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Efficiency of graphical perception

GORDON E. LEGGE. YUANCHAO GU. and ANDREW LUEBKER
University of Minnesota, Minneapolis, Minnesota

The term graphical perception refers to the part played by visual perception in analyzing graphs.
Computer graphics have stimulated interest in the perceptual pros and cons of different formats
for displaying data. One way of evaluating the effectiveness of a display is to measure the effi­

ciency (as defined by signal-detection theory) with which an observer extracts information from
the graph. We measured observers' efficiencies in detecting differences in the means or variances
of pairs of data sets sampled from Gaussian distributions. Sample size ranged from 1 to 20 for
viewing times of 0.3 or 1 sec. The samples were displayed in three formats: numerical tables.
scatterplota, and luminance-coded displays. Efficiency was highest for the scatterplots (=60%
for both means and variances) and was only weakly dependent on sample size and exposure time.
The pattern of results suggests parallel perceptual computation in which a constant proportion
of the available information is used. Efficiency was lowest for the numerical tables and depended
more strongly on sample size and viewing time. The results suggest serial processing in which
a fixed amount of the available information is processed in a given time.

Computer graphics have stimulated lively interest in the

design of new formats for displaying data. Numerical data

can be displayed in countless formats. but only some of

them are well suited to the information-processing capac­
ities of human vision. The phrase graphical perception

has been coined to refer to the role of visual perception

in analyzing graphs (Cleveland 1985, chap. 4; Cleveland

& McGill, 1985). These authors have studied several
elementary visual tasks relevant to graphical perception,

such as discrimination of slopes or lengths of lines.

Cleveland and McGill attribute the great advantage of

graphical displays over numerical tables to the capacity

of human vision to process pattern information globally

at a glance. Julesz (1981) has used the termpreanentive
to refer to perceptual operations that can be carried out

in parallel across the visual field.

While it is clear that we can make relative statements

concerning the perceptual superiority of one type of data

display over another, can we also make absolute state­

ments about the perceptual effectiveness of a given type
of display? Efficiency, as defined by signal-detection the­

ory, provides a measure on an absolute scale of how ef­

fectively information is used. Efficiency ranges from zero

to one and represents the performance of a measuring

instrument or real observer relative to the performance

of an ideal observer. The ideal observer makes optimal
use of all available information. H. B. Barlow and col-
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leagues have measured human efficiency for several visual

information-processing tasks. including detection of mir­

ror symmetry (Barlow & Reeves. 1979), discrimination

of dot density (Barlow. 1978), detection of modulation

of dot density (van Meeteren & Barlow, 1981), and dis­
crimination of the number of dots in displays (Burgess

& Barlow, 1983).

Our purpose was to use the concept of efficiency to

study graphical perception. Two common graphical tasks

are the estimation of means and variances in sets of noisy

data. We have measured observers' efficiencies for es­
timating these two statistical parameters from samples of

data drawn from Gaussian distributions.

We compared efficiencies for data displayed in three

different formats: numerical displays, scatterplots, and

luminance-eoded displays. Numerical tables are the tradi­

tional means for displaying data. How well can observers
estimate the means and variances of columns of numbers?

Scatterplots are representative of pictorial methods for dis­

playing data. They take advantage of the substantial ca­

pacities of spatial vision. Luminance-eoded displays are

ones in which salient differences are conveyed by lu­

minance contrast. A large body of recent research points
to the importance of contrast coding in vision.

Burgess and Barlow (1983) described two generic ways

in which human performance can be suboptimal. Observ­

ers might simply fail to use some of the information avail­

able to them, yet optimally process the remaining infor­

mation. On the other hand, observers might use all the
information, but contribute imprecision (intrinsic noise)

due to errors of internal representation. Burgess and Bar­

low (1983) showed how these two factors-incomplete

sampling and internal noise-can be teased apart by mea­

suring discrimination thresholds as a function of the level

of externally added visual noise. (See also Barlow, 197;);
Burgess, Wagner, Jennings, & Barlow, 1981; Legge,

Kersten, & Burgess, 1987; Pelli, 1981.) We used this

Copyright 1989 Psychonomic Society, Inc.
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PARENT CAUSSIAN DISTRIBUTIONS

UNEQUAL MEANS AND EQUAL VARIANCES EQUAL MEANS AND UNEQUAL VARIANCES

Figure 1. Stimuli were based on values sampled from two Gaussian distributions. In one
seriesof experiments, tbese distributions had equal variancesbut means that differed by one
standard deviation (right). In a second series, the distributions had equal means but tbeir
variances differed by a factor of two Oeft).

