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Abstract. – The efficiency of different types of Brownian motors is calculated analytically
and numerically. We find that motors based on flashing ratchets present a low efficiency and
an unavoidable entropy production. On the other hand, a certain class of motors based on
adiabatically changing potentials, named reversible ratchets, exhibit a higher efficiency and the
entropy production can be arbitrarily reduced.

In the last years there has been an increasing interest in the so-called “ratchets” or Brownian
motors [1-7]. These systems consist of Brownian particles moving in asymmetric potentials,
such as the one depicted in fig. 1a), and subject to a source of non-equilibrium, like external
fluctuations or temperature gradients. As a consequence of these two ingredients —asymmetric
potentials and non-equilibrium—, a flow of particles can be induced.

Although these systems are sometimes called “Brownian or molecular motors”, most of
them do not convert heat into work. The reason is that the flow of particles is induced in a
potential which is flat on average. Therefore, the Brownian particles do not gain energy in
a systematic way. Feynman in his Lectures [8] already understood that, in order to have an
engine out of a ratchet, it is necessary to use its systematic motion to store potential energy.
This can be achieved if the ratchet lifts a load. In this way, Feynman estimated the efficiency of
the ratchet as a thermal engine, although he followed assumptions which have been revealed to
contain some inconsistencies [9]. For ratchets consisting of Brownian particles in asymmetric
potentials, the load is equivalent to an external force opposite to the induced flow of particles.
If the force is weak enough, particles still move against the force and their potential energy
increases monotonically [7, 10].

Recently, Sekimoto [10] has defined efficiency for a wide class of ratchets. Sekimoto studied
a Brownian particle at a given temperature in a periodic potential which depends on the
position x of the particle and on some parameter y. If this parameter y is modified, either
deterministically or at random, by an external agent, then the increment of the internal energy
of the system can be split into two contributions: dissipation, i.e. the heat transfer between the
system and the thermal bath, and input energy, i.e. the energy transfer between the system
and the external agent. As mentioned above, in the case of a ratchet with a weak external force
(a load) opposite to the flow of particles, the average potential energy of the system increases
monotonically. Then efficiency can be defined as the ratio between the potential energy gain
and the input energy. This is the approach that we will follow in this letter.
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Fig. 1. – a) Asymmetric sawtooth potential of the ratchets presented in refs. [1-6]. In this letter we
consider two types of ratchets: i) one where the potential is randomly switched on and off; and ii) one
where the potential is deterministically modulated. b) Efficiency and current of the ratchet where the
potential drawn in a) is randomly switched on and off (case i), as a function of the maximum height
V of the potential. The reaction rates are ωA = 1.08 and ωB = 81.8, a = 1/11, and the external force
is F = 4.145.

Jülicher et al. [7] have also discussed the efficiency of molecular motors from a different point
of view. They consider ratchets where the source of non-equilibrium is a reaction occurring
at a rate r, due to a chemical-potential difference ∆µ. Once again, a weak external force
opposite to the flow of particles is included. The system becomes a chemical motor which
can convert chemical energy into mechanical energy or vice versa and both a mechanical
and a chemical efficiency can be defined. Finally, Sokolov and Blumen [11] have calculated
the efficiency of a deterministically flashing ratchet in contact with two thermal baths at
different temperatures. A general conclusion of these works is that motors based on ratchets
are intrinsically irreversible, even in the quasi-static limit [7, 9-11].

On the other hand, a class of deterministically driven ratchets where the entropy production
vanishes in the quasistatic limit has been recently introduced [12]. We call them reversible
ratchets, since, as we have shown in ref. [12], they can induce transport of particles in a
reversible way, i.e. with zero entropy production, and without any energy consumption.

However, a load or external force was not considered in [12]. Consequently, motors based on
reversible ratchets and their efficiency were not discussed in that paper. This is accomplished
in this letter. Moreover, here we explore the differences, regarding efficiency, among randomly
flashing ratchets and both reversible and irreversible deterministically driven ratchets.

