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Abstract

Conformal prediction is a method of producing prediction sets that can be applied on top of a wide

range of prediction algorithms. The method has a guaranteed coverage probability under the stan-

dard IID assumption regardless of whether the assumptions (often considerably more restrictive)

of the underlying algorithm are satisfied. However, for the method to be really useful it is desir-

able that in the case where the assumptions of the underlying algorithm are satisfied, the conformal

predictor loses little in efficiency as compared with the underlying algorithm (whereas being a con-

formal predictor, it has the stronger guarantee of validity). In this paper we explore the degree to

which this additional requirement of efficiency is satisfied in the case of Bayesian ridge regression;

we find that asymptotically conformal prediction sets differ little from ridge regression prediction

intervals when the standard Bayesian assumptions are satisfied.
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1. Introduction

This paper discusses theoretical properties of the procedure described in the abstract as applied

to Bayesian ridge regression in the primal form. The procedure itself has been discussed earlier

in the Bayesian context under the names of frequentizing (Wasserman 2011, Section 3) and de-

Bayesing (Vovk et al. 2005, p. 101); in this paper, however, we prefer the name “conformalizing”.

The procedure has also been studied empirically (see, e.g., Vovk et al. 2005, Figures 10.1–10.5, and

Wasserman 2011, Figure 1, corrected in Vovk 2013b, Figure 11.1). To our knowledge, this paper is

the first to explore the procedure theoretically.

The purpose of conformalizing is to make prediction algorithms, first of all Bayesian algorithms,

valid under the assumption that the observations are generated independently from the same proba-

bility measure; we will refer to this assumption as the IID assumption. This is obviously a desirable

step provided that we do not lose much if the assumptions of the original algorithm happen to be

satisfied (metaphorically speaking, our method should do well even on its competitors’ home turf).

The situation here resembles that in nonparametric hypothesis testing (see, e.g., Randles et al. 2004),

where nonparametric analogues of some classical parametric tests relying on Gaussian assumptions

turned out to be surprisingly efficient even when the Gaussian assumptions are satisfied.

We start the main part of the paper from Section 2, in which we define the ridge regression

procedure and the corresponding prediction intervals in a Bayesian setting involving strong Gaus-

sian assumptions. It contains standard material and so no proofs. The following section, Section 3,
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applies the conformalizing procedure to ridge regression in a way that facilitates theoretical analysis

in the following sections; the resulting “conformalized ridge regression” is similar to but somewhat

different from the algorithm called “ridge regression confidence machine” in Vovk et al. (2005).

Section 4 contains our main result. It shows that asymptotically we lose little when we confor-

malize ridge regression and the Gaussian assumptions are satisfied; namely, conformalizing changes

the prediction interval by O(n−1/2) with high probability, where n is the number of observations.

Our main result gives precise asymptotic distributions for the differences between the left and right

end-points of the prediction intervals output by the Bayesian and conformal predictors. These are

theoretical counterparts of the preliminary empirical results obtained in Vovk et al. (2005) (Fig-

ures 10.1–10.5 and Section 8.5, pp. 205–207) and Vovk et al. (2009). We then discuss and interpret

our main result using the notions of efficiency and conditional validity (introduced in the previous

two sections). Section 5 gives a more explicit description of conformalized ridge regression, and in

Section 6 we prove the main result.

Other recent theoretical work about efficiency and conditional validity of conformal predictors

includes Lei and Wasserman’s (2014). Whereas our predictor is obtained by conformalizing ridge

regression, Lei and Wasserman’s conformal predictor is specially crafted to achieve asymptotic

efficiency and conditional validity. It is intuitively clear that whereas our algorithm is likely to

produce reasonable results in practice (in situations where ridge regression produces reasonable

results), Lei and Wasserman’s algorithm is primarily of theoretical interest. A significant advantage

of their algorithm, however, is that it is guaranteed to be asymptotically efficient and conditionally

valid under their regularity assumptions, whereas our algorithm is guaranteed to be asymptotically

efficient and conditionally valid only under the Gaussian assumptions.

2. Bayesian ridge regression

Much of the notation introduced in this section will be used throughout the paper. We are given a

training sequence (x1, y1), . . . , (xn−1, yn−1) and a test object xn, and our goal is to predict its label

yn. Each observation (xi, yi), i = 1, . . . , n consists of an object xi ∈ R
p and a label yi ∈ R. We are

interested in the case where the number n− 1 of training observations is large, whereas the number

p of attributes is fixed. Our setting is probabilistic; in particular, the observations are generated by a

probability measure.

In this section we do not assume anything about the distribution of the objects x1, . . . , xn, but

given the objects, the labels y1, . . . , yn are generated by the rule

yi = w · xi + ξi, (1)

where w is a random vector distributed as N(0, (σ2/a)I) (the Gaussian distribution being param-

eterized by its mean and covariance matrix, and I := Ip being the unit p × p matrix), each ξi is

distributed as N(0, σ2), the random elements w, ξ1, . . . , ξn are independent (given the objects), and

σ and a are given positive numbers.