MEmOD

technique to evaluate the roles of the two factors in limit­

ing perceptual estimation of means and variances.

(5)

where SD, and SD, are the standard deviationsof the parent distri­
butions (Egan, 1975, p. 136).1 The accuracy of the real observer
is obtainedfromproportioncorrect as follows. With formulaegiven
by Egan (1975, pp. 239-240), receiver-operating characteristics
(ROCcurves)can be computedfor differentvaluesof SD, and SD,.
Equation 4 associatesa value of D with each ROC curve. The area
under the ROC curve is proportion correct in forced choice (Green
& Swets, 1974). Therefore, the ROC forges the link between the
observed proportion correct and a value of accuracy attributable
to the real observer.

An observer's efficiency, E, is defined to be (Tanner & Bird­
sall, 1958)

Efficiency ranges from zero to one and provides an absolute scale
for judging the effectiveness of an observer's performance.

As illustratedin Figure 2, the stimuli weredisplayedin three for­
mats: numerical displays, scatterplots, and luminance-eoded dis­
plays. Figure 2 shows examples in which the sample size N was
10. In each case, the observer was asked to choose which member
of the stimulus pair was drawn from the parent distribution with
higher mean or larger variance. In the case of scatterplots, the ob­
server judged the mean or variance of the vertical positions of dots
on the screen. For luminance coding, the judgment referred to lu­
minance levels of the bars.

All stimuli were displayed on a Conrac SNA 17/Y monochrome
video monitor with P4 phosphor, at a viewing distance of 64 em.
For numbers and scatterplots, the stimuli had a luminance of
300 cdlm' on a black background. Stimuli were generated with an
LSI-I1123 computerandGrinnellGMR274framebuffer with a dis­
play resolution of 512x 480 pixels. Stimuliwerepresented for either
300 or 1,000 msec. A masking pattern of Xs was presented im­

mediately upontermination of eachdisplayso that afterimages could
not be used by the observers. The followingthree paragraphs con­
tain details of the three types of display formats.

Numerical Displays

The parent Gaussian distributions had means of 45 and 55, and
standard deviationsof 10. Sampled values were rounded off to the
nearest integer before being displayed. Accordingly, there was a
quantizationerror corresponding to about 5%of the standard devi­
ation. (We did not take quantizationerror into account in comput­
ing the accuracy of the ideal observer. The issue of quantization
noise is dealt with in detail by Burgess [1985]. In general, the ef­
fects of this type of noise are negligible if the quantization error

(I)

(3)

Dobs = --rZZ,

The stimuli were derived from numbers drawn at random from
two parent Gaussian distributions (Figure I). In one series of ex­
periments, the two Gaussiandistributions had identicalvariances,
but their meansdiffered by one standard deviation. In a second se­
ries, the two Gaussiandistributions had identical means, but their
variances differed by a factor of two.

In an experimental trial, an observer was shownN random sam­
ples from eachdistribution for a time T. The observerwasinstructed
to choose which set of samples was drawn from the distribution
with the higher mean (or larger variance). An observer's perfor­
mance was measuredas percent correct in blocks of 300 trials. At
least two blocks, collected in separate sessions, were averaged to
measure performance levels.

In order to computeefficiency, percent correct was transformed
to accuracy, D, using formulae crom signal-detectiontheory. For
discrimination of means, given equal variance, D is equivalent to
detectability d', An observer's accuracy Dobs is given by

In the case of equal means but unequal variances, the optimal
strategyis to computethe sumof squared deviations of samplevalues
from the parent mean for each set of samples, and choose the sum
with the higher value. Whenthere are N samples, Did.aI is given by

Did.aI = VN(SD,/SD, - SD,/SD,), (4)

whereZ is the standardized normaldeviatecorresponding to propor­
tion correct in the two-alternativeforced-ehoiceprocedure (Green
& Swets, 1974).lJidul is the accuracy obtainedifan optimal strategy
is used. In the caseof means, the optimal strategyis straightforward:
compute the means of the two sets of samples and choose the one
with the higher value. When there are N samples,

