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Abstract

Key message  We compare genomic selection methods that use correlated traits to help predict biomass yield in 

sorghum, and find that trait-assisted genomic selection performs best.

Abstract Genomic selection (GS) is usually performed on a single trait, but correlated traits can also help predict a focal 

trait through indirect or multi-trait GS. In this study, we use a pre-breeding population of biomass sorghum to compare 

strategies that use correlated traits to improve prediction of biomass yield, the focal trait. Correlated traits include moisture, 

plant height measured at monthly intervals between planting and harvest, and the area under the growth progress curve. In 

addition to single- and multi-trait direct and indirect GS, we test a new strategy called trait-assisted GS, in which correlated 

traits are used along with marker data in the validation population to predict a focal trait. Single-trait GS for biomass yield 

had a prediction accuracy of 0.40. Indirect GS performed best using area under the growth progress curve to predict biomass 

yield, with a prediction accuracy of 0.37, and did not differ from indirect multi-trait GS that also used moisture informa-

tion. Multi-trait GS and single-trait GS yielded similar results, indicating that correlated traits did not improve prediction of 

biomass yield in a standard GS scenario. However, trait-assisted GS increased prediction accuracy by up to 50% when using 

plant height in both the training and validation populations to help predict yield in the validation population. Coincidence 

between selected genotypes in phenotypic and genomic selection was also highest in trait-assisted GS. Overall, these results 

suggest that trait-assisted GS can be an efficient strategy when correlated traits are obtained earlier or more inexpensively 

than a focal trait.

Abbreviations

NPGS  National plant germplasm system

GS  Genomic selection

Y  Biomass yield

M  Moisture

DAP  Days after planting

H1  Height at 30 DAP

H2  Height at 60 DAP

H3  Height at 90 DAP

H4  Height at 120 DAP

AIC  Akaike information criterion

GBLUP  Genomic best linear unbiased prediction

BLUP  Best linear unbiased prediction

A  Area under the growth progress curve

VCOV  Variance–covariance matrices

GEBV  Genomic estimated breeding value

IPS  Indirect phenotypic selection

MAF  Minor allele frequency

CI  Coincidence index

Introduction

Releasing new varieties usually requires evaluation of 

progenies in a large number of environments. Because the 

costs of field experiments are becoming the limiting factor 

(Gawenda et al. 2015; Heslot et al. 2015), strategies that 
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allow rapid, accurate, and resource-efficient predictions 

are of increasing interest. The application of best linear 

unbiased prediction (BLUP) using pedigree information 

Henderson (1975) and more recently using molecular 

markers (GBLUP) (VanRaden 2008; Hayes et al. 2009b) 

are examples of efforts to meet those goals.

When GBLUP or other GS models are applied, selection 

is made on genomic estimated breeding values (GEBVs) 

calculated from molecular markers and using phenotypic 

information of a training population. GS has been success-

fully applied in many animal (Vallée et al. 2014; de los 

Campos et al. 2013) and plant (Heffner et al. 2011; Heslot 

et al. 2012) breeding programs, and prediction accuracy 

(r) generally shows a positive correlation with heritability 

(h2) (Hayes et al. 2009a). When a focal trait has low h2 , 

indirect or multi-trait GS can be applied to take advantage 

of correlated traits with higher h2 to increase r for the 

focal trait (Mrode 2014, page 70). Benefits of multi-trait 

GS over single-trait GS have been reported in simulated 

(Calus and Veerkamp 2011) and real data (Jia and Jannink 

2012; Schulthess et al. 2016).

Sorghum [(Sorghum bicolor (L.) Moench] is a mul-

tipurpose crop that is grown to produce grain, forage, 

and most recently biomass for second-generation biofuel 

production. Some advantages of sorghum as a biomass 

crop include low implementation cost, short cycle, wide 

adaptability, mechanized management, and high calorific 

value in boilers (Vermerris and Saballos 2013; Castro 

et al. 2015). Biomass yield in sorghum has low heritability 

(Shiringani and Friedt 2011) and is costly and laborious 

to phenotype. Correlated traits, including plant height, are 

much easier and more cost-effective to phenotype and have 

higher heritability (Monk et al. 1984; Castro et al. 2015; 

Burks et al. 2015). One previous study applied single-trait 

GS to predict biomass yield in a diverse photoperiod-

sensitive sorghum panel (Yu et al. 2016). Much of the 

phenotypic variation in biomass yield could be explained 

in a model including plant height, stalk number, and lodg-

ing (R2 = 0.63) , and indirect GS using these three traits 

yielded a prediction accuracy only slightly lower than 

direct GS on biomass yield (r = 0.71 versus 0.76). How-

ever, the authors did not test multi-trait GS approaches.

In this study, we compare the efficiency of various GS 

strategies for increasing prediction accuracy of a focal 

trait, sorghum biomass yield, using information from cor-

related traits.

