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Abstract

Low-resource countries can greatly benefit from even small increases in efficiency of health

service provision, supporting a strong case to measure and pursue efficiency improvement

in low- and middle-income countries (LMICs). However, the knowledge base concerning

efficiency measurement remains scarce for these contexts. This study shows that current

estimation approaches may not be well suited to measure technical efficiency in LMICs and

offers an alternative approach for efficiency measurement in these settings. We developed

a simulation environment which reproduces the characteristics of health service production

in LMICs, and evaluated the performance of Data Envelopment Analysis (DEA) and Sto-

chastic Distance Function (SDF) for assessing efficiency. We found that an ensemble

approach (ENS) combining efficiency estimates from a restricted version of DEA (rDEA)

and restricted SDF (rSDF) is the preferable method across a range of scenarios. This is the

first study to analyze efficiency measurement in a simulation setting for LMICs. Our findings

aim to heighten the validity and reliability of efficiency analyses in LMICs, and thus inform

policy dialogues about improving the efficiency of health service production in these

settings.

Introduction

TheWorld Health Report 2010 estimates that 20% to 40% of all health spending is currently

wasted through inefficiency [1]. This is particularly striking considering how few financial

resources are available in many countries [2]. However, no consensus exists on the most appro-

priate models and methods for estimating efficiency across settings, and there are robust and

ongoing debates around two major methodological approaches: Data Envelopment Analysis

(DEA) and Stochastic Frontier Analysis (SFA) [3]. The result of such debate has important
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implications, as DEA and SFA can yield very different estimates of health facility efficiency [3].

Therefore, validating an accurate method to measure the efficiency of health facilities in low-

and middle-income countries (LMICs) is a pressing need.

One way to compare the accuracy of competing methods for measuring efficiency is

through simulation studies. In a simulation study, we create the dataset on which we run the

efficiency measurement method and use a data generation process designed specifically to test

the method. In this simulation setting, we know the true efficiency of each health facility, and,

for any method for estimating efficiency, we can compare the estimated value to the truth, and

precisely quantify the level of bias and error in the corresponding predictions. This allows us to

compare methods and to quantify in absolute terms how accurately each method performs [4].

Simulation studies have been used extensively in previous research to validate and compare

methods for efficiency measurement (in a wide variety of industries, not just health facility pro-

duction) [5–12], but they typically assume production characteristics of competitive markets,

which may not generalize to health service production in LMICs. For example, previous studies

assume that the majority of firms operate relatively efficiently (a right-skewed distribution for

efficiency) [5,7‒10]; the production process is appropriately represented by a Cobb-Douglas or

piecewise Cobb-Douglas production function [6,7,10]; and that firms use all possible inputs

and produce all possible outputs in service production [5,6,13]. In addition, most simulation

studies analyze production functions involving a single output [5,8,10], as they are relatively

easier to estimate; notable exceptions have been simulation studies measuring efficiency of edu-

cation systems [14]. More recent efforts involve simulation studies with more flexible produc-

tion functions and multiple-outputs processes [5,8,15], but they generally focus on simulating

efficiency in competitive markets.

In this study, we developed a simulation environment that captures the important aspects of

health facilities in a LMIC setting. We included three key differences from prior simulations:

(1) multiple-output production functions, other than Cobb-Douglas; (2) efficiency drawn from

a highly dispersed distribution; and (3) a subset of facilities with only a subset of the possible

inputs available (nurses, doctors, beds) or only a subset of the possible outputs (outpatient vis-

its, births, anti-retroviral therapy [ART] visits). We then applied DEA and the multiple-output

implementation of SFA, Stochastic Distance Function (SDF), to our simulated datasets and

assessed their respective performance. Since neither approach performed to our satisfaction,

we then developed and tested a novel extension to DEA that incorporated data-driven restric-

tions on the allowed transformation weights, and a novel ensemble model of restricted versions

of DEA and SDF.

Materials and Methods

Efficiency measurement approaches

DEA, weights, and restrictions. Evaluating facility efficiency of service production

requires comparing facilities across multiple dimensions, including several inputs and outputs.

DEA defines a composite performance indicator by computing the ratio of weighted outputs to

weighted inputs [16]. Facilities with the highest ratios of outputs to inputs are considered the

best performing, and are assigned an efficiency score equal to one. All other facilities receive an

efficiency score reflecting their relative performance to the frontier set by these best-perform-

ing facilities [17,18].

Assuming that there are a total of n facilities (also known as decision-making units, or

DMUs), facility i (where i ranges from 1 to n) uses an amount xri of input r (where r ranges

from 1 to R) and produces an amount yji of output j (where j ranges from 1 to J). For each facil-

ity i, DEA identifies input and output weights, vri and uji, which maximize the efficiency score,
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y
DEA
i , as defined in Eq (1):

max yDEAi ¼
PJ

j¼1
ujiyji=

PR

r¼1
vrixri

s:t:
PJ

j¼1
ujiyji =

PR

r vrixri � 1 for i ¼ 1; . . . ; n

vri; uji � 0 for all r and j:

ð1Þ

This mathematical problem is solved under two constraints. The first constraint states that

the efficiency score of any DMU in the sample must be less than or equal to one when the opti-

mal weights of a given DMU are applied to its inputs and outputs. The second constraint

restricts the weights to be non-negative.

Our formulation of DEA uses constant returns to scale (CRS) and an output orientation.

CRS stipulates that changes in output production are proportional to changes in all inputs. A

slightly more complicated version of DEA uses a variable returns to scale (VRS) assumption to

reflect the fact that the production technology may exhibit increasing, decreasing, or CRS. This

assumption is modeled by adding an additional parameter to the mathematical problem shown

in Eq (1) [16]. Another variant of DEA takes an input orientation, which changes the interpre-

tation of the efficiency score. An output-oriented model seeks to increase outputs given its cur-

rent inputs and an input-oriented model aims to minimize the use of inputs given its current

outputs. We prefer the output orientation, as expanding outputs (e.g., the number of health ser-

vices provided) is a goal in LMICs, and health facility managers often have limited control over

inputs (e.g., the number of doctors at the facility). The same perspective has been applied in

previous studies of health facility efficiency in LMICs [19,20].

DEA’s principal advantage is its non-parametric nature, as it aims to find the unique set of

input and output weights for each ithDMU that maximizes yDEA
i [16]. In doing so DEA may

assign weights of zero to critical inputs or outputs implying undefined rates of substitution or

transformation [21]. Accordingly, many innovative methods preserve interpretability by

imposing weight restrictions [16], such as absolute weight restrictions, cone ratio model, rela-

tive weight restrictions, and restrictions on virtual inputs and outputs. In the present study we

developed a novel extension of relative weight restrictions.

