5 and DA/DAB = 1 which represents the case where both
patient groups have equal service rate and arrival rate parameters. Furthermore, the
aggregate service rate for the pooled group also has the same parameters, see (3) and
(4). As such, with this patient mix, CAB always equals CA and likewise CB. In the
simulation experiment for this patient mix, |ZA| increased by 4% when CA and CB
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Table 5 Higher appointment length variability results (MAB =20, DAB =30, λAB =282, CA =CB =2)

λA
λAB

DA/DAB = 0.5 DA/DAB = 1.0 DA/DAB = 1.5 DA/DAB = 2.0

0.3 −22%(3), −5%(17) −19%(6), −6%(14) −17%(9), −7%(11) −18%(12), −12%(8)

0.4 −18%(4), −8%(16) −14%(8), −8%(12) −13%(12), −11%(8) −16%(16), −17%(4)

0.5 −15%(5), −11%(15) −10%(10), −10%(10) −11%(15), −15%(5)

0.6 −14%(6), −14%(14) −8%(12), −14%(8) −9%(18), −22%(2)

0.7 −13%(7), −19%(13) −5%(14), −18%(6)

Table 6 Different coefficient of variance results (MAB = 20, DAB = 30, λAB = 282, CA = 2,

CB = 0.5)

λA
λAB

DA/DAB = 0.5 DA/DAB = 1.0 DA/DAB = 1.5 DA/DAB = 2.0

0.3 −11%(6), 4%(14) −14%(9), 3%(11) −17%(12), 2%(8)

0.4 −23%(4), −5%(16) −8%(8), 3%(12) −11%(12), 2%(8) −16%(16), −3%(4)

0.5 −5%(5), 2%(15) −6%(10), 2%(10) −9%(15), −2%(5)

0.6 −4%(6), −2%(14) −4%(12), −2%(8) −5%(18), −24%(2)

0.7 −4%(7), −5%(13) −3%(14), −4%(6)

were increased from 0.5 to 2. Evaluating (17) for the same situations shows no change
in |ZA|, illustrating that (17) does not fully capture the impact of CA on |ZA|.

6.2.5 Different coefficient of variance

Results for the scenario when CA = 2 and CB = 0.5 are shown in Table 6. Relative
to the Base Clinic ZA decreased and, with few exceptions, ZB increases.

6.3 Comparison with analytic approximation

To evaluate the accuracy of approximation (17) and to determine in which situations
it would provide accurate estimations for Z , we compare simulated results from this
section with results computed according to (17). To this end, Table 7 lists the ZA values
for the six clinic environments as computed by simulation and by the approximation
(the simulated ZA values appear in parentheses). Since both the simulation and (17)
found Z to be mostly insensitive to DA/DAB, we set DA/DAB = 1. Furthermore,
since the purpose of this subsection is to compare the two approaches we only show
the Z values for Group A. Due to the symmetry however, the ZB values can also be
derived from Table 7.

In the derivation of (17) we ignored second order and higher terms of (1 − ρ0)

and therefore, as expected, (17) is quite accurate for larger values of ρ0 and λA/λAB.
This corresponds with the reasonably accurate results observed in Table 7 for the Busy
Clinic environment and cases where the group size is proportionally large. In other
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Table 7 Comparison of analytic approximation of ZA with simulation experiments (simulated ZA values
appear in parentheses)

λA
λAB

= 0.3 λA
λAB

= 0.4 λA
λAB

= 0.5 λA
λAB

= 0.6 λA
λAB

= 0.7

Clinic environments

1 −28%(−12%) −18%(−9%) −12%(−6%) −8%(−5%) −5%(−4%)

2 −7%(−3%) −5%(−3%) −3%(−2%) −2%(−2%) −1%(−2%)

3 −28%(−12%) −18%(−9%) −12%(−7%) −8%(−5%) −5%(−4%)

4 −28%(−10%) −18%(−8%) −12%(−6%) −8%(−5%) −5%(−3%)

5 −28%(−19%) −18%(−14%) −12%(−10%) −8%(−8%) −5%(−5%)

6 −72%(−11%) −32%(−8%) −16%(−6%) −9%(−4%) −5%(−3%)

cases simulation is a more appropriate method, especially if CV is different between
the two patient groups, as in clinic environment 6.

6.4 Conclusions

From the analytic approximation of Z we conclude that when contemplating dividing
a pooled department, managers should consider ρ, λA/λAB, and (1+C2

A)/(1+C2
AB).

