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Abstract — Traffic engineering and an economical provisioning 

of bandwidth is crucial for network providers in times of high 

competition in broadband access networks. We investigate the 

efficiency of caching as an option to shorten end-to-end paths and 

delays while at the same time reducing traffic loads. The portion 

of HTTP based distribution of cacheable content on the Internet 

is increasing in recent time. In addition, the favourable effect of 

Zipf-like access pattern on caches is also confirmed for currently 

most popular web sites with user generated content. Content de-

livery (CDN) and peer-to-peer (P2P) networks are distributing a 

major portion of IP traffic with different impact on caching. P2P 

traffic is subject to long transport paths although appropriate for 

caching in principle. CDNs are based on server infrastructures 

allowing for shorter paths on a global scale on top of network 

provider platforms. 

We give a brief overview of the options for deploying caches by 

content and network providers at different points in the intercon-

nection, backbone or aggregation. The main part of the work 

focuses on the analysis of replacement strategies with regard to 

Zipf-like and slowly varying access pattern. A comparative 

evaluation shows that least recently used (LRU) and the alterna-

tive of caching strategies based on access statistics essentially dif-

fer in terms of the achievable hit rates. 

 

Index Terms — Content delivery, P2P, CDN overlays, caches, 

Zipf distributed access pattern, transport path optimization. 
 

 

I. CACHING FOR GROWING INTERNET TRAFFIC   
RAFFIC on networks for broadband Internet access is 
steadily increasing although at different pace over time 

depending on the deployment stages of technology in different 

regions. The Minnesota Internet Traffic Studies (MINTS) [23] 
give an overview including links to many relevant sources with 
measurement data from traffic exchange points and reference 
to official statistics of some countries, e.g., for Australia or 
Hong Kong [3][27]. Based on that, Odlyzko et al. [26] esti-
mated a 100% traffic growth rate per year in core areas of the 
Internet on the average from 1990 to 2002. Meanwhile the 
global annual traffic growth slowed down to about 45% [23] 
as confirmed also in a white papers series on IP traffic by 
Cisco Systems [8]. Main current trends and forecasts are:  

Ø Global IP traffic will nearly double every two years 
through 2013. 

Ø Peer-to-peer (P2P, file sharing etc.) is growing in volume, 
but declining as a percentage. 

Ø Video is a major source of IP traffic growth. All types of 
video will account for >90% of consumer traffic in 2013. 

There is a discrepancy between the access speed provided in 
broadband access networks and the available bandwidths in 
core networks. According to periodically updated statistics by 
the content delivery network provider Akamai [2], several 
Asian countries provide the highest speeds for broadband ac-
cess per users (South Korea: 11.3Mb/s, Japan: 7.3Mb/s, Hong 
Kong: 7Mb/s) followed by countries in Europe and North 
America in the range of 3-6Mb/s. In Germany the access 
speeds of well beyond 15 million broadband access lines with 
mean rate of 3.5Mb/s [2] sum up to a total access capacity of 
>50Tb/s for private households. If most users would exploit 
their access speed then even 100Gb/s IP and Ethernet links as 
currently standardized for next generation backbone equip-
ment would be insufficient, while a next wave of video and IP-
TV applications up to HDTV quality [11] is expected to fur-
ther rise traffic demands.  

 In this situation, traffic engineering measures for load bal-
ancing and optimizing traffic paths will stay important. We 
investigate options for and the efficiency of caching. Caches 
have been deployed on nodes in the Internet since more than a 
decade, which shorten the transport paths for a considerable 
portion of accesses referring to popular web sites. Several 
studies have shown the efficiency of caching around the mil-
lennium [4][23]. Then P2P networking contributed the major 
portion of Internet traffic for several years, which bypassed 
classical HTTP based web caches and made them inefficient. 
In recent time, user generated content becomes even more 
relevant, but server based platforms like YouTube and social 
networks have grown faster than data exchange via P2P, such 
that HTTP requests currently again account for most of the IP 
traffic. As a consequence, the portion of cacheable content is 
increasing [13] where extremely skewed Zipf-like access pat-
tern are again observed in recent studies on YouTube and 
other platforms [5][11][13][14]. Besides network providers, 
the operators of content platforms often make use of globally 
distributed content delivery networks [2][31] with similar ef-
fect on shortening transport paths. 