Relative weight restrictions consist of placing lower- (L) and upper- (U) bounds on the ratio

of weights of each output j to output 1 and each input r to input 1 as seen in Eq (2):

Lj � uij=ui1 � Uj

Lr � vir=vi1 � Ur

ð2Þ

Previous work has defined L and U bounds with subjective expert opinions [17,21], or by

input wages and output prices that may not be available for health facilities in LMICs. With

our novel relative weight restriction approach, hereafter referred to as restricted DEA (rDEA),

we first performed unrestricted DEA, and then used the first step DEA weights to inform sec-

ond step rDEA restrictions. Specifically, we used non-zero weights calculated in DEA to form a

distribution of relative weights for each of the R − 1 inputs and J − 1 outputs, relative to the

first input and output. From these distributions, we then drew lower and upper p-percentiles

from the relative weight distributions to set L and U bounds.

The performance of rDEA depends on the percentile p, so we used our baseline simulation

scenario with a range of p-percentiles to determine p.

For all DEA-based models (DEA and rDEA), to detect and remove outliers arising due to

noise, we conducted a super-efficiency analysis, where the efficiency score of each DMU was

calculated based on the frontier estimated from all other DMUs (which can yield efficiency

scores that exceed 1) [16]. We iteratively ran this super-efficiency analysis until no DMUs’
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super-efficiency score exceeded 1.5 or until 5% of DMUs were removed from the original sam-

ple. All DMUs detected in this super-efficiency analysis were assigned an efficiency score of

one.

Stochastic Distance Function

In advance, we caution the reader to note that the notation shared by DEA and SFA disciplines

often is not in agreement. For the purposes of the present study we use notation consistent

with each discipline. Unlike DEA, SDF requires an assumption regarding the functional form

of the multiple-output production function and distribution of efficiency. The SDF approach is

commonly used to estimate technical efficiency for production processes with multiple outputs

[22,23]. While greater detail on SDF can be found elsewhere [24,25], we provide a brief over-

view of a Cobb-Douglas multiple-output production function. Eq (3) below shows a Cobb-

Douglas multiple-output production function assuming full efficiency:

1 ¼ Ax
1i
b1x

2i
b2x

3i
b3y

1i
a1y

2i
a2y

3i
a3 ð3Þ

If we further assume that
P

3

j¼1
aj ¼ �1, Eq (3) may be written with y1 on the left hand side

[26]. We then may take the natural logarithm of Eq (3) and relax the assumption of full effi-

ciency and allow for measurement error, which are both captured by the residual, εi, to arrive

at Eq (4) which may be estimated with SDF:

dðx; yÞ ¼ �ln y
1i ¼ b

0
þ b

1
ln x

1i þ b
2
ln x

2i þ b
3
ln x

3i þ a
2
ln
y
2i

y
1i

þ a
3
ln
y
3i

y
1i

þ εi ð4Þ

Hereafter we denote SDF estimation of a Cobb-Douglas multiple-output production func-

tion as SDF-CD. The residual in Eq (4) may be represented by εi = vi − ui, with vi denoting

measurement error and ui denoting inefficiency. The latter may be converted into a SDF tech-

nical efficiency score by ySDFi ¼ e�u. It follows that SDF techniques must disentangle ineffi-

ciency from measurement error [27] and it does so by assuming that the two components

follow different distributions [28]. In most implementations of SDF, the random measurement

error component is assumed to be normally distributed, Nð0; s2

vÞ, while inefficiency is assumed

to be right-skewed (usually half-normal). DMU-specific efficiency is usually computed by

means of the JLMS estimator [27], which consists of calculating the expected mean value of

inefficiency conditional upon the composite residual εi, or E(ui|vi + ui). The cumulative distri-

bution of inefficiency is typically assumed to be half normal [27,29,30], for which the condi-

tional mean is presented in Eq (5):

EðuijεiÞ ¼
sl

1þ l
2
½

�ðgiÞ

1� FðgiÞ
� gi� ð5Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

u þ s2

v

p

; l ¼ su
sv
; gi ¼ εi

l

s
: ϕ(γi) and F(γi) denote the density and cumulative

distribution of the standard normal. Note that we expect inefficiency to be very dispersed for

health facilities in LMICs, and therefore this model may be misspecified; we will consider the

effect of the misspecification in our simulation scenarios detailed below.

We used SDF-CD with half-normally distributed inefficiency, and since the logarithm is not

defined for zero values, we used a small positive value (10−10) to replace any inputs or outputs

with zero values [31]. Moreover, we used constrained optimization while estimating SDF-CD

to impose economic interpretability conditions of @ ln dðx;yÞ

@ yj
¼ aj > 0 and @ ln dðx;yÞ

@ xr
¼ bj < 0

[22,32], and to impose the restriction of λ> 0 to ensure interpretable variances of inefficiency
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or measurement error; hereafter we refer to the use of these restrictions for SDF-CD as

restricted SDF-CD (rSDF-CD).

An ensemble modeling approach. Our ensemble model (ENS) consisted of combining

efficiency estimates from rSDF-CD and rDEA. Efficiency estimates resulted from the mean

score for each facility, as shown in Eq (6):

y
ENS
i ¼

y
rSDF�CD
i þ y

rDEA
i

2
ð6Þ

This approach has been considered previously in a simulation scenario [33], which varies

from our study as the analysis focused on single-output production functions and used tradi-

tional (unrestricted) DEA.

Simulation design

Features of health service production in LMICs. Little is known as to whether the major-

ity of facilities in LMICs are performing efficiently, particularly in health sectors that largely

lack market mechanisms to support optimizing facility production behavior. By contrast,

many higher-income countries feature some incentives to maximize service production,

including payment systems linked to production and/or the presence of competition [34]. To

capture large variations in facility input use and output production in LMICs, we applied a uni-

form distribution for efficiency. We also modeled multiple-output production functions, which

permitted facilities to produce one, two, or three different outputs. This flexibility allowed for

variations in treatment patterns across facilities and reflected the existence of zero inputs and

outputs in facility-level datasets [35]. Lastly, we started with the simplest scenario of a linear

multiple-output production function for health service provision and then varied this scenario

to include traditional functional forms. The linear multiple-output production function is

likely to approximate more complex, unknown non-linear multiple-output production func-

tions, as well as serve as the simplest production scenario through which any increases in

inputs result in rising outputs. The multiple-output production function in LMICs may be sub-

stantially different than those of high-income countries. First, higher and more variable rates

of input substitutability may occur due to human resources shortages and redistribution of

tasks among health workforce teams to overcome gaps in trained medical staff [36,37]. Second,

for LMICs, increase sin inputs would likely result in more services provided, particularly since

LMICs often face high rates of unmet demand amid resource shortages. By contrast, Cobb-

Douglas production functions result in no output production if any input is set to zero.

