
����������
�������

Citation: Minamino, Y.; Makita, Y.;

Inoue, S.; Yamada, S. Efficiency

Evaluation of Software Faults

Correction Based on Queuing

Simulation. Mathematics 2022, 10,

1438. https://doi.org/10.3390/

math10091438

Academic Editor: Tzong-Ru Tsai

Received: 15 March 2022

Accepted: 20 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Efficiency Evaluation of Software Faults Correction Based on
Queuing Simulation
Yuka Minamino 1,* , Yusuke Makita 1, Shinji Inoue 2 and Shigeru Yamada 1

1 Faculty of Engineering, Tottori University, 4-101, Minami, Koyama-cho, Tottori-shi, Tottori 680-8552, Japan;
b18t4093a@edu.tottori-u.ac.jp (Y.M.); yamada@tottori-u.ac.jp (S.Y.)

2 Faculty of Informatics, Kansai University, 2-1-1, Ryozenji-cho, Takatsuki-shi, Osaka 569-1095, Japan;
ino@kansai-u.ac.jp

* Correspondence: minamino@tottori-u.ac.jp

Abstract: Fault-counting data are collected in the testing process of software development. However,
the data are not used for evaluating the efficiency of fault correction activities because the information
on the fault detection and correction times of each fault are not recorded in the fault-counting data.
Furthermore, it is difficult to collect new data on the detection time of each fault to realize efficiency
evaluation for fault correction activities from the collected fault-counting data due to the cost of
personnel and data collection. In this paper, we apply the thinning method, using intensity functions
of the delayed S-shaped and inflection S-shaped software reliability growth models (SRGMs) to
generate sample data of the fault detection time from the fault-counting data. Additionally, we
perform simulations based on the infinite server queuing model, using the generated sample data of
the fault detection time to visualize the efficiency of fault correction activities.

Keywords: software reliability growth model (SRGM); nonhomogeneous Poisson process (NHPP)
model; queuing model; thinning method

MSC: 90B25

1. Introduction

Software development management is required to optimize efficiency due to the
cost of testing efforts in detecting and correcting several faults during the testing process.
Therefore, evaluating testing efficiency is important both during and after the project to
get feedback. One way to get useful feedback is to analyze the data collected in current
and past projects. Fault-counting data are a typical data set collected in the actual testing
process, with records of only the total faults during the testing period, hourly, daily, or
monthly. It is used to quantitatively evaluate the final quality and reliability of software
products. However, the detection and correction times of each fault are not recorded.

In large-scale software and open source software development, bug tracking systems
are introduced, and various data including fault detection and correction completion times
can be easily collected. However, fault-counting data are recorded using a company-specific
format without introducing the bug tracking system in small- or medium-scale software
development. In the latter case, it is difficult to collect data, such as fault detection and
correction times, due to the cost of personnel and data collection time. Therefore, we obtain
new knowledge as feedback by analyzing existing fault-counting data.

Generally, when evaluating software reliability using the fault-counting data, non-
homogeneous Poisson process (NHPP) models, which have high practicality due to their
model structure, are used among the software reliability growth models (SRGMs) [1–3].
In previous studies, the delayed S-shaped (DSS) SRGM, incorporated in two stages of
software failure occurrence and fault isolation processes, was developed [3,4]. Additionally,
new SRGMs, using the concept of separating the fault detection process, expressed the

Mathematics 2022, 10, 1438. https://doi.org/10.3390/math10091438 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10091438
https://doi.org/10.3390/math10091438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4336-6868
https://orcid.org/0000-0002-8881-648X
https://orcid.org/0000-0001-9998-6938
https://doi.org/10.3390/math10091438
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10091438?type=check_update&version=2

Mathematics 2022, 10, 1438 2 of 9

physical aspect of the fault detection process using the infinite server queuing model [4,5].
However, these proposed models cannot be used to evaluate the efficiency of fault correction
activities because SRGMs, including NHPP models, express only the software failure/fault
detection process, and cannot express a series of processes from the failure/fault occurrence
to fault correction completion.

For example, the intensity function of NHPP models, which indicates the instanta-
neous fault detection rate, can estimate when most faults were detected. Knowing the
peak time for fault detection helps plan future testing phases. However, estimating the
busiest correction time and considering appropriate measures to eliminate the delay are
factors that improve the efficiency of fault correction activities. Therefore, it is necessary to
visualize fault correction activities. Equally, the software development manager needs to
understand the status of fault correction activities.