The conditional distribution for the label yn of the test object xn given the training sequence

and xn is

N
(

ŷn, (1 + gn)σ
2
)

,

where

ŷn := x′n(X
′X + aI)−1X ′Y, (2)
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gn := x′n(X
′X + aI)−1xn, (3)

X = Xn−1 is the design matrix for the training sequence (the (n− 1)× p matrix whose ith row is

x′i, i = 1, . . . , n − 1), and Y = Yn−1 is the vector (y1, . . . , yn−1)
′ of the training labels; see, e.g.,

Vovk et al. (2005), (10.24). Therefore, the Bayesian prediction interval is

(B∗, B
∗) :=

(

ŷn −
√

1 + gnσzǫ/2, ŷn +
√

1 + gnσzǫ/2

)

, (4)

where ǫ is the significance level (the permitted probability of error, so that 1 − ǫ is the required

coverage probability) and zǫ/2 is the (1− ǫ/2)-quantile of the standard normal distribution N(0, 1).
The prediction interval (4) enjoys several desiderata: it is unconditionally valid, in the sense

that its error probability is equal to the given significance level ǫ; it is also valid conditionally on

the training sequence and the test object xn; finally, this prediction interval is the shortest possible

conditionally valid interval. We will refer to the class of algorithms producing prediction intervals

(4) (and depending on the parameters σ and a) as Bayesian ridge regression (BRR).

3. Conformalized ridge regression

Conformalized ridge regression (CRR) is a special case of conformal predictors; the latter are de-

fined in, e.g., Vovk et al. (2005), Chapter 2, but we will reproduce the definition in our current

context. First we define the CRR conformity measure A as the function that maps any finite se-

quence (x1, y1), . . . , (xn, yn) of observations of any length n to the sequence (α1, . . . , αn) of the

following conformity scores αi: for each i = 1, . . . , n,

αi := |{j = 1, . . . , n | rj ≥ ri}| ∧ |{j = 1, . . . , n | rj ≤ ri}| ,

where (r1, . . . , rn)
′ is the vector of ridge regression residuals ri := yi − ŷi,

ŷi := x′i(X
′
nXn + aI)−1X ′

nYn

(cf. (2)), Xn is the overall design matrix (the n × p matrix whose ith row is x′i, i = 1, . . . , n), and

Yn is the overall vector of labels (the vector in R
n whose ith element is yi, i = 1, . . . , n).

Remark 1 We interpret αi as the degree to which the element (xi, yi) conforms to the full sequence

(x1, y1), . . . , (xn, yn). Intuitively, (xi, yi) conforms to the sequence if its ridge regression residual

is neither among the largest nor among the smallest. Instead of the simple residuals ri we could

have used deleted or studentized residuals (see, e.g., Vovk et al. 2005, pp. 34–35), but we choose

the simplest definition, which makes calculations feasible. Another possibility is to use − |ri| as

conformity scores; this choice leads to what was called “ridge regression confidence machines” in

Vovk et al. (2005), Chapter 2, but its analysis is less feasible.

Given a significance level ǫ ∈ (0, 1), a training sequence (x1, y1), . . . , (xn−1, yn−1), and a test

object xn, conformalized ridge regression outputs the prediction set

Γ := {y | py > ǫ} , (5)

where the p-values py are defined by

py :=
|{i = 1, . . . , n | αy

i ≤ αy
n}|

n
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and the conformity scores αy
i are defined by

(αy
1, . . . , α

y
n) := A

(

(x1, y1), . . . , (xn−1, yn−1), (xn, y)
)

. (6)

Define the prediction interval output by CRR as the closure of the convex hull of the prediction set

Γ; we will use the notation C∗ and C∗ for the left and right end-points of this interval, respectively.

(Later we will introduce assumptions that will guarantee that Γ itself is an interval from some n
on.) As discussed later in Section 5, CRR is computationally efficient: e.g., its computation time is

O(n lnn).
CRR relies on different assumptions about the data as compared with BRR. Instead of the Gaus-

sian model (1), where ξi ∼ N(0, σ2) and w ∼ N(0, (σ2/a)I), it uses the assumption that is stan-

dard in machine learning: we consider observations (x1, y1), . . . , (xn, yn) that are IID (independent

and identically distributed).

Proposition 2 (Vovk et al. 2005, Proposition 2.3) If (x1, y1), . . . , (xn, yn) are IID observations,

the coverage probability of CRR (i.e., the probability of yn ∈ Γ, where Γ is defined by (5)) is at least

1− ǫ.

Proposition 2 asserts the unconditional validity of CRR. Its validity conditional on the training

sequence and the test object is not, however, guaranteed (and it is intuitively clear that ensuring

validity conditional on the test object prevents us from relying on the IID assumption about the

objects). For a discussion of conditional validity in the context of conformal prediction, see Lei and

Wasserman (2014), Section 2, and, more generally, Vovk (2013a). Efficiency (narrowness of the

prediction intervals) is not guaranteed either.

The kind of validity asserted in Proposition 2 is sometimes called “conservative validity” since

1−ǫ is only a lower bound on the coverage probability. However, the definition of conformal predic-

tors can be slightly modified (using randomization for treatment of borderline cases) to achieve exact

validity; in practice, the difference between conformal predictors and their modified (“smoothed”)

version is negligible. For details, see, e.g., Vovk et al. (2005), p. 27.

4. Main result

In this section we show that under the Gaussian model (1) complemented by other natural (and

standard) assumptions CRR is asymptotically close to BRR, and therefore is approximately condi-

tionally valid and efficient. On the other hand, Proposition 2 guarantees the unconditional validity

of CRR under the IID assumption, regardless of whether (1) holds.