A novel simulation design for LMICs: baseline scenario

Wemodeled a multi-input, multi-output production function as shown in Eq (7). We assumed

that production technology could be represented by the transformation of three discretionary

inputs, x1, x2, and x3, into a total productive capacity Y, according to the following linear pro-

duction function that satisfies CRS:

Yi ¼ 0:2 x
1;i þ 0:5 x

2;i þ 0:3 x
3;i ð7Þ

We also assumed that there was inefficient behavior, and that efficiency followed a uniform

distribution, θi * unif(0,1). The efficiency score scaled down the total productive capacity (Y 0
i )

by, Y 0
i ¼ Yi � yi. Three inputs were drawn for a sample of 200 facilities from the following uni-

form distributions: x1 * unif(0,5), x2 * unif(0, 10), and x3 * unif(0, 8). The total productive

capacity was then used to produce up to three outputs. We assumed that all facilities produced

output y3, while only a subset of facilities produced output y1 or output y2, or both (details on
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model output production are presented in S1 Appendix). This approach was used to reflect

that, in reality, it is unlikely that every facility produces all possible outputs. For instance, based

on a nationally-representative sample of health facilities in Zambia [38], 100% of health centers

offered general outpatient services, but only 12% reported providing routine delivery services.

For each output produced, we ascertained how much of the facility’s total output capacity was

used for its production and assigned a productive capacity term YS
ji (see details in S1 Appen-

dix). Last, we assumed that the production volume of each observed output type (yobsji ) was

dependent upon the resources needed to produce each output. This meant that given a facility’s

set productive capacity, a lower output volume would be produced if a given output was more

resource-intensive in its production (e.g., inpatient services in comparison with outpatient

care). The final volume of outputs produced by a facility was defined in Eq (8), where we

assumed that output y3 was the most resource-intensive to produce, followed by y2 and y1:

yobs
1;i ¼ YS

1;i=0:25

yobs
2;i ¼ YS

2;i=0:5

yobs
3;i ¼ Y S

3;i =1:0

ð8Þ

The main assumptions of this data generation process were varied in sensitivity analyses

detailed below and summarized in Table 1. Efficiency scores were estimated for each simula-

tion scenario using four approaches: DEA, rDEA, rSDF-CD, and ENS. For each simulation sce-

nario we generated 2,000 independent replications. All models were estimated using the

Benchmarking package available in the programming language R (version 3.1.2) [39]. Code

used for this study is publicly available online and can be downloaded through the Global

Health Data Exchange (GHDx): http://ihmeuw.org/eff_sim.

Variations of the baseline scenario

Our simulation scenarios included:

Varied sample sizes (a). Sample size, or the number of DMUs under analysis, is an impor-

tant factor that can affect the performance of DEA and rSDF-CD. For DEA, the model’s dis-

criminatory power, or its ability to identify inefficient facilities, is largely defined by the

number of inputs and outputs included in the model relative to the number of DMUs [40]. The

issue of sample size is related to flexible weights, as having a larger number of inputs and out-

puts for a given sample size increases the likelihood of having a DMU with a particular ratio of

outputs to inputs and no peers for comparison. Eventually, these DMUs may be scored as fully

efficient. rSDF-CD is a regression-based approach, resulting in similar sample size require-

ments. While previous simulation studies have found that sample sizes less than 50 can be

Table 1. Baseline simulation design for LMIC and variations.

Scenario Description of baseline simulation design Factors we varied

a Define a sample size (number of DMUs) Number of DMUs

b, c Simulate inputs, x1 * unif(0,5), x2 * unif(0, 10), x3 * unif(0,
8)

Correlation between inputs
and fixed inputs

d Simulate measurement error, v
i
� Nð0; s2

v
Þ Type and variation of

measurement error

e Simulate efficiency, θi * unif(0,1) Distribution and variation of
efficiency

f Define a production function f(.) to represent how the input
vector x is transformed into output vector y, e.g.: y = f (x).

Production function f(.)

doi:10.1371/journal.pone.0147261.t001
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problematic for SDF [41], more recent work has shown that SDF can be appropriately used in

settings with samples size smaller than 50 [33]. For our simulation study, we tested four differ-

ent sample sizes: n = 20, n = 100, n = 200, and n = 1,000 (Table 1).

Varied correlations between inputs (b). Correlation between inputs also need to be con-

sidered in comparing efficiency methods. For the present study, the following correlations

were simulated: 0.60 between x1 and x2, 0.40 between x1 and x3, and 0.10 between x2 and x3. To

generate uniformly distributed and correlated variables, we used an approach described else-

where [42].

Varied fixed inputs (c). Health service production is likely to require a minimum number

of inputs, independently of the volume of services provided. The facility itself, where patients

can be seen, is an example of a fixed input. To reflect this reality, we modeled each input with a

fixed and variable component, as presented in Eq (9):

Yi ¼ ððx
1;i � 0:5Þ � 0:2þ ðx

2;i � 2:0Þ � 0:5þ ðx
3;i � 0:1Þ � 0:3Þ ð9Þ

This is equivalent to a single fixed input equal to 0.5�0.2 + 2�0.5 + 0.1�0.3 and can be rewrit-

ten using a single constant term. To ensure that inputs take a value equal to or greater than

zero after detraction of the fixed component, we increased the minimum value for each input

by the respective fixed input. Inputs were drawn from the following distributions: x1 * unif

(0.5, 5), x2 * unif(2.0, 10), and x3 * unif(0.1, 8).

Varied measurement error (d). Facility data are often noisy, so it is critical to include

measurement error in sensitivity analyses. In this scenario, we included two types of error:

additive and multiplicative error, which were both normally distributed, vi � Nð0; s2

vÞ

(Table B in S1 Appendix). For the additive error scenario, measurement error was added to

each input and output. To avoid negative values for inputs and outputs that would prevent

DEA from computing efficiency scores, we replaced any negative value with a small positive

number (0.01). For the multiplicative error scenario, each input and output was scaled by the

exponential of the measurement error. For each type of measurement error, we modeled three

scenarios (Table C in S1 Appendix): (1) low measurement error (σv = 0.02); (2) high measure-

ment error (σv = 0.08); and (3) mixed measurement error. For the latter, we assumed that rela-

tively few DMUs (15%) were characterized by high measurement error (σv = 0.08), while most

DMUs (85%) were characterized by low measurement error (σv = 0.02). DMUs were assigned

low or high measurement error based on a random number, τi * unif(0,1). This scenario

reflected settings where data quality may vary substantially. We applied measurement error to

all inputs and outputs. The total output capacity was calculated as described above with uni-

form distributed efficiency (see S1 Appendix for additional details).