Randomly flashing ratchets. – Consider two species of Brownian particles, say A and B,
moving in the interval [0, L] with periodic boundary conditions. Let us assume that a potential
VA(x) acts on A particles, whereas a different potential, VB(x), acts on B particles. Besides,
there is a continuous exchange of particles, A ⇀↽ B, which accounts for non-equilibrium
fluctuations. From now on, and following ref. [10], we will refer to this reaction as the external
agent. It is easy to check that this system with two species of particles is equivalent to that of
a single Brownian particle in a randomly switching potential [4].

In ref. [4], it was proved that a flow towards a given direction, say, to the right, occurs for
some asymmetric potentials VA and VB. If we add a load or force F opposite to the flow, the
evolution equation for the probability densities of particles A and B reads

∂tρA(x, t) = −∂xJAρA(x, t)− ωAρA(x, t) + ωBρB(x, t) ,

∂tρB(x, t) = −∂xJBρB(x, t) + ωAρA(x, t) − ωBρB(x, t) , (1)

where Ji = −V ′i (x)−F−∂x is the current operator, the prime indicates derivative with respect
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to x, and ωA and ωB are the rates of the reactions A→ B and B → A, respectively. We have
taken units of energy, length and time such that the temperature is kBT = 1, the length of
the interval is L = 1, and the diffusion coefficient is D = 1.

The flow of particles in the stationary regime is J = JAρst
A(x)+JBρst

B(x), where ρst
A,B(x) are

the stationary solutions of eq. (1). The flow J is a decreasing function of the external force F
and becomes negative if F is stronger than a stopping force, Fstop. Therefore, if 0 < F < Fstop,
particles move against the force and, consequently, gain potential energy in a systematic way.
The potential energy gain or output energy per unit of time is

Eout = JF , (2)

which vanishes both for F = 0 and F = Fstop.
On the other side, the reaction A ⇀↽ B does not conserve energy since VA(x) 6= VB(x).

Therefore, in every reaction A → B, occurring at a point x, VB(x) − VA(x) is the energy
transfer from the external agent to the system. Similarly, VA(x)−VB(x) is the energy transfer
in every reaction B → A occurring at x. In the stationary regime, the average number of such
reactions per unit of time is, respectively, ωAρ

st
A(x) and ωBρ

st
B(x). Therefore, the input energy

per unit of time is [10]

Ein =

∫ 1

0

dx [VB(x) − VA(x)]
[
ωAρ

st
A(x)− ωBρ

st
B(x)

]
. (3)

Finally, the efficiency can be defined as

η =
Eout

Ein
. (4)

The efficiency η can be calculated analytically for the system given by eq. (1) with piecewise
potentials. We have performed an exhaustive study for the particular setting VB(x) = 0 and
VA(x) equal to the potential depicted in fig. 1a):

VA(x) =


V x/a , if x ≤ a ,

V (1− x)/(1− a) , if x ≥ a

(5)

with a = 1/11. For a symmetric reaction, ω = ωA = ωB, the maximum efficiency is
ηmax = 3.29%, which is reached for V = 22, F = 3, and ω = 63. The efficiency slightly
increases for different reaction rates. In this case, ηmax = 5.315%, which is reached for
V = 16.7, F = 4.145, ωA = 1.08, and ωB = 81.8. Observe that, with these values for
ωA and ωB, the particle remains much longer within the potential VA(x) than within VB(x).

We have plotted in fig. 1b) the efficiency and the flow of particles as a function of V , setting
the rest of parameters equal to the optimal values described above. Two are the messages
from this figure. Firstly, the maximization of the efficiency is a new criterion to define optimal
Brownian motors. Notice that this criterion is not as trivial as that of maximizing the flow in
some situations as, for instance, when V runs from zero to infinity.