In this section we assume an infinite sequence of observations (x1, y1), (x2, y2), . . . but consider

only the first n of them and let n → ∞. We make both the IID assumption about the objects

x1, x2, . . . (the objects are generated independently from the same distribution) and the assumption

(1); however, we relax the assumption that w is distributed as N(0, (σ2/a)I). These are all the

assumptions used in our main result:

(A1) The random objects xi ∈ R
p, i = 1, 2, . . ., are IID.

(A2) The second-moment matrix E(x1x
′
1) of x1 exists and is non-singular.

(A3) The random vector w ∈ R
p is independent of x1, x2, . . . .
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(A4) The labels y1, y2, . . . are generated by yi = w · xi + ξi, where ξi are Gaussian noise variables

distributed as N(0, σ2) and independent between themselves, of the objects xi, and of w.

Notice that the assumptions imply that the random observations (xi, yi), i = 1, 2, . . ., are IID given

w. It will be clear from the proof that the assumptions can be relaxed further (but we have tried to

make them as simple as possible).

Theorem 3 Under the assumptions (A1)–(A4), the prediction sets output by CRR are intervals from

some n on almost surely, and the differences between the upper and lower ends of the prediction

intervals for BRR and CRR are asymptotically Gaussian:

√
n

σ
(B∗ − C∗)

law−→ N

(

0,
(ǫ/2)(1− ǫ/2)

φ2(zǫ/2)
− µ′Σ−1µ

)

, (7)

√
n

σ
(B∗ − C∗)

law−→ N

(

0,
(ǫ/2)(1− ǫ/2)

φ2(zǫ/2)
− µ′Σ−1µ

)

, (8)

where φ is the density of the standard normal distribution N(0, 1), µ := E(x1) is the expectation of

x1, and Σ := E(x1x
′
1) is the second-moment matrix of x1.

The theorem will be proved in Section 6, and in the rest of this section we will discuss it. We

can see from (7) and (8) that the symmetric difference between the prediction intervals output by

BRR and CRR shrinks to 0 as O(n−1/2) in Lebesgue measure with high probability.

Let us first see what the typical values of the standard deviation (the square root of the vari-

ance) in (7) and (8) are. The second term in the variance does not affect it significantly since

0 ≤ µ′Σ−1µ ≤ 1. Indeed, denoting the covariance matrix of x1 by C and using the Sherman–

Morrison formula (see, e.g., Henderson and Searle 1981, (3)), we have:

µ′Σ−1µ = µ′(C + µµ′)−1µ = µ′

(

C−1 − C−1µµ′C−1

1 + µ′C−1µ

)

µ

= µ′C−1µ− (µ′C−1µ)2

1 + µ′C−1µ
=

µ′C−1µ

1 + µ′C−1µ
∈ [0, 1] (9)

(we write [0, 1] rather than (0, 1) because C is permitted to be singular: see Appendix A for details).

The first term, on the other hand, can affect the variance more significantly, and the significant

dependence of the variance on ǫ is natural: the accuracy obtained from the Gaussian model is better

for small ǫ since it uses all data for estimating the end-points of the prediction interval rather than

relying, under the IID model, on the scarcer information provided by observations in the tails of the

distribution generating the labels. Figure 1 illustrates the dependence of the standard deviation of

the asymptotic distribution on ǫ. The upper line in it corresponds to µ′Σ−1µ = 0 and the lower line

corresponds to µ′Σ−1µ = 1. The possible values for the standard deviation lie between the upper

and lower lines. The asymptotic behaviour of the standard deviation as ǫ → 0 is given by

√

ǫ(1− ǫ/2)πe
z2
ǫ/2 − θ ∼ (−ǫ ln ǫ)−1/2

(10)

uniformly in θ ∈ [0, 1].
The assumptions (A1)–(A4) do not involve a, and Theorem 3 continues to hold if we set a := 0;

this can be checked by going through the proof of Theorem 3 in Section 6. Theorem 3 can thus also
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Figure 1: The limits for the standard deviation in Theorem 3 as a function of ǫ ∈ (0, 1) (left) and

ǫ ∈ (0, 0.05] (right) shown as solid (blue) lines; the asymptotic expression in (10) shown

as a dotted (red) line. In all cases σ = 1.

be considered as an efficiency result about conformalizing the standard non-Bayesian least squares

procedure; this procedure outputs precisely (B∗, B
∗) with a := 0 as its prediction intervals (see,

e.g., Seber and Lee 2003, p. 131). The least squares procedure has guaranteed coverage probability

under weaker assumptions than BRR (not requiring assumptions about w); however, its validity is

not conditional, similarly to CRR.

5. Further details of CRR

By the definition of the CRR conformity measure, we can rewrite the conformity scores in (6) as

αy
i :=

∣

∣

∣

{

j = 1, . . . , n | ryj ≥ ryi

}∣

∣

∣
∧
∣

∣

∣

{

j = 1, . . . , n | ryj ≤ ryi

}∣

∣

∣
, (11)

where the vector of residuals (ry1 , . . . , r
y
n)′ is (In − Hn)Y

y, In is the unit n × n matrix, Hn :=
Xn(X

′
nXn + aI)−1X ′

n is the hat matrix, Xn is the overall design matrix (the n × p matrix whose

ith row is x′i, i = 1, . . . , n), and Y y is the overall vector of labels with the label of the test object set

to y (i.e., Y y is the vector in R
n whose ith element is yi, i = 1, . . . , n−1, and whose nth element is

y). If we modify the definition of CRR replacing (11) by αy
i := −ryi , we will obtain the definition

of upper CRR; and if we replace (11) by αy
i := ryi , we will obtain the definition of lower CRR. It is

easy to see that the prediction set Γ output by CRR at significance level ǫ is the intersection of the

prediction sets output by upper and lower CRR at significance levels ǫ/2. We will concentrate on

upper CRR in the rest of this paper: lower CRR is analogous, and CRR is determined by upper and

lower CRR.
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Let us represent the upper CRR prediction set in a more explicit form (following Vovk et al.