Varied efficiency distribution (e). Past studies have assumed positively-skewed distribu-

tions of efficiency [4–11], frequently applying half-normal, exponential, and gamma distribu-

tions. By definition, these distributions assume that most DMUs are efficient and only a small

portion of DMUs would qualify as inefficient. We replicated our baseline simulation design

using a half-normal distribution of efficiency, yi � expf�jNð0; s2

uÞjg. Different levels of effi-

ciency variation were captured across DMUs by including low (σu = 0.05) and high (σu = 0.20)

standard deviations of the efficiency distribution. We used the negative of the exponential of

the efficiency term to bound efficiency values between zero and one.

Varied functional form (f). The functional form of the multiple-output production func-

tion is frequently debated in selecting data generation processes. The most commonly-used

functional forms in efficiency simulation studies are Cobb-Douglas and piecewise Cobb-Doug-

las [7,43]. We replicated both processes in our simulation, assuming that all inputs were drawn

from a uniform distribution between 1 and 15, x* unif(1, 15) (details shown in S1 Appendix).

Efficiency of Health Care Production in Low-Resource Settings: A Monte-Carlo Simulation

PLOS ONE | DOI:10.1371/journal.pone.0147261 January 26, 2016 7 / 20



Multiple-output productions functions assume that the transformation function is separable,

such that outputs are separable from inputs. We modeled a Cobb-Douglas output aggregate,

while the input aggregate was modeled as Cobb-Douglas and piecewise Cobb-Douglas. We fol-

lowed an approach used in past studies to ensure that that all outputs followed a uniform distri-

bution (details shown in S1 Appendix) [44].

Varied functional form, measurement error, and efficiency distribution (a traditional

simulation design) (g). This simulation replicated a scenario for health service production in

higher-income countries, the most prevalent setting for past efficiency studies. We modeled a

Cobb-Douglas multiple-output production function with multiplicative measurement error

applied to outputs only, yr;i � e
vr;i with vr;i � Nð0; s2

vÞ. Low and high measurement errors were

defined as above (σv = 0.02 and σv = 0.08, respectively). We created two types of models with

half-normally distributed efficiencies: (1) a model which included low standard deviation for the

error term and efficiency component (σv = 0.02, σu = 0.05); and (2) a model characterized by high

standard deviation for the error term and the efficiency component (σv = 0.08, σu = 0.20). The

simulation scenario matched a priori assumptions pertaining to the distributions of measure-

ment error and efficiency. In addition, the rSDF-CD functional form was correctly specified,

which provided the best-case performance scenario for the rSDF-CD approach.

Performance criteria

We identified five performance criteria to evaluate how well efficiency was measured. These

criteria were used to select the percentiles for rDEA, as well as to compare the performance of

efficiency measurement approaches (DEA, rDEA, rSDF-CD, and ENS) for each simulation sce-

nario. Mean absolute deviation and average rank correlations between true and estimated effi-

ciency values are the most commonly-used performance and benchmarking criteria in the

efficiency literature [5,7,45,46]. We used the median absolute deviation (MAD) instead of the

mean absolute deviation, as mean metrics are more sensitive to outliers [10], and we used

Spearman’s rank correlations (rs) to measure relative changes in DMU rankings across scenar-

ios. A limitation of these performance indicators is that they do not distinguish between the

overestimation and underestimation of efficiency. To address this concern, we also included

the percentage of DMUs with excessively underestimated (PU20) and overestimated (PO20)

efficiency. Differing from previous studies [33], we considered efficiency to be excessively

underestimated or overestimated if the measured deviation between true and estimated effi-

ciency levels exceeded 20 percentage points. By applying this threshold, we identified instances

of overestimation and underestimation that could substantially affect a facility’s efficiency

score. This classification can be particularly useful when the goal is to classify DMUs by four or

five classes of efficiency levels (e.g., very low to very high efficiency), as changes exceeding 20

percentage points would likely reclassify DMUs at different levels of efficiency. Lastly, we

included an indicator to identify the percentage of facilities that received an efficiency score of

one when their true efficiency fell below 0.80 (NOTFront), capturing DMUs that were not

actually at the efficiency frontier. This performance indicator was considered particularly

important because the misidentification of fully-efficient facilities affects the estimated capaci-

ties of facility-level service production. For each of these performance criteria, we reported the

average value over 2,000 replications.

Results

We present our results in accordance with descriptions of each simulation scenario, starting

with the novel simulation design for LMICs (baseline scenario) and moving through each

scenario variation.
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Percentiles for rDEA and LMICs simulation design

Table 2 details the results from testing different percentiles for relative weight restrictions in

rDEA. Imposing restrictions on DEA improved all performance criteria, even when the percen-

tiles were relatively broad (20–80). rDEA performance generally improved as percentiles nar-

rowed, though rates of underestimation (PU20%) increased when percentiles were narrower than

35–65, a point at which a trade-off emerged between the underestimation and overestimation of

efficiency (PU20% increased while PO20% decreased) and MAD rose as well. When equal weights

were applied to all DMUs, which corresponded with the median percentile for weight ratio distri-

butions (50–50), model performance deteriorated across all criteria. These results indicated that

imposing some degree of weighting flexibility is desirable, but overly-narrow restrictions may be

detrimental. Based on these data, we set lower- and upper-bound restrictions to equal the 40–60

percentiles of their distributions. These restrictions minimized MAD; produced a rs = 0.955;

reduced NOTFront to 2.7% and overestimation to 7.2%; and kept underestimation low (1.5%).

We then compared the performance of all efficiency estimation approaches for the LMIC sce-

nario (baseline scenario) using the 40–60 percentiles as restrictions for rDEA (Table 3). DEA

exhibited vastly superior performance to rSDF-CD, while rDEA provided even greater improve-

ments upon DEA results. DEA resulted in efficiency overestimation for 42.6% of the sample and

11.8% misclassification. rDEA corrected for these issues, and reduced overestimation to 7.2%.

