Tilburg University

Efficiency gains due to using missing data procedures in regression models
 Nijman, T.E.; Palm, F.C.

Publication date:
1986

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Nijman, T. E., \& Palm, F. C. (1986). Efficiency gains due to using missing data procedures in regression models. (Research memorandum / Tilburg University, Department of Economics; Vol. FEW 240). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

7626 1986 240

FEW 240

EFFICIENCY GAINS DUE TO USING MISSING DATA PROCEDURES IN REGRESSION MODELS

Th.E. Nijman
F.C. Palm

November 1986

EFFICIENCY GAINS DUE TO USING MISSING DATA PROCEDURES IN REGRESSION MODELS

Th.E. Nijman
F.C. Palm

november 1986

In the chapter on "Economic Data Issues" of the Handbook of Econometrics, Griliches (1986) analyzes the asymptotic variance of an estimator of a regression coefficient using imputations for the missing regressor values and he compares it with that of an estimation procedure based on the complete observations only. His derivation of an expression for the relative efficiency is incorrect. In this note, we give the correct result and show that the relative efficiency of three estimators designed to handle incomplete samples depends on parameters that have a straightforward statistical interpretation. In terms of a gain of asymptotic efficiency, the use of these estimators is equivalent to the observation of a percentage of the values which are actually missing. This percentage depends on three R^{2}-measures only, which can be straightforwardly computed in applied work. Therefore it should be easy in practice to check whether it is worthwhile to use a more elaborate estimator.

The authors thank Professor Z. Griliches for his comments on an earlier version of this note.

Department of Econometrics, Tilburg University, P.O.B. 90153, 5000 LE Tilburg, The Netherlands.

Department of Economics, University of Limburg, P.O.B. 616,
6200 MD Maastricht, The Netherlands.

Griliches (1986) considers the following regression model

$$
\begin{equation*}
y_{i}=\beta x_{i}+\gamma z_{i}+e_{i} \quad, \quad e_{i} \sim \operatorname{IN}\left(0, \sigma^{2}\right), \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{i}=\delta z_{i} \quad+v_{i} \quad, \quad v_{i} \sim \operatorname{IN}\left(0, \sigma_{v}^{2}\right) \tag{2}
\end{equation*}
$$

where the regressors x_{i} and z_{i} are assumed to be independent of the corresponding disturbances e_{i} and v_{i}. Actually, the normality assumption is not made by Griliches, but it will be required below for maximum likelihood (ML) estimation and it does not affect the results for the other estimators. The variables y_{i} and z_{i} are observed for $i=1, \ldots, N_{1}+N_{2}$, whereas x_{i} is observed for $i=1$, $\ldots N_{1}$ only.
Besides the OLS estimator of the regression of y_{i} on x_{i} and z_{i} for $i=1, \ldots N_{1}$ only, denoted by $\hat{\beta}_{a}$ and $\hat{\gamma}_{a}$, Griliches (1986) considers an estimation procedure in which the missing x_{i} 's are replaced by $\hat{\delta}_{a} z_{i}$, where $\hat{\delta}_{a}$ is the oLS estimate of δ in (2) using the first N_{1} observations. The estimate $\hat{\gamma}_{a+b}$ is subsequently computed by oLs on

$$
y_{i}-\hat{\beta}_{a} \bar{x}_{i}=\gamma z_{i}+w_{i}
$$

where $w_{i}=e_{i}+\theta_{i} \beta v_{i}+\theta_{i}\left(\beta \delta-\hat{\delta}_{a} \hat{\beta}_{a}\right) z_{i}$, with $\hat{x}_{i}=x_{i}$ and $\theta_{i}=0$ if $i \leq N_{1}$ and $\hat{x}_{i}=\hat{\delta}_{a} z_{i}$ and $\theta_{i}=1$ otherwise. It is straightforward to show that $\hat{\gamma}_{a+b}$ can be alternatively computed by OLS of y_{i} on \bar{x}_{i} and z_{i}

$$
\begin{equation*}
y_{i}=\beta \hat{x}_{i}+\gamma z_{i}+\left\{e_{i}+\theta_{i} \beta v_{i}+\beta \theta_{i}\left(\delta-\hat{\delta}_{a}\right) z_{i}\right\} \tag{4}
\end{equation*}
$$