Did.aI = ..fN(M,-M,)/SD, (2)

where M, and M, are the means of the two parent distributionsand
SD is the common standard deviation of the parent distributions.
In our experiments, the difference of the means was equal to the
standard deviation, so
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Figure 2. The three display formats. The column of three panels on the left shows the same trial
displayed as numbers,scatterplots, and luminanc:e-coded bars. Values plotted top to bottom in the
numerical and luminance dlspIays are plotted right to left in the scatterplots. The subject's task
was to decide which setofsamples wasdrawn from theGaussian distribution with the blgher mean.

The three panels on the right depict a trial in which the subject's task was to decide wblebset of

samples came from the distribution with larger varianc:e.

is small compared with the standard deviation of the noise process.)

The center-to-center spacing of the digits was .51 ° and the empty
space separating the two columns subtended 4.5°.

Scatterplots

Numerical values drawn from the Gaussian distributions were

transformed linearly to vertical position on the screen. A + sym­

bol centered on the screen specified the vertical position midway

between the two means. One standard deviation of the Gaussian
distribution subtended 2.6°. Each sample was displayed as a * sym­

bol subtending .51 0. placed on the screen with an accuracy of 2 %

of one standard deviation. The horizontal spacing between sam­

ples was .51 ° and the horizontal separation between the two sets

of samples was 4.5°.

Luminance-Coded Displays
The numbers drawnfrom the Gaussiandistributions were mapped

to luminance and displayed as bars on the screen. The digital-to­

analog converter of the frame buffer quantized values to 256 levels.

A look-up table was used to correct for the video monitor's non­

linear transformation from voltage to luminance. The two distri­

butions had mean luminances of 150 and 185 cd/m', and the stan-
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SCATIERPLOT

SAMPLE SIZE

02

RESULTS AND DISCUSSION

Effect of Sample Size

Figure 3A illustrates Subject Y.G. 's performance with
scatterplot means for sample sizes ranging from 1 to 20.

Accuracy Dobs is plotted on the left vertical scale and cor­

responding values of percent correct on the right. The
dashed line shows the performance of an ideal observer.

Notice that when the sample size is one, both Y.G. and

the ideal observer have accuracies near 1.0 (percent cor­
rect near 76). When only one sample is drawn from each

of the overlapping parent Gaussian distributions, there will

be occasions when the sample from the distribution with
lower mean is greater than the sample from the distribu­

tion with higher mean. The ideal observer will select the

higher value and be counted wrong. In this way, the ac­
curacy of the ideal observer is limited by the variability

(noise) inherent in the parent distributions. As the sam­
ple size increases, the standard deviations of the sam­
pling distributions decrease in proportion to .IN, and the
performance of the ideal observer steadily improves.

Figure 3A illustrates that the performance of the real ob­

server also improves, but not as fast as that of the ideal.

Y.G. 's efficiency can be computed from Dobs and DideaJ,

using Equation 5. Figure 3B shows the data of Figure 3A
transformed to efficiency on the vertical scale. Even
though Y.G. 's accuracy increased with sample size

(Figure 3A), his efficiency declined slowly for the same

range of sample size (Figure 3B). This decline reflects

the growing vertical separation between the curves for
Y.G. and the ideal observer in Figure 3A as sample size
increases. In subsequent figures, we plot efficiency as the

dependent variable.

In Figure 4, efficiency is shown for the discrimination

of means. The viewing duration was fixed at 0.3 sec. Data

are shown for the three display formats. Best-fitting
straight lines have been fit through the sets of data. Since
both scales are logarithmic, a slope of -1.0 would

represent inverse proportionality between efficiency and
sample size. Values of the slopes are shown on the figure

and are summarized in Table 1.

Efficiencies are highest for scatterplots, >50%. These
values are a little higher than the 25 % efficiencies ob­
tained by Barlow and Reeves (1979) for the detection of

mirror symmetry, and equivalent to the 50% efficiency
observed by Barlow (1978) for the discrimination of dot

density. The scatterplot data show a weak dependence on

sample size (slopes of -.23 and -.36). Had the slopes

been zero (constant efficiency), subjects would have been
processing new samples with equal effectiveness. Instead,

both observers made substantial, but incomplete, use of
additional information available from additional samples.