Fig 1 shows these findings for one of the 2,000 replications, plotting the relationships between

true and predicted levels of efficiency for DEA and rDEA. In general, a large proportion of facili-

ties that were initially assigned to the efficiency frontier with DEA had their efficiency scores

Table 2. Performance of rDEA across different weight restriction percentile cutoffs.

Percentile MAD NOTFront PU20% PO20% rs

0–0 (DEA) 0.065 10.9% 0.0% 41.4% 0.877

20–80 0.036 4.0% 0.0% 23.7% 0.949

25–75 0.031 3.4% 0.0% 19.0% 0.953

30–70 0.027 3.1% 0.1% 14.6% 0.955

35–65 0.025 2.8% 0.3% 10.6% 0.956

40–60 0.025 2.7% 1.5% 7.2% 0.955

45–55 0.030 2.7% 5.1% 4.8% 0.953

50–50 0.045 2.7% 16.1% 3.6% 0.949

Note: Numbers in bold highlight the best outcome for each performance indicator across the alternative approaches. MAD: median absolute deviation,

NOTFront: percentage of misclassified DMUs, PU20%: percentage of underestimation, PO20%: percentage of overestimation, rs: Spearman’s rank

correlation.

doi:10.1371/journal.pone.0147261.t002

Table 3. Performance for the LMIC setting (baseline simulation).

Method MAD NOTFront PU20% PO20% rs

DEA 0.068 11.8% 0.0% 42.6% 0.863

rDEA 0.025 2.7% 1.5% 7.2% 0.955

rSDF-CD 0.106 0.0% 50.2% 10.5% 0.762

ENS 0.055 0.0% 25.8% 6.3% 0.936

Note: Numbers in bold highlight the best outcome for each performance indicator across the alternative approaches. MAD: median absolute deviation,

NOTFront: percentage of misclassified DMUs, PU20%: percentage of underestimation, PO20%: percentage of overestimation, rs: Spearman’s rank

correlation.

doi:10.1371/journal.pone.0147261.t003
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recalibrated to levels closer to true values with rDEA. Our ENS approach yielded a MAD similar

to DEA, a very high Spearman’s rank correlation, and similar levels for PU20% and PO20%.

Sample size (a)

Table 4 contains results from the scenario testing different sample sizes, with a particular focus

on datasets with smaller samples (n = 20 to 100 DMUs) to reflect likely data scenarios for

LMICs. All approaches were affected by very small datasets (n = 20), including rSDF-CD. DEA

and rDEA experienced improving performance with increasing sample sizes, while rSDF-CD

and ENS approaches were less sensitive to samples exceeding 20 DMUs. DEA-based methods

generally improved with larger sample sizes; however, DEA resulted in high levels of efficiency

overestimation in the scenario with 1,000 DMUs (PO20%DEA = 20.5%). For smaller samples

(n = 20), rDEA underestimated efficiency (PU20% = 27.5%), but with larger sample sizes (n�

100), underestimated efficiency decreased to 6.1%. In scenarios with very large samples of

DMUs (n = 1,000), rDEA estimates of efficiency nearly matched true efficiency. rSDF-CD per-

formed better than DEA in terms of MAD and Spearman’s rank correlation with small sample

sizes (n = 20). rDEA yielded the best performance for MAD with larger sample sizes (n� 100).

Our ENS model performed similarly to rDEA for smaller sample sizes (n = 20), and maintained

high performance in scenarios with larger sample sizes.

Correlated inputs (b)

Table 5 shows that correlations between inputs did not substantially change model perfor-

mance, as all indicators remained largely unaffected by the inclusion of correlation in inputs.

Fixed inputs (c)

Variations in fixed inputs had a limited effect on model performance (Table 6), and only rDEA

was substantially affected by this change. Under this scenario, MAD for rDEA increased from

Fig 1. Comparison of DEA and rDEA estimated efficiency vs. true efficiency.

doi:10.1371/journal.pone.0147261.g001
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0.025 to 0.047, and the percentage of facilities with underestimated efficiency increased by 17.4

percentage points. The ENS approach was the least affected by the inclusion of fixed inputs.

Measurement error (d)

Under scenarios where efficiency was uniformly distributed and different types of measure-

ment error were added to inputs and outputs, results remained similar to our previous simula-

tion scenarios (Table 7). In particular, rDEA performed better than rSDF-CD and DEA for

MAD, percentage of DMUs with overestimated efficiency, and Spearman’s rank correlation. In

terms of measurement error type, rDEA was less successful in reducing absolute

Table 4. Performance across variations in sample size.

Sample size Method MAD NOTFront PU20% PO20% rs

n = 20 DEA 0.241 36.4% 0.0% 80.0% 0.747

rDEA 0.123 7.5% 27.5% 33.0% 0.782

rSDF-CD 0.149 0.0% 27.9% 40.3% 0.656

ENS 0.102 0.0% 20.7% 34.7% 0.793

n = 100 DEA 0.105 16.4% 0.0% 55.4% 0.837

rDEA 0.039 3.3% 6.1% 13.8% 0.936

rSDF-CD 0.111 0.0% 49.3% 13.3% 0.748

ENS 0.059 0.0% 26.4% 9.1% 0.921

n = 200 DEA 0.068 11.8% 0.0% 42.6% 0.863

rDEA 0.025 2.7% 1.5% 7.2% 0.955

rSDF-CD 0.106 0.0% 50.2% 10.5% 0.762

ENS 0.055 0.0% 25.8% 6.3% 0.936

n = 1,000 DEA 0.017 5.8% 0.0% 20.5% 0.907

rDEA 0.007 2.6% 0.0% 2.8% 0.963

rSDF-CD 0.099 0.0% 47.2% 10.2% 0.774

ENS 0.051 0.0% 23.7% 5.5% 0.938

Note: Numbers in bold highlight the best outcome for each performance indicator across the alternative approaches. MAD: median absolute deviation,

NOTFront: percentage of misclassified DMUs, PU20%: percentage of underestimation, PO20%: percentage of overestimation, rs: Spearman’s rank

correlation.

doi:10.1371/journal.pone.0147261.t004

Table 5. Performance across variations in the correlation structure between inputs.

