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EFFICIENCY OF A POSTERIORI BEM–ERROR ESTIMATES

FOR FIRST-KIND INTEGRAL EQUATIONS ON

QUASI–UNIFORM MESHES

CARSTEN CARSTENSEN

Abstract. In the numerical treatment of integral equations of the first kind
using boundary element methods (BEM), the author and E. P. Stephan have
derived a posteriori error estimates as tools for both reliable computation and
self-adaptive mesh refinement. So far, efficiency of those a posteriori error
estimates has been indicated by numerical examples in model situations only.
This work affirms efficiency by proving the reverse inequality. Based on best
approximation, on inverse inequalities and on stability of the discretization,
and complementary to our previous work, an abstract approach yields a con-
verse estimate. This estimate proves efficiency of an a posteriori error estimate
in the BEM on quasi–uniform meshes for Symm’s integral equation, for a hy-
persingular equation, and for a transmission problem.

1. Introduction

In recent decades adaptive mesh refining proved to be a tool of high practical
importance in numerical analysis of partial differential equations. The questions of
how and where to perform the refinement and whether this is “efficient” (a concept
to be defined) is subject of many papers, and we refer, e.g., to [1, 14, 15, 16, 17, 18,
23, 24, 28, 29, 30] and the references quoted therein. The framework of adaptive
methods, introduced by Eriksson and Johnson [14, 15] for finite elements, is studied
in [3, 4, 5, 6, 7, 8] for boundary element methods (BEM) and covers weakly singular
and hypersingular integral equations, integral equations for transmission problems,
and the coupling of finite elements and boundary elements. However, the questions
of efficiency of the adaptive algorithms and the sharpness of the a posteriori error
estimates have been studied by numerical experiments only.

In this paper we focus our attention mainly on quasi–uniform meshes (for reasons
which become clear later and are discussed in §8.4) and then prove that one of the
a posteriori estimates is sharp, i.e., a complementary inequality holds. We first
describe a typical example and state the results obtained; the subsequent sections
contain proofs, more abstract results and further applications.

Consider Symm’s integral equation: Given f find φ with

V φ(x) = f(x) (x ∈ Γ).(1.1)
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Here, Γ = ∂Ω is a polygon, the boundary of a bounded two-dimensional Lipschitz
domain Ω, and

V φ(x) := − 1

π

∫
Γ

φ(y) log |x− y|dsy(1.2)

is the weakly singular single-layer potential operator.
Equation (1.1) is equivalently related to the Dirichlet problem for the Laplacian

∆u = 0 in Ω , u = u0 on Γ,(1.3)

with given Dirichlet data u0. Indeed, using the right-hand side

f(x) = u0(x) − 1

π

∫
Γ

u0(y)
∂

∂ny
log |x− y|dsy (x ∈ Γ)

in (1.1), one obtains φ = ∂u
∂n , i.e., the unknown φ in (1.1) is the normal derivative

of the solution u of the Dirichlet problem. Moreover, once u|Γ and φ are known, u
is given via a representation formula (see, e.g., [10]).

Under some assumptions on Ω (cf. §5), the single-layer potential V : H−1/2(Γ)→
H1/2(Γ) is linear, bounded, symmetric and positive definite. (H1/2(Γ) is the trace
space of H1(Ω) and H−1/2(Γ) = H1/2(Γ)∗, see §5 for details.) For f ∈ H1(Γ),
Lax–Milgram’s lemma guarantees that (1.1) has a unique solution φ ∈ H−1/2(Γ),
which then belongs to L2(Γ) [9]. Moreover, by Cea’s lemma, Galerkin methods like
(Galerkin) BEM are quasi–optimally convergent. The simplest of such discretiza-
tion schemes is described by a partition (a so–called mesh) π = {Γ1, . . . ,Γn} of the
polygon Γ in intervals (so–called elements) Γ1, . . . ,Γn. Then

S0
π(Γ) := {vh ∈ L∞(Γ) : vh|Γj ∈ R for all j = 1, . . . , N}(1.4)

denotes the linear space of piecewise constant functions and h(π) ∈ S0
π(Γ) is defined

as the local mesh size, i.e., h(π)|Γj := |Γj | := length of Γj .
Lax–Milgram’s lemma guarantees a unique solution φh ∈ S0

π(Γ) of the Galerkin
equations, which are equivalent to

Rh := f − V φh ⊥ S0
π(Γ).

Here, ⊥ means orthogonality in L2(Γ), i.e.,
∫

ΓRhψh ds = 0 for all ψh ∈ S0
π(Γ). Note

that Rh ∈ H1(Γ), so that the derivative ∂
∂sRh = R′h of Rh along Γ with respect to

the arclength exists and belongs to L2(Γ).