Efficiencies are lowest for numerical displays and show

a more pronounced decline with increasing sample size.

The decline means that subjects are less able to use the
additional information provided by the extra samples.

The results for luminance lie intermediately between
those for scatterplots and numerical displays.
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dard deviation was 35 cd/m'. In terms of luminance, the quantization
error was 2% of one standard deviation near the mean luminance

levels of the two distributions. Each bar subtended 3.5 0 x 0.86 0
•

The columns of bars were separated by 1.80
•

In a separate experiment, we measured thresholds for discriminat­

ing differences in mean values. A threshold was found by reduc­

ing the difference between the means of the parent Gaussian distri­

butions until a criterion accuracy was achieved. The criterion was
75% correct, corresponding to Dob. = .95. The QUEST proce­

dure was used to find the threshold difference in means (Watson

& Pelli, 1983). As discussed below, the threshold data were used

to distinguish between internal noise and inappropriate sampling

as reasons for an observer's deviation from ideal performance.

Two highly practiced observers participated in the experiments.

Monte Carlo computer simulations were used to evaluate the ef­
ficiencies of some putative perceptual strategies. The simulations

were programmed in Pascal and run on a Sun 3/160 with a floating

point accelerator board. Gaussian random numbers were obtained

from a uniform random distribution (the RANDOM function un­

der Sun UNIX), then transformed to a Gaussian random variable

based on the cumulative normal distribution (Abramowitz & Stegun,

1972, p. 933). Each value of efficiency was computed from 100,000
simulated trials.

Figure 3. IJIustration of theU8e of ejJidency as a performance -­
sure. In Panel A, Y.G.'s performance for discriminating scatter­
plot means Is plotted as a function of sample size. Accuracy, D, Is
plotted on the left vertical scale and corresponding values of per­
cent correct on the right. The performance of the ideal observer,
Equation 3, Is also shown. Panel B shows corresponding values of

Y.G.'s efticiency, computed using Equation 5.
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Figure 4. Efficiencyfor discriminating meaDS is plotted as a func­

tion of sample sizeon log-log coordinates. Data are shown for the

three display formats. Slopes are given for the best-fitting lines

through the sets ofclata. These slopes are listed in Table 1. The two

panels are for Observers Y.G. and T.T.

Notice that Y.G. 's efficiencies for sample sizes of one

were close to 100%. The N = 1 condition is really a con­

trol to verify that performance is not limited by visual
resolution or other forms of sensory discrimination. Small

deviations from 100% efficiency in the N = 1 condition

can probably be attributed to occasional nonperceptual er­

rors (e.g., "finger errors"). The high efficiencies in the

N = 1 condition lead us to believe that the substantial

departures from 100% efficiency in other conditions are

EFFICIENCY OF GRAPHICAL PERCEPTION 369

not sensory in origin but result from more central

processes. Brief experiments with two low-vision

observers-one with central-field loss due to optic atrophy

and the other with severe corneal vascularization (SneUen

acuity = 20/1,OOO)-confirm this point. Both had about

the same efficiencies for scatterplots as normal observers.

In these experiments, the means of the parent Gaussian

distributions (with standard deviations equal to the differ­
ence of the means) were mapped into arbitrary values

along a stimulus dimension. In the case of scatterplots,

the means were separated by 2.6 0 on the face of the video
monitor. In the case of luminance, the means were 150

and 185 cd/m", the separation being 35 cd/m'. These

values were dictated in large part by constraints of the

video monitor. It is possible that our estimates of effi­

ciency are highly dependent on the particular mappings.

To take an extreme example, suppose we had mapped the
parent Gaussian distributions into luminance distributions

with means of 150 and 151 cd/m- and standard deviations

of 1 cd/rrr'. We can be sure that limitations on sensory

discrimination would reduce efficiency substantially.

