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'_I‘he f\.‘.oaenbluch form for the collision operator for & weakly relativistic plasma
is derived. The formalim adopted by Antonsen and Chu can then be used to
calculate the eﬁciency of current drive by fast waves in a relativistic plasma.
:i:::rnte numerical results and analytic asymptotic limits for the efficiencies are
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I. INTRODUCTION

Currents may be efficiently generated in a plasma by the imjection of rf
waves whase phase velocities are several times the electron thermal speed.!
The efficiency, defined as the ratio of current geaersted ta pawer dissipated,
is achieved in this instance because the rf-generated plateau decays at a rate
given by the collision frequency for the fasi electrons, which is relatively low.
In the quest for higher efficiencies, current drive by waves which interact with
relativistic electrons has also been considered.? Relativistic effects modify the
scalio |, of the efficiency, placing an upper bound on the efficicncy achievable by
current drive by fast waves. In this paper, we do several things: we give a mare
complete apnalysis of this problem based on a formalism adopted by Antonsen
and Chu.? Specifically, we find that the eflect of fnite electron temperature leads
to an enhancement of the efficiency. In order to calculate this effect, we first
give expressions for the most important terms in the electren-electron collision
integral in the relativistic limit. These expresaions are put i Rosenbluth form
30 a3 to be amenable to easy implementation on a computer. We imagine that
the relativistic Rosenbluth potentials that we identify may be useful in other
problems arising in very hot plamas.

In order to put the present work in perapective, let us briefly review the
chief tools used in the study of current drive. The early work used fairly crude
analytical models.}** These models were sufficient to obtain the scaling laws for
the efficiency of current drive, but were unable to provide the coefficients with
any accuracy. Therefore, the analytical treatwent was supplemented by numeri-
cal aolutions to the two-dimensional {in tum space) Fokker-Planck equa-
tion,5"® from which accurate est'mates of the efficiency could be found. The Rrst
accurate analytical treatment of current drive was based oo a Langevin formu-
lation of the electron motion.?® This involved taking the electron temperature
to be small, allowing energy acattering to be ignor~d. The moment hierarchy for
the Langevin equations can then be closed, whict. allows an analytical solution
to be obtained. This was followed by a mare complete numerical study of the
Fokker-Planck equation for current drive in whicii the problem was reduced to
the nuraerical solutic. of a one-dimensional integ: o-differential equation with a
source due to the rf.!® In this work toroidal efiucts were alse inclnded. The
results agreed with the Langevin analysis® in the limit of large phase velocitivs
(as they should) and gave more accurate numerical data for phase velocities
comparable to or smaller than the th. mal velocity. More recently, Antonsen
and Chu® and, independently, Taguchi,** using methods first used in the study
of beam-driven currents,}?!® recognized that it ip not necessary to solve the
rf-driven Fokker-Planck equation in order to find the rf-induced current. In-
stead, they showed that the Green’s function for the current is the Spitzer-Harm
function!* describing the perturbed electron distribution in the presence of an
electric field. This reduces the problem to the determination of a single two-
dimensional function, from which the current generated by any form of rf drive




can be calculated by a simple integration.

Up until now, the only reliable analytical results for current drive in a rel-
atjvistic plasma are those obtained using the Langevin methods by Ref. 2. As
we will show, these are only exact for T, < m,c? and p? >» m.T. (where p
is the momentum of the resonant electrons). A more complete analytical or
oumerical treatment along the lines of that achieved in the nonrelativistic case
was hampered by the lack of a convenient form for the relativistic collision op-
erstor. This is remedied to some extent by the results of this paper where we
calculate the collision integrals for the first Legendre harmonic of the perturbed
electron distribution neglecting electromagnetic effects on the binary interaction
(in this approximation the collision integral reduces to the Landau form). Hav-
ing done this, we are able to generalize the treatment of Antonsen and Chu® to
the relativistic case. A number of useful results flow from this: we can numeri-
cally calculate to high precision the eurrent-drive efficiencies in the relativistic
regime. We can perform an asymptotic analysis of the Spitzer-Harm prob-
lem to obtain analytic approximations to the efficiencies. In addition, we give
higher-order asymptotic correctiona to the current-drive efficiencies in the non-
relativistic limit. Throughout this paper, toroidal effects are entirely ignored.
Although these effects are important in the study of current drive by low-phase-
velocity waves, they play little role in current drive by fast waves. Incorporation
of these effects, however, proceeds in exact analogy with the treatment for the
nonrelativistic case.®

Relativistic effects on rf curreni drive have also been considered by Hizanidis
and Bers.!® They attempt to determine the efficiency using the moment equa-
tions given by Fisch.? However, their subsequent analysis is flawed and their
results for the current-drive efficiency are incorrect.

The plan of this paper is as follows: In Sec. Il we show how the relativistic
collision operator may be reduced to the Landau form. In this form, the collision
operator is costly to evaluate numerically. So, in Sec. III we convert the collision
integrals to a Rosenbluth form, which may be evaluated very efficiently. The
formulation of Antonsen and Chu is generalized to the relativistic case in Sec. IV.
The numerical results for the efficiencies are given in Sec. V and ibe asymptotic
reaults ir Sec. VL. Finally, in Sec. V1I, we examine the asymptoti~ form of the
efficiencies using the full relativistic collision operator.