Theorem 1 ([4]). There exists a constant c > 0 (depending only on Γ) such that
for any s ∈ [0, 1] there holds

‖φ− φh ‖H−s(Γ) ≤ c · ‖R′h ‖1−sL2(Γ)‖h(π) ·R′h ‖sL2(Γ).(1.5)

An immediate consequence of Theorem 1 is

‖φ− φh ‖H−s(Γ) ≤ c ·max h(π)s · ‖R′h ‖L2(Γ)(1.6)

with max h(π) := ‖h(π) ‖L∞(Γ). Compared with (1.5), the estimate (1.6) is rea-
sonable if max h(π)/min h(π) is not too large, min h(π) := min{h(π)(x): x ∈ Γ}.
That means that there is a global constant cu such that for all meshes π under
consideration,

max h(π)/min h(π) = max
j 6=k
|Γj |/|Γk| ≤ cu.(1.7)

We prove in this paper the reverse inequality of (1.6) and hence affirm the sharpness
of the estimate in Theorem 1 for quasi-uniform meshes.
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Theorem 2. If f is continuous and smooth on each side of Γ, there exist constants
c0, h0 > 0 (depending only on Γ, f and cu) such that for all partitions π of Γ with
max h(π) < h0 and (1.7), and for s ∈ [0, 1], one has

max h(π)s · ‖R′h ‖L2(Γ) ≤ c0 · ‖φ− φh ‖H−s(Γ).(1.8)

The rest of this paper is organized as follows: The general framework of a poste-
riori estimates presented in [4] is recalled and enlarged to cover an abstract comple-
mentary estimate in §2. The three ingredients of this estimate are (i) approximation
properties (upper and lower bounds for the the best approximation), (ii) inverse
assumptions and (iii) stability of the discretization of the trial functions in a certain
sense. A more transparent implication is derived in §3 while the proof is given in §4.
The abstract results are studied for Symm’s integral equation in §5 and Theorem
2 is proved there. Two other applications concerning the hypersingular integral
equation and an integral equation for some transmission problem are described in
§§6 and 7. The paper concludes with miscellaneous comments in §8, including a
comparison of the estimates in [4] and [5].

2. Abstract setting

We recall the general approach of [4] for a posteriori error estimates, enlarge it
and add a complementary abstract estimate.

Let X1 ⊂ X0 and Y1 ⊂ Y0 be real Banach spaces, and let Xθ := [X0, X1]θ and
Yθ := [Y0, Y1]θ be defined by interpolation of these spaces, 0 ≤ θ ≤ 1, cf. [2]. We
briefly list a few properties inherited from interpolation, which are assumed in the
sequel: There are positive constants cθ,X and cθ,Y such that for all x ∈ X1 and
y ∈ Y1

‖ x ‖Xθ ≤ cθ,X · ‖ x ‖1−θX0
· ‖ x ‖θX1

and ‖ y ‖Yθ ≤ cθ,Y · ‖ y ‖1−θY0
· ‖ y ‖θY1

.

(2.1)

Let L(X ;Y ) denote the Banach space of linear bounded mappings between the
Banach spaces X and Y , and let ‖ · ‖L(X;Y ) be the corresponding operator norm.
Then, for each Aj ∈ L(Xj ;Yj), j = 0, 1, with A0|X1 = A1, the restriction Aθ =
A0|Xθ belongs to L(Xθ;Yθ) and

‖Aθ ‖L(Xθ;Yθ) ≤ ‖Aθ ‖1−θL(X0;Y0) · ‖Aθ ‖
θ
L(X1;Y1).(2.2)

Let A = Aθ be such a mapping and assume, in addition, that Aθ : Xθ → Yθ is
surjective and injective. Then, fix a right-hand side f ∈ Y1 and the solution u ∈ Xθ

of

Au = f.(2.3)

We apply the Galerkin method to approximate u. Let Sh ⊂ X1 and Th ⊂ Y ∗0 be
finite-dimensional subspaces such that there exists some uh ∈ Sh satisfying

th(Auh) = th(f) for all th ∈ Th.(2.4)

The residual Rh := f −Auh and the error eh := u−uh are related by the following
estimate.

Theorem 3 ([4]). There exists ρ ∈ Y ∗0 satisfying

‖ρ‖2Y ∗0 = ‖Rh‖2Y0
= ρ(Rh),(2.5)
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and there holds

‖eh‖Xθ ≤ cθ,Y · ‖A−1‖L(Yθ;Xθ) · ‖Rh‖θY1
. inf
th∈Th

‖ρ− th‖1−θY ∗0
.(2.6)

Proof. To make the presentation self-contained, we give a brief outline of the proof.
The existence of the (weighted) peak functional ρ ∈ Y ∗0 satisfying (2.5) follows from
a well–known corollary of Hahn–Banach’s theorem. Since A = Aθ : Xθ → Yθ is
bijective, we have eh = A−1Rh and

‖eh‖Xθ ≤ ‖A−1‖L(Yθ;Xθ) · ‖Rh‖Yθ .

By interpolation, ‖Rh‖Yθ ≤ cθ,Y · ‖Rh ‖1−θY0
· ‖Rh ‖θY1

. The proof is concluded by
standard duality arguments, using (2.4) and (2.5),

‖Rh ‖2Y0
= ρ(Rh) = (ρ− th)(Rh) ≤ ‖Rh ‖Y0 · ‖ ρ− th ‖Y ∗0 (th ∈ Th).

This abstract estimate can be made precise, e.g., Theorem 3 implies Theorem 1
for Symm’s integral equation (cf. §5). Since other examples are also covered by the
given framework, we state the efficiency result in a related abstract form.

The following concepts (i)–(iii) are essential where we consider a family of
Galerkin methods described by a family of discrete subspaces (Sh : h ∈ I) and
(Th : h ∈ I) of X1 and Y ∗0 , respectively.

(i) Approximation property. Assume that the solution u ∈ Xθ of (2.3) also
belongs to X1. Then, for each h ∈ I, let

E(u, Sh) := inf{‖ u− vh ‖X1 : vh ∈ Sh} = ‖ u−Πhu ‖X1

be the best approximation error in the norm of X1 and let Πh : X1 → Sh denote
a projection such that Πhu is the best approximate in Sh. Assume E(u, Sh) >
0 (provided the Galerkin method converges quasi–optimally, otherwise we obtain
uh = u and this is the exceptional case we are not interested in) and define

F (u, Sh) :=
‖ u−Πhu ‖X0

‖ u−Πhu ‖X1

.