Contrary to what is stated by Griliches (1986), the contribution of $\beta \Theta_{i}\left(\delta-\hat{\delta}_{a}\right) z_{i_{1}}$ to the asymptotic variance of $\hat{\gamma}_{a+b}$ is not negligible if plim $\mathrm{N}_{2} \mathrm{~N}^{-1}=\lambda \neq 0$ for $\mathrm{N} \rightarrow \infty$, with $\mathrm{N}=\mathrm{N}_{1}+\mathrm{N}_{2}$.

As the three components of the disturbance 0° (4) are independent, the large sample distribution of $\hat{\gamma}_{a+b}$ is given by

$$
\begin{equation*}
V N\left(\hat{\gamma}_{a+b}-\gamma\right) \underset{a}{\sim} N(0, V) \tag{5}
\end{equation*}
$$

with $V=p \lim N\left(x^{\prime} x\right)^{-1}\left\{x^{\prime} \Omega x+x^{\prime} w \beta^{2} \sum w^{\prime} x\right\}\left(x^{\prime} x\right)^{-1}$,
where X is the matrix of regressors in (4), W is a vector with typical element $\theta_{i} z_{i}, \Omega$ is a diagonal matrix with typical element $\sigma^{2}+\theta_{i} \beta^{2} \sigma_{v}^{2}$, and Σ is the asymptotic variance of $\hat{\delta}_{a}$.

After some algebra, we get

$$
\begin{equation*}
v=\frac{\sigma^{2}}{\lambda \sigma_{z}^{2}}\left\{\left(1-r_{x z}^{2}\right)^{-1}+\lambda\left(\mu^{-1}-2\right)\right\} \tag{6}
\end{equation*}
$$

where $\sigma_{z}^{2}=\operatorname{plim} N^{-1} \sum_{i=1}^{N} z_{i}^{2}$ (assumed to exist), $\mu=\sigma^{2}\left(\beta^{2} \sigma_{v}^{2}+\sigma^{2}\right)^{-1}$ and $r_{x z}^{2}$ is the theoretical R^{2} of the regression (2) of x on z. The result in (6) has been obtained by Gouriéroux and Monfort [1981, expression (11) on p. 583].

The relative efficiency of $\hat{\gamma}_{a+b}$ with respect to $\bar{\gamma}_{a}$ is

$$
\begin{equation*}
\operatorname{Eff}\left(\hat{\gamma}_{a+b}\right)=\frac{\operatorname{Avar}\left(V N \hat{\gamma}_{a+b}\right)}{A \operatorname{var}\left(V N \hat{\gamma}_{a}\right)}=1+\lambda\left(\mu^{-1}-2\right)\left(1-r_{x z}^{2}\right) \tag{7}
\end{equation*}
$$

According to (7), using imputed values as in (3) leads to a gain of efficiency compared with using complete observations only if $\mu>\frac{1}{2}$, which is more stringent than the condition $\mu>\frac{1-\lambda}{2-\lambda}$ given by Griliches (1986). Both conditions require that the unpredictable part of x from z is not too important relative to σ^{2}, the overall noise level of (1)
As $\quad \mu=\frac{1-r^{2} y x z}{1-r_{y z}^{2}}$,
where $r_{y x z}^{2}$ and $r_{y z}^{2}$ denote the theoretical R^{2} 's of a regression of y on respectively x and z and on z only, it is obvious that a sufficient condition for an efficiency gain is $r_{y x z}^{2}<\frac{1}{2}$, i.e. the predictible part of Y is small.
As noted by Griliches (1986) and others, an efficiency gain is assured if (4) is estimated by a generalized least squares (GLS) method which
takes the correlation structure of the disturbance in (4) into account. Again, the term $\Theta_{i} \beta\left(\delta-\hat{\delta}_{a}\right) z_{i}$ cannot be neglected (see Palm and Nijman (1982) and Nijman and Palm (1985)). Alternatively, the fully efficient ML estimator can be computed, e.g. using the convenient reparametrisation suggested by Gouriéroux and Monfort (1981). From their results, the relative efficiency of the GLS and MLestimators with respect to that of γ_{a} can be obtained