2005, Section 2.3). We are given the training sequence (x1, y1), . . . , (xn−1, yn−1) and a test object

xn; let y be a postulated label for xn and

Y y := (y1, . . . , yn−1, y)
′ = (y1, . . . , yn−1, 0)

′ + y(0, . . . , 0, 1)′

be the vector of labels. The vector of conformity scores is −(In −Hn)Y
y = −A− yB, where

A := (In −Hn)(y1, . . . , yn−1, 0)
′,

B := (In −Hn)(0, . . . , 0, 1)
′.

The components of A and B, respectively, will be denoted by a1, . . . , an and b1, . . . , bn.

If we define

Si := {y | −ai − biy ≤ −an − bny} , (12)

the definition of the p-values can be rewritten as

py :=
|{i = 1, . . . , n | y ∈ Si}|

n
;

remember that the prediction set is defined by (5). As shown (under a slightly different definition

of Si) in Vovk et al. (2005), pp. 30–34, the prediction set can be computed efficiently, in time

O(n lnn).

6. Proof of Theorem 3

For concreteness, we concentrate on the convergence (7) for the upper ends of the conformal and

Bayesian prediction intervals, which we rewrite as

√
n(B∗ − C∗)

law−→ N

(

0,
α(1− α)

f2(ζα)
− σ2µ′Σ−1µ

)

, (13)

where α := 1− ǫ/2 and ζα := zǫ/2σ is the α-quantile of N(0, σ2). We split the proof into a series

of steps.

Regularizing the rays in upper CRR

The upper CRR looks difficult to analyze in general, since the sets (12) may be rays pointing in

the opposite directions. Fortunately, the awkward case bn ≤ bi (i < n) will be excluded for large

n under our assumptions (see Lemma 5 below). The following lemma gives a simple sufficient

condition for its absence.

Lemma 4 Suppose that, for each c ∈ R
p \ {0},

(c · xn)2 <
n−1
∑

i=1

(c · xi)2 + a ‖c‖2 , (14)

where ‖·‖ stands for the Euclidean norm. Then bn > bi for all i = 1, . . . , n− 1.
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Intuitively, in the case of a small a, (14) being violated for some c 6= 0 means that all x1, . . . , xn−1

lie approximately in the same hyperplane, and xn is well outside it. The condition (14) can be

expressed by saying that the matrix
∑n−1

i=1 xix
′
i − xnx

′
n + aI is positive definite.

Proof First we assume a = 0 (so that ridge regression becomes least squares); an extension to

a ≥ 0 will be easy. In this case Hn is the projection matrix onto the column space C ⊆ R
n of the

overall design matrix Xn and In −Hn is the projection matrix onto the orthogonal complement C⊥

of C. We can have bn ≤ bi for i < n (or even b2n ≤ b21 + · · · + b2n−1) only if the angle between

C⊥ and the hyperplane R
n−1 × {0} is 45◦ or less; in other words, if the angle between C and that

hyperplane is 45◦ or more; in other words, if there is an element (c · x1, . . . , c · xn)′ of C such that

its last coordinate is c · xn = 1 and its projection (c · x1, . . . , c · xn−1)
′ onto the other coordinates

has length at most 1.

To reduce the case a > 0 to a = 0 add the p dummy objects
√
aei ∈ R

p, i = 1, . . . , p, labelled

by 0 at the beginning of the training sequence; here e1, . . . , ep is the standard basis of Rp.

Lemma 5 The case bn ≤ bi for i < n is excluded from some n on almost surely under (A1)–(A4).

Proof We will check that (14) holds from some n on. Let us set, without loss of generality, a := 0.

Let Σl :=
1
l

∑l
i=1 xix

′
i. Since liml→∞Σl = Σ a.s.,

|λmin(Σl)− λmin(Σ)| → 0 (l → ∞) a.s.,

where λmin(·) is the smallest eigenvalue of the given matrix. Since ‖xn‖2 /n → 0 a.s.,

1

n− 1

n−1
∑

i=1

(c · xi)2 = c′Σn−1c ≥ λmin(Σn−1) ‖c‖2 >
1

2
λmin(Σ) ‖c‖2 >

‖c‖2 ‖xn‖2
n− 1

≥ (c · xn)2
n− 1

for all c 6= 0 from some n on.

Simplified upper CRR

Let us now find the upper CRR prediction set under the assumption that bn > bi for all i < n (cf.

Lemmas 4 and 5 above). In this case each set (12) is

Si = (−∞, ti], where ti :=
ai − an
bn − bi

,

except for Sn := R; notice that only t1, . . . , tn−1 are defined. The p-value py for any potential label

y of xn is

py =
|{i = 1, . . . , n | y ∈ Si}|

n
=

|{i = 1, . . . , n− 1 | ti ≥ y}|+ 1

n
.

Therefore, the upper CRR prediction set at significance level ǫ/2 is the ray

(−∞, t(kn)],

where kn := ⌈(1 − ǫ/2)n⌉ and t(k) = tk:(n−1) stands, as usual, for the kth order statistic of

t1, . . . , tn−1.