In this paper, we generated the sample data of the fault detection time from the actual
fault-counting data to conduct the efficiency evaluation of the fault correction activities.
Next, we estimated the detection time of each fault using the thinning method [6]. Then, we
applied the DSS and ISS intensity functions. Furthermore, the process from fault detection
to correction completion was represented by the infinite server queuing model. Visualizing
the temporal behavior of the faults being corrected in the testing phase reveals the peak
time when the fault correction activities are the busiest.

2. Software Reliability Growth Model

Now, let N(t) (t ≥ 0) denote a counting process representing the total faults detected
up to the testing time t. Assumed N(t) follows an NHPP, the stochastic behavior of N(t) is
given by

Pr{N(t) = m} = {H(t)}m

m!
exp[−H(t)] (m = 0, 1, 2, · · ·), (1)

h(t) =
∫ t

0
h(x)dx. (2)

where H(t) is the mean value function of NHPP and represents the expected cumulative
number of faults detected in the time-interval (0, t]. h(t) is the intensity function, indicating
the instantaneous fault detection rate at time t. When the intensity function is constant
at time t, N(t) follows the homogeneous Poisson process (HPP). The instantaneous fault
detection rate and mean value function of HPP are defined by the following equations:

h(t) = λ, (3)

H(t) = λt. (4)

In NHPP models with a finite number of detectable faults, the number of faults
detected per unit time is assumed to be proportional to the number of remaining faults in
the software at that time and is given by the following differential equation:

dH(t)
dt

= b(t)[a− H(t)] (b(t) > 0, t ≥ 0), (5)

where a is the initial fault content and b(t) is the fault detection rate at time t.
First, assuming that the initial conditions of Equation (5) are H(0) = 0 and b(t) =

b(b > 0), the exponential (EXP) SRGM [1–3,7] is derived as

H(t) ≡ m(t) = a(1− exp[−bt]). (6)

Suppose b(t) = b and a = m(t), the following differential equation is obtained.

dH(t)
dt

= b[m(t)− H(t)]. (7)

Mathematics 2022, 10, 1438 3 of 9

Solving Equation (7) under Equation (12), the DSS SRGM [1–3] is derived as

H(t) ≡ M(t) = a(1− (1 + bt)exp[−bt]) (a > 0, b > 0). (8)

Thus, the intensity function of DSS SRGM is as follows:

h(t) ≡ hM(t) = ab2t · exp[−bt]. (9)

Next, the fault detection rate is assumed as follows:

b(t) ≡ bI(t) = b
{

l + (1− l)
H(t)

a

}
(a > 0, b > 0, 0 < l ≤ 1), (10)

where l is the inflection coefficient for the fault detection ability. From Equations (5) and (10),
the ISS SRGM [1–3] is derived as

H(t) ≡ I(t) =
a(1− exp[−bt])
(1 + c · exp[−bt])

(c > 0), (11)

where c = (1− l)/l. The intensity function of ISS SRGM is as follows:

h(t) ≡ hI(t) =
ab(1 + c)exp[−bt]
(1 + c · exp[−bt])2 . (12)

3. Sample Data Generation of Fault Detection Time Using the Thinning Method
3.1. Thinning Method

The thinning method [6] is a sampling method that extended the rejection sampling
method. It is used when random numbers cannot be directly obtained from the probability
density function. Here, we simulated NHPP using the intensity function h(t) to generate
the sample data of the fault detection time. The conceptual figure of the thinning method is
shown in Figure 1.

Fault detection time :

Exponential random numbers following HPP

Uniform random

number on

Intensity

Testing time

: Rejection

: Adoption

Figure 1. Conceptual figure of the thinning method.

The procedure is as follows: First, the maximum value of the intensity function of
NHPP h(t) is set to λ∗ = max h(t). Furthermore, we generate an exponential random
number, t∗, according to HPP as a candidate for the fault detection time. Next, we generate
a uniform random number y∗ on [0, λ∗] and simulate the coordinate of the candidate point
(t∗, y∗). The candidate points in the upper region of the intensity function are rejected,

Mathematics 2022, 10, 1438 4 of 9

and those in the lower region are adopted. Note that candidate points are adopted if
λ∗ · y∗ ≤ h(t∗). Each adopted time candidate point is used as the sample data of the fault
detection time.

3.2. Sample Data Generation of Fault Detection Time

To determine the intensity functions, we estimated parameters of SRGMs using the
following fault-counting data [8,9] observed in the actual testing process.