(ii) Inverse assumption. For each h ∈ I let

G(Sh) := sup
{‖ vh ‖X1

‖ vh ‖X0

: vh ∈ Sh \ {0}
}
.

(iii) Stability. For each h ∈ I let

Ph : X0 → Sh be a projection

such that Ph ∈ L(X0, X0) and Ph|X1 ∈ L(X1, X1) with norms

‖Ph ‖j := sup
{‖Phv ‖Xj
‖ v ‖Xj

: v ∈ Xj \ {0}
}
, j = 0, 1.

Then, for h,H ∈ I, define

δ(u, Sh, SH) :=
E(u, SH)

E(u, Sh)

·
(

1 + cθ,X · ‖PH ‖θ1 · [F (u, SH)G(SH)‖PH ‖0]1−θ
)
.(2.7)
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Remark 1. For Symm’s equation we have X0 = H−1(Γ), X1 = L2(Γ) = Y0, Y1 =
H1(Γ), and, as we shall see below, by standard arguments, E(u, Sh) ' F (u, Sh) '
h, G(Sh) ' h−1. The projection Ph will satisfy ‖Ph ‖0, ‖Ph ‖1 ≤ C. In this case, if
H = εh,

δ(u, Sh, SH) ' Cε,
which is smaller than 1 for sufficiently small ε.

Theorem 4. Let A ∈ L(X1, Y1), h,H ∈ I with Sh ⊆ SH ; consider u, uh ∈ X1,
eh := u− uh, Rh := Aeh ∈ Y1, and assume (i)—(iii). If δ(u, Sh, SH) < 1, then

‖Rh ‖Y1 ≤
‖PH ‖1−θ0 · ‖PH ‖θ1

1− δ(u, Sh, SH)
· ‖A ‖L(X1;Y1) ·G(SH)1−θ · ‖ eh ‖Xθ .

(2.8)

The proof of Theorem 4 is given in §4.

Remark 2. The complementary character of the two complementary inequalities of
Theorems 3 and 4 should be emphasized: No assumption on the test functions or
the residual (neither (2.4) nor bijectivity of A : Xθ → Yθ) is required in Theorem
4, which are essential in Theorem 3. Conversely, the approximation, inverse, and
stability properties of the trial spaces, the main ingredients in Theorem 4, play no
role in Theorem 3.

3. Specialized setting

Since E(u, Sh), F (u, Sh) and G(Sh) can be bounded if Sh are spline function
spaces, we state in this section a more transparent form of the abstract estimate of
Theorem 4. Let (Sh : h ∈ I) be a family of subspaces of X , where the index h is a
positive parameter, say, I ⊂ (0, 1). Suppose Sh ⊂ SH for all h,H ∈ I with H < h
and that

⋃
h∈I Sh is dense in X1. Suppose that there exist positive constants

cα, cβ, cp and real constants α, β such that for all h ∈ I
F (u, Sh) ≤ cα · hα,(3.1)

G(Sh) ≤ cβ · hβ ,(3.2)

‖Ph ‖1−θ0 · ‖Ph ‖θ1 ≤ cp.(3.3)

Corollary 1. Assume (3.1)–(3.3) and α+ β ≥ 0. Define

c1 := 2 + 2cθ,X · cp · c1−θα · c1−θβ ,

c2 := 2cp · ‖A ‖L(X1;Y1) · c1−θβ .

Then, for each h ∈ I, we can find H ∈ I with

E(u, SH) ≤ 1

c1
E(u, Sh) and H < h,(3.4)

and we have ‖Rh ‖Y1 ≤ c2 ·Hβ(1−θ) · ‖ eh ‖Xθ .

Proof. Use the above notation in Theorem 2 to see that (3.4) implies δ(u, Sh, SH) ≤
1/2. Then, (2.8) proves the corollary.

As chosen in Corollary 1, H depends highly on h and we need more information
on E(u, Sh) to control this in (3.4).
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Corollary 2. In addition to the assumptions of Corollary 1 let there exist constants
η, q, h0, 0 < η, q < 1, such that for all h ∈ I with h < h0 we have

E(u, Sη·h) ≤ q · E(u, Sh) and η · h ∈ I.(3.5)

Then, there exists c0 > 0 such that for all h ∈ I with h < h0

‖Rh ‖Y1 ≤ c0 · hβ(1−θ) · ‖ eh ‖Xθ .(3.6)

Proof. Use (3.5) and H = ηk · h in Corollary 1 with a natural number k ≥
− log(c1)/ log(q).

Remark 3. The assumptions on F (u, Sh), G(Sh) as well as an upper bound of
E(u, Sh), like E(u, Sh) ≤ c · hγ , are standard tools in finite element and boundary
element analysis (see, e.g., [19]). The assumption on the stability (concerning cp)
is sometimes used implicitly. The only additional assumption is some kind of lower
bound of the best approximation error E(u, Sh), e.g., c′ · hγ ≤ E(u, Sh), such that
(3.5) holds: E(u, SH) ≤ c ·Hγ ≤ c · ηγhγ ≤ c · ηγ/c′E(u, Sh).

4. Proof of Theorem 4

We need two lemmas to convey the assumptions to the interpolation spaces.