We conducted two ancillary experiments to see whether

our estimates ofefficiency were influenced by the partic­
ular stimulus mapping. In the case of scatterplots, we com­

pared efficiencies for conditions in which the means were

separated by 2.6 0 (original mapping), 1.73 0
, and 0.86 0

•

(Wider separations would have resulted in loss of points

off the top and bottom of the screen, and narrower sepa­

rations would have resulted in unacceptable spatial quan­
tization errors.) T.T. was the subject, and the sample size

was 10. Average values of efficiency changed only

slightly, from 52.6% (0.86 0 condition) to 64% (2.6 0 con­

dition). In the case of luminance displays, we compared

efficiencies for three mappings. Again, the subject was

T.T. and the sample size was 10. The pairs of mean lu­
minances and corresponding average efficiencies were:

90 and 105 cd/m' with efficiency of 12.8%; 90 and

120 cd/m' with efficiency of38%; 90 and 135 cd/m' with

efficiency of40.7%. Clearly, T.T. was less efficient when

the distributions of luminance values were close (i.e.,

means of 90 and 105 cd/m'), but her performance leveled
out for the more widely separated mappings. We conclude

that estimates of efficiency are likely to be unaffected by

the particular mapping, as long as the mean stimulus

values are weUseparated (i.e., highly discriminable) from

one another.

Observer

Table 1
Linear Regression Slopes

Scatterplots Luminance

Mean Var Mean Var

Numerical

Mean Var

Log (Efficiency) versus Log (Sample Size), t = .3 sec

Y.G. -.23 .26 -.59 -.37 -.79 -1.00
T.T. -.36 .03 -.55 -.22 -.90 -1.38

Log (Efficiency) versus Log (Viewing Time), Sample Size = 10

T.T. .08 .08 .67 .55 .70 1.13
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longer than 1 sec, we might expect efficiencies for nu­

merical displays to keep rising. Eventually, they might
catch up with the scatterplots. In the extreme, a subject

might consciously compute statistics on the columns of

numbers and possibly achieve very high efficiencies (lim­
ited only by skill at mental arithmetic).

In visual search tasks, perceptual processing is said to

be parallel ifperformance is independent ofexposure time
and the number of elements. For our discrimination task,

parallel processing would mean constant efficiency. It is

not quite the case that scatterplot perception is a purely

parallel process. Efficiency rises slowly with viewing time

and drops slowly with sample size. Relatively speaking,

however, scatterplots are processed in a more parallel
manner than are numerical displays. This difference be­

tween the two types of displays quantifies and supports

Cleveland and McGill's (1985) view that the preattentive

(and hence parallel) processing of graphs is the most fun­

damental reason for their superiority to tabular displays.

In visual search, processing is said to be serial when
performance increases linearly with time and declines in

inverse proportionality to the number of elements. We

can see that these relations apply to the efficiency of a

serial processor as follows. Suppose that an observer

processes samples serially at a rate ofNo elements in time

To. Suppose that this observer makes optimal use of the
available information and is limited only by the rate at

which samples can be processed. In time T, such an ob­

server can process (NoITo)Tsamples. Substituting this for

N in Equation 3, we obtain the accuracy of the serial

processor for discriminating means:

Dserial = ...; (NoITo)T .

Substituting this expression in Equation 5 for efficiency,

we find that

VARIANCE

~
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Effect of Viewing Time
Figure 6 shows the effect of viewing time on efficiency

with a fixed sample size of 10. Data are shown for Sub­

ject T. T. Once again, the results are quite similar for

means and variances.

There is only a slight increase in efficiency for scatter­

plots as exposure time increases from .3 to 1.0 sec. Little
increase is to be expected, because efficiency is already

high for the shortest exposure. In comparison, efficien­

cies for numerical displays rise more rapidly, with log­

log slopes much nearer one. For viewing times even

Figure 5 shows data for discrimination of variance. On
the whole, the pattern of results is very similar to those

for means. Observers are as efficient at estimating vari­

ances as means. This may be surprising because, as ev­

ery neophyte statistics student laments, numerical calcu­

lation of variance is much harder than that of means.

Unlike the data for means, the scatterplot curves for vari­
ance in Figure 5 are nonmonotonic with a peak at a sam­

ple size of 10. We will return to this point below, when

we discuss algorithms that subjects may use in estimat­

ing variances.

E = (DseriallDideal)l

= (NoITo) (TIN) = k(TIN),

where k is a rate constant. (E can never exceed 1.0.) Such

an observer's efficiency is linearly related to viewing time

T and inversely proportional to sample size N. This is

roughly the pattern of results we found for numerical
displays.