DS : (tk, yk)(k = 1, 2, · · · , 36 t36 = 36, y36 = 290)

In the above data, tk and yk are the calendar time and total detected faults, respectively.
In this study, the DSS and ISS SRGMs were applied since the above fault-counting data are
an S-shaped reliability growth curve data. The estimated values â, b̂, and l̂ of the parameters
a, b, and l included in the DSS and ISS SRGMs are estimated using the maximum likelihood
method. Furthermore, mean squared errors (MSE) were used as assessment criteria for the
goodness-of-fit comparison. Here, MSE is defined as

MSE =
1
K

K

∑
k=1

(yk − ŷk)
2, (13)

where K is the total number of data, yk is the actual value, and ŷk is the estimated value of
the cumulative number of faults.

Figures 2 and 3 are the estimated DSS and ISS SRGMs. Table 1 presents the results of
the parameter estimation and MSE. From the result of the goodness-of-fit comparison for
DSS and ISS SRGMs, we observe that the ISS SRGM has better performance. The intensity
functions estimated above were used to generate sample data of the fault detection time.
Figures 4 and 5 show each piece of generated data using the thinning method, and each
intensity function of the DSS and the ISS SRGMs. These data were called “DSS data” and
“ISS data”, respectively.

Figure 2. Estimated delayed S-shaped SRGM.

Mathematics 2022, 10, 1438 5 of 9

Figure 3. Estimated inflection S-shaped SRGM.

Table 1. Estimated parameter and MSE.

â b̂ l̂ MSE

DSS 335.536 0.097 - 247.752
ISS 304.876 0.143 0.113 245.909

Testing time (number of days)

N
u

m
b

er
 o

f
fa

u
lt

s

0 010 20 30 40

0
5

1
0

1
5

2
0

Figure 4. Generated sample data based on the intensity function of the DSS SRGM (DSS data).

Testing time (number of days)

N
u

n
b

er
 o

f
fa

u
lt

s

0
5

1
0

1
5

2
0

00 10 20 30 40

Figure 5. Generated sample data based on the intensity function of the ISS SRGM (ISS data).

Mathematics 2022, 10, 1438 6 of 9

4. Queuing Simulation Using Sample Data of Fault Detection Time

The infinite server queuing model is used for simulating fault correction activities.
Detected faults enter the infinite server and the exit server when the correction is complete,
as shown in Figure 6. Suppose that the n-th fault detection and correction times are
represented by tn and cn, respectively, the correction completion time dn is defined as the
following equation:

dn = tn + cn. (14)

The number of faults corrected is obtained by counting the number of faults n which
fills tn < t < dn with arbitrary time t. Assuming that the correction time follows the
exponential distribution, we clarify the busy fault correction activities from the fault
detection to correction completion using the queuing simulation.

Figure 6. Conceptual figure of the infinite server queuing model.

Figure 7 shows the simulation result, assuming that the fault correction time follows
the exponential distribution with an average of 0.5 days. Observe that the fault correction
activities became the busiest around the 11th and 18th day, respectively. Figure 8 shows
the simulation result, assuming that the fault correction time follows the exponential
distribution with an average of 1 day. Here, the number of faults being corrected doubled.
From Figures 7 and 8, no significant difference exists between the most fault detection
time and the busiest fault correction time at the first peak. However, there is a large time
difference at the second peak.

Figure 9 shows the simulation result, assuming that the fault correction time follows
the exponential distribution with an average of 0.5 days. Here, the fault correction activities
became the busiest around the 12th and 17th day, respectively. Figure 10 shows the simula-
tion result assuming that the fault correction time follows the exponential distribution with
an average of 1 day. Figures 9 and 10 show that fault correction activities are busy in the
first peak due to factors such as the difficulty of detecting or correcting faults, rather than
the number of detected faults.

Mathematics 2022, 10, 1438 7 of 9

Testing time (number of days)

0 10 20 30

0
5

1
0

1
5

2
0

2
5

N
u

m
b

er
 o

f
fa

u
lt

s

Figure 7. Behavior of the number of faults being corrected (the correction time is 0.5 day/fault on
average, DSS data).

Testing time (number of days)

N
u
m

b
er

 o
f

fa
u
lt

s

0 10 20 30

0
1
0

2
0

5
1
5

2
5

Figure 8. Behavior of the number of faults being corrected (the correction time is 1.0 day/fault on
average, DSS data).

0 10 20 30

0
5

1
0

1
5

2
0

2
5

N
u
n
b
er

 o
f

fa
u
lt

s

Testing time (number of days)

Figure 9. Behavior of the number of faults being corrected (the correction time is 0.5 day/fault on
average, ISS data).