Secondly, the randomly flashing ratchet under study has a rather low efficiency. Let us
compare the efficiency that we have obtained with the upper bound given by the Second Law
of Thermodynamics. To do that, we have to evaluate the changes of entropy in each part of
the model: the thermal bath, ∆Sbath, the Brownian particles, ∆Ssys, and the external agent,
∆Sext. As we have mentioned before, the heat dissipation to the thermal bath per unit of
time is Ein − Eout. Consequently, the increase of entropy of the thermal bath, per unit of
time, is ∆Sbath = kB(Ein − Eout), since kBT = 1. On the other hand, in the stationary
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regime the entropy of the system is constant, ∆Ssys = 0. It is not an easy task to calculate
the change of entropy of the external agent, since we have not specified a physical model
for it. Nevertheless, we can give here some plausibility arguments to show that the external
agent can be interpreted as a second thermal bath at infinite temperature (see also [11] for an
interpretation of the deterministically flashing ratchet as a thermal engine in contact with a
bath at infinite temperature). To see this, assume that the external agent is at temperature Text

and induces the reactions A → B and B → A obeying detailed balance with respect to Text.
Then ωA = ωB exp [−(VB(x)− VA(x))/(kBText)], where the reaction rates depend on the
position x. If Text = T , the system reaches thermal and chemical equilibrium and no flow is
induced, whereas if Text is infinite we recover our model with ωA = ωB. Thus, for the flashing
ratchet, the entropy of the external agent remains constant: ∆Sext = −Ein/Text = 0. Finally,
the net entropy production per unit of time is ∆S = ∆Sbath +∆Ssys +∆Sext = kB(Ein−Eout).
If this entropy production vanished, i.e. if the system worked in a reversible way, it would
reach a 100% efficiency. However, the efficiency is below 10% and we can conclude that the
motor based on the randomly flashing ratchet is very inefficient.

One could think that the efficiency would increase in situations where the system is close
to equilibrium, such as ω = ωA = ωB → 0 and/or VA − VB → 0. However, a perturbative
analysis of eq. (1) shows that η → 0 in both limits. In the first case, ω → 0, from eq. (1) one
can easily find that J is of order ω, so is Fstop. Therefore, Eout, in the interval 0 < F < Fstop,
is of order ω2, whereas one can prove that Ein is of order ω, giving a zero efficiency in this
limit. In the second case, ∆V (x) ≡ VA(x)−VB(x)→ 0, the input energy Ein is of order ∆V 2.
However, surprisingly enough, J is of order ∆V 2 and so is Fstop. Hence, Eout is of order ∆V 4

and the efficiency vanishes. Notice that this argument is also valid when VA(x)− VB(x) tends
to an arbitrary constant, since this constant neither appears in the evolution equation (1)
nor contributes to the input energy given by (3). We conclude that the flashing motor is
intrinsically irreversible, as has been pointed out for related models in refs. [7, 9-11].

Deterministically driven ratchets. – As a different strategy to reduce the entropy pro-
duction, we consider Brownian particles in a potential which changes deterministically in
time. If the potential changes slowly, the system evolves close to equilibrium and the entropy
production is low. From now on, we will focus our attention on Brownian particles in a spatially
periodic potential V (x; R(t)) depending on a set of parameters collected in a vector R [12].
The parameters are changed periodically in time with period T , i.e. R(0) = R(T ).