This paper studies the deployment of caches by content and 
network providers at different points in the interconnection, 
backbone and aggregation level. The main part of this study is 
devoted to cache replacement strategies, where fundamental 
research already started several decades ago on the same prob-
lem for paging in operating systems [12][22]. When access 
pattern are stable over a considered time span then an optimum 
strategy is to put the most popular items in the cache, where 
small caches are already expected to be efficient for Zipf-like 
access distributions [6][7][11][13]. In principle, the exact 
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analysis of hit rates for usual strategies can be solved in closed 
form [12][22][30] but involve evaluation of combinations of 
items in the cache, which render infeasible already for moder-
ate cache sizes. Instead, we propose simpler modeling of 
strategies in an approximate but scalable analysis. A similar 
approach has been evaluated for LRU versus FIFO caching for 
database applications [10]. Compared to [10] this paper pro-
vides an update and extensions for web caches, yielding differ-
ent results for Zipf-like accesses and including replacement 
strategies based on statistics about recent accesses. 

The next section discusses transport paths and delays in 
CDN and P2P networks as overlays with different impact on 
caching. Section III briefly addresses options for caching 
within the architecture of network providers followed by an 
approximate performance analysis for replacement strategies 
using access statistics and LRU in sections IV and V. Section 
VI and VII show comparative evaluation results in terms of the 
hit rates for caching strategies with special focus on Zipf-like 
access pattern and available traces. Concluding remarks and an 
outlook are given in section VIII.  

II. CDN AND P2P PATHS FOR CONTENT DELIVERY  
The end-to-end transport paths naturally depend on the ap-

plications with fundamental differences between client-server 
based and peer-to-peer networking. A large portion of Internet 
traffic is currently delivered via CDN and P2P overlay networks 

[2][8][15][18][24]. Content delivery (or distribution) networks 
(CDN) are based on server farms within the Internet infrastruc-
ture, whereas peer-to-peer networks (P2P) which are organized 
on the terminal equipment of the users. 

A. Content delivery networks 
CDNs are developing from support of popular web sites to 

include streaming, IP-TV and many other Internet services. A 
study of transfer paths through Akamai´s CDN [31] shows how 
users are redirected from the main web site via an hierarchical 
server farm to one of more than 10 000 CDN servers, which is 
located in the near of the destination. The connection is dyna-
mically switched between servers if performance measurement 
or server load indicate better quality of service on an alterna-
tive backup path. Su et al. [31] confirm that CDNs are efficient 
in shortening transport paths and improving delays and 
throughput as main quality of service characteristics. 

 

 
 

Figure 1: Content delivery networks 

B. P2P networks 
P2P networks are known to be highly efficient and scalable 

in distributing large data volumes among big user communities 
by exploiting storage, computational power and access band-
width as otherwise vacant resources of the users. On the other 
hand, P2P involves only a minimum of network infrastructure 
and currently leads to long transport paths spanning around the 
globe between randomly chosen peers. Since popular content 
is found in many replicas in a P2P network, sources for 
download are often available in the near of a requesting user. 
Therefore a preference for local downloads can essentially 
shorten end-to-end paths and reduce the load on backbone and 
expensive interconnection links [1]. Since 2008 solutions to 
get information on the location of nodes in distributed applica-
tions are addressed by an IETF working group [21] in order to 
prefer close-by sources. 

C. Comparison of CDN and P2P paths and delays  
As compared to CDN transfers from a close-by server, P2P 

downloads usually experience much longer paths and delays 
which also affect throughput and reliability. For network pro-
viders, unnecessary long transfer paths impose higher load on 
peering and interconnection routes including expensive inter-
continental links [18][21].  