Lemma 1. For any vh ∈ Sh, h ∈ I, we have

‖ vh ‖X1 ≤ ‖Ph ‖1−θ0 ‖Ph ‖θ1 ·G(Sh)1−θ · ‖ vh ‖Xθ .

Proof. By interpolation of the projection Ph as a mapping in L(Xj , X1) for j = 0, 1
we get as in (2.2) (where the image X1 is fixed) that Ph ∈ L(Xθ, X1) with

‖Ph ‖L(Xθ;X1) ≤ ‖Ph ‖1−θL(X0;X1) · ‖Ph ‖
θ
1.

By the inverse assumption (ii), ‖Ph ‖L(X0;X1) ≤ ‖Ph ‖0 ·G(Sh). An application of
the bound of ‖Ph ‖L(Xθ;X1) (to vh = Phvh) proves the lemma.

Lemma 2. For any h ∈ I we have

‖ u−Πhu ‖Xθ ≤ cθ,X · F (u, Sh)1−θ · ‖ u−Πhu ‖X1 .

Proof. Combine the approximation property with (2.1).

Proof of Theorem 4. Let h,H ∈ I with Sh ⊂ SH and define wH := ΠHu. By
continuity of A = A1 : X1 → Y1 we obtain

‖Rh ‖Y1 ≤ ‖A ‖L(X1;Y1) · ‖ eh ‖X1(4.1)

and then focus on the error eh = u− uh. By the triangle inequality and Lemma 1
(with vH = wH − uh ∈ SH) we obtain

‖ eh ‖X1 ≤ E(u, SH) + ‖PH ‖1−θ0 ‖PH ‖θ1 ·G(SH)1−θ · ‖wH − uh ‖Xθ .
(4.2)

By the triangle inequality and Lemma 2,

‖wH − uh ‖Xθ ≤ cθ,X · F (u, SH)1−θ ·E(u, SH) + ‖ eh ‖Xθ .(4.3)

Combining (4.2), (4.3) and

E(u, SH) ≤ E(u, SH)

E(u, Sh)
· ‖ eh ‖X1 ,
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one infers

‖ eh ‖X1 ≤ δ(u, Sh, SH) · ‖ eh ‖X1(4.4)

+ ‖PH ‖1−θ0 · ‖PH ‖θ1 ·G(SH)1−θ · ‖ eh ‖Xθ .

Now, (2.8) follows from (4.1) and (4.4).

5. Symm’s integral equation

We use the notation from §1 and recall that Γ is a polygon in R2. The Sobolev
space Hs(R2) is defined as usual [21] and

Hs(Γ) := {u|Γ ∈ L2(Γ) : u ∈ H1/2+s(R2)}, s > 0,

H0(Γ) := L2(Γ),

Hs(Γ) := H−s(Γ)∗, s < 0,

Hs
0 (Γ) := {u ∈ Hs(Γ) :

∫
Γ

u ds = 0},

L2
0(Γ) := H0

0 (Γ),

where Hs(Γ)∗ is the dual of H−s(Γ) with respect to the extended inner product
in L2(Γ). Further, Yθ = Hθ(Γ) is the interpolation space of Y0 = L2(Γ) and
Y1 = H1(Γ) and Xθ = Hθ−1(Γ) is the interpolation space of X0 = H−1(Γ) and
X1 = L2(Γ), 0 ≤ θ ≤ 1, cθ,X = cθ,Y = 1.

It is also known that A := V is a pseudodifferential operator and is a linear and
bounded mapping between Hs−1(Γ) and Hs(Γ) for any s ∈ [0, 1] [9]. Throughout
this paper, we assume cap(Γ) < 1, so that V defines a positive definite bilinear form
on H−1/2(Γ)2 [25, 26, 27]. Here, cap(Γ) is the capacity (or conformal radius or
transfinite diameter) of Γ and cap(Γ) < 1 is satisfied if, for example, Ω is included
in a disc with radius < 1, which can be arranged by scaling. Moreover, by the
regularity results in [9], V : L2(Γ) → H1(Γ) is bijective. Hence, V satisfies the
assumptions on A in §2, and we obtain in particular Theorem 1.

Proof of Theorem 1. The assumptions of Theorem 3 are satisfied in the present
case and Rh = ρ is easily verified. Hence, with Theorem 3 and some standard
estimation of the approximation error Rh −ΠhRh, one proves (1.5) (cf. [4]).

In the next steps we prove the estimates described in §3, where it is sufficient that
f in (1.1) is continuous and f |ω belongs to H3(ω) for each side ω of the polygon Γ.
Then, φ = V −1(f) ∈ L2(Γ) and we are interested in its L2(Γ)–best approximation
error

E(φ, Sh) = min{‖φ− ψh ‖L2(Γ) : ψh ∈ S0
π(Γ)} = ‖φ−Πhφ ‖L2(Γ);

(5.1)

here, Πh is the orthogonal projection onto Sh = S0
π(Γ) in L2(Γ). If φ is constant,

then E(φ, Sh) = 0 and Rh = 0 indicates φ = φh. Thus, we may, and will, assume
φ to be nonconstant in the following.

Proposition 1. Provided φ is not constant, there exist positive constants γ, h0,
cγ, and c′γ (depending only on Γ, f and cu in (1.7)) such that 0 < γ ≤ 1 and either

c′γ ≤ max h(π)−γ · E(φ, Sh) ≤ cγ ,(5.2)
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or γ = 1/2 and

c′γ ≤ −max h(π)−1/2 · log−1/2(max h(π)) ·E(φ, Sh) ≤ cγ ,(5.3)

holds for all meshes π with max h(π) < h0 and satisfying (1.7).