The results for luminance-eoded data lie between those

for scatterplots and numerical displays, both in values of

efficiency and in slopes. In the experiments with means,

the task amounted to discrimination between the average

luminances of two patches of static noise. We are not
aware ofany experiments in which this capacity has been

studied. The variance experiment amounts to discrimi­

nation of the r.m.s. contrasts (contrast power) of two dis­

plays of one-dimensional static visual noise. The efficien­

cies we found-typically 30%-are in good agreement

with values measured by Kersten (1987). He measured
efficiencies for the detection of static visual noise on uni-

form fields or on fields of dynamic visual noise.

Figure S. Efficiency for discriminating variances. Other details There is evidence for a compressive power-function
as in Figure 4. relationship between brightness (a perceptual dimension)
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and luminance (a physical dimension). This transforma­

tion might be a source of inefficiency in luminance-eoded
displays. While the exponent of the brightness power func­

tion depends weakly on a number of stimulus variables

(Mansfield, 1973; Stevens & Stevens, 1963), a value of

0.3 is representative. Suppose that in our luminance ex­

periments, real observers are ideal, except that they ap­

ply a power-function transformation with exponent 0.3
to each luminance sample prior to computation of deci­

sion variables. In our experiments, the luminance distri­

butions had means of 150 and 185 cd/m", Brightness

values corresponding to these means would differ by only

about- 6.5% (i.e., they would differ by a factor of

[185/150]°·3 = 1.065). Therefore, all the luminance values

used in the experiment would map into a very small range

of brightness values. Over this small range of values, the

brightness function would be approximately linear, and

the luminance-to-brightness transformation should have

little effect on efficiency. To check this, we used Monte

Carlo computer simulations (see the Method section) to
compute efficiency for an observer who is ideal except

for the brightness transformation. For sample sizes of

N = 5 and N = 10, the efficiencies were 0.99 and 0.98.

Clearly. the reduced efficiency due to the brightness trans­
formation does not account for the efficiencies of 20%

to 30% measured with luminance-coded displays.

such values by presenting displays in which the samples

are sorted in ascending or descending order. Then, in a
brief exposure, an observer will know where to look in

the set of samples for the extrema or median values. Since

a parallel processor has simultaneous access to all values,

sorting should be of less advantage. Sorting has no effect

on the performance of the ideal observer that uses all in­

formation in the set of samples, regardless of presenta­
tion order.

These considerations led us to predict that sorting should

benefit perceptual analysis of numerical displays more

thanscatterplots. We measured efficiencies for sorted and

unsorted sets of 10 samples for Observer T. T. The results

are shown in Table 2. In all four comparisons with nu­
merical displays, efficiency was higher for sorted sam­

ples, but the advantage was significant only for discrimi­

nation of variances with I,OOO-msec exposures

(p < .01). Sorting had no systematic effect on efficiency

for scatterplots. As predicted, sorting was more benefi­

cial for numerical displays than for scatterplots, but the
effect was relatively weak. For luminance-eoded displays,

sorting did not produce significant changes in efficiency

for discriminating means, but sorting actually hampered

performance on variance. Perhaps the r.m.s. contrast (cor­

responding to variance in the luminance-eoded displays)

was harder to estimate in the sorted displays because local­
contrast steps were much smaller.

Sorted and Unsorted Samples
Our data indicate that perceptual analysis is serial for

numerical displays but more parallel in character for

scatterplots. A serial processor can handle only a few sam­

ples in a brief exposure. Its performance might be en­

hanced, however, if those few samples were well chosen.
For example, if only one of N samples can be processed

in a brief exposure, the median, maximum, or minimum

value would be more useful thana value selected at ran­

dom. We can make it easier for a real observer to use

Table 2
Comparison of Efficiencies for Sorted and Unsorted Samples

Mean Variance

Sorted Unsorted Sorted Unsorted

Luminance (300 msec) .23 .19 .25 * .39

Scatterplot (300 msec) .54 .60 .66 .60

Numerical (300 msec) .18 .16 .10 .O~

Numerical (1,000 msec) .38 .34 .40 * .21

Note-Average efficiencies are shown for Observer T.T. The sample
size was 10. *Significant difference (p < .01).
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Figure 7. The five curves, two for means and three for variance, show how efficiency depends on
sample size for five strategies (Table 3). The curves were derived from results of computer simula­
tions. Data for Observer Y.G. have been replotted from Figures 4 and 5 for comparison.