L. RELATIVISTIC COLLISION GFERATOR

The collision operator for a relativistic plasma is given by Beliaev and Bud-
ker.!® They give the collision operator as

coll
%ip) =zc(fa-fb)' (la)
b
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where the kernel U is given by

a : 1- e 2 2 ,
U= c[qfvzzab(_ ﬂoﬂﬁg)ﬂf)‘ 1]3/3'“'7{7& (1-8,-8) -1

~ 12B.Bs — WL+ 2 (1 - B, - BB + BiBa)) (2)

Here a and b are species labels, q, is the chargc of apecies o, log A%/® is the
Coulomb logarithm, ¢o is the dielectric constant, p is the momentum, v, =
B, = p/m,7, is the velocity of speciea s, and ~, = (1 + p¥/m3c?)/2, The
distributions are normalized so that

[rdp=n.,

the number density. We are primarily interested in situations where fast elec-
trons arc : -iliding off a weakly relativistic background. In that case g, <« 1,
and we can approximate U by it nonrelativistic form
2

U:-“Iu—suu. W=v, —V} (1c)
Since the original form for U was symmetric in the primed and unprimed vari-
ables, we could equally well have obtained Eq. (I1c) under the assumption that
Ba € 1. The relative difference between Eqe. (1c) and (2) is O(B}). However,
the error in the collisioa operator C{fa, f;) is smaller than this. This point is
examined in more detail in Sec. VII. Equations {1} are precisely the collision
operator given by Landau.!” Indeed an examination of his derivation shows
that the mechanics of the collisions are treated relativistically; the interaction,
however, is calculated nonrelativistically assuming a Coulomb potential. Use
of Landau collision operator implies a neglect of the relativistic (i.e., electro-
maguetic) effecta on the binary interaction. What we have showa here is that
such an approximation is valid provided at least one of the colliding particles is
nonrelativistic.

It is readily established that Eqs. {1} conserve number, momentum, and
euergy (£, = muc?y,), that an H-theorem applies, and that the equilibrium
solution is a relativistic Maxwellian f,(p) oc exp(—£&,/T), where &, = (£, —
vq-p)f/1l - vz/c:2 is the energy in a frame moving at v4, and T and v4 are
independent of the species 5.

Throughout the rest of this paper we will restrict our attention Lo an electron-
ion plasma. We assume the ions are stationary and infinitely massive (m; — o0).

= g | ¥ ' woy



This allows us to express the electron-ion collision operator in (p, ) space (where
#=pj/pand || and L are wi*h respect to the magnetic field) as

i)

R () (3

Z
C(f.f)= FW

where
n.qllog A%/

4ned
_glogd* g
qclogde/s g’
aud we have assumed nevtrality g,n, + gini =0. In Eq. {3) and benceforth we
wil! omit the apecies labels from all electron quantities.

=

OI. GENERALIZATION OF THE RGSENBLUTH PO-
TENTIALS

For computational purposes, the Landau operator is not the most convenient
form for tke collision operator. If the plasma is asimuthally symmetric, a two-
dimensionel integration must be performed at each point in momentum space.
If the number of grid points ia N x N, this requires O(N*) calculations. This
requirement is dramatically reduced in the nonrelativistic case by expressing the
collision operator in terms of Rosenbluth potentials,’® Unfortunately, although
the Landau operator can be used without change to describe the collisions in
a relativistic Coulomb plasma, the Rotenbluth form no longer applies. (The
derivation of the Rosenbluth form from the Landau form requires, for instance,
that (8/8p) - U = —(8/3p’) - U, a relation that only holds nonrelativistically.)

However, because the kernel of the collision integral Eq. (1c) has the same
form as in the nonrelativistic case, it is possible to borrow some of the techniques
of Ref. 18. We convert the p' integration in Eq. (1b) to v space, substitute a
particular Legendre component for f(p’), and manipulate the resulting integrals
into the form

f [v = v'] Puln')h{v") &+
or

[ W =¥ Pl b () &V,

which may be evaluated in the same way as Rosenbluth potentials'® (Py is a
Legendre polynomial).

Here we give the resulting expressions for collisions off a stationary Max-
wellian background, i.e., C(f, fn}, and for collisions of a Maxwellian off the
first Legendre component of a bacliground, ie., C(fm,pf1). In both cases only
electron-electron collisions are considered. These terms are all that are required



for the solution of the Spitzer-Hirm problem (giving the Green’s function for
the tf current drive) and they suffice for an accurate numerical aolution of the
two-dimensional Fokker-Planck equation as described in Sec. V.

Beginning with the case of collisions off a Maxwellian, let us start by assum-
ing merely that the background is isotropic f(p) = fo(p). The three-dimensional
integrals in Eq. (1b) then reduce to one-dimensional integrals giving

Ol = 5 2 (AP 2 + F(0)) S (0)
e Py I O
where
P e o
aw =0 [[ p'*fo(p')"—,dp'+ [T o5y ). (1b)
Fip) = ﬂ[ [ o s [T st a4
v = G [ [ e+ [T G| )

Specializing ‘o the case fo = fm and using the relation 3fm/3p = —(v/T)fm,

we find that

F(p) = (v/T) Alp)
and the steady-state solution to C(f, fm) = 3 is that f is a relativistic Max-
wellian?? with temperature T

Jm(p) = m exp(—&/T}, (5}

where
& = mely,
T
me?
(8 = 1 corresponds to an electron temperature of 511keV), and K, is the

nth-order modified Bessel function of the second kind.
For later use we define bere a thermal! momentum

p=vVmT,

a mean-squared veiocity
1 T
i =g [hnlp)dP= LV

5
Vioi- ;e + 267106,



a thermal ccllision frequency

v = ml' _ ng*mlogA
R 4megp?
and a collision frequency normalized to the speed of light

' ngilgd

mic?  dmeZmicd’

b =

Note that these frequencies differ by a factor of two from those used in earlier
publications.’3:6:8:8:% Specifically, we have vy = 119/2 and v, = &/2. This means
that all our normalized efficiencies are a factor of two smaller than in these earlier
papers. (We made this change because the normalized Fokker-Planck equation
in the high-energy limit now has a simpler form. This convention is also used
by other workers iz this field.)

For p 3 pq, the indefinite limits in the integrals in Eq. (4) can be replaced
by oo, giving®®

Atp) =T, (6a)

B(p) = P (1 ";‘) 6b
(P =T-{1-5) (6b)
Note that the frictiona! force F{p) reaches a constant value as p — co. This
implies, for instance, that an electric field smaller than I'v?/gT'¢? cannot produce
rupaways.?! On the other hand, the pitch-angle scattering frequency B(p)/p?
continues to decay a8 p — 0o. A8 the energy of Lhe electron increases, its
effective mass increases. It is then more difficult to deflect the heavier particle.
In this limit, pitch-angle scattering is negligible compared with frictional slowing
down. This is to be contrasted with the nonrelativistic case where the pitch-
angle scattering frequency and the frictional slowing-down rate decay as 1/p?
and the twoe processes are of comparable importance.

