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Abstract

This paper provides an overview of the five most commonly used statistical

techniques for improving the efficiency of stochastic simulations:  control variates,

common random numbers, importance sampling, conditional Monte Carlo, and

stratification.  The paper also describes a mathematical framework for discussion of

efficiency issues that quantifies the trade-off between lower variance and higher

computational time per observation.
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1 . Introduction

This paper is intended to give the reader an overview of some of the basic issues that arise in

the context of “efficiency improvement techniques (EIT’s)”, as well as some of the tools that have

been developed to deal with those issues.  As we shall see in Section 2, efficiency improvement

can arise either because of computational enhancements or because of variance reduction.

Statistical knowledge of the system under consideration can be used to impact either of these two

factors, or both.  Our principal concern here will be with using this statistical knowledge to im-

prove computational efficiency.  In particular, we will not be concerned with any explicit discus-

sion about how programming practices and choice of data structures can potentially impact effi-

ciency issues.  Historically, the body of research concerned with use of statistical methods to im-
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prove the efficiency of simulation algorithms has been generally referred to as “variance reduction

methodology”.  However, we choose to use the EIT terminology here, in order to highlight the fact

that statistical tools can be used to impact the running time of an algorithm either by choosing a sta-

tistically equivalent estimator with substantially lower computational cost or by developing an esti-

mator with reduced variance (or, preferably, both).

This paper is organized as follows.  In Section 2, we provide a mathematical framework

within which efficiency can be studied precisely.  In particular, the framework gives the trade-off

between variance reduction and computation time.  It is worth noting that Nelson [29, 30] provides

a different type of framework for these methods, one that is intended to provide a convenient tax-

onomy of such techniques.

Sections 3 through 7 discuss the five most commonly used EIT’s:  control variates, common

random numbers, importance sampling, conditional Monte Carlo, and stratification.  For a de-

scription of some additional (less commonly used) methods, see Hammersley and Handscomb

[24] and Wilson [35].

2 . Asymptotic Efficiency of Simulation Estimators

Suppose that α is a real-valued quantity that we wish to estimate via simulation.  Let t be the

available simulation budget, measured in terms of computer time.  Let α1(t) and α2(t) be two com-

peting estimators, both of which can be constructed within the simulation budget of size t.  We

wish to develop criteria that will permit us to compare the quality of the two estimators.  As is true

of much of the statistics and probability literature, we will concentrate our efforts on developing

criteria that describe the asymptotic behavior of the estimators as t → ∞, in large part because this

is a setting which lends itself to greater mathematical tractability.

Typically, each of the estimators will satisfy a limit theorem of the form

tγ i (α i (t) − α ) ⇒ Li (2.1)

as t → ∞ (i  = 1, 2), where γ1, γ2 are positive constants, ⇒ denotes “weak convergence”, and L1,

L2 are finite-valued r.v.’s that are not equal to zero with probability one.  As we shall see below,

the most common form of (2.1) is the situation in which γi = 1/2 and Li = N(0, σi
2); this arises as
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a consequence of central limit theorem (CLT) type arguments.  The relation (2.1) implies that

α i (t) ≈ α + t−γ i Li

as t → ∞ (i  = 1, 2), where ≈ means “approximately equal in distribution to”.  From (2.2), it is

clear that, for large t, one ought to prefer the estimator with the larger value of γi.  However, in

many estimator comparisons, γ1 = γ2 = 1/2 (the standard CLT normalization), so that a finer crite-

rion is needed.  Under fairly mild additional regularity conditions, (2.2) yields

(Eα i (t) − α i
p
)1/ p ~t−γ i (E Li

p
)1/ p (2.3)

as t → ∞ (i  = 1, 2), for p ≥ 0.  Relation (2.3) establishes an asymptotic for the so-called Lp error

of the competing estimators.  The most commonly used values of p are 2 (root mean square error)

and 1 (mean absolute deviation).  Given that a value of p has been selected and that γ1 = γ2, it

seems reasonable to prefer that estimator with the lower value of (E Li
p
)1/ p.  Thus, in comparing

two competing estimators, one should use the following “lexicographic” criterion:  select the esti-

mator with the highest value of γi.  If a tie occurs there, select the estimator with the lowest value

of (E Li
p
)1/ p.  If a tie is still present, the theory just described asserts that the behavior of the two

estimators is identical, at least asymptotically.  (Of course, the small-sample behavior may be quite

different.)

As has been remarked earlier, it is common that γ1 = γ2 = 1/2 with Li = N(0, σi
2), (i = 1,

2).  In this special situation, it turns out that the value of p is irrelevant, since (E L1
p)1/ p ≥

(E L2
p)1/ p then occurs if and only if σ1

2 ≥ σ2
2 (because the two normal r.v.’s then differ by a

scale parameter corresponding to the ratio of the standard deviations).  In particular, finding the es-

timator with the minimal root mean square error simultaneously minimizes the Lp error for all p>0.

We will now illustrate the above framework.  Perhaps the most important class of estimation

problems that arises in simulation can be put into the following form.  We are to estimate a parame-

ter α that can be expressed as α = g(µ), where g:ℜd → ℜ is assumed continuously differentiable

in a neighborhood of µ, and µ = EX for some ℜd-valued random variable X.  Suppose that we can

generate i.i.d. copies X1, X2, ... of the r.v.  Set 
  
Xn = n−1(X1 + X2+K +Xn) and let αn = g(Xn) .

In order to study the efficiency of this estimator, we need to obtain a limit theorem of the form

(2.1), expressed on the time scale of computer time.  This requires that we model the interaction
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between the computational and statistical characteristics of the problem.  Let τi be the amount of

computer time required to generate Xi. We shall assume (reasonably) that the sequence of pairs

((Xi, τi) : i ≥ 1) is i.i.d., although Xi typically will be correlated with τi for each i.  Let N(t) be the

number of Xi’s generated in t units of computer time, so that N(t) = max(n ≥ 0: τ1 + ...+τn ≤ t).

Then, the estimator available after t time units of computational effort have been expended is given

by α(t) ≡ αN(t).  Standard arguments establish that if 0 < Eτ1 < ∞ and E||X1||2 < ∞, then

t1/2(α(t) − α ) ⇒ N(0,σ2) (2.4)

as t → ∞, where σ2 = Eτ1 ⋅ ∇g(µ ) ⋅ ∑⋅∇g(µ )T and ∑ is the covariance matrix of X1; see Glynn

and Whitt (1992) for details.  When g(x) = x and X1 is real-valued, then

σ2 = Eτ · var(X1).

In view of our above efficiency discussion, it follows that in comparing two estimators of the

type just decribed, one should select that estimator with the smaller value of σ2.  Note that in the

case that g(x) = x and X1 is real-valued, the more efficient estimator may have the higher variance,

provided that the average time required to generate an observation is low enough.  Thus, variance

reduction and efficiency improvement do not necessarily go hand-in-hand.  This is perhaps the

principal reason why we choose, in this paper, to use the term “efficiency improvement technique”

rather than “variance reduction technique”.  An example of this kind of trade-off is illustrated in

Fishman and Kulkarni [8].