Proof. As it is proved in [10], the solution φ of (1.1) has the form

φ(x) = φ0(x) +
m∑
j=1

cj · φj(x), x ∈ Γ,(5.4)

where φ0 ∈ H2(Γ) and the real constants cj depend on f , but the singular functions
φj depend on the corners of the polygon only. Here, φj is of the form

φj(x) = rβj · χj(x) or φj(x) = rβj · log(r) · χj(x),

where r is the Euclidean distance between x and the nearest corner of Γ. Further-
more, χj is a smooth cutoff function with a small compact support which is one on
a neighborhood of some corner of Γ. The exponent βj is determined by the interior
angle ωj at the related corner: βj + 1 = kjπ/ωj for some nonnegative integer kj .
Since 0 < ωj < 2π, ωj 6= π, we conclude βj > −1/2. Moreover, the second case
φj(x) = rβj · log r appears if βj + 1 = kjπ/ωj is integer, whence only if βj ≥ 1.

We split the proof into several steps considering φ(x) = rβ , φ(x) = rβ log r,
φ(x) ∈ H2(Γ) first before we come back to the general case. We analyze the
approximation properties locally, so φ is approximated on the real unit interval by
S0
h(0, 1) on a quasi–uniform mesh on (0, 1) described by a partition 0 = x0 < x1 <
x2 < · · · < xn < xn+1 = 1. Define mj = h−1

j ·
∫ xj+1

xj
φ(x) dx = Πhφ|(xj ,xj+1) and

hj := xj+1 − xj for j = 0, . . . , n.
Case 1. Let φ(x) = xβ for x ∈ (0, 1), and −1/2 < β < 1/2, β 6= 0. Let

0 ≤ a < a+ h ≤ 1,Summary: “ and consider the error ‖φ−m ‖L2(a,a+h), where φ

is approximated by the constant m = h−1 ·
∫ a+h

a
φ(x) dx. Some calculations show

‖φ−m ‖2L2(a,a+h) = a2β+1 · η(h/a) (a > 0),(5.5)

‖φ−m ‖2L2(0,h) =
β2

(1 + β)2(2β + 1)
· h2β+1 (a = 0),(5.6)

where

η(δ) :=
(1 + δ)2β+1 − 1

2β + 1
− [(1 + δ)β − 1]2

δ(1 + β)2
(δ > 0).

A power series expansion of η in δ shows

η(δ) = c1 · δ3 + higher-order terms in δ(5.7)

with a positive constant c1 (depending only on β > −1/2). Note that, the first
exponent in (5.7) is expected to be three (because of linear convergence when a
constant approximates a smooth function). Moreover, one can conclude from (5.7)
and (5.5) that

c2 ≤ η(δ) · δ−3 ≤ c3 for all δ ∈ (0, cu](5.8)

with constants cj depending on β and cu.
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According to (5.5) and (5.6),

‖φ−Πhφ ‖2L2(Γ) = h2β+1
0 ·

( β2

(1 + β)2(2β + 1)
(5.9)

+
n∑
j=1

(xj/h0)2β+1 · η(hj/xj)
)
.

Since 2− 2β > 1, we have with Riemann’s Zeta function ζ

n∑
j=1

j2β−2 ≤ ζ(2− 2β) =
∞∑
j=1

j2β−2.

Using this, (5.8), (5.9), and (1.7), one finally obtains (5.2) for φ(x) = xβ and
Sh = S0

h(0, 1), γ = β + 1/2.
Case 2. Let φ(x) = xβ for x ∈ (0, 1) as before but now β = 1/2. The above

calculations remain true for β = 1/2, in particular (5.8) and (5.9) hold, but the
zeta function has a pole at 1. Using the well–known formula

n∑
j=1

j−1 = logn+ C +O(1/n) (n→∞)

involving Euler’s constant C = 0.577... instead, the above arguments prove (5.3)
for φ(x) = x1/2 and Sh = S0

h(0, 1).
Case 3. Let φ ∈ H1(0, 1), e.g., φ(x) = xβ logx for β ≥ 1. Then, the estimate

max h(π)−1 · ‖φ − Πhφ ‖L2(Γ) ≤ c4 is well known. Conversely, let φ ∈ H2(ω) for
at least a compact subinterval ω of one side of Γ where φ is not constant. Then
we have a compact nonempty subinterval [a, b] where φ′ ∈ C([a, b]) attains values
between c5 and c6 with c5 · c6 > 0. As it is easily seen,

c7 ·min h(π) ≤ ‖φ−Πhφ ‖L2([a,b]) ≤ ‖φ−Πhφ ‖L2(Γ)(5.10)

holds in this case for some positive constant c7. This proves (5.2) for φ = φ0, for
φ(x) = x · logx, and also for φ(x) = xβ with β > 1/2, Sh = S0

h(0, 1).
So far we proved for each summand in (5.4) an inequality

c′j ≤ −max h(π)−βj · log(max h(π))−β
′
j · ‖φj −Πhφj ‖L2(Γ) ≤ cj

(5.11)

with positive cj , c
′
j , βj, β

′
j being independent of h.

The triangle inequality and (5.11) prove (5.2) or (5.3) for β := min{β0, . . . ,
βm} > 0. The proof of the upper bound is immediate while the proof of the lower
bound uses that the terms with exponent β are dominant and that β = βj is
possible at most once at each corner. We omit the details.