Structure Method MAD NOTFront PU20% PO20% rs

No correlation DEA 0.068 11.8% 0.0% 42.6% 0.863

rDEA 0.025 2.7% 1.5% 7.2% 0.955

rSDF-CD 0.106 0.0% 50.2% 10.5% 0.762

ENS 0.055 0.0% 25.8% 6.3% 0.936

Correlated inputs DEA 0.062 10.4% 0.0% 39.4% 0.874

rDEA 0.025 2.8% 1.4% 7.3% 0.954

rSDF-CD 0.103 0.0% 48.6% 10.6% 0.768

ENS 0.054 0.0% 24.2% 6.3% 0.936

Note: Numbers in bold highlight the best outcome for each performance indicator across the alternative approaches. MAD: median absolute deviation,

NOTFront: percentage of misclassified DMUs, PU20%: percentage of underestimation, PO20%: percentage of overestimation, rs: Spearman’s rank

correlation.

doi:10.1371/journal.pone.0147261.t005
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overestimation when the measurement error was additive (PO20%,rDEA = 9.8–15.3%) as com-

pared with multiplicative error (PO20%,rDEA = 7.4–9.3%) and mixed measurement error

(PO20%,rDEA = 8.0%). As expected, all performance criteria slightly declined when the variance

of the measurement error was high (rather than low). Model performance pertaining to mea-

surement error resulted in two main findings. First, rDEA appeared to be robust to measure-

ment error in the data. The ENS approach was generally robust to the introduction of

Table 6. Performance across variation in fixed inputs.

Inputs Method MAD NOTFront PU20% PO20% rs

No fixed inputs DEA 0.068 11.8% 0.0% 42.6% 0.863

rDEA 0.025 2.7% 1.5% 7.2% 0.955

rSDF-CD 0.106 0.0% 50.2% 10.5% 0.762

ENS 0.055 0.0% 25.8% 6.3% 0.936

With fixed inputs DEA 0.075 8.9% 2.7% 41.5% 0.887

rDEA 0.047 2.2% 18.9% 8.9% 0.930

rSDF-CD 0.099 0.0% 48.0% 9.7% 0.774

ENS 0.061 0.0% 32.7% 4.8% 0.928

Note: Numbers in bold highlight the best outcome for each performance indicator across the alternative approaches. MAD: median absolute deviation,

NOTFront: percentage of misclassified DMUs, PU20%: percentage of underestimation, PO20%: percentage of overestimation, rs: Spearman’s rank

correlation.

doi:10.1371/journal.pone.0147261.t006

Table 7. Performance across variations in measurement error.

Type of error Model specification Method MAD NOTFront PU20% PO20% rs

Additive measurement error θi * unif(0,1), vi * N(0, 0.022) DEA 0.069 11.8% 0.1% 44.2% 0.862

rDEA 0.022 2.7% 0.2% 9.8% 0.963

rSDF-CD 0.095 0.0% 32.2% 26.4% 0.797

ENS 0.048 0.0% 9.6% 20.6% 0.940

θi * unif(0,1), vi * N(0, 0.082) DEA 0.072 12.0% 0.8% 45.7% 0.851

rDEA 0.028 2.8% 1.8% 15.3% 0.953

rSDF-CD 0.102 0.0% 35.0% 25.5% 0.779

ENS 0.054 0.0% 13.8% 21.1% 0.929

Multiplicative measurement error θi * unif(0,1), vi * N(0, 0.022) DEA 0.068 11.8% 0.0% 42.6% 0.862

rDEA 0.026 2.7% 2.0% 7.4% 0.953

rSDF-CD 0.106 0.0% 50.3% 10.5% 0.762

ENS 0.056 0.0% 26.5% 6.3% 0.935

θi * unif(0,1), vi * N(0, 0.082) DEA 0.071 11.9% 0.4% 42.7% 0.847

rDEA 0.043 2.8% 12.4% 9.3% 0.936

rSDF-CD 0.109 0.0% 51.1% 10.9% 0.759

ENS 0.066 0.0% 34.1% 6.5% 0.926

Mixed measurement error θi * unif(0,1) DEA 0.068 11.8% 0.0% 42.7% 0.859

rDEA 0.030 2.8% 3.3% 8.0% 0.950

rSDF-CD 0.107 0.0% 50.4% 10.6% 0.762

ENS 0.058 0.0% 28.1% 6.3% 0.933

Note: Numbers in bold highlight the best outcome for each performance indicator across the alternative approaches. MAD: median absolute deviation,

NOTFront: percentage of misclassified DMUs, PU20%: percentage of underestimation, PO20%: percentage of overestimation, rs: Spearman’s rank

correlation.

doi:10.1371/journal.pone.0147261.t007
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measurement error; however, when measurement error was additive, ENS often overestimated

efficiency, akin to rSDF-CD and rDEA.

Efficiency distribution (e)

Across scenarios, rDEA performed better than DEA and rSDF-CDwhen efficiency followed a

half-normal distribution (Table 8). By contrast, rSDF-CD performance substantially deteriorated

under this scenario, leading to high levels of underestimation (PU20%, rSDF−CD = 70.3%–82.0%).

Minimal variations in efficiency often made it more challenging for rSDF-CD to accurately esti-

mate efficiency. DEA performed relatively well, although its performance for Spearman’s rank

correlation worsened when the efficiency distribution was half-normal, decreasing from rs = 0.863

to rs,DEA = 0.592–0.664. rDEA was robust to changes in efficiency distributions and variations in

efficiency, generating estimates that aligned closely with true values, both when variation in effi-

ciency was low (MADrDEA = 0.004, rs,rDEA = 0.892) and high (MADrDEA = 0.012, rs,rDEA = 0.905).

rDEA’s overestimation and misclassification percentages were very low across all efficiency varia-

tion scenarios. ENS performed better than rSDF-CD in terms of MAD and Spearman’s rank cor-

relations when efficiency variation was high, but still showed suboptimal performance in absolute

terms when efficiency variation was low; this result was largely driven by low rSDF-CD perfor-

mance. Overall, varying assumptions about efficiency distributions led to different concerns about

modeling approaches. rDEA generally had the most robust performance across scenarios for effi-

ciency distribution and variation. These results may be less informative than the findings from

other simulation, as the combination of a linear efficiency frontier and half-normally distributed

efficiency is unlikely to occur outside of simulation environments.

Functional form (f)

While maintaining a uniform efficiency distribution and excluding measurement error, we

tested different forms of the multiple-output production function, including Cobb-Douglas

and piecewise Cobb-Douglas. rSDF-CD performed best using Cobb-Douglas and piecewise

Table 8. Performance across variations in the efficiency distribution.