We now proceed to discuss limit theorems of the form (2.1) for several other types of esti-

mators that arise in the simulation context.

EXAMPLE (2.1)

Underlying (2.4) was an assumption that one can generate i.i.d. copies X1, X2, ... of a r.v.

X that is unbiased for µ in the sense that EX = µ.  Typically, this type of unbiasedness holds only

in the finite-horizon terminating simulation context.  However, it should be noted that the regen-

erative method of steady-state simulation effectively reduces the computation of steady-state means

to finite-horizon quantities.  In particular, by taking advantage of regenerative structure in the

stochastic system under consideration, one can express the steady-state mean of such a process in

terms of quantities that involve only a single regenerative cycle.  Regenerative steady-state simula-



5

tion turns out to be a special case of (2.4), in which τi corresponds to the amount of computer time

required to generate the i’th independent replicate of the cycle and g takes the ratio form g(x1, x2) =

x1/x2.  It is worth noting that while the resulting ratio estimator is consistent, it can suffer from

small-sample bias problems because of the non-linearity of the function g.  Of course, a different

approach is needed in order to deal with non-regenerative stochastic processes.

Suppose that α is a real-valued parameter that can be expressed as the steady-state mean of a

real-valued stochastic process X = (X(t) : t ≥ 0). More precisely, assume that

X(t) ≡ t−1 X(s)
0

t

∫ ds⇒ α (2.5)

as t → ∞.  Under very mild additional conditions on the process, (2.5) can be strengthened to a

CLT:

t1/2(X(t) − α ) ⇒ N(0,σ2) (2.6)

as t → ∞, where σ2 is a finite constant that is known as the time-average variance constant of X.

Note that the time parameter t appearing in (2.6) measures simulated time and not computer time.

We therefore need to re-express (2.6) in terms of computer time.  Let Λ = (Λ(t) : t ≥ 0) be a non-

decreasing process in which Λ(t) represents the amount of time simulated with a computer time

budget of size t.  Then, α(t) ≡ X (Λ(t)) is the estimator for α available after t units of computer

time have been expended.  In virtually all steady-state simulation settings, it is reasonable to expect

that Λ(t)/t ⇒ λ as t → ∞, where λ is a finite positive constant.  The constant λ can be interpreted

as the rate at which simulated time is generated relative to a unit of computer time.  By applying

“random time-change” arguments (such results establish conditions under which random variables

like Λ(t) can be substituted as time parameters in central limit theorems) to (2.6), one can then ob-

tain the limit theorem

t1/2(α(t) − α ) ⇒ N(0,λ−1σ2)

as t → ∞.  Thus, in comparing the efficiency of two such steady-state estimators for a parameter

α, one needs to compare the magnitudes of the corresponding variance quantities that here take the

form λ i
−1σi

2 (i =1, 2).
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EXAMPLE (2.2)

We now give an example of a simulation algorithm in which the parameter γ appearing in

(2.1) is not equal to 1/2.  Suppose that we wish to calculate a parameter α = θ*  that minimizes a

smooth function β(θ).  Assume that β(θ) can be represented as β(θ) = EZ(θ) for some family of

r.v.’s (Z(θ) : θ ∈ ℜ).  Successive estimates of θ*  are obtained from the recursion θn+1 = θn -

(c/n)Xn+1.  In this recursion, c is a positive constant and Xn+1 is generated from the conditional

distribution

  
P(Xn+1 ∈⋅ |θ0,X0,K ,θn,Xn) = P((Z(θn + hn−1/3) − Z(θn − hn−1/3)) / (2hn−1/3) ∈⋅ )

where Z(θn + hn−1/3)  and Z(θn − hn−1/3)  are independently simulated and h is a positive con-

stant.  This type of optimization algorithm is known as the Kiefer-Wolfowitz stochastic approxi-

mation procedure.  Suppose that b = cβ ''(θ* ), A = b - 5/6, κ2 = 2varZ(θ*) , and σ2 =

c2κ2/(2A+1)(4h2).  Let λ-1(θ) be the mean amount of computer time required to generate Z(θ) and

assume that λ-1( · )  is continuous in a neighborhood of θ* .  Let α(t) be the iterate of the sequence

(θn : n ≥ 1) available after t units of computer time have been expended.  Then, under mild addi-

tional regularity hypotheses (see Ruppert [31]), it follows that

t1/3(α(t) − α ) ⇒ 21/3λ (θ * )−1/3σN(0,1) (2.7)

as t → ∞.  The key point in (2.7) is that the variance constant appearing in the limiting normal de-

pends on the family of r.v.’s (Z(θ) : θ ∈ ℜ) only through the quantity λ(θ* )-2/3 · varZ(θ* ).  This

implies, for example, that one family of r.v.’s, having half the variance of another, is preferable so

long as the time required to generate an observation is less than or equal to 23/2 times that of the

higher variance estimator.  Thus, relative to the examples described above, there is a comparatively

higher premium in this setting to reduce variance rather than computer time.  This occurs because

of the “subcanonical” rate of convergence that appears in (2.7) (i.e. γ < 1/2).

EXAMPLE (2.3)

We now give an example of an estimation algorithm in which “supercanonical” rates of con-

vergence are achieved, namely γ > 1/2 in (2.1).  Suppose that we wish to evaluate the definite inte-

gral α ≡ f (x) dx
0

1

∫ , for some given function ƒ : [0, 1] →  ℜ.  In Fishman and Huang [7], a
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“rotation” estimator for this problem was proposed.  An easily updated recursive version of this

estimator was studied in Glynn and Whitt [22].  Let α(t) be the recursive estimator available after t

units of computer time have been expended.  In Glynn and Whitt [22], it is shown that

t3/4(α(t) − α ) ⇒ N(0,σ2)

as t → ∞, for some finite constant σ.  It can be shown, in a manner similar to that used in Example

2.2, that in this supercanonical setting, there is comparatively a greater premium to reduce the mean

time required to generate observations, as compared to reducing their variance.

EXAMPLE (2.4)

Here, our intent is to give an example in which the limiting r.v. L is not normally distributed

with mean zero.  As mentioned earlier, the choice of the quantity p can then have an impact on the

determination of optimally efficient estimators.  Suppose that our goal is to estimate α ≡ β'(θ0),

where β(θ) is a smooth function of θ which can be represented in the form β( · ) = EZ( · ) for

some family of r.v.’s (Z(θ) : θ ∈ ℜ).  Let Xk be the forward difference defined by Xk ≡ (Zk(θ0 +

hk-1/4) - (Zk(θ0))/(hk-1/4), where Zk(θ0 + hk-1/4) and Zk(θ0) are independently generated and h is

a positive constant.  Set 
  
Xn ≡ n−1(X1+K +Xn) , and let α(t) ≡ XN(t) , where N(t) is the number of

Xi’s available within t units of computer time.  This recursive derivative estimator is studied in

Glynn and Whitt [22]; it is shown there that under reasonable assumptions,

t1/4(α(t) − α ) ⇒ λ−1/4N(η,κ 2)

where κ2 = 4varZ(θ0)/3h2, η = 2β''(θ0)h/3, and λ-1 is the mean time required to generate Z(θ0) .