As in ref. [10], we have to modify our definition of efficiency. Firstly, we deal with energy
transfer per cycle [0, T ] instead of per unit of time. Secondly, the input energy or work done
to the system in a cycle, as a consequence of the change of the parameters R(t), is

Ein =

∫ T

0

dt

∫ 1

0

dx
∂V (x; R(t))

∂t
ρ(x, t) . (6)

The probability density ρ(x, t) verifies the Smoluchowski equation

∂tρ(x, t) = −∂xJR(t)ρ(x, t) , (7)

where JR = −V ′(x; R)−F−∂x is the current operator corresponding to the potential V (x; R).
As before, the output energy is the current times the force F , but now the current is not
stationary and we have to integrate along the process:

Eout =

∫ T

0

dt FJR(t)ρ(x, t) = Fφ , (8)

where φ is the integrated flow along the process.
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Fig. 2. – Graphical representation of the reversible ratchet described in the text: the potential in a)
depends on two parameters, V1 and V2, which are the height/depth of two barriers/wells and they
change along the path depicted in b), V being the maximum height/depth of the barriers/wells. In c),
the shape of the potential at the four labelled points is shown.

With the above expressions, the efficiency of the system, η = Eout/Ein, can be found
analytically for T large and weak external force, where η is expected to be high. The integrated
flow φ and the input energy Ein can be obtained by solving eq. (7) perturbatively up to first
order of Ṙ(t) and inserting the solution in eqs. (6) and (8). This procedure is similar to that
carried out in ref. [12] for the particular case F = 0. For the integrated flow one finds

φ = φ0 − µ̄FT , (9)

where µ̄ is the average mobility of the system:

µ̄ =
1

T

∫ T

0

dt

Z+(R(t))Z−(R(t))
(10)

and φ0 is the integrated flow for F = 0 [12]:

φ0 =

∮
dR ·

∫ 1

0

dx

∫ x

0

dx′ρ+(x; R)∇Rρ−(x′; R) , (11)

with

ρ±(x; R) ≡
e±V (x;R)

Z±(R)
; Z±(R) ≡

∫ 1

0

dx e±V (x;R) .

In eq. (11) the contour integral runs over the closed path {R(t) : t ∈ [0, T ]} in the space of
parameters of the potential. The term proportional to T in eq. (9) arises because the force F
induces a non-zero current which is present along the whole process. As a consequence, the
stopping force is Fstop = φ0/µ̄T . Therefore, in order to design a motor in the adiabatic limit,
it is necessary to take simultaneously the limits T →∞ and F → 0, with α ≡ FT finite.

Observe that the above expressions are useless if φ0 = 0. In ref. [12], we have called
reversible ratchets those systems exhibiting transport in the adiabatic limit, i.e. with φ0 6= 0.
This is satisfied by potentials V (x; R) depending on two or more parameters such as the one
depicted in fig. 2, which is a modification of the example discussed in [12]. From now on, we
restrict our analytical calculations to reversible ratchets, although we also present numerical
results for an irreversible ratchet below.

The input energy given by eq. (6), up to first order on F and 1/T , is

Ein = φ0F + b/T (12)
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Fig. 3. – a) Irreversible ratchet: numerical results for the efficiency of the ratchet consisting of the
potential in fig. 1 a) modulated by z(t) = cos2(πt/T ) as a function of the external force F and for
different values of the period T : T= 0.00125 (◦), 0.025 (�), 0.05 (�), 0.25 (×), and 0.5 (M). b) Reversible
ratchet: numerical and analytical results for the efficiency of the ratchet described in fig. 2 for V = 5
a = 0.2 as a function of α ≡ FT and for different values of the period T : T= 1 (×), 2 (�), 10 (�),
40 (◦). The thick solid line is the analytical result given by eq. (14) in the limit T →∞ and F → 0.
Note that η is an increasing function of T in the reversible ratchet b) as opposite to the irreversible
case a).

with

b = −

∫ T

0

dt Z−(R(t))Z+(R(t))

{[∫ 1

0

dx

∫ x

0

dx′ ρ+(x; R(t)) [∂tρ−(x′; R(t))]

]2

+

+

∫ 1

0

dx

∫ x

0

dx′
∫ x′

0

dx′′ [∂tρ−(x; R(t))] ρ+(x′; R(t)) [∂tρ−(x′′; R(t))]

}
, (13)

which is a positive quantity. Combining the above expressions, one finds for the efficiency

η =
Fφ

Ein
=
F (φ0 − µ̄FT )

φ0F + b/T
=
φ0α− µ̄α2

φ0α+ b
, (14)

where α ≡ FT . This expression is exact in the limit T → ∞, F → 0. Notice that, even for
large T , the irreversible contribution, b/T , to Ein is of the same order as φ0F .