$$
\begin{equation*}
\operatorname{Eff}\left(\hat{\gamma}_{\mathrm{GLS}}\right)=1-\lambda \mu\left(1-\boldsymbol{r}_{\mathbf{x Z}}^{2}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
E f f\left(\hat{\gamma}_{M L}\right)=1-\lambda \mu\left(1-r_{x z}^{2}\right)-2 \lambda \mu(1-\mu) r_{x z}^{2} \tag{10}
\end{equation*}
$$

The relative efficiency in (7), (9) and (10) only depends on the three magnitudes λ, μ and $r_{x z}^{2}$. Equation (9) indicates that in terms of a gain of asymptotic efficiency, the use of GLS is equivalent to the observation of $100 \mu\left(1-r_{x z}^{2}\right) \%$ of the values of x_{i} that are actually missing. Similar expressions can be obtained from (7) and (10) for γ_{a+b} and $\gamma_{M L}$ respectively. The values in Table 1 illustrate this result.

TABLE 1 Percentage of missing observations that are regained by the use of missing data procedures instead of the complete data only.

$\mu=\frac{1-r_{y x z}^{2}}{1-r_{y z}^{2}}$	$r_{x z}^{2}$	$\begin{aligned} & \text { Gain } \\ & -\hat{\gamma}_{a+b} \end{aligned}$	$\begin{gathered} \text { entag } \\ \bar{\gamma}_{\text {GLS }} \end{gathered}$	$\begin{aligned} & \text { for } \\ & \hat{\gamma}_{M L} \end{aligned}$
. 3	. 2	-106	24	32
. 3	. 8	- 27	6	40
. 6	. 2	27	48	58
. 6	. 8	7	12	50
. 9	. 2	71	72	76
. 9	. 8	18	18	32

Note that a good fit in (2) yielding a "good proxy" for the missing values of x_{i} does not imply that a large part of the missing information on x_{i} can be recovered, because of the induced multicollinearity between \hat{x}_{i} and z_{i} in (4). Especially, when $r_{x z}^{2}$ is small, the efficiency gain obtained by using the appropriate estimators can be substantial. The value of μ is crucial for the efficiency of $\hat{\gamma}_{a+b}$. The loss of efficiency
can be important when $\mu<\frac{1}{2}$. This loss increases as $r_{x z}^{2}$ decreases. Finally, if μ is close to one, i.e. x_{i} is not very important in explaining y in equation (1), all three approaches which take into account the incomplete data, yield about equally efficient estimators.

References

Gouriéroux, C., and A. Monfort (1981), "On the problem of missing data in linear models", Review of Economic Studies, 48, 579-586.

Griliches, Z. (1986), "Economic data issues", in Z. Griliches and M.D. Intriligator, eds, Handbook of Econometrics, North Holland, Amsterdam, 1466-1514.

Nijman, Th.E., and F.C. Palm (1985), "Consistent estimation of a regression model with incompletely observed exogenous variable", Netherlands Central Bureau of Statistics, unpublished paper.

Palm, F.C., and Th.E. Nijman (1982), "Linear regression using both temporally aggregated and temporally disaggregated data", Journal of Econometrics, 19, 333-343.