In this derivative estimation setting, the appropriate choice of estimation strategy may therefore de-

pend on whether one uses mean square error or mean absolute deviation as one’s optimality

criterion.

For a more extensive and complete discussion of these efficiency issues, see Glynn and

Whitt [22].  Throughout the rest of this paper, we shall focus on estimation algorithms in which

(2.1) holds with γ = 1/2 and L = N(0, σ2).
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3.      Control Variates

The method of control variates is one of the most widely applied efficiency improvement

techniques.  It owes its popularity in part to the ease with which it can be interfaced with com-

monly available high-level simulation languages and in part to the number of practical settings in

which it can easily be applied.  We start by describing the method in its most general form.

Suppose that we wish to estimate a real-valued parameter α.  We assume that α can be put

in the form α = g(µ), where g : ℜd → ℜ is continuously differentiable in a neighborhood of µ.

The naive estimator for such problem typically requires existence of an ℜd-valued process X =

(X(t) : t ≥ 0) such that

µ(t) ≡ t−1 X(s) ds
0

t

∫ ⇒ µ

as t → ∞.  The naive estimator for α is then given by α(t) ≡ g(µ(t)).  Many different estimation

problems can be put in the above form, including estimation of a mean and ratio estimation.

The method of control variates assumes the existence of an associated ℜl-valued process Y

= (Y(t) : t ≥ 0) and a constant c ∈ ℜl, known to the simulator, such that

C(t) ≡ t−1 Y(s) ds
0

t

∫ ⇒ c

as t → ∞.  We can now take advantage of the fact that the time-average of the process Y is known,

as follows.  Let ƒ : ℜk+l → ℜ be a function that is chosen so that ƒ( · , c) = g( · ) and such that ƒ is

continuously differentiable in a neigborhood of (µ, c).  Then, it follows from the above laws of

large numbers for C(t) and µ(t) that the estimator αc(t) ≡ ƒ(µ(t), C(t)) is consistent for α.  The

question now comes down to choosing the function ƒ so as to minimize the variance of the estima-

tor just constructed.  We note that the time-average C is typically referred to as a control in the

literature.

We will now follow the analysis of Glynn and Whitt [21], which will establish that we may

restrict the choice of ƒ to functions that are essentially linear in the control.  This will require that

we strengthen the above laws of large numbers for µ(t) and C(t) to a joint CLT.  Specifically, we

shall now assume that there exists a (d + l) × (d + l) positive definite matrix ∑ such that

t1/2(µ(t) − µ, C(t) − c) ⇒ N(0,∑) (3.1)
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as t → ∞, where

∑ = ∑µµ ∑µc
t

∑µc ∑cc







and ∑µµ, ∑µc, and ∑cc are d × d, l × d, and l × l matrices, respectively.

 We observe that (3.1) in fact implies the validity of the laws of large numbers stated earlier

in this section.  Consequently, µ(t) and C(t) are therefore close to their respective limits µ and c for

t large.  A Taylor expansion of ƒ(µ(t), C(t)) about (µ, c) therefore yields

f (µ(t),C(t)) = f (µ,c) + ∇µ f (ξ (t),η(t)) (µ(t) − µ ) + ∇c f (ξ (t),η(t))(C(t) − c) (3.2)

where (ξ(t), η(t)) lies on the line segment between (µ, c) and (µ(t), C(t)).  It follows from (3.1)

and (3.2) that

αc(t) = α + ∇µ f (µ,c) (µ(t) − µ ) + ∇c f (µ,c)(C(t) − c) + op(t−1/2) (3.3)

and

t1/2(αc(t) − α ) ⇒ N(0,σc
2) (3.4)

as t → ∞, where σc
2 = ∇f (µ,c) ⋅ ∑⋅∇f (µ,c)t  and op(t−1/2) represents a stochastic process having

the property that t1/2op(t−1/2) ⇒ 0 as t → ∞.  A similar argument applies to α(t), yielding

α(t) = α + ∇g(µ ) (µ(t) − µ ) + op(t−1/2) (3.5)

and

t1/2(α(t) − α ) ⇒ N(0,σ2) (3.6)

as t → ∞, where σ2 = ∇g(µ ) ⋅ ∑µµ ⋅∇g(µ )t .  But our choice of ƒ guarantees that

∇µ f (⋅,c) = ∇g(⋅)

and hence it follows from (3.3) and (3.5) that

αc(t) = α(t) + ∇c f (µ,c)(C(t) − c) + op(t−1/2) (3.7)

as t → ∞.  Note that (3.4) and (3.6) imply that αc(t) and α(t) have errors, as estimators of α, of

order t-1/2, while (3.7) shows that the two estimators differ from one another only through a linear

combination of the control and an asymptotically negligible term of the order op(t-1/2).  Hence, it

follows, from the standpoint of asymptotic efficiency, that we may as well restrict our search for

good functions ƒ to functions that differ from α(t) only through a linear combination of the control.

(Of course, it may well be possible that in certain settings, the small-sample properties of the “non-

linear” control described above are superior to those associated with the “linear” version.)
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We henceforth restrict our attention to linear control schemes of the form

α l (t;λ ) ≡ α(t) − λ (C(t) − c).

The question now reduces to how to choose the multiplier λ appropriately, so as to minimize the

variance of the corresponding estimator.  Our joint CLT for (µ(t), C(t)), together with (3.6),

shows that

t1/2(α l (t;λ ) − α ) ⇒ N(0,σ2(λ ))

where σ2(λ ) = σ2 − 2λ ∑µc ∇g(µ )t + λ ∑cc λt .  To minimize σ2(λ) is easy.  The minimizing λ is

given by

λ* = ∇g(µ )∑µc
t ∑cc

−1.

Of course, in practice, the minimizing λ*  is unknown, and must be estimated from the simulated

data.  Suppose that ∑µc(t) and ∑cc (t) are consistent estimators for ∑µc and ∑cc , respectively, so

that ∑µc(t)  ⇒ ∑µc and ∑cc (t) ⇒ ∑cc as t → ∞.  Then, λ (t) ≡ ∇g(µ(t))∑µc(t)T ∑cc(t)
−1 consis-

tently estimates λ* and it is easily verified that

t1/2(α(t;λ (t)) − α ) ⇒ N(0,σ2(λ*2 ))

so that no loss of asymptotic efficiency is incurred by having to estimate λ* .  Note that as the num-

ber of components in the control C expands, the minimizing value of the variance decreases.  This

suggests that it is optimal to use as many components in the control vector as possible, and this as-

sertion is valid in a large-sample sense.  However, the empirical evidence is that the method begins

to degrade, both in terms of small-sample bias and variance, when too many components are added

to the control.  This is because the optimal λ*  becomes successively harder to estimate in finite-

length samples.  This “small-sample” effect has been extensively studied in the literature.  One

noteworthy result, in this vein, was obtained by Lavenberg, Moeller, and Welch [27].  They stud-

ied the situation in which g is linear and (µ(t), C(t)) are multivariate normally distributed.  In this

setting, they obtain a precise small-sample characterization of the loss of efficiency engendered by

having to estimate λ* .