Remark 4. Upper bounds for the best approximation error E(φ, Sh) are well known
for spline functions. Indeed, regularity of φ can be measured in the convergence
rate of E(φ, Sh) (see, e.g., [13, p. 358]):

E(φ, Sh) = O(max h(π)) if and only if φ ∈ H1(Γ)

provided we have a uniform mesh (i.e., cu = 1). In particular, this explains that
(5.2) is false for φ(x) = x1/2.
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Remark 5. A model example is studied in [18] where, in particular, E(φ, Sh) is
computed with φ(x) = xβ and Sh consists of (possibly discontinues) piecewise
polynomials of degree p at most on a uniform mesh of (0, 1) with meshsize h. In
particular it is proved (cf. arguments in [18, p. 603] and [18, Part 2, Corollary 2.1])
that the limits of

h−p · E(φ, Sh), −h−p ·
√

log(h) · E(φ, Sh) and h−β−1/2 ·E(φ, Sh)

exist as positive real numbers as h → 0+ for p < β − 1/2, p = β − 1/2 and
p > β − 1/2, respectively. This confirms Cases 1 and 2 in the proof of Proposition
1 for p = 0 for a uniform mesh (cu = 1) and extends the arguments to splines with
polynomials of arbitrary degree.

Proposition 2. There holds F (φ, Sh) ≤ max h(π).

Proof. Note that Πh is the L2–projection onto S0
π(Γ). Let supη denote the supre-

mum among all nonzero η in H1(Γ). Then we have

‖φ−Πhφ ‖H−1(Γ) = sup
η

∫
Γ
(φ−Πhφ)(η − πhη) ds

‖ η ‖H1(Γ)

≤ max h(π) · ‖φ−Πhφ ‖L2(Γ),

using ‖ η −Πhη ‖L2(Γ) ≤ max h(π) · ‖ η′ ‖L2(Γ) for all η ∈ H1(Γ).

Let prime or ∂
∂s denote the derivative along the straight sides of the polygon Γ

with respect to the arclength. Conversely, given f ∈ L2
0(Γ), let I(f) be defined by

integrating f along Γ with respect to the arclength. This defines I(f) up to an
additive constant on each side of Γ, which is chosen such that I(f) is continuous
at each corner. So far, I(f) ∈ H1(Γ) is defined up to an additive constant, which
is fixed by

∫
Γ I(f) ds = 0. This defines I : L2

0(Γ)→ H1
0 (Γ).

Lemma 3 ([4, Lemma 3]). For all s ∈ [0, 1], I is an isomorphism between Hs−1
0 (Γ)

and Hs
0(Γ) with ∂

∂sI(f) = f for all f ∈ Hs−1
0 (Γ).

Besides S0
π(Γ), define

S1
π(Γ) := {wh ∈ H1(Γ) : w′h ∈ S0

π(Γ)},(5.12)

the linear space of continuous and piecewise linear functions with respect to a mesh
π.

The following result shows G(Sh) ≤ C/h.

Proposition 3. There exists a constant c > 0 such that for all meshes π with
max h(π) < 1

‖wh ‖H1(Γ) ≤ c ·min h(π)−1 · ‖wh ‖L2(Γ) for all wh ∈ S1
π(Γ),(5.13)

‖ψh ‖L2(Γ) ≤ c ·min h(π)−1 · ‖ψh ‖H−1(Γ) for all ψh ∈ S0
π(Γ).(5.14)

Proof. The inverse inequality (5.13) is well known and easily proved by direct calcu-
lations on each element. According to Lemma 3, I : S0

π(Γ)∩L2
0(Γ)→ S1

π(Γ)∩L2
0(Γ)

is an isomorphism, and (5.14) follows essentially from (5.13).

For each ψ ∈ H−1(Γ) define Phψ ∈ S0
π(Γ) by

Phψ := ψ0 +
∂

∂s
Π1
hI(ψ − ψ0) for ψ0 := |Γ|−1

∫
Γ

ψ ds

where Π1
h is the L2–projection onto S1

π(Γ) (see [6] for a similar construction).
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Proposition 4. The operator Ph is a projection onto S0
π(Γ) which is bounded as a

mapping between H−1(Γ) and H−1(Γ) or between L2(Γ) and L2(Γ).

Proof. It is known that Π1
h is continuous as a mapping between L2(Γ) and L2(Γ)

and between H1(Γ) and H1(Γ) [12]. According to this and Lemma 3, Ph is linear
and bounded as a mapping between H−1(Γ) and H−1(Γ) and between L2(Γ) and
L2(Γ). Finally, direct calculations show Phψh = ψh for each ψh ∈ S0

π, i.e., Ph is a
projection onto S0

π(Γ).

Proof of Theorem 2. Using the above notation and that of §3 the Propositions 2–4
show (3.1)–(3.3) where, as usual, the index parameter h is identified with max h(π)
for a mesh π satisfying (1.7).

Given a mesh π, let η = 1/k for an integer k and define a new mesh by dividing
each element Γj of π in k pieces of length |Γj |/k. Then, the new mesh satisfies
(1.7) as π does. Moreover, according to Proposition 1, we obtain (3.5) with some
q which depends on k, cγ , c′γ , and γ. A simple calculation, indicated in Remark 3,
shows that we obtain 0 < q < 1 by choosing k large enough. Note that η depends
only on cγ , c′γ and γ. Therefore, Corollary 2 leads to Theorem 2.