The implication for current drive is that the efficiency of paralle]l wave-
induced fluxes, say by lower-hybrid waves, approaches a constant. This can
be seen as followe: Nonrelativistically, the efficiency increases as p*. Relativis-
tic electrons, however, slow down faster because they are heavier, and they also
do not carry more curreat when pushed in the parallel direction. Each of these
effects reduces the efficiency by « ~ p; hence the approach to a constant.

The other term we shall need is C(fum,f1). This term is rather harder to
compute. We define f1(p) = fm(P)x1(p) and write C{frm, 8fmX1) = #fmd(x1)-
Again, we reduce (this time after much algebra) the integrals in Eq. (1b) to
one-dimensional ones to give

4xT
I(x)) = —~x




mfo(p)x1(p)
i

!

1 ? /2 r , MY T 12 1 /3 :)
43 [ Il | 5 5 (ot +0) - 310 - 9v)

5
3y (my 1
+ (T - o) |

1 =, . amiy v (T 1 \
+ 5/': 2 fmlp )x:(ﬂ)f[lﬁq—s(m—cg(472+5)— 5(473 -9"1)j
2 my? 1 ,
+Eﬁ;?;(—-f 73—§(4'r’+6))]dp } (7}

The term in square brackets in the last integral matches that in the first in-
tegral except for the interchange of the primed and unprimed variables. The
simplification of Eq. (7} was achieved, in paii, with the help of the symbolic
manipulation program, MACSYMA.%?

Equations (4) and (7) are now in a computationally convenieat form. Their
evaluation involves the determination of & number of indefinite integrals (the
unprimed variables should be factored out of the integrals for this step), and the
multiplication of these integrals by various functions of p. If the distribution
functions are known on a grid of NV paints, then the computational cost is
just O(N). Furthermore, the calculation can be arranged so that aearly all
the computations vectorize.2> The general solution of the Linearized electron-
electron collision opetator C(f, fm) + C(fm, /) =018

f=(a+b p+ecf)fm,

where a, 9, and ¢ are arbitrary constants. With a = ¢ = 0 and b = Py, this
provides a useful check on Eqa. (4) and (7) and their computational realizations.

IV. FORMULATION

We now turn to the calculation of the rf efficiency. There are three steps
involved: the specification of the rf current-drive problem, tbe identification of
the Spitzer-Harm function as the Green’s function for the rf-driven current; and
the solution of the Spitzer-Harm problem.

We begin with the specification of the problem. This is just a standard appli-
cation of the Chapman-Enskeg procedure 3¢ The most important assumption is
that the collisional time scale is much shorter than the tranasport time scale {the
time scale for heating the plasma by the rf). This places some restrictions on
the rf drive. However, these are usually not severe ones in the case of fast-wave
current, drive because, even if the rf is strong, there are few vesonant particles
and, consequently, the heating rate is small.



The effect of the rf is to induce an electrou flux

-_p. ¥
S=-D 3> (8)

in momentum space, where D iz the guasilinear diffusion tensor.?® [n the
Chapman-Enskog ordering this is takea to be of first order. The zeroth-order
electron distribution is given by setting the collision term C'(f, f)+C(/f, £i) equal
to zero, The genera! solution is a Maxwellian Eq. (5) with n and T arbitrary
functions of time and position. For simplicity we ignore the opatial variations.
Since the f drive is particle conserving, we may take n to be a constant, A
drifting Maxwellian does not solve the zercth-order system since the ions are
take~ to be stationary.

The first-order equation is given hy substituting f = fm(1 + ¢) with ¢
ordered small to give

CUJmd) = 5= S+ (D) &1, 9
where
C{f)=0(f)fm]+C(fm,f)+c(f,f‘) (10)

is the linearized collision operator, and {£} ia the mean energy per particle!®

@ =1 [ etmip)d®

= mc’(%g::} +39).

The last tcrm in Eq. (9) represents the heating of the Maxwellian. The equation
for the time evolution of 7' is given by the solubility conditicn for Eq. (9}, which
iz obtained by taking its energy moment. Since the linearized collision operator
is energy cocserving (recall that we take the limit m; — oo, so that there is no
energy exchange between electron and ions), this gives

)
n-—dfif‘ =P

where P is the power dissipated per unit volumec by the rf
P=/S-vd‘5p. (1)
[There is another solubility condition given by the density moment of Eq, (9).

This is automatically satisfied by taking dnfdt = 0.] The solution to Eq. {9} is
made unique by demaunding that f,,v have zero density and energy.
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In the nonrelativistic limit, Eq. {9) is the equation solved numerically by
Cordey et al.'® However, since we are usually interested primarily in the current
density genetrated by the rf

J =9f”nfmv’d"’P. {12}

and the efficiency of current generation detined by the ratio J/P, we uaually do
noi need to know the fall solution for v.

The method for determining the current without solving for ¢ was given by
Hirskmani? and Taguchi'® for neutral-beam-driven currents and was introduced
into the study of rf-driven currents by Antonsen and Chu?® and Taguchi.}? The
key is to define an “adjoint™ prodlem

C(jvnx) o _Q'J"fm. {]3)

Again f,x i3 required to have zero density and energy. This is the Spitzer-Harm
problem for the perturbed electron distribution function due to an electric ficld
I = Tpj. Using the self-adjoint property of the linearized collision operator
[YC(fmx) d% = [ XC(fm¥) dp, it is readily found that

J=/5~ %X(P]dsp» (14)

In this equation x plays the role of a Green's function for the rf-driven current.
The ratio of Eqa. (14) and {11) gives the efficiency

s[5 mme "
P /’SAvdap - \

An important specic) case i3 when the rf excitation is localized. 'fhen it is anly
necessary to know the position and direction of the excitation to determine the
efficiency

. 3
S —x{p}
i:-.__—ap( , (15)

P S.v
wkere all quantities are now evaluated at the position of the excitation. If we
compare Lhis method with the Langevin method of Fisch,? we see that x is the
mean-integrated current due to a group of electrons released at p at ¢t =0

x(p) = q/om (oy) dt.