It may, at first, be unclear as to how controls, with known asymptotic mean, can be con-

structed in practice.  However, controls are easy to construct in almost any simulation context.  In

particular, simulations are driven by i.i.d. sequences of random variables with known distribu-

tions.  If one takes a sample mean of all the random variables that were generated from a given



11

specific distribution, the law of large numbers for i.i.d. sequences guarantees that this quantity will

converge with probability one to the known mean of the underlying distribution.  This type of

sample mean can therefore be used as a component of a control vector C(t).  Note that the addi-

tional computational burden associated with using the method of control variates largely derives

from the additional time required to collect statistics for the control vector.  It seems reasonable to

expect that this additional time is typically fairly modest, so that the gain in computational effi-

ciency is roughly equal to the variance reductions described above.

It is also worth observing that in simulating an open network of queues, the exogenous ar-

rival rates are known quantities.  Thus, the empirical exogenous arrival rates may be used to form a

vector of controls.  This particular choice of control is closely related to another variance reduction

technique called indirect estimation.  See Glynn and Whitt [21] and Law [28] for additional details

on the connection.

4 . Common Random Numbers

The method of common random numbers is an efficiency improvement technique that is

widely used in comparison of stochastic systems.  To illustrate the method, suppose that we wish

to compare the output of two different systems.  Assume that the performance measure for system i

(i =1, 2) is given by ƒi(X), where X is a real-valued r.v. and ƒ1, ƒ2 are two given real-valued

functions.  A reasonable way to compare two such systems is to examine the parameter α ≡ µ1 -

µ2, where µi = Eƒi(X) (i =1, 2).  The naive approach to estimating α is to generate two indepen-

dent streams X11, X12, ... and X21, X22, ..., both consisting of i.i.d. replicates of the r.v. X.

The naive estimator is then given by

  
αn ≡ n−1(( f1(X11) − f2(X22))+K +( f1(X1n) − f2(X2n))).

Let τij  be the amount of computer time required to generate fi(Xij) and suppose that the τij ’s are

also i.i.d.  Let N(t) be the number of (X1i, X2i ) pairs generated in t units of computer time; then

α(t) ≡ αN(t) is the estimator available after t units of computer time have been expended.  Section

2’s discussion implies that, under mild regularity hypotheses,

t1/2(α(t) - α) ⇒ N(0, σ2)
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as t → ∞, where σ2 = (Eτ11 + Eτ21) ⋅ (var f1(X) + var f2(X)).

The above estimator subjects the two systems to independent random “shocks”.  Intuitively,

it seems fairer to correlate the pattern of shocks, so that if one system receives an “unlucky” se-

quence of random inputs, then so does the other.  Suppose, in particular, that in estimating µ1 and

µ2 above, we use a common sequence of Xi’s to drive both systems.  Specifically, let X1, X2, ...

be a sequence of i.i.d. copies of X, and set

  
αn

c ≡ n−1(( f1(X1) − f2(X1))+K +( f1(Xn) − f2(Xn))).

Suppose that τi is the amount of time required to generate and calculate ƒ1(Xi) - ƒ2(Xi) and let N(t)

= max (n ≥ 0: τ1 + ... + τn ≤ t).  Then, α c(t) ≡ αN(t)
c  is the estimator available after t units of

computer time have been expended. Its CLT takes the form

t1/2(α c(t) − α ) ⇒ N(0,σc
2)

as t → ∞, where σc
2 = Eτ1 ⋅ var( f1(X1) − f2(X1)) .  This “common random numbers” (CRN) es-

timator is therefore more efficient than the naive estimator if σc
2 ≤ σ2.  It is clear that the amount of

time required to compute ƒ1(X1) is equal to that required to compute ƒ1(X11); the additional time

required to compute ƒ2(X1) may be substantially less than that required to calculate ƒ2(X21), de-

pending on how much of the effort goes into the function evaluation as compared to the generation

of the additional replicate X21.  We conclude that Eτ1 ≤ E(τ11 + τ21).  Thus, we obtain a guaran-

teed efficiency improvement if var( f1(X1) − f2(X1)) ≤ var( f1(X11) − f2(X21)).  Since

var f i (Xi1) = var( f i (Xi ))  (i  =1, 2), it follows that an efficiency improvement occurs if

cov( f1(X1), f2(X2)) ≥ 0.  In order that the r.v.’s f1(X1), f2(X1)  be positively correlated, it seems

intuitively reasonable to require that the two systems respond in a similar fashion to the random in-

put X1, in the sense that f1(X1) ought to be large (small) when f2(X1) is large (small).  There are

two types of commonly encountered settings in which this occurs:

i) ƒ1, ƒ2 are both increasing (or both decreasing)

ii) ƒ1 is close to ƒ2.

Specifically, it is well known that if ƒ1 and ƒ2 are both increasing (or both decreasing), then

cov( f1(X1), f2(X1)) ≥ 0, providing mathematical justification for i).  Also, if ƒ1 → ƒ2 pointwise,

then it typically follows that cov( f1(X1), f2(X1)) → var f1(X1) > 0. This gives (asymptotic) sup-
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port for ii).

Of course, most stochastic system comparisons involve (much) more complicated r.v.’s

than those described above.  However, the principles i) and ii) enunciated above remain valid more

generally.  A number of theoretical results are available that support these general conclusions.

The assumptions typically involve some kind of stochastic monotonicity; see Heidelberger and

Iglehart [26], Glynn and Iglehart [17], Glasserman [11], and Glasserman and Yao [15] for such

results.

There are some significant practical difficulties that are commonly encountered in trying to

apply the method of CRN’s.  The most fundamental is that it is non-trivial to set up the various

random inputs to the alternative systems in such a way that the two systems will be guaranteed to

respond to the inputs in a similar fashion.  A typical recommendation is to generate all the random

variables used in the simulation via inversion, since inversion preserves monotonicity in the under-

lying uniform r.v.’s.  We note, however, that inversion is not a necessary ingredient to the method

of CRN’s, as our above discussion illustrates (Xi need not be generated by inversion).  A second

recommendation that is frequently made is to assign different uniform random number generators

to each of the sources of random variation within the models, so as to “synchronize” the random

inputs to the maximum extent possible; see Bratley, Fox, and Schrage [2] and Glasserman and Yao

[15] for further details.