Remark 6. Note that a solution u of (1.3) satisfies φ = ∂u
∂n ∈ H

−1/2
0 (Γ). Hence, we

might be interested in determining φ ∈ H−1/2
0 (Γ) with∫

Γ

(V φ− f)ψ ds = 0 for all ψ ∈ H−1/2
0 (Γ).(5.15)

The corresponding numerical method is: Find φh ∈ Sh := S0
π(Γ) ∩ L2

0(Γ) with∫
Γ

(V φh − f)ψh ds = 0 for all ψh ∈ Sh.(5.16)

Equations (5.15) and (5.16) have unique solutions according to Lax–Milgram’s lem-
ma. In this case, one also obtains Theorems 1 and 2 from Theorems 3 and 4.

6. Hypersingular integral equation

The Neumann problem for the Laplacian

∆u = 0 in Ω ,
∂u

∂n
= t0 on Γ,

is related to the hypersingular integral equation

Wv(x) = f(x) (x ∈ Γ).(6.1)

Here, f can be computed from the Neumann data t0 and v = u|Γ is the trace of u.
The hypersingular operator

Wv(x) := − 1

π

∂

∂nx

∫
Γ

v(y)
∂

∂ny
log |x− y|dsy(6.2)

is linear, bounded, symmetric and a Fredholm operator of index zero [9]. Since W =

− ∂
∂sV

∂
∂s [22], W is positive definite between H

1/2
0 (Γ) and H

−1/2
0 (Γ). Furthermore,

A = W is a continuous mapping between X1 = H1
0 (Γ) and Y1 = L2

0(Γ) as well
as between X0 = L2

0(Γ) and Y0 = H−1
0 (Γ). Let L2

0(Γ) be endowed with the usual
norm in L2(Γ), but endow H1

0 (Γ) with the equivalent H1(Γ)–seminorm.
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Fix f ∈ L2
0(Γ) and the solution v ∈ H1

0 (Γ) of (6.1). Let Th = Sh = S1
π(Γ)∩H1

0 (Γ)
as defined in (5.12) for a partition π of the polygon Γ with (1.7). Let vh ∈ Sh denote
the Galerkin solution, i.e.,

Rh := f −Wvh ⊥ S1
π(Γ),

where ⊥ means orthogonality in L2(Γ).

Theorem 5 ([4]). There exists a constant c > 0 (depending only on Γ) such that
for any s ∈ [0, 1] there holds

‖ v − vh ‖Hs(Γ) ≤ c · ‖Rh ‖sL2(Γ)‖h ·Rh ‖1−sL2(Γ).(6.3)

For quasi–uniform meshes, (6.3) is

‖ v − vh ‖Hs(Γ) ≤ c ·max h(π)1−s‖Rh ‖L2(Γ).(6.4)

As Theorem 5 follows from Theorem 3, we infer its converse from Theorem 4.

Theorem 6. Assume that f is smooth on each side of the polygon. Then there exist
constants c0, h0 > 0 (depending only on Γ, f and cu) such that for all partitions π
of Γ with max h(π) < h0 and (1.7) and for s ∈ [0, 1], there holds

max h(π)1−s · ‖Rh ‖L2(Γ) ≤ c0 · ‖ v − vh ‖Hs(Γ).(6.5)

Proof. Let Πj
h denote the L2–projection onto Sjπ(Γ) for j = 0, 1. Since we endowed

H1
0 (Γ) with the norm

‖w ‖H1
0 (Γ) =

(∫
Γ

|w′(s)|2 ds
)1/2

(w ∈ H1
0 (Γ)),

the relation E(v, Sh) = ‖v − wh‖H1
0 (Γ) is equivalent to v′ − w′h ⊥ S0

π(Γ) for each

wh ∈ S1
h(Γ). Thus w′h = Π0

hv
′ and E(v, Sh) = ‖v′−Π0

hv
′‖L2(Γ). Since the derivative

v′ of the solution u of the Neumann problem, v = u|Γ, has a similar decomposition
as φ in (5.4), this and the results of §5 verify the assumptions of Corollary 2. We
omit the details.

Remark 7. A second proof of Theorem 6 is possible using the close relation between
V and W and a modification of Theorem 2. Indeed, φ := v′ and φh := v′h satisfy
V φ = F := I(f) and∫

Γ

V (φh)ψh ds =

∫
Γ

Fψh ds for all ψh ∈ S0
π(Γ) ∩ L2

0(Γ).

Thus, φ ∈ L2
0(Γ) and φh ∈ L2

0(Γ) are solutions of problem (5.15) and (5.16),
respectively. Then, arguing as in Remark 6, we can obtain Theorem 6 from Theorem
2.

7. Integral equation for a transmission problem

In the transmission problem we seek harmonic functions u1 and u2 in an interior
and exterior domain Ω and R2 \ Ω, respectively, with a prescribed jump (f, g) of
their Cauchy data at the polygonal boundary Γ = ∂Ω (see, e.g., [11, 6] for details).
This transmission problem is equivalently related to a boundary integral equation

H( vφ) =
1

2
(1 +H)( fg )(7.1)
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[11], where (f, g) ∈ H1(Γ)× L2(Γ) is given and

H :=

(
−K V
W K ′

)
: Hs(Γ)×Hs−1(Γ)→ Hs(Γ)×Hs−1(Γ).