168 T.M. Doup, A.J.J. Talman
A continuous deformation algorithm on the product space of unit simplices

169 P.A. Bekker
A note on the identification of restricted factor loading matrices
170 J.H.M. Donders, A.M. van Nunen
Economische politiek in een twee-sectoren-model
171 L.H.M. Bosch, W.A.M. de Lange
Shift work in health care
172 B.B. van der Genugten
Asymptotic Normality of Least Squares Estimators in Autoregressive Linear Regression Models

173 R.J. de Groof
Geisoleerde versus gecoördineerde economische politiek in een tweeregiomodel

174 G. van der Laan, A.J.J. Talman
Adjustment processes for finding economic equilibria
175 B.R. Meijboom
Horizontal mixed decomposition
176 F. van der Ploeg, A.J. de Zeeuw
Non-cooperative strategies for dynamic policy games and the problem of time inconsistency: a comment

177 B.R. Meijboom
A two-level planning procedure with respect to make-or-buy decisions, including cost allocations

178 N.J. de Beer
Voorspelprestaties van het Centraal Planbureau in de periode 1953 t/m 1980

178a N.J. de Beer
BIJLAGEN bij Voorspelprestaties van het Centraal Planbureau in de periode 1953 t/m 1980

179 R.J.M. Alessie, A. Kapteyn, W.H.J. de Freytas
De invloed van demografische factoren en inkomen op consumptieve uitgaven

180 P. Kooreman, A. Kapteyn
Estimation of a game theoretic model of household labor supply
181 A.J. de Zeeuw, A.C. Meijdam
On Expectations, Information and Dynamic Game Equilibria

182	Cristina Pennavaja Periodization approaches of capitalist development. A critical survey
183	J.P.C. Kleijnen, G.L.J. Kloppenburg and F.L. Meeuwsen Testing the mean of an asymmetric population: Johnson's modified T test revisited
184	M.O. Ni jkamp, A.M. van Nunen Freia versus Vintaf, een analyse
185	A.H.M. Gerards Homomorphisms of graphs to odd cycles
186	P. Bekker, A. Kapteyn, T. Wansbeek Consistent sets of estimates for regressions with correlated or uncorrelated measurement errors in arbitrary subsets of all variables
187	P. Bekker, J. de Leeuw The rank of reduced dispersion matrices
188	A.J. de Zeeuw, F. van der Ploeg Consistency of conjectures and reactions: a critique
189	E.N. Kertzman Belastingstructuur en privatisering
190	J.P.C. Kleijnen Simulation with too many factors: review of random and groupscreening designs
191	J.P.C. Kleijnen A Scenario for Sequential Experimentation
192	A. Dortmans De loonvergelijking Afwenteling van collectieve lasten door loontrekkers?
193	R. Heuts, J. van Lieshout, K. Baken The quality of some approximation formulas in a continuous review inventory model
194	J.P.C. Kleifnen Analyzing simulation experiments with common random numbers
195	P.M. Kort Optimal dynamic investment policy under financial restrictions and adjustment costs
196	A.H. van den Elzen, G. van der Laan, A.J.J. Talman Adjustment processes for finding equilibria on the simplotope

197 J.P.C. Kleijnen Variance heterogeneity in experimental design

198 J.P.C. K1eijnen Selecting random number seeds in practice

199 J.P.C. Kleijnen Regression analysis of simulation experiments: functional software specification

200 G. van der Laan and A.J.J. Talman An algorithm for the linear complementarity problem with upper and lower bounds

201 P. Kooreman Alternative specification tests for Tobit and related models

202 J.H.F. Schilderinck
Interregional Structure of the European Community. Part III
203 Antoon van den Elzen and Dolf Talman
A new strategy-adjustment process for computing a Nash equilibrium in a noncooperative more-person game

204 Jan Vingerhoets
Fabrication of copper and copper semis in developing countries.
A review of evidence and opportunities.
205 R. Heuts, J. v. Lieshout, K. Baken
An inventory model: what is the influence of the shape of the lead time demand distribution?