Considering large provider networks serving millions of 
subscribers, it can be expected that a majority of the data of a 
global file sharing network is already found to be replicated on 
the same ISP platform and partly in the same access region of 
a P2P downloader. The fact that the major portion of down-
loads is addressed to a small set of the currently most popular 
files strengthens this effect. Sometimes a tendency for local 
P2P content exchange arises within social groups. A separation 
of user communities and content due to different languages is 
most obvious [29].  

We have evaluated the delays for traffic via P2P and CDN 
overlays through packet based measurement on links in the 
aggregation of Deutsche Telekom’s broadband access network 
[18]. We did not try to capture all traffic of both types, but 
selected a fraction that can be easily detected via P2P ports for 
BitTorrent, eDonkey and Gnutella and via IP address ranges 
indicating autonomous systems of Akamai, Limelight, Google 
and other server sites. The flows classified via P2P ports made 
a fraction of 2.7% of the traffic volume, while the IP address 
ranges for CDNs and popular web sites accounted for 10.7% 
of the total traffic.  

A packet measurement on two 1Gb/s links in parallel in the 
aggregation in downstream direction yielded a total mean traf-
fic rate of about 820 Mb/s during a time span of one hour at the 
daily peak time in mid 2008. We used two successive packets 
sent by the client in the TCP handshake to estimate the round 
trip time (RTT), although this may also include reaction times 
of the server or peer in response to the TCP connection request 
as well as delay jitter on the path to the measurement point.  

The mean RTT delays evaluated in Table 1 are 2.5-fold 
higher for P2P, which is also apparent when looking at delays 
beyond bounds, where almost 10% of the P2P flows have RTT 
beyond 1s. Such delays would be unacceptable for real time 
applications. 



 

Comparison of 
RTT Statistics Mean 

 RTT 
> 0.1s 

 RTT 
> 0.2s 

 RTT 
> 0.5s 

 RTT 
> 1s 

  CDN 0.125s  30.9%  11.9%  4.2%  0.9% 

  P2P 0.330s 74.1% 43.2% 20.1% 9.5% 
 

Table 1: Delay measurement for P2P and CDN overlays 

III. CACHES IN BROADBAND ACCESS NETWORKS 
The business case for caching is determined in a tradeoff be-

tween cost savings for capacity on transmission links and costs 
for the caches. The bandwidth saving due to caching basically 
depends on the frequency of accesses to cacheable content. 

Figure 2 shows the architecture of broadband access net-
works including connectivity to content platforms via the IP 
backbone and aggregation network. Network providers have 
option to install caches on nodes in the aggregation network, in 
the backbone or at peering links. In addition, content delivery 
networks can be viewed as caching systems on a global scale 
and caching is also applied in the user’s end systems, see [4] 
for an overview of user and content oriented caching methods.  
 

 

 Figure 2: Caches in broadband access networks 

Caches close to the users can cut off most of the transmis-
sion path. On lower aggregation levels many caches have to be 
deployed, each of whom is serving a smaller user population 
with the consequence of smaller hit rates. While the access 
pattern of users is not expected to vary much in different re-
gions of broadband access for homes, the access pattern 
through corporate networks or in organizations can essentially 
differ from the global access behavior. The study [13] experi-
enced such differences in the popularity of YouTube content 
accessed from a university. This can lead to higher efficiency 
for local caches adapted to user communities. In general, the 
efficiency of a cache with storage for a set I = {o1, o2, …, oM} 
of items depends on 

ak:  the access frequencies of items ok in the cache e.g.  
in terms of the expected number of accesses per day, 

sk :    the size of the items ok   

cCache(sk): costs for caching the items ok  

cLj
BW: costs for bandwidth provisioning on links Lj in the 

broadband access network. 