8
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Proof proper

As before, X stands for the design matrix Xn−1 based on the first n− 1 observations. A simple but

tedious computation (see Appendix A) gives

ti =
ai − an
bn − bi

= ŷn + (yi − ŷi)
1 + gn
1 + gi

, (15)

where gi := x′i(X
′X + aI)−1xn (cf. (3)). The first term in (15) is the centre of the Bayesian

prediction interval (4); it does not depend on i. We can see that

B∗ − C∗ =
√

1 + gnζα − (1 + gn)V(kn), (16)

where, as defined earlier (see (13)), ζα := zǫ/2σ, and V(kn) is the knth order statistic in the series

Vi :=
ri

1 + gi
(17)

of residuals ri := yi − ŷi adjusted by dividing by 1 + gi. The behaviour of the order statistics of

residuals is well studied: see, e.g., the theorem in Carroll (1978). The presence of 1+gi complicates

the situation, and so we first show that gi is small with high probability.

Lemma 6 Let η1, η2, . . . be a sequence of IID random variables with a finite second moment. Then

maxi=1,...,n |ηi| = o(n1/2) in probability (and even almost surely) as n → ∞.

Proof By the strong law of large numbers the sequence 1
n

∑n
i=1 η

2
i converges a.s. as n → ∞, and

so η2n/n → 0 a.s. This implies that maxi=1,...,n |ηi| = o(n1/2) a.s.

Corollary 7 Under the conditions of the theorem, maxi=1,...,n |gi| = o(n−1/2) in probability.

Proof Similarly to the proof of Lemma 5, we have, for almost all sequences x1, x2, . . .,

max
i=1,...,n

|gi| ≤
‖xn‖maxi=1,...,n ‖xi‖
λmin(X ′X + aI)

< 2
‖xn‖maxi=1,...,n ‖xi‖

(n− 1)λmin(Σ)

from some n on. It remains to combine this with Lemma 6 and the fact that, by Assumption (A1),

‖xn‖ is bounded by a constant with high probability.

Corollary 8 Under the conditions of the theorem, n1/2
(

r(kn) − V(kn)

)

→ 0 in probability.

Proof Suppose that, on the contrary, there are ǫ > 0 and δ > 0 such that n1/2
∣

∣r(kn) − V(kn)

∣

∣ > ǫ
with probability at least δ for infinitely many n. Fix such ǫ and δ. Suppose, for concreteness,

that, with probability at least δ for infinitely many n, we have n1/2
(

r(kn) − V(kn)

)

> ǫ, i.e.,

V(kn) < r(kn) − ǫn−1/2. The last inequality implies that Vi < r(kn) − ǫn−1/2 for at least kn values

of i. By the definition (17) of Vi this in turn implies that ri < r(kn) − ǫn−1/2 + gir(kn) for at least

kn values of i. By Corollary 7, however, the last addend is less than ǫn−1/2 with probability at

9
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least 1− δ from some n on (the fact that r(kn) is bounded with high probability follows, e.g., from

Lemma 9 below). This implies r(kn) < r(kn) with positive probability from some n on, and this

contradiction completes the proof.

The last (and most important) component of the proof is the following version of the theorem in

Carroll (1978), itself a version of the famous Bahadur representation theorem (Bahadur, 1966).

Lemma 9 (Carroll 1978, theorem) Under the conditions of Theorem 3,

n1/2

∣

∣

∣

∣

(

r(kn) − ζα
)

− α− Fn(ζα)

f(ζα)
+ µ′(ŵn − w)

∣

∣

∣

∣

→ 0 a.s., (18)

where Fn is the empirical distribution function of the noise ξ1, . . . , ξn−1 and ŵn := (X ′X +
aI)−1X ′Y is the ridge regression estimate of w.

For details of the proof (under our assumptions), see Appendix B.

By (16), Corollary 7, and Slutsky’s lemma (see, e.g., van der Vaart 1998, Lemma 2.8), it suffices

to prove (13) with the left-hand side replaced by n1/2(V(kn) − ζα). Moreover, by Corollary 8 and

Slutsky’s lemma, it suffices to prove (13) with the left-hand side replaced by n1/2(r(kn) − ζα); this

is what we will do.

Lemma 9 holds in the situation where w is a constant vector (the distribution of w is allowed to

be degenerate). Let R be a Borel set in (Rp)∞ such that (18) holds for all (x1, x2, . . .) ∈ R, where

the “a.s.” is now interpreted as “for almost all sequences (ξ1, ξ2, . . .)”. By Lebesgue’s dominated

convergence theorem, it suffices to prove (13) with the left-hand side replaced by n1/2(r(kn) − ζα)
for a fixed w and a fixed sequence (x1, x2, . . .) ∈ R. Therefore, we fix w and (x1, x2, . . .) ∈ R;

the only remaining source of randomness is (ξ1, ξ2, . . .). Finally, by the definition of the set R, it

suffices to prove (13) with the left-hand side replaced by

n1/2α− Fn(ζα)

f(ζα)
− n1/2µ′(ŵn − w). (19)

Without loss of generality we will assume that 1
nX

′
nXn → Σ as n → ∞ (this extra assumption

about R will ensure that Lindeberg’s condition is satisfied below).