Table 3
Some Possible Perceptual Strategies

Thresholds for Discriminating Means

The two panels of Figure 8 show threshold data rather
than efficiency. For a given value of variance (the same
for the two parent Gaussian distributions), the difference

Note-In a trial, the subject is presented with two sets of N samples,
each set drawnfrom a parent Gaussian distribution. The subject attempts
to identify the set of samples that came from the parent distribution with
higher mean (or larger variance). The subject who adopts one of these
strategies picks the set of samples having the higher value of the indi­
cated statistic.

Discrimination of Variances

Absolute Value Sum of the absolute values of the
maximum positive and negative
deviations from the mean

Range Difference between maximum and
minimum values

Maximum Maximum

Description of Statistic

Discrimination of Means

Median value

Maximum value

Median

Maximum

Strategy

maximum strategy roughly parallels the curve for the
range strategy, but with overall lower efficiency.

As statisticians have long known, order statistics such
as maxima, minima, or medians are particularly infor­
mative. The curves in Figure 7 indicate that means and
variances can be efficiently discriminated with simple
strategies based on these values. Only in the case of the
range strategy for variance discrimination, however, is
there evidence that subjects actually adopt one of the
strategies we propose.

Perceptual Strategies
How efficient would we expect subjects to be if they

based their decisions on median values or extrema? There
is a variety of strategies if one uses these values, and the
efficiency can be computed for each of them. If we find

that an observer's efficiency exceeds that of the strategy,
we can be sure that the observer is not using the strategy.
On the other hand, an observer whose efficiency is less
than that of the strategy may be attempting to use the
strategy, but failing to execute it perfectly.

The curves in Figure 7 show efficiency as a function
of sample size, using two strategies for discriminating
means and three strategies lor discriminating variances.
The strategies are described in Table 3. The curves are
based on computer simulations (see the Method section)
run with sample sizes ranging from 1 to 50. Data points
have been replotted from Figures 4 and 5 for comparison
with the simulation results.

The median strategy for discriminating means is very
efficient. In the limit of large sample size, its efficiency
drops to 2/r, which is close to 64% (Freund, 1962,
p. 219). Less efficient is the maximum strategy, especially
as sample size grows large. Neither strategy provides a
good fit to any of the data sets, including the sorted­
list data.

We considered three strategies for discriminating vari­
ances. The absolute-value strategy is very efficient and
outperforms real observers even for scatterplots. The
range strategy (Table 3), however, shows the same sort
of nonmonotonic dependence on sample size as the scatter­
plot data of real observers. This strategy has a peak effi­
ciency of 85 % at a sample size of 11, which is a little
better than the real observers. The rough correspondence,
however, suggests that real observers may rely heavily
on extreme values in their estimates of dispersion of data
in scatterplots. As might be anticipated, the curve for the
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defined sampling efficiency as the ideal observer's slope
divided by the real observer's slope. Values less than 1.0
reveal nonoptimal sampling. The magnitude of the inter­
nal noise is proportional to the x-axis intercept's distance

to the left of the origin. The farther to the left of the ori­
gin the intercept, the greater the internal noise. The ideal
observer's straight line passes through the origin (no in­

ternal noise) and has a slope of O. 18.2 These concepts are
described in more detail by Legge et al. (1987).

For both subjects, the scatterplot lines have slopes and
intercepts close to the ideal. This is not surprising, be­

cause efficiencies for scatterplots are very high.
Both subjects had slopes that were much higher than

the ideal, but intercepts near zero, for numerical displays.
This reveals that the source of inefficiency is almost en­

tirely due to incomplete sampling, confirming the serial­
processing interpretation. In the brief exposure interval,

the subjects could sampleonly a small fraction of the avail­

able information, but,this they processed quite flawlessly.
For both subjects, the luminance displays had intercepts

substantially to the left of the origin, suggesting the exis­
tence of internal noise. This noise might have a sensory

origin. It might be related to the precision with which con­
trast is coded in the nervous system (Legge et al., 1987).