In a given system, i.e. for a set of parameters φ0, µ̄ and b, the maximum efficiency is
reached for α = (b/φ0)[

√
1 + φ2

0/(µ̄b)− 1] and its value is given by

ηmax = 1− 2
[√

z(1 + z)− z
]

(15)

with z = bµ̄/φ2
0. Equation (15) clearly shows how the term b in the denominator of eq. (14)

prevents the system from reaching an efficiency equal to one. Fortunately, as we will see
in a particular example below, using strong potentials one can get arbitrarily close to 100%
efficiency.

To check the validity of the above theory and to stress the differences between reversible
and irreversible ratchets, we have studied in detail one example of each class.

As an example of irreversible ratchet, consider the modulation of the potential in fig. 1a),
i.e. V (x; t) = cos2(πt/T )V (x) with V (x) given by eq. (5). In this case, φ0 is zero and the
above theory cannot be applied. We have numerically integrated the Smoluchowski equation,
eq. (7), using an implicit scheme with ∆t = 10−5, ∆x = 0.002, 0.005, and the Richardson
extrapolation method to correct inaccuracies coming from the finite ∆x. The efficiency has
been obtained using eqs. (4), (6), (8) and the results, as a function of F and for different values
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of T , are plotted in fig. 3a). The efficiency is maximum for T around 0.5 and it goes to zero
as T increases. The maximum efficiency found by numerical integration is of the same order
of magnitude as the one found for the randomly flashing ratchet. Notice, however, that we
cannot explore the whole space of parameters with numerical experiments.

On the other hand, let us consider the reversible ratchet represented in fig. 2. Here the
potential depends on two parameters, V1 and V2, which are the heights/depths of two triangular
barriers/wells of width a. We modify at a constant velocity the parameters V1 and V2 along the
path depicted in fig. 2b). Now φ0 does not vanish and the above theory gives us the efficiency
in the limit T → ∞ and F → 0. For instance, for V = 5 and a = 0.2, we obtain φ0 = 0.825,
µ̄ = 0.094 and b = 3.74. The efficiency given by eq. (14) is plotted in fig. 3b) and is compared
with a numerical integration of the Smoluchowski equation for different values of T . Notice
the differences with the irreversible ratchet. Here the efficiency is an increasing function of T .
The maximum efficiency, for the parameters corresponding to fig. 3b), is 26% which is almost
reached for T = 40. The efficiency of this ratchet can be arbitrarily close to 100% if V is
increased. The reason is that the average mobility decreases exponentially with V , but the
coefficient b and the integrated flow φ0 remain finite. For instance, for V = 20 and a = 0.4,
φ0 = 0.999988, b = 6.89 and µ̄ < 10−7, giving a maximum efficiency of 99.85%.

Finally, it should be stressed that our engine works by means of a genuine ratchet mecha-
nism, namely, the rectification of thermal fluctuations. As a matter of fact, the engine does
not work at zero temperature, since the crossing through x = 0, occurring essentially between
steps 4 and 2, is due to thermal fluctuations.

To summarize, we have calculated the efficiency of a randomly flashing ratchet with an
asymmetric sawtooth potential. In order to find more efficient Brownian motors, we have also
calculated the efficiency of deterministically driven ratchets, finding that the efficiency of re-
versible ratchets is much higher than the efficiency of irreversible ratchets. It is remarkable that
the class of reversible ratchets involves potentials depending on two or more parameters [12]
and they differ from the models considered to date in the literature. Here we have shown that
this new and non-trivial class of ratchets is a real breakthrough regarding efficiency.
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