Since E(α− Fn(ζα)) = 0 and

var (α− Fn(ζα)) =
F (ζα)(1− F (ζα))

n− 1
=

α(1− α)

n− 1
,

where F is the distribution function of N(0, σ2), we have

n1/2α− Fn(ζα)

f(ζα)

law−→ N

(

0,
α(1− α)

f2(ζα)

)

(n → ∞)

by the central limit theorem (in its simplest form).

Since ŵn = (X ′X + aI)−1X ′Y is the ridge regression estimate,

E(ŵn − w) = −a(X ′X + aI)−1w =: ∆n, (20)

10
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var(ŵn) = σ2(X ′X + aI)−1X ′X(X ′X + aI)−1 =: Ωn. (21)

Furthermore, for n → ∞

n1/2∆n = −n−1/2a

(

X ′X

n
+

aI

n

)−1

w ∼ −n−1/2aΣ−1w → 0,

nΩn = σ2

(

X ′X

n
+

aI

n

)−1 X ′X

n

(

X ′X

n
+

aI

n

)−1

→ σ2Σ−1.

This gives

n1/2µ′(ŵn − w)
law−→ N

(

0, σ2µ′Σ−1µ
)

(n → ∞)

(the asymptotic, and even exact, normality is obvious from the formula for ŵn).

Let us now calculate the covariance between the two addends in (19):

cov

(

n1/2α− Fn(ζα)

f(ζα)
,−n1/2µ′(ŵn − w)

)

=
n

f(ζα)
cov

(

Fn(ζα)− α, µ′(ŵn − w)
)

=
n

(n− 1)f(ζα)

n−1
∑

i=1

cov
(

1{ξi≤ζα} − α, µ′(ŵn − w)
)

=
n

(n− 1)f(ζα)

n−1
∑

i=1

E

(

(

1{ξi≤ζα} − α
)

µ′(X ′X + aI)−1X ′ξ
)

,

where ξ = (ξ1, . . . , ξn−1)
′ and the last equality uses the decomposition ŵn − w = ∆n + (X ′X +

aI)−1X ′ξ with the second addend having zero expected value. Since

E 1{ξi≤ζα}µ
′(X ′X + aI)−1X ′ξ =

n−1
∑

j=1

E 1{ξi≤ζα}Ajξj = µαAi,

where Aj := µ′(X ′X + aI)−1xj , j = 1, . . . , n− 1, µα := E 1{ξi≤ζα}ξi =
∫ ζα
−∞ xf(x)dx. An easy

computation gives µα = −σ2f(ζα), and so we have

cov

(

n1/2α− Fn(ζα)

f(ζα)
,−n1/2µ′(ŵn − w)

)

=
n

(n− 1)f(ζα)

n−1
∑

i=1

µαAi

= −σ2 n

(n− 1)

n−1
∑

i=1

Ai = −σ2µ′

(

1

n
X ′X +

a

n
I

)−1

x̄ → −σ2µ′Σ−1µ

as n → ∞, where x̄ is the arithmetic mean of x1, . . . , xn−1. Finally, this implies that (19) converges

in law to

N

(

0,
α(1− α)

f2(ζα)
+ σ2µ′Σ−1µ− 2σ2µ′Σ−1µ

)

= N

(

0,
α(1− α)

f2(ζα)
− σ2µ′Σ−1µ

)

;

the asymptotic normality of (19) follows from the central limit theorem with Lindeberg’s condition,

which holds since (19) is a linear combination of the noise random variables ξ1, . . . , ξn−1 with

11
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coefficients whose maximum is o(1) as n → ∞ (this uses the assumption 1
nX

′
nXn → Σ made

earlier).

A more intuitive (but not necessarily simpler) proof can be obtained by noticing that ŵn − w
and the residuals are asymptotically (precisely when a = 0) independent.

7. Conclusion

The results of this paper are asymptotic; it would be very interesting to obtain their non-asymptotic

counterparts. In non-asymptotic settings, however, it is not always true that conformalized ridge re-

gression loses little in efficiency as compared with the Bayesian prediction interval; this is illustrated

in Vovk et al. (2005), Section 8.5, and illustrated and explained in Vovk et al. (2009). The main dif-

ference is that CRR and Bayesian predictor start producing informative predictions after seeing a

different number of observations. CRR, like any other conformal predictor (or any other method

whose validity depends only on the IID assumption), starts producing informative predictions only

after the number of observations exceeds the inverse significance level 1/ǫ. After this theoretical

lower bound is exceeded, however, the difference between CRR and Bayesian predictions quickly

becomes very small.

Another interesting direction of further research is to extend our results to kernel ridge regres-

sion.
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Appendix A. Various computations

For the reader’s convenience, this appendix provides details of various routine calculations.

A singular C in (9)

Apply (9) to Σǫ := Σ + ǫI and Cǫ := C + ǫI , where ǫ > 0, in place of Σ and C, respectively, and

let ǫ → 0.

Computing ti for simplified upper CRR

In addition to the notation X for the design matrix Xn−1 based on the first n − 1 observations, we

will use the notation H for the hat matrix X(X ′X + aI)−1X ′ based on the first n− 1 observations

and H̄ for the hat matrix Xn(X
′
nXn + aI)−1X ′

n based on the first n observations; the elements

of H will be denoted as hi,j and the elements of H̄ as h̄i,j ; as always, hi stands for the diagonal

element hi,i. To compute ti we will use the formulas (2.18) in Chatterjee and Hadi (1988).