The importance of all three of these factors is confirmed by the simulation experiments.
In the simulation experiments we also find that ZA and ZB values appear slightly sensi-
tive to the ratio DA/DB, although characterizing this influence is not observable from
the results. Furthermore, with the simulation we identified how the division of rooms
between the unpooled departments is also an important decision factor. Finally the
simulation also illustrates the discretization effect that occurs in smaller clinics. Both
approaches used to quantify the factors impacting the unpooling decisions illustrated
that there are numerous considerations necessary and many cannot be considered in
isolation. Table 8 summarizes these factors.

Besides mean waiting times, hospitals are also interested to waiting time norms
(i.e., the percentage of patients waiting less than a given target). A recursion, simi-
lar to that of Lindley’s can be formulated to determine the waiting time distribution
(Vanberkel et al. 2010). Using this waiting time recursion (instead of the queue length
recursion), the simulation experiments of this section could be repeated to determine
the effects of pooling with respects to waiting time norms.

Finally, although not considered in this paper, partial pooling of resources may be a
beneficial compromise to the strict resource pooling considered in this section. Partial
resources pooling would see some resources dedicated to each group and the remaining
resources shared between them (see van Dijk and van der Sluis 2009; Whitt 1999).

7 Implications for practice

In general, managers should consider the following when approaching the decision to
unpool a centralized department. Under most circumstances access time to clinics will
increase unless the service time in the unpooled department is decreased, assuming
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Table 8 Summary of factors effecting EOS losses due to unpooling

Factors Change in ZA General management guidelines

Clinic load (ρ0) Decreases as ρ0 increases Unpooling clinics with high load results

in less EOS losses than clinics under

lesser load

Room division Disproportionate The room allotment representing the

splits increase smallest loss in EOS occurs when the

|ZA| + |ZB| difference between ρAB, ρA and ρB is

minimized, see (18)

Clinic size (MAB) Increases (slightly) as EOS losses appear mostly insensitive to

MAB decreases the size of the clinic. In smaller clinics

it is more difficult to proportionally split

servers

Appointment lengths Mostly insensitive to EOS losses appear to be mostly insensitive

(DAB) DAB to the length of the appointment

Appointment length Increases as CA, CB Unpooling patient groups with highly

variability (CA, CB) increases variable appointment lengths results in

larger EOS losses

Different appointment Decreases when The patient group with the smaller C

length variability CA < CB generally experiences a smaller loss in

(CA < CB) EOS as a result of unpooling

Proportional size of Increases as λA/λAB Smaller patient groups experience a

each group (λA/λAB) decreases greater loss in EOS as a result of

unpooling

Appointment Mostly insensitive to EOS losses appear to be mostly insensitive

length proportion DA/DAB to the ratio of appointment lengths

(DA/DAB)

that no additional resources are made available. The amount of service time decrease
needed to compensate for this performance loss depends on the characteristics of
the original pooled clinic and the characteristics of the newly created unpooled clin-
ics. The main characteristics to consider are clinic load (ρ), proportional size of the
patient groups (λA/λAB), bed division and variability in appointment length. Table 8
summarizes all factors considered in this paper.

When looking at the original pooled clinic consider the following. Clinics under
high load require less decrease in service time to compensate for unpooling losses. The
number of rooms in a clinic does not greatly influence the needed service time change,
however in smaller clinics it is more difficult to proportionally divide the rooms.

When deciding how to split the pooled clinic (which consequently defines the char-
acteristics of the new unpooled clinics) consider the following. The smallest required
decrease in service time occurs when the difference between the clinic load in the two
unpooled clinics is minimized. To compute the resource allocation that corresponds

123



Efficiency evaluation for pooling resources in health care 389

to this bed division see (18). The smaller patient group resulting from the split will
require a greater decrease in service time to compensate for unpooling losses. Finally,
unpooling patient groups with highly variable appointment lengths also requires a
greater decrease in service time to compensate.

For more specific results refer to the tables in Sect. 6 or apply the approach described
in the same section. The approach used for developing these tables is versatile in terms
of the application area and practical in that it requires only typical clinical data as input.

8 Future research

The analytic approximation provided initial insight into the influence of the many
factors causing losses in EOS, however since it is an approximation it does not fully
account for them. The simulation provided more accurate results for a given range
of circumstances, and the approach is demonstrated to be robust. However, due to
the large number of factors and the complex relationships that exist between them,
it proved difficult to use simulation to draw stringent general conclusions. Further
research is required to determine how exactly these factors influence losses of EOS
related to unpooling. With comprehensive descriptions of these relationships, opera-
tional researchers can further improve or even optimize the mix of the functional and
patient focused departments within a hospital.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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