206 A. v. Soest, P. Kooreman
A Microeconometric Analysis of Vacation Behavior
207 F. Boekema, A. Nagelkerke
Labour Relations, Networks, Job-creation and Regional Development
A view to the consequences of technological change
208 R. Alessie, A. Kapteyn
Habit Formation and Interdependent Preferences in the Almost Ideal Demand System

209 T. Wansbeek, A. Kapteyn
Estimation of the error components model with incomplete panels
210 A.L. Hempenius
The relation between dividends and profits
211 J. Kriens, J.Th. van Lieshout
A generalisation and some properties of Markowitz' portfolio
selection method
212 Jack P.C. Kleijnen and Charles R. Standridge
Experimental design and regression analysis in simulation: an FMS case study

213 T.M. Doup, A.H. van den Elzen and A.J.J. Talman Simplicial algorithms for solving the non-linear complementarity problem on the simplotope

214 A.J.W. van de Gevel
The theory of wage differentials: a correction
215 J.P.C. Kleijnen, W. van Groenendaal Regression analysis of factorial designs with sequential replication

216	T.E. Nijman and F.C. Palm Consistent estimation of rational expectations models
217	P.M. Kort The firm's investment policy under a concave adjustment cost function
218	```J.P.C. Kleijnen Decision Support Systems (DSS), en de kleren van de keizer```
219	T.M. Doup and A.J.J. Talman A continuous deformation algorithm on the product space of unit simplices
220	T.M. Doup and A.J.J. Talman The 2-ray algorithm for solving equilibrium problems on the unit simplex
221	Th. van de Klundert, P. Peters Price Inertia in a Macroeconomic Model of Monopolistic Competition
222	Christian Mulder Testing Korteweg's rational expectations model for a small open economy
223	A.C. Meijdam, J.E.J. Plasmans Maximum Likelihood Estimation of Econometric Models with Rational Expectations of Current Endogenous Variables
224	Arie Kapteyn, Peter Kooreman, Arthur van Soest Non-convex budget sets, institutional constraints and imposition of concavity in a flexibele household labor supply model.
225	```R.J. de Groof Internationale coördinatie van economische politiek in een twee- regio-twee-sectoren model.```
226	```Arthur van Soest, Peter Kooreman Comment on 'Microeconometric Demand Systems with Binding Non-Nega- tivity Constraints: The Dual Approach'```
227	```A.J.J. Talman and Y. Yamamoto A globally convergent simplicial algorithm for stationary point problems on polytopes```
228	```Jack P.C. Kleijnen, Peter C.A. Karremans, Wim K. Oortwijn, Willem J.H. van Groenendaal Jackknifing estimated weighted least squares```
229	A.H. van den Elzen and G. van der Laan A price adjustment for an economy with a block-diagonal pattern
230	M.H.C. Paardekooper Jacobi-type algorithms for eigenvalues on vector- and parallel computer

231 J.P.C. KleijnenAnalyzing simulation experiments with common random numbers
232 A.B.T.M. van Schaik, R.J. MulderOn Superimposed Recurrent Cycles
233 M.H.C. Paardekooper
Sameh's parallel eigenvalue algorithm revisited
234 Pieter H.M. Ruys and Ton J.A. StorckenPreferences revealed by the choice of friends
235 C.J.J. Huys en E.N. KertzmanEffectieve belastingtarieven en kapitaalkosten
236 A.M.H. Gerards
An extension of König's theorem to graphs with no odd $-\mathrm{K}_{4}$
237 A.M.H. Gerards and A. SchrijverSigned Graphs - Regular Matroids - Grafts
238 Rob J.M. Alessie and Arie Kapteyn
Consumption, Savings and Demography
239 A.J. van Reeken
Begrippen rondom "kwaliteit"

17000010597020