Since B is the last column of In −Hn and

h̄n,n =
x′n(X

′X + aI)−1xn
1 + x′n(X

′X + aI)−1xn
,

we have

bn = 1− x′n(X
′X + aI)−1xn

1 + x′n(X
′X + aI)−1xn

,

13
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bi =
−x′n(X

′X + aI)−1xi
1 + x′n(X

′X + aI)−1xn
.

Therefore,

bn − bi =
1 + x′n(X

′X + aI)−1xi
1 + x′n(X

′X + aI)−1xn
.

Next, letting ŷ stand for the predictions computed from the first n− 1 observations,

ai =
∑

j=1,...,n−1:j 6=i

(−h̄i,jyj) + (1− h̄i,i)yi

= yi −
n−1
∑

j=1

h̄i,jyj

= yi −
n−1
∑

j=1

hi,jyj +

n−1
∑

j=1

x′i(X
′X + aI)−1xnx

′
n(X

′X + aI)−1xj
1 + x′n(X

′X + aI)−1xn
yj

= yi − ŷi +
x′i(X

′X + aI)−1xnx
′
n(X

′X + aI)−1X ′Y

1 + x′n(X
′X + aI)−1xn

= yi − ŷi +
x′i(X

′X + aI)−1xnŷn
1 + x′n(X

′X + aI)−1xn

for i < n, and

an =
∑

j<n

(−h̄n,jyj) = −
n−1
∑

j=1

x′j(X
′X + aI)−1xn

1 + x′n(X
′X + aI)−1xn

yj

= − Y ′X(X ′X + aI)−1xn
1 + x′n(X

′X + aI)−1xn
.

Therefore,

ai − an = yi − ŷi +
1 + x′i(X

′X + aI)−1xn
1 + x′n(X

′X + aI)−1xn
ŷn.

This gives

ti = (yi − ŷi)
1 + x′n(X

′X + aI)−1xn
1 + x′i(X

′X + aI)−1xn
+ ŷn,

i.e., (15).

Expressing µα via ζα

First we use the substitution y := x2/2σ2 to obtain

1√
2πσ

∫ ζα

0
e−x2/2σ2

xdx =
σ√
2π

∫ ζ2α/2σ
2

0
eydy =

σ√
2π

(

1− e−ζ2α/2σ
2
)

. (22)

Replacing ζα by ∞,
1√
2πσ

∫ ∞

0
e−x2/2σ2

xdx =
σ√
2π

. (23)

14
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Finally, subtracting (23) from (22) gives

µα =
1√
2πσ

∫ ζα

−∞
e−x2/2σ2

xdx = − σ√
2π

e−ζ2α/2σ
2

= −σ2f(ζα).

Appendix B. Proof of Lemma 9

The proof is modelled on the proof of the theorem in Carroll’s technical report (Carroll, 1978) and

on Section 2 of Bahadur (1966). We cannot use the result of Carroll (1978) since our conditions are

somewhat different. Following Carroll (1978), we only consider the case of simple linear regression

(p = 1). We will prove that (18) holds for all w, so that w will be a constant vector in R
p throughout

the proof.

We start from the speed of convergence in the ridge regression estimate of regression weights.

Let an := n−1/2 lnn.

Lemma 10 Under our conditions, |ŵn − w| = o(an) a.s.

Proof This follows immediately from (20) and (21).

The proof uses the following random variables:

Gn(x) := n−1
n
∑

i=1

(

1{ri≤x} − 1{ξi≤ζα} − F
(

x+ xi(ŵn − w)
)

+ F (ζα)
)

,

Hn := n1/2 sup
x∈Jn

|Gn(x)| ,

where Jn := [ζα − an, ζα + an] and

Wn(s, t) = n−1/2
n
∑

i=1

(

1{ξi≤ζα+ans+antxi} − 1{ξi≤ζα} − F (ζα + ans+ antxi) + F (ζα)
)

. (24)

Lemma 11 Under our conditions,

sup {|Wn(s, t)| | s, t ∈ [0, 1]} → 0 a.s. (25)

and, therefore, Hn → 0 a.s.

Proof Since ri = ξi − xi(ŵn − w) and ŵn − w = o(an) a.s., it is indeed true that (25) implies

Hn → 0 a.s.; therefore, we will only prove (25). Let bn ∼ ln2 n be a sequence of positive integers.

It suffices to consider only s and t of the form ηr,n := r/bn for r = 0, . . . , bn. To see this, apply

Taylor’s expansion: if |s− ηr,n| ≤ b−1
n and |t− ηp,n| ≤ b−1

n , then

∣

∣

∣

∣

∣

n−1
n
∑

i=1

(F (ζα + san + tanxi)− F (ζα + ηr,nan + ηp,nanxi))

∣

∣

∣

∣

∣

≤ n−1
n
∑

i=1

f(ζ∗)anb
−1
n (1 + |xi|) = O(anb

−1
n ) = o(n−1/2) a.s.
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for some ζ∗ (we have used the integrability of x1).

For fixed s and t we can apply Bernstein’s inequality (see, e.g., Györfi et al. 2002, Lemma A.2).