Efficiency distribution Model specification Method MAD NOTFront PU20% PO20% rs

Uniformly distributed efficiency θi * unif(0,1) DEA 0.068 11.8% 0.0% 42.6% 0.863

rDEA 0.025 2.7% 1.5% 7.2% 0.955

rSDF-CD 0.106 0.0% 50.2% 10.5% 0.762

ENS 0.055 0.0% 25.8% 6.3% 0.936

Half-normally distributed efficiency with low variation y
i
� eN

þð0;0:052Þ DEA 0.008 0.0% 0.0% 0.0% 0.592

rDEA 0.004 0.0% 0.0% 0.0% 0.892

rSDF-CD 0.367 0.0% 82.0% 0.0% 0.064

ENS 0.184 0.0% 46.6% 0.0% 0.180

Half-normally distributed efficiency with high variation y
i
� eN

þð0;0:202Þ DEA 0.028 4.5% 0.0% 8.8% 0.664

rDEA 0.012 1.0% 0.0% 1.4% 0.905

rSDF-CD 0.271 0.0% 70.3% 0.5% 0.238

ENS 0.137 0.0% 36.7% 0.3% 0.540

Note: Numbers in bold highlight the best outcome for each performance indicator across the alternative approaches. MAD: median absolute deviation,

NOTFront: percentage of misclassified DMUs, PU20%: percentage of underestimation, PO20%: percentage of overestimation, rs: Spearman’s rank

correlation.

doi:10.1371/journal.pone.0147261.t008
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Cobb-Douglas multiple-output production functions, which was not surprising given that the

model was correctly specified for rSDF-CD. For the Cobb-Douglas and piecewise Cobb-Doug-

las functional forms, MADrSDF−CD (0.012) was substantially lower than MADDEA (0.087–

0.091) and MADrDEA (0.092–0.095). In comparison with DEA, rDEA did not show marked

improvements for MAD but it reduced the percentage of DMUs misclassified (from a NOT-

Front of 11.6% to 3.1% with Cobb-Douglas and 9.5% to 2.9% with piecewise Cobb-Douglas)

and increased Spearman’s rank correlation (in Cobb-Douglas from rs,rDEA = 0.839 to rs,rDEA =

0.874; in piecewise Cobb-Douglas from rs,rDEA = 0.836 to rs,rDEA = 0.891). rDEA was also suc-

cessful in reducing efficiency overestimation, with DEA’s NOTFront equaling 42.0% and

rDEA’s NOTFront equaling 12.6% with Cobb-Douglas; however, rDEA led to higher rates of

efficiency underestimation across scenarios. Overall the results presented in Table 9 indicate

that functional form was a primary determinant of most models’ performances. The perfor-

mance of ENS for both Cobb-Douglas and piecewise Cobb-Douglas specifications rivaled the

performance of the linear specification. For non-linear multiple-output production functions,

ENS had a protective effect against efficiency underestimation as compared to rDEA (e.g., ENS

PU20% = 12.6% vs rDEA PU20% = 45.4% with Cobb-Douglas).

A traditional simulation design (g)

Table 10 shows the results for a scenario that mirrored health service production in higher-

income settings (traditional data generation process), assuming a Cobb-Douglas multiple-out-

put production function, presence of normally distributed measurement error, and half-nor-

mally distributed efficiency. These results were compared with those from a scenario in which

efficiency was uniformly distributed and all other parameters were unchanged. rSDF-CD esti-

mates of efficiency nearly matched true efficiency, independently of the efficiency distribution.

These findings were expected for half-normally distributed efficiency, as the model was cor-

rectly specified and all assumptions were met. Notably, rSDF-CD remained robust when tested

beyond a traditional efficiency distribution (uniform instead of half-normal). By contrast, DEA

and rDEA performance deteriorated across scenarios, with high MADs, high levels of efficiency

underestimation, and low Spearman’s rank correlations. ENS had similar MAD and

Table 9. Performance across variations in the functional form.

Functional form Model specification Method MAD NOTFront PU20% PO20% rs

Linear θi * unif(0,1) DEA 0.068 11.8% 0.0% 42.6% 0.863

rDEA 0.025 2.7% 1.5% 7.2% 0.955

rSDF-CD 0.106 0.0% 50.2% 10.5% 0.762

ENS 0.055 0.0% 25.8% 6.3% 0.936

Cobb-Douglas θi * unif(0,1) DEA 0.087 11.6% 7.2% 42.0% 0.839

rDEA 0.095 3.1% 45.4% 12.6% 0.874

rSDF-CD 0.012 0.0% 0.0% 0.2% 0.997

ENS 0.045 0.0% 12.6% 7.2% 0.960

Piecewise Cobb-Douglas θi * unif(0,1) DEA 0.091 9.5% 16.5% 36.3% 0.836

rDEA 0.092 2.9% 43.9% 13.3% 0.891

rSDF-CD 0.012 0.0% 0.0% 0.3% 0.997

ENS 0.044 0.0% 7.7% 7.5% 0.964

Note: Numbers in bold highlight the best outcome for each performance indicator across the alternative approaches. MAD: median absolute deviation,

NOTFront: percentage of misclassified DMUs, PU20%: percentage of underestimation, PO20%: percentage of overestimation, rs: Spearman’s rank

correlation.

doi:10.1371/journal.pone.0147261.t009
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Spearman’s rank correlations to those of DEA and rDEA, but its absolute performance

remained unsatisfactory when efficiency was uniform, resulting in overestimation and misclas-

sification of DMUs. When efficiency was uniformly distributed, rDEA successfully reduced

overestimation to 12.6% (in comparison to 41.9% with DEA), but underestimation increased,

rising to 45.7% (in comparison to 7.5% with DEA). ENS generally performed well in simula-

tions with uniform efficiency (MADENS = 0.047–0.065, rs,ENS = 0.935–0.958), but performed

poorly on the less likely scenario of half-normal efficiency (MADENS = 0.158–0.207, rs,ENS =

0.232–0.587), largely due to rDEA’s poor performance. Overall, DEA-based approaches esti-

mated efficiency more accurately for uniform distributions than for half-normal distributions.

Discussion

This study is, to our knowledge, the first-ever to empirically test the performance of efficiency

measurement methods in a simulation environment specifically designed to reflect health ser-

vice production in LMICs. We modified the data generation process commonly used in tradi-

tional simulation studies and assessed the performance of two well-established approaches for

efficiency measurement, DEA and rSDF-CD. We also included an easy-to-implement weight

restriction approach for DEA (rDEA), which offers a solution to using arbitrary weights in the

absence of market information regarding relative weights, and combined rDEA with rSDF-CD

to develop an ensemble model, ENS.

We found that when assumptions regarding efficiency distribution and functional form

were adjusted to reflect LMIC settings, the accuracy of DEA and rSDF-CD methods in estimat-

ing efficiency declined. In our study, functional form of the multiple-output production func-

tion was the main determinant of model performance. We found that rSDF-CD was the

preferred approach for Cobb-Douglas or piecewise Cobb-Douglas multiple-output production

Table 10. Performance across variations in functional form, efficiency distribution, andmeasurement error.