The power of these results is that the calculation of J/P does not require a
solution of Eq. (9) for the rf distribution . On the ather hand, Eq. (13) must be

10



solved for the Spitzer-Harm function x. This reduces te the solution of a one-
dimensional integro-differential equation, which may be accurately computed.
Furthermore, in the nonrelativistiz limit, it has been tabulated.!* This method
also substantially reduces the parameter space to be investigated numerically.
The solution of Eq. {13} depends on two parameters only, Z and 8. In contrast,
the solution of Eq. () depends on various parameters specifying the nature of
the rf excitation (for instance, the direction of 8, the minimum and maximum
phase velocities, etc.) as well as Z and 0.

In order to determine the rf current-drive efficiency using Eqs. (15) or (16),
we must solve the Sp-tzer-Harm problem, Eq. {13). The solution x censists of
only the first Legendre harmonic, so we substitute x(p) = px1(p) inte Eq. (13)
giving

19y vAG) % 2Blp) /s

p?ép ap T op ?

where A{p) and B(p) are given by Eq. (1), the electron-ion tern is given by
Faq. (2), and I(x.) is given by Eq. (7). The fact that ibe solution of Eq. (13)
consists of only a single Legendre component constilutes an additional advantage
to this method of determining current-drive efficiencies. The solution of the full
rf proble:n given in Eq. (9) connsists, in general, of many Legendre componexts.
Often some truncation is performed in computing these nuiierically.

Equa.ion (17) may be solved by approximate analytic methods either by
expressing x as a sum of Sonine polynomials?**® or by formulating the equation
aa a variational problem.!? These methods have the disadvantage that they
generally fail to repraduce the vorrect asymptotic (large p) form for x. This
failing does not affect the calculation of the electrical conductivity significantly
since in that case y is integrated with a weighting (actor proportional to f,.
However, it rules oui auch methads for the study of rf current drive, since the
efliciency may depend on the local value of x.

This leaves us either with asymptotic methods, which we apply in Sec. VI,
or with numerical methods. Numerical solutiona to Eq. (17) have been given
in the nonrelativiatic case in Refs. 14 and 27. Here we use a simpler method
that avoids most of the problems witk the application of boundary conditions.
We cast Eq. (17) as a one-dimensional diffusion equation by setting the left-
hand side to dx, /8¢ and solve this diffusion equation until a steady state is
reached. (The initial conditions may be ckosen arbitrarily.) The integration is
carried out in the domain 0 < p < g, 8nd the boundary conditions x(0} = 0
and X"(Pmex) = 0 are imposed. The diffusion equation describes the physical
problem of the evolution of the perturbed electron distribution in the presence
of an electric field and is therefore guaranteed to give the correct solution of
Eq. (13) without having to worry about spuriouc solutions that diverge at p = 0
or p = oo. Since this is a ane-dimeavional diffusion equation, it may be solved
by treating the differential operator fully impiicitly (the time step may be taken
to be large). The integral operator f(x,) is treated explicitly and is recomputed

xi+i(x1)+quv=0, (17)

11
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after every time step. In the calculations showa here, the momentum step size
was taken to be p; /50, the time step was taken to be 1000/, and the process
converged (i.e., the relative change in x; per step was less than I part in 10'?)
after about 50 steps.

In the following sections we will also need the fuaction G{p} = x1(p)/p so
that x(p) = pyG(p). In terms of G, the gradient of x is

%x(p) = Glp)y + 9 Gal)Br
where G, (p) = dG(p}/dp.

V. NUMERICAL RESULTS

The solution for x is given as a contour plot in Fig. 1for £2=1apd 8 =0
and 0.01. From these and a knowledge of S, the direction of the tf-induced
current can be determined. In the norrelativistic case, Fig. 1(a), x rises ever
ore pteeply a~ ¢ i8 increased, giving the favorable p? scaling for the current-
drive efficien-:y.? On the other hand, in a hot plasma, Fig. 1{b}, the slope
reaches a constant (the contour levels are equally spaced), Ieading to a limit in
the efficiency of the current drive.3

Figure 1 also shows that the contours become vertical for py small, This
indicates that pushing electrons with small p;, in the perpendicular direction {as
with cyclotron-damped waves) is not effective in generiiing current. Pushing
electrons in the parallel direction is effective, especially for small py;, since the
denominator in Eq. (18) can be small. In general, when the contours of constant
energy (p = constaut) cross contours of constant ¥, the efficiency can be very
large.

Turning now to the numerical results for the efficiency, we begin with the cuse
of a localized spectrum, Eq. (16). Although this situation may not be realized
in practice, it is important because it can help us to determine the best current-
drive schemes by showing where in velocity space to induce the ux. Tkere
are two major classes of fast waves that have been considered for current drive,
namely Landau-damped waves {e g., lower-hybrid waves) for which S = p) and

cyclotron-damped waves for ‘which S = p, . Taking the limit py — 0. we have

:’ - G(P) +PGP(P) (183)
P v

J_ rGylp}) (18b)
P v

for Landau-damped and cyclotron-damped waves, reapectively. The efficiencies
are plotted in Fig. 2 for Z = 1 and 8 = 0, 0.02, 0.05, 0.1, and 0.2 (these
correspond to T = 0, 10, 26, 51, and 102keV). The curves for @ = 0 in the
two cases are given analytically from Eq. (24); they agree with the results of

12



Ref. 2. This confirus the carlier analysis and shows that it is exact in the limit
of T « me? and p* > mT.