It is worthwhile to use caching and to store an item ok in the 
cache, if the costs are lower than the positive effect of short-

ened transmission paths. In particular, let L1, L2, …, LS  denote 
the links on the transmission path that are bypassed when using 
a cache. For a balance of cost we obtain 
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where ak sk represents the bandwidth saved by caching ok. In 
addition to the size of the item and the traffic driven costs of 
links in the network, there are costs associated with operations 
and maintenance of the links as well as the caches not consid-
ered in (1), which require much more elaborate weighting. A 
network provider’s decision on whether and where to install 
caches has to be based on a business case study covering all 
options in a network wide architectural view, involving access 
pattern for relevant service and content platforms. The balance 
of costs (1) may be used to check for appropriate positioning 
of caches and to decide where to put an item if caches are 
available at different nodes in a transport path. 
 In principle, cacheability is improving on the Internet in 
recent time [13]. P2P network traffic is partly shifting towards 
transport via the HTTP protocol. Although P2P traffic is ap-
propriate for caching [15][28], P2P caches do not seem to be 
deployed and P2P caching options introduced e.g. by the 
eDonkey protocol are again embedded into HTTP [29].   

A main problem of cache efficiency as with quality of ser-
vice (QoS) support in general are administrative boundaries of 
content and network providers, where limited cooperation may 
detract from optimization over the complete end-to-end trans-
fer path. CDN support for large content providers often ends 
on peering links at the boundaries of network providers who 
engineer the traffic within their platform more or less inde-
pendently. In order to make full use of caching, unique hash 
identifiers are proposed for each content item to detect and 
avoid duplicate transport over the same path [25], as also suc-
cessfully applied in P2P networks.  

However, up to now no such solution seems to be standard-
ized and supported by major content providers. Thus detecting 
that accesses address the same content in the cache is not triv-
ial and can add considerable performance burden on caching 
systems, even if Web 2.0 provides helpful meta-data to im-
prove the efficiency of caching [13]. On the other hand, con-
tent platforms like YouTube often personalize the handling of 
requests in a way that makes it even more difficult to classify 
requests addressing the same item based on HTTP data, al-
though both the content and network provider would benefit 
from keeping large popular content volumes in caches close to 
the user. Further problems of outdated data in a cache may be 
less relevant for video streaming or downloads which drive the 
Internet traffic growth but are still important for access to web 
sites with dynamically updated information.  
 

IV. HIT RATE ANALYSIS FOR LRU CACHING  
Let I = {o1, o2 … oN} denote a set of cacheable items. We 

assume that the accesses are identical and independently dis-
tributed (i.i.d.) within a considered time frame such that each 
access refers to an item ok with probability ak without memory 
of previous accesses. The items ok are ordered according to 
decreasing access probabilities a1 = a2 = … = aN. Access sta-
tistics are measured on many web sites for commercial reasons 



 

and partly shown on platforms like YouTube, Amazon etc. 
They can be easily obtained by the operator of a web server 
where trends observed in recent time are expected to provide 
useful approximations for access probabilities also in the near 
future.  

We assume that the cache CM has limited storage for M (< N) 
arbitrary objects. Usually the size of each item is relatively 
small as compared to the size of the cache although cache sizes 
are again relatively small compared to the content on web plat-
forms that may be cached. Then the variability in item sizes 
does not have a major impact on the cache hit rate. In addition, 
many Internet applications divide larger content volumes into 
small segments that are better suited for real time transmission 
and reduce the variability of the size of cacheable objects. For 
independent accesses the maximum hit rate RCM

max
  is achieved 

when the most popular objects are put into the cache: 
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Provided that the access pattern of a web server or another 
caching environment is static or slowly varying according to 
independent access probabilities, then a near optimum caching 
strategy is to estimate the probabilities from access statistics 
over an appropriate time frame and to keep the most often ref-
erenced items in the cache as considered in section V. On the 
other hand, access statistics for web applications are more or 
less dynamic up to extreme effects of spontaneously arising 
flash crowds interested in some newly appearing content. 
Therefore the content of caches has to be steadily adapted 
based on a replacement strategy to include new promising 
items and to select others to be removed.  

Least recently used (LRU) and first in first out (FIFO) are 
simple and usual replacement principles. LRU is realized by 
ordering the items in the cache such that a newly referenced 
item is always put on top while previously higher-ranked items 
step down by one rank. With FIFO strategy, a new top item 
and reordering is only initiated if an item outside of the cache 
has been referenced. As a consequence, LRU keeps repeatedly 
accessed items longer in the cache and comes closer to a strict 
preference for the most accessed items, as confirmed in all 
evaluations in [10] for comparison of LRU and FIFO. There-
fore we omit FIFO in our considerations. 