SUMMARY

Efficiency provides an absolute measure of perceptual

performance. We have used efficiency to study graphi­
cal perception. Our findings extend those of Cleveland

(1985) and Cleveland and McGill (1985) by quantifying

the superiority of graphs over numerical tables. Speci­
fically, our results tell us how well real observers can
estimate statistical parameters-means and variances­
compared with an ideal observer (or a statisticaltest), who
uses all information optimally.

Perceptual efficiencies are very high for scatterplots,
often 60% or more. Efficiencies are much lower for
numerical tables (< 10% for a moderate number of sam­
ples and short exposures). Efficiency for the luminance­
coded displays lies intermediate between those for scatter­
plots and numerical tables.

Performance with scatterplots has the earmarks of a

parallel process: weak dependence on sample size and
viewing time. This confirms the view that the major con­
tributor to the superiority of graphical displays is spatial

parallel processing. Our simulations of possible percep­
tual strategies, however, indicate that relatively high ef­

ficiencies can be achieved without analyzing all the sam­
ples. Instead, observers may use a parallel spatial process
to quickly identify samples (e.g., minimum and maximum

values) that are particularly informative. Their decisions
may depend only on these values.

Real observers appear to process tables of numbers in
a much more serial fashion. Their efficiencies drop

roughly linearly with increasing sample size and increase
in rough proportion to time. A plausible interpretation is
that entries in tables are processed sequentially at a fixed
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between the means was adjusted by a forced-ehoice stair­

case procedure to find the threshold difference. The
squared difference between the means at threshold (see

next paragraph) is plotted as a function of variance.
Thresholds are shown for a sample size of 5 and a view­

ing time of 0.3 sec. Each point represents the mean of

2 to 6 separate threshold estimates. Best-fitting straight

lines have been fit to the data.
These threshold plots are analogous to plots of signal

energy versus noise spectral density (see Burgess et al.,

1981; Legge et al., 1987). Slopes and intercepts oflines
through the data can be used to distinguish between two

generic forms of inefficiency: nonoptimal sampling and
internal noise. The slope of a straight line through such
data is related to the efficiency with which the observer

processes stimulus samples. The greater the slope, the
lower the observer's efficiency. Burgess et al. (1981) have

o.0 +-=-+-~-+--+--+--+--+-~_+_-+---1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

VARIANCE

FIgure 8. The results of a tbresboId experiment are shown, in
which tbe difference between tbe means of tbe parent Gaussian dis­
tributions was reduced until tbe observers were 7SCJ5, correct in tbe

forced-cholc:e procedure. The squared difference of tbe means at
threshold(see text) Isplotted as a function of tbe common variance

of tbe GaWlliandistributions. The intercepts and slopes of straight
lines fit to tbe data are used to partition Ioaes ofeftlclency into two

sources. Results are shown for tbe three display formats and for

tbe ideal obse"er. The two panels give results for Obse"ers Y.G.

and T.T.
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rate. Given enough time, efficiencies might become quite

high even for numerical displays.
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NOTES

1. The definitionsof Did.or are different for means and variances, be­
cause the underlying distributions are different. The distributions are
chi-square for variances, but Gaussian for means. While the definition
of accuracy for Gaussian distributions with equal variance, d', is well
known, there is no commonly accepted definition of accuracy for chi­
square. We adopted the definition proposed by Sakitt (1973) for non­

Gaussian distributions, where

D = [mean(s) - mean(n)]N[SD(s) . SD(n)].

For chi-squaredistributions, this reduces to Equation 4. Notice that for

both means and variances, Did.or is proportionalto .IN. Therefore, our
definitions of efficiency (see Equation 5) for both means and variances
are consistent with Fisher's (1925) original definition. He defined effi­
ciency as the ratio of the number of samples required by an ideal ob­
server to the number required by a real observer to achieve the same

performance level.
2. The slope value of 0.18 can be derived from Equation 2. Squar­

ing both sides and denoting the threshold difference of means by 4m,
we have

(4m)' = (Did.or'/N)SlJ'.

A threshold criterion of 75% correct corresponds to a value of Did.or
of .95. For N = 5, the slope of the relation between squared difference
of means andvariance is (.95)'/5 = .18.
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