Mathematics 2022, 10, 1438 8 of 9

0
5

1
0

1
5

2
0

2
5

0 10 20 30

N
u

m
b

er
 o

f
fa

u
lt

s

Testing time (number of days)

Figure 10. Behavior of the number of faults being corrected (the correction time is 1.0 day/fault on
average, ISS data).

From the above, it clear that the fault correction activities became the busiest at the
time slightly different from when the fault was most detected. Additionally, model selection
must be according to the goodness-of-fit and characteristics of the model because of the
changing behavior of the intensity function.

5. Conclusions

In this paper, we discussed a method for evaluating the efficiency of fault correction
activities in a testing phase. The sample data of fault detection time were generated to
obtain new development management knowledge from existing fault-counting data. The
DSS and ISS SRGMs were adopted from the behavior of the actual data, and the parameters
of each model were estimated using the maximum likelihood method. The intensity
functions of the DSS and ISS SRGMs were determined from the estimated parameters, and
the sample data were generated using the thinning method. Furthermore, we performed a
simulation using the infinite server queuing model to quantitatively evaluate the efficiency
of fault correction activities. Specifically, assuming that the correction time follows the
exponential distribution, the time behavior of the number of faults being corrected was
presented. Therefore, we obtained that there were time lags between the peaks for the
number of fault detection and correction, respectively. As a future study, it is necessary
to perform the simulation using the queuing models that can express the actual testing
process more and confirm their effectiveness.

Author Contributions: Conceptualization, Y.M. (Yuka Minamino); methodology, Y.M. (Yuka Mi-
namino), S.I.; programming, Y.M. (Yuka Minamino) and Y.M. (Yusuke Makita); validation, Y.M.
(Yuka Minamino) and Y.M. (Yusuke Makita); investigation, Y.M. (Yuka Minamino) and Y.M. (Yusuke
Makita); resources, S.I. and S.Y.; data curation, S.I.; writing—original draft preparation, Y.M. (Yuka
Minamino) and Y.M. (Yusuke Makita); writing—review and editing, S.I. and S.Y.; visualization, Y.M.
(Yuka Minamino) and Y.M. (Yusuke Makita); supervision, S.I. and S.Y.; project administration, Y.M.
(Yuka Minamino); funding acquisition, Y.M. (Yuka Minamino). All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number 20K14983.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 1438 9 of 9

References
1. Pham, H. System Software Reliability; Springer: London, UK, 2006.
2. Zhu, M.; Pham, H. Software reliability modeling and methods: A state of the art review. In Optimization Models in Software

Reliability; Aggarwal, A.G., Tandon, A., Pham, H., Eds.; Springer: Cham, Switzerland, 2022; pp. 1–29.
3. Yamada, S. Software Reliability Modeling—Fundamentals and Applications; Springer: Tokyo, Japan; Heidelberg, Germany, 2014.
4. Kapur, P.K.; Aggarwal, A.G.; Anand, S. A new insight into software reliability growth modeling. Int. J. Perform. Eng. 2009, 5,

267–274.
5. Kapur, P.K.; Anand, S.; Inoue, S.; Yamada, S. A unified approach for developing software reliability growth model using infinite

server queueimg model. Int. J. Reliab. Qual. Saf. Eng. 2010, 17, 401–424. [CrossRef]
6. Omi, T.; Nomura, S. Time Series Analysis for Point Processes; Kyoritsu-Publication: Tokyo, Japan, 2019. (In Japanese)
7. Kazuhira, O. An overview practical software reliability prediction. In Reliability Modeling with Computer and Maintenance

Applications; Nakamura, S., Qian, C.H., Nakagawa, T., Eds.; World Scientific: Singapore, 2017; pp. 3–21.
8. Zhang, X.; Pham, H. Comparisons of nonhomogeneous Poisson process software reliability models and its applications. Int. J.

Syst. Sci. 2000, 31, 1115–1123. [CrossRef]
9. Tohma, Y.; Yamano, H.; Ohba, M.; Jacoby, R. The estimation of parameters of the hypergeometric distribution and its application

to the software reliability growth model. IEEE Trans. Softw. Eng. 1991, 17, 483–489. [CrossRef]

http://doi.org/10.1142/S0218539310003871
http://dx.doi.org/10.1080/002077200418397
http://dx.doi.org/10.1109/32.90450

	Introduction
	Software Reliability Growth Model
	Sample Data Generation of Fault Detection Time Using the Thinning Method
	Thinning Method
	Sample Data Generation of Fault Detection Time

	Queuing Simulation Using Sample Data of Fault Detection Time
	Conclusions
	References