We analyze the hit rate for LRU in order to compare it to 
the optimum strategy of having the most popular items in the 
cache. When we consider a cache CM of size M then the last M 
references to different items determine the current content in 
the LRU cache. Starting with M = 1, the last access determines 
the top item in the cache such that the probability to find ok in 
the cache is equal to the access probability 

kMk aCop =∈ − )( 1
. 

Thus the hit rate RC1
LRU of a LRU cache for one item is  
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The probability that the LRU cache contains ok on top and oj 

in the second rank is given by ak for the last access combined 
and thus multiplied with aj/(1 – ak) for the previous access to 
an item oj ? ok. Therefore the hit rate for a 2-item cache is 
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The analysis extends to caches of arbitrary size M < N [30]: 
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The sum involves all combinations of M items which render 
the evaluation infeasible for large M. Instead we propose an 
approximation of RCM

LRU with moderate computational com-
plexity for large caches. Therefore we consider the probabili-
ties )( Mk Cop ∈ that an item ok is found in a cache of size M, 

and that it is especially found on rank r in the previously de-
scribed LRU order. On top we again have kMk aCop =∈ − )( 1

 for 

the item addressed in the last request. The item ok is found in 
the second rank when the last access referred to an item oj ?  ok, 
i.e. with probability aj/(1 – ak) and the previous access selects 
ok among all elements different from oj i.e. with probability 
ak/(1 – aj): 
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While this formula is exact corresponding to equation (4) 
for R2

LRU, we propose a less complex approximation for M > 2. 
We compute the probability of finding item ok in position M of 
the LRU stack  
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considering the situation when ok has been selected at the M-th 
backward stage among all items not in CM–1. The denominator 
provides normalization over the access probabilities of items 
not in the cache, where the hit rate of a cache of size M–1 is 
subtracted, which is known to exclude ok. The computation is 
completed by determining the latter hit rates by 

.
)(1

1
)(

1 1

1
LRU

}{1 /
∑

≠
= −

−
− ∈−−

−∈=
N

kj
j Mk

jMj
koMC CopM

M
aCopR

    (8) 

Since ∑ −=∈ −j Mj MCop 1)( 1 , a corresponding weighting 

factor accounts for the exclusion of ok.  
Equations (7) and (8) provide an iterative scheme to com-

pute )( Mj Cop ∈  for M = 2, 3, 4, … with initialization for C2 

in equation (6). The scheme avoids considering all possible 
combinations of items in CM and approximately inserts the 
conditional hit rates (8). The computational complexity to 
evaluate (7) and (8) for CM is O(NM) and thus tractable up to 
millions of items. Finally we obtain the hit rate 
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The presented framework recovers results by Dan and 
Towsley [10], where especially equations (1) and (2) in [10] 
correspond to the previously equations (7) and (8), when we 
apply the finest granularity to identify each partition in [10] 



 

with an item. Then equation (8) is replaced in [10] by the sim-
pler term 

∑ = −
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i.e. the computation of hit rates during the iteration doesn’t 
regard the fact that item ok is not in the cache when evaluating 
(7). The difference is negligible for small access probabilities 
ak, but significant for popular items with e.g. ak > 0.5.  

Dan and Towsley do not consider Zipf distributed accesses 
as observed in the Internet but focus on other distributions for 
database applications. They “observe that the LRU policy pro-
vides most of the performance of the optimal policy”, although 
they also discover cases of major degradation for LRU policy 
as in Figure 16 in [10]. Our evaluations of LRU with Zipf law 
accesses in Section VII always show significant LRU perform-
ance degradations. Next, we transfer the approximate analysis 
to replacement methods based on access statistics. 