We next consider current drive by a narrow spectrum of Laadau-damped
waves. In this case, all particles satisfying the Landau resonance condition
w — kjop =0 interact with the wave, and the guasilinear diffusion tensor is

D o 6{w — kyvy)byy
o 78(py — mvp)B By
where v, = w/ky is the parallel wave phase velocity. Assuming that the electron
distribution is weakly perturbed, we can take f = f, in Eq. (8) to give
8 « v fm §(p)) — mvp)hy.
When we substitute this expression into Eq. (13), we obtain

. f, ” (G(p) + m—lﬁGp(P)) 1fm(plpdp

v [--]
? f “fm(plpdp
Pt

(19)

’

ol =

where py = mvy/(1 — v3/c*)}/* is the minimum resonant momeatum. This
efficiency is plotted in Fig. 3. In the limit v, — 0, the efficiency bezomes large.
This demonstrates that current may be efficiently driven by low pbase velocity
waves aa waa proposed by Wort.4

A aimilar analysis can he performed for a narrow spectrum of cyclotron-
damped waves. The situation is more complicated here because the electron
cyclotron frequency depends relativistically on the momentum?®® and Fecause
relativistic effects distort the diffusion paths.® In addition, ihe variation of the
diffusion cocfficient with p, depends on the harmonic number. This means that
the efficiency depends on three wave parametera w/k;, §1/k (11 is the rest-mass
cyclotron frequency), and the harmonic number. We therefore will only treat
this case in the nonrelativistic limit.

In the nonrelativistic limit (€ — 0, p/mc — 0}, the efficiencies for both kinda
of waves have been calculated by Cordey et al'® and Taguchi.}’® They con-
pidered a parrow spectrum of Landau-damped waves for which the efficiency is
given by the nonrelativistic limit of Eq. (19) and a narrow spectrum of cyclotron-
damped waves for which the diffusion coefficient is

D o o3 5oy ~ v, )BuBy,
where [ is the harmonic number and v, = (w — I2) /ky. Assuming that [ = fm
in Eq. {8), the efficiency for cyclotron-damped waves is

(2* - P3) fm(P) G (P} dp
= m3y, 22 ) (20)

[P (67 - 53) Fmlp)p do

P
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where o = rav,. {Here we cansider only the fundamental cyclotron resonance
{ = 1.) In Fig. 4, we plat these efficiencies normalized to the thermal quantities
together with the asymptotic results, Eqs. (31) and (32a). For mv, % p,, the
efficiencies scale as v? as predicted by Fisch and Boogzer.® The 1/v; acaling
seen in the Landau-damping case for my, « p; is obtained by taking the limit
v, — 0 in Eq. (19) to give

J _ 1 [ D(ps)fnlpa)Glpo)ps dpy (21)
P uw  [D(ps)fm{psi)prdps

Here we have included an arbitrary dependence of D on p). In Ref. 6, three-
different types of low-phase-velacity current drive were identified, namely by
Landau damping, transit-time magnetic pumping, and Alfvén waves. These
methods differ in the forms for D(p, )

1 (Landau damping),
(po) {pL/p:)* (trausit-time maguetic pumping),
(2~ (pofe)?® (Alfvén waves).

The case plotted in Fig. 4 is the first one (Landau damping). Evaluating the

integrals in these cases gives
J Ce q
o = GM »
P Cq | ™vetn

where the coefficients ¢7 are given in Table I. The coefficients for Z = 1 should
be compared with the (less exact) results of Ref. 8 obtained by a numerical
eolution of the two-dimensional Fokker-Planck equation where the constants of
proportionality are given zs 4, 6.5, and 6.5, respectively. The coefficient €, has
been determined analytically by Cordey ef al.'® to be

3o
. 2z -
The dependence on Z indicates that the current is unaffected by electron-
electron collisions. This result may be derived by taking the momentum moment
of Eq. (13). The electron-electron collision term then drops out (from momen-
tum conservation) and the electron-ion term is proportional to the numerator
i Eq. (21}.

The last numerical example is one in which we relax the condition that
f = fo in Eq. (8). This allows us to find the flux 8 that develops in the
prescnce of high rf power. In order to determine S, we numerically solve the
two-dimensional Fokker-Planck equation

3 _
T

Cr =

Coumlf) + Bip 0 Z—‘{ (22)
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until a steady state is reached. The numerical collision operator is defined as
Cnum(.” = C(!: fm) + C(fms I-‘fl) + C(f, fi)v

where pfy is the first Legendre harmonic of f. The electron-ion term C(f, f,)
is calculated using Fq. (3).

In order to justify our handling of the electron-electron collisions, let us
conaider the linearized electron-electron operator C(J, fun)+ C{fm, f). The first
term describes the relaxation of the tail particies on the bulk and the secund
describes the concomitans heating of the bulk. The linearization ia justified even
with strong ri, as long as f(p) ~ f(p) for € ~ T. The linearized electron-
electron operator conaerves energy, and if this were used in Eq. (22}, there would
be nothing to balance the power input by the rf (there is no tranafer of energy
to the jone in the limit m; — oo), and so a steady-state solution to Eq. (22)
would not be poasible. In Eq. (9), this is handled by allowing the temperature of
the Maxwellian to increase slowly with time. iz the numerical code, we adopt a
di9erent approach, namely to modify the collision operator so that energy is lost
in an ivnocucus way. The term responsible for the bulk heating is the second
terin C(fm, f). Let us write f in this term as a Legendre harmonic expansion

1) =3 Pl alp).

k=0

Of the terms in this series, only one, the k = 0 term, contributes to the bulk
heatipg. (The energy moments of the other terms vanish.) Thus in order to
lose cnergy we drop the term C(fm, fo). Of the remaining terms in the series,
only the first, the m = 1 term, is of importance—it is respopsible for ensuring
conservation of momentum. Thus we retain only this term and approximate
C(fm: f) by C{fm, 1) to give the collision operator Cpyp,.