A more subtle problem can arise in applying the method of CRN’s to systems comparisons

involving steady-state performance measures associated with regenerative systems.  As discussed

in Glynn [16], applying CRN’s to a pair of discrete state space Markov chains can lead to a situa-

tion in which the joint process has multiple closed communicating classes, as well as transient

states.  As a consequence, for a given initial state, there is no guarantee that the system will return

to this state infinitely often.  In fact, it may be difficult to identify any state as a regenerative state to

which the joint process will return infinitely often.  This complicates the application of the regen-

erative method to such simulations.

As indicated above, the method of CRN’s leads to computational improvements when the

two systems being compared are “close” to one another (see ii) above).  One important practical

setting in which this occurs is that of derivative estimation, in which the derivative is computed via
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a finite difference.  If common random numbers are applied to each of the simulations used to form

the finite differences, substantial variance reductions can result.  In fact, use of CRN’s can even

impact the rate of convergence as measured in the quantity γ that appears in (2.1); see Glynn [18]

for details.

We conclude this section by noting that the efficiency improvements described above for es-

timating α ≡ µ1 - µ2 also hold for “ratio comparisons” of the form α ≡ µ1/µ2.  The asymptotic

variances of the ratio estimators that arise in this latter setting involve the same type of covariance

as arises in the analysis of CRN’s in the non-ratio context considered above.

A related efficiency improvement technique, called antithetics, is designed to take advantage

of possible negative correlations that can be induced in certain settings while estimating perfor-

mance measures associated with a single stochastic system; see Cheng [5] for a discussion.

5 . Importance Sampling

The calculation of quantities associated with “rare events” is a computational challenge from

a simulation viewpoint.  It turns out that importance sampling is a particularly effective efficiency

improvement technique for dealing with such problems.

In order to get a sense of the difficulties engendered by “rare event” simulation, consider the

problem of estimating the probability of an improbable event.  Let A be the event and let α ≡ P(A).

The naive approach to estimating such a probability is to generate i.i.d. replicates I1, I2, ... of the

indicator r.v. I(A) associated with the event.  Let αn be the proportion of the replicates for which

the event A occurred, namely αn ≡ n-1(I1+...+In).  The CLT asserts that

n1/2(αn − α ) ⇒ N(0,α(1− α ))

as n → ∞.  This suggests the approximation

αn ≈ α + α(1− α ) / n N(0,1) (5.1)

A rare event is one for which α = P(A) is small.  The normally distributed error term in (5.1) goes

to zero as the event A becomes successively rarer, so that the absolute error associated with this

estimator improves as the event becomes rarer.  However, in many rare event simulation settings,

one is more interested in estimating the probability to a high level of precision from a relative view-
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point.  For example, one may need to know the order of magnitude of the probability.  (Is it of the

order of 10-6 or 10-9?)  Dividing both sides of (5.1) by α yields the approximation

αn / α ≈ 1+ (1− α ) / αn N(0,1) (5.2)

so that the relative error of this naive estimator degrades significantly as the event gets rarer.  This

puts a premium on finding more efficient estimators to deal with this applications venue.

A principal difficulty with the above approach is that a very high proportion of the simula-

tion time is spent sampling the uninteresting part of the sample space on which the rare event does

not occur.  One would ideally like to devote most of one’s computational effort to that part of the

sample space on which the rare event does occur.  Importance sampling is ideally suited to ac-

complishing this.

Suppose that one’s goal is to calculate α ≡ EX, where X is a real-valued r.v. defined on a

probability space (Ω, F, P).  Then, α can be expressed as the integral

α = X(ω )P(dω ).
Ω
∫ (5.3)

The idea behind importance sampling is that one may use an alternative distribution Q , say, rather

than P to do the sampling, and thereby sample more in those regions of Ω which are computa-

tionally more important.  To relate the outputs from the new simulations to those obtained under

the original distribution P, suppose that we can find a r.v. L satisfying

X(ω)L(ω)Q(dω) = X(ω)P(dω) (5.4)

∀ω∈Ω.  One way to guarantee this is to require that L(ω)Q(dω) = P(dω), ∀ω∈Ω.  In the language

of measure-theoretic probability, this latter requirement amounts to demanding that P be absolutely

continuous with respect to Q; the r.v. L is then called the likelihood ratio of P with respect to Q.  In

the case that Q(dω) = q(ω)Q*(dω) for some density q, absolute continuity forces P to have a den-

sity p(·) such that p vanishes everywhere that q vanishes.  The likelihood ratio L is then given by

L(ω) = p(ω)/q(ω).

Of course, in general, all that is required is that there exist a r.v. L satisfying (5.4).  The pa-

rameter α can now be re-expressed as

α = EQ(X · L) (5.5)

where EQ(·) denotes the expectation operator taken relative to the distribution Q.  The idea underly-
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ing importance sampling is to now sample according to the probability distribution Q, and to aver-

age the r.v.’s X1 · L1, X2 · L2, ... in order to obtain the new estimator.  Note that one possible

choice for Q is

Q*(dω) = |X(ω)| P(dω)/α* (5.6)

where α*  is the normalization factor given by α * = |X(ω )|P(dω )
Ω∫ .  With this choice, the r.v. L

takes the form

L(ω) = α* / |X(ω)| (5.7)

in which case X(ω) · L(ω) = α* I(X(ω) > 0) - α* I(X(ω) < 0).  Observe that if X is a non-negative

r.v., X · L is equal to α and is hence deterministic.  It follows that, in this setting, Q*  reduces the

variance to zero.  Of course, this particular choice of Q is not typically implementable, since Q*  de-

pends on α* , which is effectively the unknown quantity that one is trying to simulate.

Nevertheless, it suggests that, in practice, one should try to choose a Q that is roughly proportional

to |X(ω)| p(ω) ( assuming that P has a density p ).  This approach has been used successfully, for

example, to numerically compute the normalization constants that appear in the steady-state distri-

butions of product-form networks; see Ross and Wang [32].  Furthermore, in the case that one is

trying to calculate the probability of a rare event A, the zero-variance choice of Q is

Q*(dω) = P(dω | A)

where P(· | A) is the conditional distribution of P given the occurrence of the rare event A.  Thus,

in rare event simulation, a key step in applying importance sampling is determining at least the ap-

proximate behavior of the system on that part of the sample space on which the rare event occurs.

Fortunately, that part of probability theory known as “large deviations theory” is largely concerned

with exactly this type of calculation.  As we shall see later, large deviations plays a key role in rare

event simulation for random walks and queues.

One important applications setting in which importance sampling has been successfully ap-

plied is that of highly reliable (or highly dependable) systems.  This is a problem context in which

it is fairly easy to discern intuitively what the conditional distribution looks like, at least approxi-

mately.  The basic type of model that has been most widely studied is one in which the system un-

der consideration consists of d components.  Since these models are frequently used to analyze

systems that are designed to be highly reliable, the failure rates for each of the components are
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typically very small, particularly in comparison to the repair rates associated with any maintenance

policy used to operate the system.  The most important types of performance measures for such

systems are the mean time to failure (MTTF), conditional on all components being initially opera-

tional, and the steady-state unavailability (the long-run proportion of time that the system is down).