 

V. HIT RATE ANALYSIS FOR REPLACEMENT BASED ON 

ACCESS STATISTICS WITH LIMITED BACKLOG   
 Next we use statistics over a sliding window of the last L 

accesses to prefer the most often referenced items for caching. 
Again we assume independent and identically distributed 
(i.i.d.) references to items with probabilities a1 = a2 = … = aN. 
When the statistics has only a short memory of a few recent 
accesses then we expect essential random deviations, but with 
increasing L a tendency to a ranking according to the access 
probabilities is expected to prevail. We are interested to find 
out which backlog L is required in order to give sufficient pref-
erence for the top items o1, o2… oM in the cache in order to 
approach the optimum hit rate .
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Let # k denote the number of references to ok within the last 
L accesses. Then the probabilities that m out of L accesses are 
addressed to ok follow a binomial distribution 
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The distribution can be equivalently expressed using gener-
ating functions such that  
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Next we determine the probabilities )#|(# mnp kj == for 

pair wise comparison of the number of accesses to items which 
determines their order in the ranking: 
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The rank rj of oj is smaller if the number of accesses is lar-
ger #j > #k  ⇒  rj < rk ⇒ p(rj < rk | #k = m)  =  ? n>m

).#|(# mnp kj ==  

An exact determination of the rank rk of ok based on statistics 
of the last L accesses includes probabilities for all combina-
tions of the number of accesses to the entire set of items. We 
simplify the computation of rank probabilities p(rk = l) by as-
suming that pair wise rankings are independent of each other, 

i.e. that )#|(# mnp kj == is independent of )#|(# mnp ki ==   

for i ≠ j and as a consequence  
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Then the generating function for the distribution of the rank rk 
can be expressed as  
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where the factor z accounts for the fact that rk = 1 and each 
factor of the product represents a 0-1-distribution with regard 
to the comparison of rj and rk.  

The resulting probabilities p( rk  = l | #k = m) indicate whether ok 
can be found in the cache CM. ok is clearly outside the cache if 
rk  > M, but for rk  = M multiple items in the same rank #j  =  #k 
have to be taken into account. Let N(rk) denote the number of 
items in equal rank with ok. If rk + N(rk) – 1 = M then ok and all 
items in the same rank fit into the cache. Otherwise, if rk = M 
and rk + N(rk) – 1 > M  then only M – rk + 1 of those items can 
be placed in the cache. We assume random selection, such that 
the probability for ok to enter the cache is (M – rk + 1) / N(rk) 
in such cases. 

The generating function and thus the probability distribution of 
N(rk) is computed similar to the rank distribution by consider-
ing cases of p(#j  =  #k  = m) instead of p(rj < rk | #k = m): 
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Once the probabilities of the rank distribution and of the num-
ber of equally ranked items are determined, the probability of 
finding ok in the cache is given by 
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From the conditional rank distributions for #k = m we finally 
obtain the probability for ok being in the cache for arbitrary #k 
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The computational complexity of the evaluation is 

Ø O(NL) for the binomial distributions p(#k = m) for all 
items m, 

Ø O(N 
2L2) for )#|(# mnp kj == for all pairs of items, 



 

Ø O(NM 2L) for )(
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z
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ranks rk  <M  as required to check if ok   is in the cache, 
Ø O(N 3L) for )(
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 ⇔ p(#j  =  #k  = m), 

Ø O(N L) for )#|( mCop kMk =∈  and final computation of 

the cache hit rate. 

In total, the computational effort is of the order O(N 
2L(N+L)). 

Most probabilities p(#k = m), ),#|(# mnp ki ==  p(#j = #k = m) 

are negligibly small for large N, L. Thus a restriction on non-
negligible ranges essentially reduces the computation effort. 

 The computation is subject to inaccuracies introduced by 
the assumption that pair wise rankings are independent of each 
other in determining rank distributions p( rk  = l | #k = m). Such 
deviations are most relevant for small L. For L = 1 only the last 
access is included in the access statistics such that item ok is 
put in the first rank with probability ak   and all items not on top 
are equally ranked. Then we obtain as an exact result 
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This result corresponds to fixed values p( rk  = 2 | #k = 0)  =  1 for 
the rank and p(N( rk  ) = N – 1 | #k = 0) = 1 for the number of 
equally ranked items, whereas the previously proposed compu-
tation scheme leads to Poisson-like distributions in both cases 
with the same mean but with a non-zero variance. The devia-
tions are essential for small M, but decease with the cache size. 