The coilision operator Cyym has the following properties: energy is not ¢on-
served (thus allowing a steady state to be reached); momeptum is conserved;
and quantities such as the Spitzer-Hirm conductivity, which are given solely in
terms of the ficst Legendre harmonic, are correctly given. To justify the way in
which energy conservation is handled, we may check that the resulta are insen-
sitive to the details of how this is done. One such check is given below where
we compare the efficisncy given by the numerical solution of Eq. (22), it which
energy is lost, and that given by Eq. (15), where energy is conperved.

We assume that the rf diffusion term in Eq. (22) is caused by high-power
lower-hybrid waves whose phase velocities lie between vy and vz, Thus we take

otherwise

D= { D(p)pypy, for vi < pp/{m) < vg,
0

where D(p) ia chosen to be large enough to plateau f. [Here we choose D{p) =
Wup/(1+p/p).)
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Figure 5 shows the steady-state solution of Eq. (22) for Z = 1, 8 = 0.01
(T~ 5keV), vy = QAc = 4py/m, and vy = 0.7c = Tps/m [the parallel refractive
index satisfies 1.43 < ny < 2.5}. Using the numerical solution for f(p) and
S(p), and the definitions (11} and (12), we obtain J = 3.74 x 10™%gne, P =
1.28 x 10-*mnc?y,, and J/P = 0.293 ¢/mcv,.

This is to be compared with the result given by Eq. {14] with the numerically
determined Aux S(p), comely J = 3.77 x 19~ *¢gnc and J/P = 0.206 ¢/ mcw,.
(The figure for P remains unchanged since this depends on S alome.) These
two sets of fignres are within 1% of each other. The excellent agreement ilins-
trates two points: the approximations made in the numerical collision operator,
namely, the ueglect of the heating term C{f.., fo), bas little effect ou the results
for the current-drive efficienciea (discretization effects are probably a greater
source of error in these resuita); and the agalytic result Eq. (15) can be used Lo
obtain reliable figures for the efficiency for cases of strong of. What is needed
in the latler instance is an estimate for the rf Bux S. This may be fouad from
a numerical solution of a two-dimensional Fokker-Planck equation (as here} or
from an approximate analytical solution. Some saving may be possible using
this method in conjunction with a numerical code: since 8 reaches a steady
state sooner than f, it ;may pnot bhe necessary to run the code so long in order to
obtaip a reasopably accurate estimate {or the efficiency.

VI. ASYMPTOTIC ANALYSIS

We have seen that, the efficiency of current drive may he expressed in ierms
of the solution of the Spitzer-Harm prublem, Eq. {17). This equation may be
approximately solved in the limit p 3 p;. We will begin with the relativistic
case and later treat the nonrelativistic fimit. We start by writing down the
normalized form of Eq. (17) in the limit p 33 p;. We chose normalizations based
upon ¢, m, ¢, and #;. Thus momenta are normalized to mc, x; to go/v., J/P
to g/miciy, etc. We use the same symbols to represent the normalized and un-
normalized quantities. The coefficients A(p) and Blp) are given by Eqs. {6},
suitably normalized. The integral term may be evaluated by replacing the in-
definite limits in Eq. {7} by oo, giving when normalized

Hxa) = 93/9(”43; z) , (O z))

L

where H, and H, are definite integrals of x; (ard thus independent of momea-
tum) that must be determined numerically. In the Emit @ - 0, bath N, and
H), are finite. In normalized form with p* 3» 8, Fy. (17) reads

ev,ﬂ[aﬂx._(., 3 z)ax,}.

R 3 \B Y 5)

8 vy p
Py 2
_ 1 1.;.2_,9_‘/,'_ x,+93/2(ff£+£{£
up? v vp

v,)+v=u. {23)
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The error in this equation is exponentially small.
We now make a subsidiary expansion in small ©. In the limit ©@ — 0, several
terms in Eq. (23) drop out leaving

1 1+2 _
_U—j-a_p le'f-!l—a.

"Chis may by solved with the boundary condition x,(p = 0) = 0 io give

NEE e\
T+ e ilind
X1 = ('r— 1) -[0 ('1'+1) vy’ (24)

This is the result derived using the Langevin equations by Fisch.? For integer
values of Z, the integral may be expressc in terms of elementary functions. In
particular for Z = 1 we have

x1 = (%—H)(vp— 2log 7).

Of particular interest is the efficiency for large p since this gives & limit to the
efficiency of current drive by fest waves, If we let p 3 1, the integral may be
approximately evaluated to give

x1—p-(1+2Z)logp.

If we now take 8 to be finite, Eq. (23) cannot be easily solved. However, we
may solve it in the limit p > 1. We achieve this by writing

Xt~ ap+ Blogp (25)
in analogy to the situation with @ = 0. Substituting this form of x, into Eq. (23)
and bala~cing terma of equal order in p gives

1 3/3
= # (26a)

from the O(p°) terms and

__{1+z-38V)a—8°%H,

B= L2 (26b)

from the O(p~!) terms. When the rf excitation is localized, the current-drive
efficiency is given by Eqa. (18) tkat, with x; given by Eq. (25), read

J 8

ﬁ~0+; (273)
I plzlogr

p~h . (27b)




for current drive by Landau-damped and cycloiron-damped waves, respectively.
[The factor of 1/v in Eqs. (18) is rplaced by upity iu the limit p — co.] Equa-
tion (27a) {with p replaced by pg) also applies for current drive by a parrow
apectrum as given by Eq. (19). In the limit of p — oo, the efficiency of cyclotren-
dzraped current drive vanishes, while for current drive by Landau-damped waves
J/P — a. In order to determine this limiting efficiency, either Eq. (26a) may
be evaluated using the numerically found value of Hy(©, Z} {see Table II) or
else the equation may be expanded as a series in © to give for p — oc

2~ 1+364 Hy(0,2)0% (28)
H,(0, Z) is sabulated in Table II.