Here, V and W are given in (1.2) and (6.2), respectively, and the double-layer
potential and its adjoint are defined by

Kv(x) := − 1

π

∫
Γ

v(y)
∂

∂ny
log |x− y| dsy,

K ′φ(x) := − 1

π

∫
Γ

φ(y)
∂

∂nx
log |x− y| dsy.

The operator H is linear, bounded and bijective for s ∈ [0, 1] and (7.1) has a
unique solution (v, φ) ∈ H1(Γ) × L2(Γ) (see [11, 6]). Define Sh := S1

π(Γ) × S0
π(Γ)

and Th := S0
π(Γ) × S1

π(Γ) for a partition π of the polygon Γ. The Galerkin BEM
for (7.1) reads: Find (vh, φh) ∈ Sh such that the residual

(R1, R2) :=
1

2
(1 +H)( fg )−H( vhφh) ∈ H1(Γ)× L2(Γ)

satisfies 0 =
∫

Γ
(R1 · ψh +R2 · wh) ds for all (ψh, wh) ∈ Th.

Theorem 7 ([4]). There exists a constant C > 0 such that, for 0 ≤ s ≤ 1,

‖( vφ)− ( vhφh)‖Hs(Γ)×Hs−1(Γ) ≤ C · ‖(
R′1
R2

)‖1−sL2(Γ)2 · ‖h(π) · ( R
′
1

R2
)‖sL2(Γ)2 .

While Theorem 7 is a consequence of Theorem 3, its converse estimate is con-
cluded from the complementary results presented in §§2 and 3.

Theorem 8. If f and g are smooth, there exist constants c0, h0 > 0 (depending
only on Γ, f, g and cu) such that for all partitions π of Γ with max h(π) < h0 and
(1.7), and for s ∈ [0, 1], there holds

max h(π)s‖( R
′
1

R2
)‖L2(Γ)2 ≤ c0 · ‖( vφ)− ( vhφh)‖Hs(Γ)×Hs−1(Γ).

Proof. It can be checked that the assumptions of Corollary 2 are satisfied as in
the previous cases. One combines arguments of §§5 and 6 for φ and v and uses
regularity results from [11]. We omit the details.

8. Comments

8.1. Efficiency. Once the Galerkin solution φh ∈ S0
π(Γ) is known, compute

a2
j =

∫
Γj

[(V φh)′(x) − f ′(x)]2 dsx,

where, e.g., V φh(x) is calculated analytically and the integral along Γj is approxi-
mated numerically; hj = |Γj |. For s = 1/2, the upper bound in Theorem 1 is C ·B1,
where C is a constant and

B1 :=
(
a2 ·

n∑
j=1

a2
j · h2

j

)1/4

, a2 :=
n∑
j=1

a2
j .

Since
∫

Γ
V (·)(·) ds defines an inner product which induces an equivalent norm in

H−1/2(Γ), the quantity

γh := B−1
1 ·

(∫
Γ

V (φ− φh)(φ− φh) ds

)1/2
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is called efficiency quotient. We say that an error estimate is efficient if its efficiency
quotient γh satisfies 0 < c0 ≤ γh ≤ c1 < ∞ for all discretizations under consider-
ation. Using this concept we proved in this paper that the a posteriori estimates
obtained in [4] are efficient for BEM on quasi–uniform meshes (in two dimensions)
and gave a general guideline in §§2 and 3 on how to analyze this in other examples.

8.2. Numerical tests. The efficiency quotients γh are computed for various nu-
merical examples reported in [5, 6, 7, 8]. From this, the efficiency results of this
paper are confirmed; one observes efficiency in practice.

8.3. Comparison with another estimate. Another a posteriori error estimate
is proved in [5] which bounds the error (in the H−1/2(Γ)–norm) from above by
C ·B2, where C is a constant and

B2 :=
n∑
j=1

h
1/2
j · aj

(notation as in §8.1). Numerical computations reported in [5] show a slow decrease
of the related efficiency quotient as n tends to infinity, even on quasi–uniform
meshes. This “loss of efficiency” is indicated by the following example. Imagine
that the residual is uniformly distributed on a uniform mesh π, i.e., suppose a1 =
· · · = an and h1 = · · · = hn. Then, B1 ·

√
n = B2. According to the efficiency of

B1, this shows that B2 overestimates the error by a factor
√
n, whence B2 is not

efficient in this model situation. However, if singularities occur, the estimate in [5]
could be efficient.

8.4. Restrictions on the mesh. The condition of a quasi–uniform discretization
(1.7) is used several times in the proofs. For an arbitrary mesh we have (1.6) and,
according to (2.8) and (5.13),

min h(π)s · ‖R′ ‖L2(Γ) ≤ c0 · ‖φ− φh ‖H−s(Γ)

in Theorem 2 (assuming that δ is small). Hence, the methods of this paper used
for the proof of efficiency give the impression that one needs (1.7). One way of
overcoming this difficulty is to take local properties of the operator A into account.
These appear to be unavailable in the literature for the operators studied here on
polygons.

8.5. Further applications. The results in §§5–7 are stated for the simplest dis-
cretization only. It is known that Propositions 2–4 also hold for spline functions
of higher degree, and this is expected for an (adapted version of) Proposition 1
as well (cf. Remark 5). Indeed, the essential additional condition is (3.5), which
may be proven in many other situations where u is not an arbitrary function in X1

but, e.g., is related to a solution of a partial differential equation and then inherits
much more regularity. Therefore, it is expected that (3.5) is true for a larger class
of discretizations, including problems in three dimensions, and is not restricted to
solutions which are related to the Laplace equation.
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