For both of these measures, conventional simulation can be extremely expensive, because of the

substantial amounts of simulated time necessary to observe a sufficient number of failures so as to

obtain a reasonable level of precision in the estimates.

Before proceeding any further, we wish to give a more concrete explanation of how impor-

tance sampling is typically implemented in the simulation of complex stochastic systems.  Suppose

that the objective is to estimate α on the basis of the simulation of an S-valued stochastic sequence

X = (Xn : n ≥ 0).  Here, we can take Ω as Ω = S∞, the space of sequences with S-valued coordi-

nates.  Suppose that α = E(ƒT(X0, X1, ..., XT) I (T < ∞)) where, for each n ≥ 0, ƒn : Sn → ℜ is a

given function specified by the simulator and T is a stopping time.  (By a stopping time, we mean

that for each n ≥ 0, I(T = n) is a function of X0, ..., Xn alone and, in particular, does not depend

on any Xi with i > n.)  Let P be the distribution associated with the expectation operator E(·) and

let Q be our alternative importance sampling distribution, selected with the property that P is suit-

ably absolutely continuous with respect to Q.  In this context, it means that for each n ≥ 0, there

exists a r.v. Ln ( necessarily a function of X0, ..., Xn alone ) such that

Ln (x0, ..., xn) Q(X0∈dx0, ..., Xn∈dxn) = P(X0∈dx0, ..., Xn∈dxn).

Let EQ(·) be the expectation operator corresponding to Q.  It is straightforward to verify that

α = EQ(ƒT(X0, ..., XT) I(T<∞)LT). (5.8)

In most simulation schemes, Xn+1 is generated from the conditional distribution associated with

X0, ..., Xn.  Specifically, if the distribution underlying the Xi’s is P (Q), then Xn+1 is typically

generated from Pn+1(· | X0, ..., Xn )(Qn+1(· | X0, ..., Xn )), where Pn+1(· | x0, ..., xn ) ≡

P(Xn+1∈ · | X0 = x0, ..., Xn  = xn) and Qn+1(· | x0, ..., xn ) ≡ Q(Xn+1∈ · | X0 = x0, ..., Xn  =

xn).  Under the assumption that P is suitably absolutely continuous with respect to Q, it follows

that

  
Ln = l0(X0) ⋅ li (Xi ;X0,K ,

1

n∏ Xi −1) (5.9)

where l0 satisfies l0(x0) Q(X0∈dx0) = P(X0∈dx0) and ln satisfies ln (xn; x0, ..., xn-1) Qn(dxn | x0,
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..., xn-1) = Pn(dxn | x0, ..., xn-1)  for n ≥ 1.  This form of the likelihood ratio is particularly con-

venient to use for simulations of systems that are naturally specified in terms of their conditional

distributions.  Perhaps the nicest such example is that of a time-homogeneous discrete time Markov

chain X taking values in a finite state space S and possessing transition matrix P = (P(x, y) : x, y ∈

S).  Assume that the distribution Q is also Markovian, so that Qn( · | x0, ..., xn-1) = Qn( · | xn-1).

In order to guarantee the appropriate absolute continuity, it is required that Qn(y | x) be positive

whenever P(x, y) is positive.  In any case, Ln then takes the form

Ln = l0(X0) ⋅ P(Xi −1,Xi ) / Qi (Xi |
1

n∏ Xi −1) (5.10)

so that the likelihood ratio can then be easily updated recursively.  When Q corresponds to the

distribution of a time-homogeneous Markov chain having transition matrix Q' = (Q'(x, y) : x, y ∈

S), the likelihood ratio simplifies even further, since then Qn(y | x) = Q'(x, y).  In fact, this type of

choice for Q is the most common form of importance sampling distribution for dealing with dis-

crete-time Markov chains.

Returning now to the reliability context, most of the models simulated are either Markovian

or can easily be made so by adding appropriate supplementary state variables.  By applying regen-

erative arguments, it turns out that the critical quantity to calculate in such models is the probability

that the system fails before it returns to the fully operational state, given that it starts with all com-

ponents fully operational; see, for example, Goyal et al [23].  With this quantity in hand, both of

the performance measures mentioned above can be easily calculated, with a modest amount of

additonal simulation.  As mentioned earlier, the ideal zero-variance importance sampling

distribution for simulating this probability is to use the conditional distribution.

Consider an irreducible Markov chain X = (Xn : n ≥ 0) taking values in a finite state space

S.  Let A, B be two disjoint non-empty subsets of S and view B as representing the fully opera-

tional state and A as representing those states in which the system is failed.  We wish to calculate

the conditional distribution starting from a state x ∈ S, given that A is hit by the chain before B is

hit.  It is easily verified that the conditional distribution Q*  corresponds to a time-homogeneous

Markov chain having transition probabilities given by Q'(x, y) = P(X1 = y | X0 = x, A is hit before

B).  Consequently, the types of sampling distributions Q that are typically used in the reliability
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context are those corresponding to time-homogeneous Markov chains.  Of course, more can be

said about the conditional distribution for reliability models.  For example, when the failure rates

are very small relative to the repair rates, it is quite likely that the system will reach the failed state

prior to a return to the fully operational state by following the path to failure that involves the

smallest possible number of component failures.  (Any additional component failure makes the

likelihood of such a path that much smaller.)  Hence, the conditional distribution accentuates the

likelihood of component failures, with a particular emphasis on those components for which their

failure leaves the system most vulnerable to going down.  This sort of “failure biasing” approach

has been used with success in dealing with a large class of such reliability simulations.  For addi-

tional details, see Goyal et al [23], Shahabuddin [34], and Heidelberger [25].

We turn now to importance sampling for queueing systems.  Since queues are effectively

random walks with boundaries, a discussion of the relevant theory for random walks is necessary.