We now turn to the salution of Eq. (17) in the noarelativistic limit © — 0.
We shall still consider only the limit p 3 p; The limits here arc nonuniform.
Equation {23) was obtzined by taking p » p; followed by @ — 0 Here we will
take the lim™s in the opposite order. To do this, it is convenicnt to renormalize
Eq. (17) using g, m, p:, and vy as the system of units, In this case, J/P is
normalized to ¢/pety. Making this change of normalization and taking the limit
6 — 0 is equivalent to formally replacing © by unity and substituting v = p,
v=1,and V7 = | in Eq. (23) to give

1 67x‘ 1.\ ax,_ 1 1 ) H
| A [y s 11y [ - — —_ =D, 29
P3[3P7 (p+P/ ap P’(Hz gt te (29)
where H(Z) = H.(0, Z)+ Hy(0, Z) (this is tabulated in Table III). For p 5 1 (in
this normalization this means p >» p;), we may develop ap asymptotic expression
far x; as a series in powers of p. Balancing the terms in Eq. (29) from O(p)
(the leading order) to O(p~*) gives

p! gp? Hp 9

=zt ETaeTe vz T Graeeanin TOP )

For localized excitation, Eq. (18} becomes

J 4 18 Hp™! —4

P i+z T Braar tarz 0P (30=)
2 -2

L= y > +0(p™") (30b)

PT5+Zz 512312 (+2)3+2)(1+2)

for Landau-damped waves and cyclotron-damped waves, respectively. The lead-
ing order terms here (those proportional to p?) are exactly those derived by Fisch
and Bouser.®

In order to compute the efficiencier for current drive by a narrow spectrum
of waves, it is necessary to carry out the integrations in Eqs. (19} and (20). The
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following asymptotic series is useful for this purpose:

[ exp{— 1y )" dy = exp(~2a?)[z" + nz" T +u(n—2)z" 1+ ]
=z

For n even, the series termninatea and is exact. The efficiency for current drive
by a narrow spectrum of Landau-damped waves, Eq. (19) becomes

J_ 1v) 6(6 + 2} Ho,!

4 —32
Pz TE oG+ s Tirz O ) (1)

For a narrow specirum of cyclotron-demped waves, Eq. (20) gives

J 3 3(9 +22)

P srz*Ginarz oW ) (328)
J_ 3% 94+ 2) _
P 572 Br2B+2) 0(v;?), (32b)

for 1 == 1 and | = 2, reapectively. The eflect of the integrations is to change only
the higher-order O{v3) corrections to the efficiencies. The leading order terms
are the same an for the localiged excitation Fgs. (30). Equations ‘31) and (32a)
are plotted in Fig. 4. These closely approximate the exact resuits for v, > 2u,

VIi. HIGH ENERGY LIMIT OF COLLISION OPER-
ATOR

In the previous section, we derived finite temperature correcticns to the
efficiency limit found in Ref. 2. However, the collision operator in the Landau
form Eqs. (1) was derived by assuming that the background electrons are only
weakly relativiatic or that 6 € 1. We must check, therefore, that the finite ©
corrections to the Landau operator do not affect the formula for the efficiency
limit Eq. {28).

The linearized collision operator Eq. (10) consists of three collision terms.
Since in all practical casea the jons are uonrelativistic, the ion term C(f, f;}
needs no correction. The term C{fn, f) contributes to the integral term J({x,)
in Eq. (17). However, thia resulted in a O(@%7} contribution to efficiency limit
Eq. (28), 50 that cerrections to thia term will be of utill higher order.

Therefore, we need only consider collisions off a Maxwellian electron back-
ground C(f, /). Furthermore, if © is small and if p > p;, we may take v/ € v
in the full collision kernel Eg. {2) and approximate U by its Taylor expansion
about v’ = 0. By retaining terms up to second order in v/, we obtain

C(f f ) _ (0) af k) Ut I 1 azU(O) 2 af
ram 2 ap ik 3p av' 23v, Bv' '80;;
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where summation over repeated indices is implied and the superscript (0) is
used to indicate that U and its derivatives are evaluated at v' = (. Evaluating
these coefficients gives

U(o) - v’ﬁ,-t - Vytg
k= vI M

UL 2,

v, v’
D 0
1 U 20, - p‘)U’(“)
280! dvl, Wb v

(This calculation was carried out using MACSYMA.??) If we compare these with
the equivalent expressjona using U from Eq. (Ic), we find that only the term
proportional to A% is new. The high energy form of C{/, f.,) is given by Eq. ({a)
with A(p) given by Bq. (8a), F(p) = {v/T)A(p), end

In other words, in the high-energy limit the electromagnetic correction only
changes the pitch-angle scattering term. The new terin has no effect on the
asymptotic form for the efficiencies Eqe. (27) because it is smaller by A% than
another term in B, which bad no effect.

Connor and Hastie?! also give an expression for collisions of high-energy
particles off a fixed background. The corrections to Eq. (6] that they abtain
differ from ours. This is possibly because the background distribution that they
treat is only approximately Maxwellian.

VIII. CONCLUSIONS

We have considered the problem of current drive by fast waves in a relativistic
plasma. Let ua briefly review the approximations made. The major one is the
reduction of the full collision operator to Landau form. We show in Sec. II that
this holds if the background tempetature ia small, T < mc?. The cortections
to the Landau operator in the high energy limit are derived in Sec. VI and
are shown to be small. The subsequent anzlysis leading to the formula for the
current-drive efficiency Eq. (15) is exact. In order to apply this formula, it is
necessary to determine the rf-induced flux S from Eq. (8) and the Spitzer-Harm
function x from Eq. (13).- .

We considered twvo methods for computing §; cither to assume that f = f,,
in Eq. (8) (corresponding to linear damping) or to solve the two-dimensional
Fokker—Planck equation, Eq. (22), numerically. The latter method may be
pecessary in the case of high rf powers and wide spectra. Note that the efficiency
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can be accurately calculated even if the 8 is known only approximately since
Eq. (15), being an integral operator on 9, is insensitive to amall errora in 8.
Often, useful information can be extracted from Eq. (15) evea with very limited
information about 8. If the rf spectrum is known, we can make some estimates
(based on either numerical or approximate anaiytical solutions to the Fokker-
Plaack equation) of where in momeatum space the Aux is largest. We can then
use Eq. (16) to give the efficiency.