 In general, the preference for items according to statistics of 
L recent accesses will show monotonously increasing hit rates, 
starting from random caching of items corresponding to L = 0 
with hit rate M/N and approaching ∑ =

M

k ka
1

for large L. 

 The binomial distributions p(#k = m) with mean L ak and 
standard deviation )1( kk aLa − will approach Poisson distri-

butions with for large L. For each pair of items with aj < ak the 
differentiation of their rank will become stronger for increas-
ing L since the standard deviations are increasing slower than 
the mean such that the differences in the mean are becoming 
more significant until finally  

.0)#(# =≥⇒< ∞→ kjLkj pimlaa  

The evaluation section VII will show this development for 
some examples and estimate the window size L for the statis-
tics in order to get close to the optimum hit rate.  
 

VI. ZIPF LAWS FOR ACCESS TO POPULAR CONTENT  

Pareto and Zipf distributions are observed manifold in 
Internet statistics or more general, when a large population is 
accessing a large set of items. V. Pareto introduced the form a 
century ago to characterize the distribution of property and 
income over people, which has a large variance with major 
impact of a small portion of extreme outliers, holding an es-
sential share of total resources. According to a Zipf law, the 
item in rank R in the order of highest access frequency attracts  

A(R) = α R–β        (α > 0; 0 < β  < 1)               (9) 

accesses. The parameter α = A(1) can refer to the maximum of 
accesses observed for an item in the statistics or is determined 

by a normalization constraint ΣR A(R) = 1 ⇒ α = 1 / ΣR R–β  
such that A(R) expresses the portion of accesses for a probabil-
ity distribution. The exponent β determines the differences in 
access frequencies and thus the variance of the distribution, 
which is increasing with β.   

The relevance of Zipf distributions has been confirmed 
manifold in the Internet, e.g., 

Ø for popular web sites by Breslau et al. [5] in a series of 
measurements yielding 0.64 <β < 0.85 as exponents, 

Ø for access frequencies to distribution platforms like You-
Tube [6][7][13] with β → 1, many other content and 
video platforms referenced in [13], America Free TV 
<americafree.tv> [11], Amazon <www.amazon.com>, 
P2P networks etc. 

Ø for further examples mentioned e.g. by M. Eubanks [11] 
from cross references in the Internet to relationships in 
large social networks or for the frequency of words in a 
long text. 

Zipf laws lead to bounds for the sum of access frequencies 
of the top N  items:  
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where the sum corresponds to an integral of a step function 

  ββ −− ≥= RRRfU )(  as an upper bound of the real valued 

function R–β. Vice versa, we obtain the lower bound 
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When a cache of limited size for M items is available for a 
larger set of N >M items, then equations (10)-(11) also bound 
the fraction of accesses to the top M items within the set of N 
items: 
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Figure 3 and Figure 4 show the shape of Zipf distributions 
with emphasis  

Ø on the influence of the exponent in Figure 3 and 

Ø on the size M of the set of items in Figure 4.  

The curves confirm the influence of a small set of top items, 
which attract a considerable amount of all accesses. When the 
exponent β  is increasing from 0.5 to 1 then the fraction of 
accesses to top elements is growing by 10% - 30% with most 
effect for the top 1%.  

While Zipf distributions always tend to become more 
skewed for larger β, the influence of the size M of the set of 
items is less straightforward. When a fixed number of top M 



 

items is considered then the corresponding fraction of accesses 
is decreasing with the size N of the set of items: 

 
.0

1)1(

)1(
lim

1

1

1

1 →
−+
−+< −

−

=
−

=
−

∞→ ∑
∑

β

β

β

β β
N

M

R

R
N

R

M

R

N

           (13) 

0%

20%

40%

60%

80%

100%

1% 2% 4% 8% 16% 32% 64%

Fraction of top K% most accessed items

F
ra

ct
io

n
 o

f 
a

cc
es

se
s 

to
 t

h
e 

to
p

 i
te

m
s 

ß = 0.9999
ß = 0.9
ß = 0.8
ß = 0.7
ß = 0.6
ß = 0.5;   N= 1000

 
Figure 3: Skewness of Zipf distributed accesses  

                            A(R) = α R–β: Impact of the exponent β 
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Figure 4: Skewness for Zipf distributed accesses:  

                          Impact of the size N of the set of items 

 When the top K % items are considered such that M = NK/100, 
then the fraction of accesses to those top K % is increasing with 
the set of items N. Figure 4 shows a slight increase for small 
exponents in three curves for β = 0.6 and a larger increase for 
high exponents in the curves for β = 1. 