This is a setting in which large deviations theory is a powerful guide for choosing a sampling dis-

tribution.  Let (Sn : n ≥ 0) be a random walk, in which S0 = 0 and Sn = X1 + X2 + ... + Xn, where

the Xi’s are i.i.d. real-valued r.v.’s.  Let µ be the mean of X1 and note that the law of large num-

bers implies that, for n large, Sn ≈ nµ.  A rare event that is of some interest in the random walk

setting is the calculation of the tail probability α ≡ P(Sn > na) where a > µ.  For n large, it seems

reasonable to expect that, conditional on Sn > na, Sn ≈ na.  Large deviations theory can be used to

justify this assertion.  (This idea is implicit in the proof of, for example, the Gartner-Ellis theorem;

see p.14-19 of Bucklew [3].)  Furthermore, the theory can be used to identify the approximate

form of the conditional distribution.  Consider the family of distributions Pθ, θ ∈ ℜ under which

the sequence (Sn : n ≥ 0) continues to form a random walk, with common increment distribution

given by

Pθ (xi ∈dx) = exp(θx − ψ (θ ))P(Xi ∈dx) (5.11)

where ψ ( · ) is the cumulant generating function of the Xi ’s under P, namely ψ (θ) =

logEexp(θX1).  It is easy to verify that EθXi = ψ'(θ).  It follows that one can alter the drift of the

random walk via a judicious choice of θ.  In particular, one should give the random walk a drift a

in order that Sn ≈ na.  This discussion suggests that one should simulate the random walk under

distribution Pθa
, where θa satisfies ψ'(θa) = a, in order to estimate the rare event probability α =
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P(Sn > na).  The type of change of distribution specified by (5.11) is termed an “exponential

twist”.  Large deviations theory proves that the exponential twist Pθa
 is in fact the “asymptotic”

conditional distribution of the random walk, given that Sn ≈ na; see Bucklew [3] for an accessible

introduction to the general subject of large deviations.  (Here, the asymptotic takes hold as n →∞.)

This theory holds for random walks with much more complicated increment structure than

that described above.  In particular, consider a Markov random walk in which the increments are

derived from a Markov chain.  Here, Sn continues to take the form Sn = X1 + ... + Xn.  However,

we now assume that Xi = ƒ(Zi) where Z = (Zn : n ≥ 0) is an irreducible Markov chain, with finite

state space Γ and transition matrix K = (K(x, y) : x, y ∈ Γ).  The key is to describe the analog to

the “exponential twist” described above.

Let Kθ  = (Kθ(x, y) : x, y ∈ Γ) be the non-negative matrix with elements defined by Kθ(x,

y)  = exp(θƒ(x))K(x, y).  Perron-Frobenius theory for such matrices guarantees the existence of a

positive eigenvalue λ(θ) and corresponding positive column eigenvector hθ = (hθ(x) : x ∈ Γ) such

that Kθhθ = λ(θ)hθ.  Then, the matrix Gθ  = (Gθ(x, y) : x, y ∈ Γ) with elements defined by Gθ(x,

y)  = Kθ(x, y) hθ(y) /λ(θ)hθ(x) is stochastic.  Let Pθ be the distribution under which Z evolves as a

Markov chain with transition matrix Gθ, and (Sn : n ≥ 0) continues to be defined as Sn = ƒX1 + ...

+ ƒXn.  This class of distributions corresponds to the “exponentially twisted” distributions de-

scribed earlier in the i.i.d. setting.  In fact, if one sets ψ(θ) = log(λ(θ)), it turns out that ψ'(θ) is

the drift of (Sn : n ≥ 0) under Pθ, in the sense that ψ'(θ) is the steady-state mean of ƒ(Zn : n ≥ 0)

computed under transition matrix Gθ.

Suppose that a > µ where µ is the steady-state mean of ƒ(Zn : n ≥ 0) computed under K.

Then, P(Sn > na) corresponds to the probability of a rare event when n is large.  As in the i.i.d.

setting, the asymptotic conditional distribution is given by Pθa
, where θa satisfies ψ'(θa) = a.

We now turn to the analysis of queues.  The focus will be on single-station queues, largely

because networks are not yet well understood.  It is well known that much of the steady-state the-

ory for single-station queues amounts to computing the maximum of an associated random walk.

For example, the steady-state waiting time in the standard GI/G/1 queue has the same distribution

as the maximum M = max(Sn : n ≥ 0), where Sn = X1 + ... + Xn and Xi = Vi-1 - Ui; here, the Vi’s



21

are the successive service times of customers, and the Ui’s are the successive interarrival times.  In

order that the queue have a well-defined steady-state, the “traffic intensity” of the queue must be

strictly less than one.  This translates into the associated random walk having negative drift.  As a

consequence, the computation of the tail probability P(M > x) is a rare event calculation when x is

large.  Let T(x) be the time at which the random walk first jumps above level x.  The random walk

theory already descibed asserts that if the random walk first attains level x at time t, then the condi-

tional distribution looks approximately like Pθt
, where θt satisfies ψ(θt) = x/t.  However, large

deviations theory also provides a rough approximation of the probability that St ≈ x.  The most

likely path along which the random walk’s maximum is greater than x is then found by maximizing

these probability approximations over t.  It turns out that the optimizing t takes the form t ≈

ψ'(θ* )x, where θ*  is the positive root of ψ( · ).  This shows that, in order to calculate the proba-

bility that the steady-state waiting time is greater than x (x large), one should generate the associ-

ated random walk from Pθ * .  A similar conclusion holds for Markov modulated queues, in which

either the arrival epochs or the sum of the service times (or both) are Markov random walks.  For

additional details on importance sampling for random walks and queues, see Chang et al [4],

Asmussen [1], Sadowsky [33], Glasserman and Kao [14], and Heidelberger [25].  For some dis-

cussion of how to compute the relevant likelihood ratios for general discrete-event simulations, see

Glynn and Iglehart [20] and Glynn [19].

Before concluding, we note that one difficulty with importance sampling is that the method

is invasive, in the sense that the entire probability dynamics of the simulation must be altered in or-

der to apply the method.  This is particularly problematic, since the appropriate sampling distribu-

tion can be quite sensitive to the choice of performance measure.  Hence, if multiple performance

measures are to be estimated from a single simulation, importance sampling may be inappropriate.

In addition, the invasive character of the approach is undesirable in any setting in which visualiza-

tion is deemed important, since the dynamics under the new sampling distribution may be quite dif-

ferent from those associated with the original system.  Observing the dynamics of the altered sys-

tem may then lead to incorrect conclusions about the original system.
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6. Conditional Monte Carlo

An intuitively reasonable approach to producing estimators with better statistical characteris-

tics is to try to eliminate as much randomness as possible by replacing random variables by their

expectations.  Of course, in general, naive replacement of input r.v.’s by their expected values

leads to simulation algorithms that are invalid.  However, conditional Monte Carlo provides a theo-

retical environment in which this replacement is not only valid but often desirable.

Suppose that one wishes to estimate α ≡ EZ, where Z is a real-valued r.v.  Assume that

there exists a r.v. Y such that g(y) ≡ E(Z | Y = y) can be calculated, either analytically or numeri-

cally.  Clearly, α = Eg(Y) so there is now a choice between basing the estimation algorithm for α

on Z or on g(Y).  This is a situation in which the framework of Section 2 can be helpful.  As one

might expect, the conditional expectation g(Y) is less variable than Z, so varg(Y)  ≤ varZ.  (This is

a setting in which replacing a r.v. by its (conditional) expectation reduces variance.)  On the other

hand, the time required to compute g(Y) may be substantially larger than that necessary to calculate

X.  So, despite the fact that this replacement is guaranteed to reduce variance, some care must be

taken in order to guarantee an efficiency improvement.