The Spitzer-Harm function x can be determined by solving Eq. (17) numer-
ically as in Sec. V. Since this equation is just a cne-dimensional equation, there
is little difficulty in obtaining arbitrarily accurate results in this way. This
method can be regarded as exact. Aiternativeiy, we found asymptotic forms
for x im Sec. VI. From this we can write down analytical expressions for the
current-drive efficiency in various cases as given in Eqe. (27), (28}, (30), (31),
and (32).

The primary application of this work is, of couree, to maintain a steady-state
toroidal current in a tokamak reactor. The viability of thie scheme depends upon
the amount of circulating power that is required. Thus, an accurate calculation
of the current-drive efficiency, as well as an asseasment of the best possible
efficiency, are of crucial importance.

When applying these rcsults to the study oi steady-state current drive in
a tokamak, it is useful to convert the efficiency J/P to I/W where I = AJ
is the total current, W = 2rRAP is the total if power, A is effective poloidal
cross-sectional area, and R is the tokamak major radius. This gives

r_ 14
W 27RP
J/P 10%m31m 15
=4, - - W
28q,’mz:uc n R logh A/
o-* J/IP 10°°m—2 T 1m 15

afpery n 10keV R logh

=40.7x1 AW,

The last two equalities give the conversion from the normalized efficiencies given
in the figures and in See. VI to practical units. Figures 2, 3, and 4 contain scales
in theee units.

The present work calculates the efficiency that can be expected from an ar-
bitrary wave-induced flux. It is pessible, therefore, to come to some very general
conclusions about the best possible efficiency that can be obtained by driving
currents with different waves. In particular, there is a limit, given by Eq. (28),
to the efficiency of current drive with fast waves, puch as lower-hybrid waves,
that interact through a Landau resomance with relativistic electrons. These
waves are, perhaps, the most likely candidate for current drive in a reactor.

The present calculations also apply to other types of current drive, for ex-
ample, relativistic electron beams 3® Here, the efficiencies will be similar to
those of Landau-damped waves. Care must be taken, however, in interpreting
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experiments on relativistic electron beams because the assumption of a steady
state is generally inapplicable.

The equationa developed here apply to other forme of rf curreat drive. Some
of these may be very efficient, yuore so than lower-hybrid wave-induced fluxes.
For example, if low-phase-velocity waves interact through a cyclotron resonance
with fast electrons, the rf flux may be nearly parallel to the constant energy
contoure, at the same time that the collisionality of the resonant electrons is
small. This gives very high effic’ency, but, i practice, these waves are much
more difficult to generate than are lower-hybrid waves.

Setiling the question of the highest attainable current-drive efficiency with
fast waves should enzble, we hope, tokamak reacior designers to assess the
practicality of using waves to drive steady-state currents. There may, of course,
be ather effects that present difficulties, auch as the accessibility of the waves o¢
nonlinear effects. On the other hand, there may be effects, such as the hootstrap
current, which could be helpful.

Finally, we hope that the form that we derived here for the rejativistic colli-
siou operator, which enabled us to solve for the relativistic Spitzer-Harm func-
tion, will be of use in other numerical problems dealing with coilisions in hot

plasmas.
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TABLES

TABLZ I.  The coefficients for the effciency for the three types of current drive
by low frequency waves.

Cy Cnm Ca
3.76 8.19 8.09
1.38 517 5.07
0.75 Z.55 2.60
0.38 142 l.iB_

B e ey

TABLE 1I. Table of efficiencies J/P {or Landas-dnmped waver in the hinit
up — ¢. The cHiciencies are normalized to ¢/mev,.

) Z=1 Z=2 Z=5 Z=IU

0.01 1.04 1.03 1.03 1.03
0.02 1.09 1.07 1.06 1.06
0.05 1.256 1.20 L17 1.15
0.1 1.55 1.44 1.34 1.30
0.2 2.19 1.3 L70 1.81

TABLE Ill. The coefficients H,(0, Z) and H(Z).

Z H, H

1 1388 2112
2 9.13 13.51
5 4.94 7.01
10 2.88 4.01
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FIGURES

FIG. 1. Contour plota of x(p) for Z =1 and (a} 8 = 0 and (b) 8 = 0.01. The
contour Jevels are evenly spaced with increments of 50 gp, /mv,. The higher
levels are on the right (i.e., 8x(p)/8p; > 0).

FIG. 2. Efficiencies for localized excitation for (a) Landau-damped waves (par-
allel diffusion) Eq. (18a) and (b) cyclotron-damped waves (perpendicular
diffusion) Eq. {18b). The different rirves show the efficiencies for various
values of the temperature © as indicated. In ali casea 2 — 1. The top scale
giver the kinetic energy of the electrons. The right scale gives the efficiency
for a plasma with n = 10 m~3, log A = 15, aud R =1m.

FIG, 3. Efficiencies for narrow Landau spectrum Eq. (19) as a function of the
phasc velocity vp. The curves correspond to the various values of 8. In all
cases Z = 1. The top scale gives the parallel index of refraction nj = c/v,.
The right scale gives the efficiency for the same conditions as in Fig. 2.

FIG. 4. Efficiencies for narrow spectra of Landau-damped (L) waves and cyc-
lotron-damped {C) waves (I = 1) for the nonrelativiatic case @ — D and Z =
1. Also shown as dashed lines are the asymptotic resulte ™2 {31) and {32a).
The right scale gives the efficiency for a plasma with n = 109°m=3, T =
10keV, logA = 15, and R=1m.

FIG.5. Contour plot of the steady-state distribution f obtained by numerically
integrating Eq. (22). Here Z = 1, © = 0.01, vy = 0.4¢, vg = 0.7c. The
resonant region is indicated. ' The contour levels are chosen so that for a
Maxwellian they would be equally spaced with Ap = mc/30.
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