Let us fix a sequence x1, x2, . . . such that 1
n

∑n
i=1 xi → µ (which happens with probability one

under our conditions for some µ, namely for µ := E(x1)). The cumulative variance (conditional on

x1, x2, . . .) of the addends in (24) does not exceed

n
∑

i=1

(ans+ antxi) = O(nan)

a.s. (this again uses the integrability of x1); therefore, for any ǫ > 0,

P {|Wn(s, t)| > ǫ} ≤ c0 exp
(

−c1n
1/4
)

from some n on, where c0 and c1 are constants depending on ǫ. The probability that |Wn(s, t)| > ǫ
for some n ≥ N and some s, t of the form ηr,n does not exceed

∞
∑

n=N

b2nc0 exp
(

−c1n
1/4
)

→ 0 (N → ∞) a.s.

This completes the proof of the lemma.

Remember that kn = ⌈αn⌉.

Lemma 12 From some n on, r(kn) ∈ Jn a.s.

Proof We will only show that r(kn) ≤ ζα + an from some n on a.s. Since

P
{

r(kn) > ζα + an
}

≤ P

{

n
∑

i=1

1{ξi≤ζα+an+xi(ŵn−w)} ≤ kn

}

.

By Lemma 10, it suffices to show the existence of an ǫ > 0 for which QN (ǫ) → 0 as N → ∞,

where

QN (ǫ) := P

{

n
∑

i=1

1{ξi≤ζα+an+tanxi} ≤ kn for some t ∈ [0, ǫ] and n ≥ N

}

= P

{

Fn(ζα + an) ≤ kn/n+ n−1
n
∑

i=1

(

F (ζα + an)− F (ζα + an + tanxi)
)

− n−1/2 (Wn(1, t)−Wn(1, 0)) for some t ∈ [0, ǫ] and n ≥ N

}

.

Using Lemma 11 and the fact that

n−1
n
∑

i=1

(

F (ζα + an)− F (ζα + an + tanxi)
)
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= −n−1
n
∑

i=1

f(ζα + an)tanxi +O

(

n−1
n
∑

i=1

t2a2nx
2
i

)

= −n−1
n
∑

i=1

f(ζα)tanxi +O

(

n−1
n
∑

i=1

ta2nxi

)

+O(a2n)

= −f(ζα)tanµ+O
(

(ln lnn)1/2n−1/2an

)

+O(a2n)

= −f(ζα)tanµ+ o(n−1/2) a.s.

(where µ := E(x1)), we obtain

QN (ǫ) = P

{

Fn(ζα + an) ≤ α− tanµf(ζα) + o(n−1/2) for some t ∈ [0, ǫ] and n ≥ N
}

.

By Hoeffding’s inequality (see, e.g., Györfi et al. 2002, Lemma A.3), when δ > 0 is sufficiently

small,

P {Fn(ζα + an) ≤ α+ δan} ≤ exp
(

−cna2n
)

= n−c lnn

for some constant c > 0. This implies that indeed QN (ǫ) → 0 as N → ∞.

Now we can finish the proof of Lemma 9. Let En be the empirical distribution function of ri.
Lemma 10 and the second order Taylor expansion imply

Gn(r(kn)) = En(r(kn))− Fn(ζα)

− n−1
n
∑

i=1

(

F (r(kn)) + f(r(kn))xi(ŵn − w)− F (ζα)
)

+O

(

1

n

n
∑

i=1

x2i

)

o(a2n)

= En(r(kn))− Fn(ζα)− F (r(kn)) + F (ζα) + n−1
n
∑

i=1

f(r(kn))xi(ŵn − w) + o(n−1/2) a.s.

(26)

Similarly,

Gn(ζα) = En(ζα)−Fn(ζα)−F (ζα)+F (ζα)+n−1
n
∑

i=1

f(ζα)xi(ŵn−w)+o(n−1/2) a.s. (27)

Subtracting (26) from (27) and using Lemmas 11 and 12 and the fact that En(r(kn)) = kn/n, we

obtain

n1/2
∣

∣F (r(kn))− F (ζα)− kn/n+ En(ζα)
∣

∣

≤ n1/2n−1
n
∑

i=1

∣

∣f(r(kn))− f(ζα)
∣

∣xi(ŵn − w)) = o(n1/2a2n) → 0 a.s. (28)

The statement of Lemma 9 can now be obtained by plugging

F (r(kn))− F (ζα) = (r(kn) − ζα)f(ζα) + o(n−1/2) a.s.
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(which follows from the second order Taylor expansion and Lemma 12) and

En(ζα) = Fn(ζα) + n−1/2Wn(0, a
−1
n (ŵn − w)) + n−1

n
∑

i=1

(

F (ζα + xi(ŵn − w))− F (ζα)
)

(which follows from the definition of W ) into (28). Indeed, the addend involving Wn is o(n−1/2)
a.s. by Lemma 11 and, as we will see momentarily,

n−1
n
∑

i=1

(

F (ζα + xi(ŵn − w))− F (ζα)
)

− f(ζα)µ(ŵn − w) = o(n−1/2) a.s. (29)

Therefore, it remains to prove (29). By the second order Taylor expansion, the minuend on the

left-hand side of (29) can be rewritten as

n−1
n
∑

i=1

f
(

ζα
)

xi(ŵn − w)) +O

(

n−1
n
∑

i=1

x2i

)

o(a2n)

= n−1
n
∑

i=1

f(ζα)xi(ŵn − w)) + o(n−1/2) a.s. (30)

where we have used a−1
n (ŵn−w) → 0 a.s. (Lemma 10) and Ex21 < ∞. And the difference between

the first addend of (30) and the subtrahend on the left-hand side of (29) is O(n−1an(n ln lnn)1/2) =
o(n−1/2).
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