The above idea works more generally.  Suppose that there exists a process Y for which E(Z |

Y) can be calculated.  Conditional Monte Carlo involves basing one’s estimation algorithm on

replications of the r.v. g(Y) ≡ E(Z |Y); again, a variance reduction is guaranteed.  There is one par-

ticularly important class of stochastic models in which a good conditioning process exists.

Suppose that Z is a performance measure associated with the simulation of a semi-Markov process

X = (X(t) : t ≥0).  One of the key structural features of such a process is that the conditional distri-

bution of the successive state transition epochs is very simple, given the sequence of states visited.

In particular, given the sequence of states visited, the sequence of holding times (ηi : i ≥ 0) (the

times spent in each of the states visited) form an independent sequence of r.v.’s, each r.v. having a

distribution known explicitly to the simulator.  To illustrate how this property can be exploited, let

Yi be the i’th state visited by X and Ti be the time of the transition from the i’th state.  Then for a

real-valued function ƒ, the conditional expectation of a “cumulative cost” can easily be computed:



23

  

E( n f (X(s)) ds
0

t

∫ |Y0,Y1,K ) = f (Yi )µ(
0

n∑ Yi ,Yi +1)

where µ(x, y) is the mean amount of time spent in state x, given that the next state visited by X is

y.  Since the means µ(x, y) are easily computed from the basic “building block” data of the pro-

cess, it is clear that this conditional expectation is typically cheaper to calculate than the cumulative

cost itself, since (in particular) the holding time variates need not be generated.  Thus, the condi-

tional expectation is a two-way winner here, because both the variance and mean time to compute

observations is reduced.  Consequently, conditional Monte Carlo is guaranteed to provide an effi-

ciency improvement in the simulation of cumulative costs for semi-Markov processes.  Since cu-

mulative costs arise naturally in steady-state estimation, this idea also has implications for the com-

putation of steady-state quantities.  Because only the discrete-time sequence (Yi : i ≥ 0) need be

simulated in order to calculate the conditional expectation, this method is referred to as “discrete-

time” conversion in the literature; see Fox and Glynn [9] for details.

Continuous-time Markov chains form a special subclass of the class of semi-Markov pro-

cesses, with some additional structure.  Because of the fact that the state holding times are expo-

nentially distributed, the principle of conditional Monte Carlo can then be applied to a number of

performance measures that are significantly more complex than the cumulative cost decsribed

above.  See Fox and Glynn [9] for applications to the simulation of a variety of performance mea-

sures associated with finite-horizon continuous-time Markov chains.

The above discussion suggests that a great deal of structure must be present in the system

being simulated, in order that conditional Monte Carlo be applicable.  However, a related idea,

called “extended conditional Monte Carlo”, is applicable to a much greater class of processes.  It is

specially designed for performance measures that take the form of a cumulative cost and is easiest

to understand when the underlying process is a discrete-time Markov chain X = (Xn : n ≥ 0).

Given a real-valued function ƒ defined on the state space of the chain, the cumulative cost then

takes the form f (Xi )1

n∑ .  Because of the Markov structure, the conditional expectation E(ƒ(Xi+1) |

X0, ..., Xi) = E(ƒ(Xi+1) | Xi) is typically easy to calculate.  This suggests replacing the cumulative

cost by
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E( f (Xi )|Xi −1
1

n

∑ ).

Unfortunately, because of the fact that each summand in the above r.v. is conditioned on a differ-

ent quantity, there is no longer any universal guarantee that one will obtain a variance reduction by

basing one’s estimation strategy on this.  Instead, recent efforts have focussed on establishing suf-

ficient conditions for a variance reduction to result from “extended conditional Monte Carlo”; see

Glasserman [12, 13] and Glynn and Iglehart [17] for details.

7. Stratification

Stratification is an approach that permits one to take advantage of the fact that certain prob-

ability distributions are known.  A good example of a problem setting in which this method can be

used effectively is given in Bratley, Fox, and Schrage [2].  In their example, they consider a bank

with multiple tellers.  On any given day, the number of tellers Y that report for work is random,

with known distribution. Let X be a given performance measure and note that α ≡ EX can be

written in the form
α = E(X|Y = i) pi

i
∑

where pi is the probability that i tellers report for work on a typical day.  In a conventional simula-

tion, one samples the r.v. Y according to the mass function (pi : i ≥ 0).  In the simulation of n

days, let ki(n) be the number of days on which precisely i tellers report, and let X1, X2, ..., Xn be

the replicates of X observed over the n days.  The conventional estimator for α is, of course, the

sample mean of the Xi’s given by αn = n-1(X1+ ... +Xn).  This estimator can be re-written in the

form
αn = Xi

i
∑ (ki (n))ki (n) / n

where Xi (k) is the sample mean of k i.i.d. replicates of the r.v. X generated from its distribution

conditional on Y = i.  When n is large, ki(n)/n ≈ pi and this suggests that we replace the above es-

timator by
α p(n) = Xi

i
∑ (ki (n))pi .
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The estimator αpn is called a “post-stratified” estimator.  This approach provides a guaranteed vari-

ance reduction relative to αn; see Bratley, Fox, and Schrage [2] and Cochran [6] for details.  Note

that this method is non-invasive, in the sense that one can simulate the process in the conventional

fashion and just adjust the final estimator by taking advantage of one’s knowledge of the pi’s.  (By

invasive, we refer to methods that require that one modify the code that generates the simulation of

sample paths of the stochastic system under study.)

On the other hand, the method known as stratification is invasive.  Here, one pre-assigns the

amount of sampling to each “stratum”; in the banking example, stratum i corresponds to that part of

the sample space on which Y = i.  In particular, one assigns an amount of sampling ni proportional

to the stratum’s probability, so that ni is given by the greatest integer less than or equal to pi · n.

For each stratum i, one then generates ni  i.i.d. replicates of from its distribution conditional on Y

= i., yielding a sample mean Xi (ni ).  An implicit assumption here is that one can generate samples

directly from the conditioned sample spaces associated with each stratum.  This does not present a

difficulty in the banking example, but can be problematic in general.  Furthermore, because stratifi-

cation modifies the natural dynamics of the simulation, it typically would not be suitable for simu-

lations in which visualization of the sample paths is important.  In any case, the stratified estimator

then takes the form
αs(n) = Xi (ni )pi .

i
∑

The asymptotic variance of this estimator, for n large, is identical to that of the post-stratified esti-

mator.  However, the stratified estimator αs(n) has preferable small-sample behavior relative to

αp(n).  On the other hand, post-stratification is non-invasive and hence there are applications set-

tings in which it is preferable.

We note that importance sampling and stratification can often easily be combined.  One first

changes the sampling weights on each stratum via importance sampling, and then applies stratifica-

tion (or post-stratification) to the modified probabilities.  This idea implicitly underlies the deriva-

tion of the optimal sampling weights that have been developed for use in stratified sampling

schemes; see Cochran [6].
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