Efficiency distribution Model specification Method MAD NOTFront PU20% PO20% rs

Half-normally distributed efficiency y
i
� eN

þð0;0:052Þ; v
i
� Nð0; 0:022Þ DEA 0.198 0.0% 50.5% 0.0% 0.086

rDEA 0.415 0.0% 83.1% 0.0% 0.098

rSDF-CD 0.008 0.0% 0.0% 0.0% 0.890

ENS 0.207 0.0% 56.7% 0.0% 0.232

y
i
� eN

þð0;0:202Þ; v
i
� Nð0; 0:082Þ DEA 0.162 4.6% 39.5% 8.7% 0.303

rDEA 0.319 1.1% 76.9% 2.2% 0.338

rSDF-CD 0.027 0.0% 0.0% 0.0% 0.890

ENS 0.158 0.0% 43.9% 0.5% 0.587

Uniformly distributed efficiency θi * unif(0,1), vi * N(0, 0.022) DEA 0.087 11.6% 7.5% 41.9% 0.838

rDEA 0.096 3.1% 45.7% 12.6% 0.873

rSDF-CD 0.016 0.0% 0.1% 0.6% 0.993

ENS 0.047 0.0% 14.9% 7.1% 0.958

θi * unif(0,1), vi * N(0, 0.082) DEA 0.095 11.5% 12.5% 40.8% 0.824

rDEA 0.105 3.1% 50.4% 12.5% 0.858

rSDF-CD 0.044 0.0% 17.2% 4.3% 0.964

ENS 0.065 0.0% 34.1% 7.2% 0.935

Note: Numbers in bold highlight the best outcome for each performance indicator across the alternative approaches. MAD: median absolute deviation,

NOTFront: percentage of misclassified DMUs, PU20%: percentage of underestimation, PO20%: percentage of overestimation, rs: Spearman’s rank

correlation.

doi:10.1371/journal.pone.0147261.t010
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functions; however, when the multiple-output production function was linear, rDEA per-

formed the best.

A main challenge in analyzing efficiency is being able to identify the underlying multiple-

output production function and then selecting the most appropriate measurement approach.

Tests such as the likelihood ratio test are commonly used to determine the preferred functional

form for nested models (e.g., Cobb-Douglas versus translog functional form) [47]; however

they cannot be used for comparing non-nested models, such as linear and Cobb-Douglas mul-

tiple-output production functions. We investigated the performance of a variety of functional

form tests (S2 Appendix), and found them unreliable, indicating their potential limits for

applied efficiency analyses. Further, these results point to the analytical issues that can arise

when method choices are left to analysts.

Relatedly, we found that ENS, wherein efficiency estimates from rDEA and rSDF-CD were

combined, provided the best solution for estimating efficiency in cases where the underlying

production function is uncertain. ENS was robust across simulation designs for the linear pro-

duction, Cobb-Douglas, and piecewise Cobb-Douglas with uniformly distributed efficiency.

ENS also addressed one of rDEA’s largest pitfalls: its tendency to substantially underestimate

efficiency in the presence of a non-linear multiple-output production function. Although ENS

did not perform as well when efficiency was half-normally distributed and standard deviation

low, this data scenario is unlikely to reflect the realities of health service production in LMICs.

We also found that DEA resulted in high levels of efficiency overestimation and misclassifi-

cation of DMU efficiency when the efficiency distribution was uniform. These performance

issues diminished when efficiency followed a half-normal distribution, emphasizing the impor-

tance of understanding how production levels are distributed across facilities when analyzing

efficiency. rDEA and ENS were successful in addressing these limitations, suggesting that these

approaches may be preferred for analyzing efficiency in lower-resource settings.

Estimating efficiency for multiple outputs requires greater model complexity and parame-

terization, which accounts for differences in results from our study and previous analyses [33].

When we replicated the findings for single-output production functions (Tables H and I in S3

Appendix), ENS performed well overall, including scenarios with half-normally distributed

efficiency. Although estimating multiple output production processes is analytically challeng-

ing, it necessary to capture the realities of health service production, as very few, if any, health

facilities produce only one output. We found that ENS may provide a viable estimation option

for both single and multiple-output production functions, an important step toward improving

the applications of efficiency analyses.

Additional work is needed to confirm the broader generalizability of our ENS approach,

which may include testing more flexible forms of the efficiency frontier, such as the transcen-

dental logarithmic (translog) form; analyzing a broader range of efficiency distributions, such

as exponential or gamma distributions; studying different distributions for the inputs and out-

puts; and incorporating the performance of rSDF-CD under different misspecification issues.

Our findings have a number of applications, particularly as health policymakers and pro-

gram leaders increasingly seek ways to heighten efficiency of health service production [48,49].

This is particularly relevant to LMICs, where improvements in health system access, demand

for health care, and efforts to reach universal health coverage are resulting in growing patient

volumes amid constrained budgets [38,50–52]. Through improved efficiency at the facility

level, more patients can be diagnosed and treated without necessarily requiring a proportional

increase in facility resources. Therefore there is a strong argument for routinely measuring and

monitoring efficiency. Past studies have largely relied on traditional DEA models to assess

technical efficiency [53–55], which, based on our study, may have resulted in the overestima-

tion of efficiency in many settings. In these cases, facilities identified as “best performers” in
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service production may actually experience lower levels of efficiency and generate fewer ser-

vices than previously estimated. By improving the accuracy of efficiency measurement in

LMICs, we also move closer to empirically identifying determinants of heightened efficiency

and developing data-driven policy interventions to improve the use of limited resources.

Conclusions

This study provides new insights into efficiency measurement in low-resource settings through

an innovative Monte Carlo simulation design. We developed a new data generation process for

testing efficiency estimation methods for LMICs and compared the performance of established

and novel approaches for measuring efficiency. We found that current efficiency estimation

approaches are likely to overestimate efficiency levels and score individual facilities as fully effi-

cient when their true performance is substantially lower. An ensemble model (ENS), consisting

of averaging efficiency estimates drawn from a restricted version of DEA (rDEA) and restricted

SDF-CD (rSDF-CD), performed most robustly across sensitivity analyses. In cases where the

underlying multiple-output production function of a given dataset is uncertain, we recommend

the use of ENS for analyzing efficiency. Although efficiency is one of many health system objec-

tives, more accurate measurements of efficiency can provide an improved understanding of

how health system performance and provision of health services can be maximized.
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