Zipf laws typically yield a good match only for a limited 
range with deviations often being observed for the most popu-
lar and for seldom accessed items [5][11][13]. Alternatively, 
the study [14] proposes the term 

A(R) = (b – a ln(R))
c                             (14)   

with three parameters for adaptation in cases with less skewed 
access distributions than for Zipf laws. 

VII. EVALUATION OF CACHE HIT RATES 

We apply the analysis for the caching strategies of sections 
IV and V to cases of Zipf distributed access and to subsets of 
YouTube access traces provided by [6]. The first example in                     
Figure 5 compares the approximate LRU analysis to a simula-

tion and to static allocation of the most popular items as the 
best case. Access probabilities are determined based on statis-
tics provided in the YouTube trace [6]. The results show the 
skewness of accesses, where the top 1% of 16519 items would 
attract 40% hit rate when stored in a cache. LRU hit rates are 
10-20% below optimum and simulation results show an almost 
perfect match of simulation with the approximate analysis.  
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                    Figure 5:  Performance of LRU caching 

The example in Figure 6 sets access probabilities according 
to statistics for the first 1000 items in the YouTube trace [6]. 
We compare the hit rate for the strategies of putting the most 
popular items in the cache, for LRU and for access statistics as 
studied in Section V over a sliding window of L = 200 with 
cache size M = 50. Figure 6 shows that LRU again remains 10-
20% below the optimum, which is inefficient especially for 
small caches. The access statistics is close to the optimum for 
small caches, since it especially prefers the top items, but be-
comes worse than LRU for large caches.  
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Figure 6:  Comparison of cache hit rates   

Another example investigates the effect of the window size L 
for including backward accesses in the statistics approach. 
Starting with the memoryless case L = 0 with randomly cached 
items the probability of having the popular items in the cache 
is steadily increasing as shown in Figure 7. This also holds for 
the cache hit rate (L = 0: 10%, L = 4: 20.3%, L = 64: 50.8%,   
L = 1024: 63.8%) which approaches the optimum of 66.3% for 
static allocation.  
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Figure 7:  Statistics preferring most popular items in the cache 

VIII. CONCLUSION AND OUTLOOK 
The positioning and distribution of content on the Internet 

in order to achieve short transport paths to each requesting 
user has a major impact on traffic engineering and QoS. We 
investigated scalable approximate analysis models for usual 
caching strategies assuming i.i.d. accesses. Rather than having 
the exact view on all combinations of items, most of them are 
aggregated for a unique and tractable analytical treatment. The 
results show that hit rates for statistics based caching strategies 
are near optimum especially for small caches under skewed 
Zipf-like access pattern already for moderate window size with 
a need for larger samples to improve hit rates for medium to 
large caches. LRU hit rates are typically 10-20% below as-
signment of most popular items with largest relative gaps for 
small caches. The analysis of hit rates can support the planning 
of cache locations within a network provider platform.    

 For future work, more detailed evaluations and alternative 
strategies can be considered. A usual variant of adaptive ac-
cess statistics is to introduce a weighting factor that is geomet-
rically decreasing with the backlog. The analysis approach is 
transferable to this case starting from different distribution 
functions for the ranking of items. Another topic for future 
research is the modeling of dynamically changing access popu-
larity, where high dynamics detracts from caching efficiency. 
Studies on file sharing indicate that the ranking of most popu-
lar content is only slowly varying on time scales of weeks or 
months but more measurement on the access dynamics for 
content delivery platforms is required.  
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