Materials and methods

Plant material and �eld experiments

A panel of 453 diverse photoperiod-sensitive sorghum 

lines was obtained from the United States National Plant 

Germplasm System (NPGS) and evaluated in Urbana, IL 

from 2012 to 2014. Along with the diverse panel, the com-

mercial hybrid “Pacesetter” (Richardson Seeds, Vega, TX, 

USA) was included as check in all years. The experimental 

design in 2012 was a randomized complete block design 

with two replications of single row plots with a row length 

of 7.6 m, 1.5 m alleys and 0.76 m row spacing and a total 

of 24 rows and 16 columns. Thus, 179 sorghum lines were 

planted in 2012 and the remaining plots were filled with the 

commercial hybrid. The experimental design in 2013 and 

2014 was an augmented block design with the commercial 

hybrid included as a check in each block and 24 additional 

genotypes repeated twice in each year. Each incomplete 

block consisted of 24 four-row plots with a row length of 

3 m, 1.5 m alleys and 0.76 m row spacing and a total of 12 

rows and 40 columns. The 480 plots used in 2013 and 2014 

were filled with 415 lines, among which 141 lines were also 

included in 2012. The remaining plots were filled with the 

check hybrid. The target density in all years was approxi-

mately 207, 570 plants/ha, though the final density in 2013 

was lower due to climatic conditions and planting error. In 

each year, field experiments were planted in late May and 

harvested in early October.

Phenotyping

Plant height was measured as plot average from the ground 

to the whorl, at 30 (H1), 60 (H2), 90 (H3) and 120 (H4) 

days after planting. Total plot wet weight (kg) was meas-

ured with a forage harvester consisting of a John Deere 5830 

tractor with a four-row Kemper head and a weigh wagon 

modified with load cells accurate to within 1 kg. A 0.5 kg 

chopped subsample was captured from each plot at harvest, 

then weighed before and after oven drying at 60
◦ C for 72

′ to 

determine moisture content: Moisture (M) = (subsample wet 

weight − subsample dry weight)/subsample wet weight. Bio-

mass yield in dry metric tons per hectare (Y) was calculated 

as: dry metric tons/ha = total plot wet weight (kg) ∗ (1 − plot 

moisture) / (plot area (m2)∕10,000).

Genotyping

DNA was extracted from dark-grown etiolated seedling 

tissue in 96-well plates using a CTAB protocol. Illumina 

libraries were created using two pairs of restriction enzymes: 

PstI-HF/HinP1I and PstI-HF/BfaI (New England Biolabs, 
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Ipswich, MA). Restriction–ligation was performed in 

96-well plates, and unique barcoded adapters were ligated 

to each DNA sample. 96 DNA samples per library were 

pooled into a single tube for all subsequent steps includ-

ing size selection using AMPure beads (Beckman-Coulter, 

Pasadena, CA, USA), PCR amplification using Phusion 

polymerase (New England Biolabs), and a second round of 

a bead-based size selection. Single-end, 100-bp sequenc-

ing reads were obtained for all libraries on an Illumina 

HiSeq2000 instrument following submission protocol to 

the Keck Center at the University of Illinois. The TASSEL3 

GBS pipeline (Glaubitz et al. 2014) was used to identify 

SNPs, using Bowtie2 (Langmead and Salzberg 2012) for tag 

alignment. Only reads that perfectly matched a barcode and 

restriction site overhang were retained. After barcode trim-

ming, a set of “master tags” was generated from the unique 

64 bp sequences present at least ten times in the dataset that 

mapped uniquely to the sorghum genome. SNPs were called 

by comparing the tags in each individual to the set of master 

tags at each genomic address. SNPs and individuals with 

more than 95% missing data as well as SNPs with MAF less 

than 5% were discarded. Missing data were imputed using 

BEAGLE4 (Browning and Browning 2011) using a window 

size and overlap of 500 and 100 SNPs, respectively. The 

final genotypic dataset consisted of 59264 SNPs with an 

average MAF of 0.21 and 6.06% heterozygous genotypes.

Data analysis

Due to the differences in field experimental designs and field 

heterogeneity across years, as well as for reasons of compu-

tational efficiency, a two-stage analysis was performed. In 

the first stage, a mixed model approach was used to account 

for spatial variation, generating adjusted means for each 

genotype in each trial. The most appropriate model for each 

combination of trait and year was chosen based on the vari-

ogram (Gilmour et al. 1997) and the Akaike information 

criterion (AIC) (Table S1), where the full model is:

Each phenotypic data point ( yij ) was observed in genotype i, 

block j; � is a constant; G
i
 is the fixed effect of the ith geno-

type; Bj is the independent and identically distributed ran-

dom effect of the jth block with Bj ∼ N(0, �2

b
I) and eij is the 

random effect of residuals, with e ∼ N(0, �2

AR1×AR1
) , where 

AR(1) × AR(1) is a first-order auto-regressive structure 

applied to row and column for spatial correction. Adjusted 

means ( ̄x ) were then calculated as the mean of the scaled 

values from each year.

In the second stage, a GBLUP model was used to obtain 

genomic predictions for different traits. In addition to pre-

dicting each height measurement individually, the area under 

the growth progress curve (A) was also calculated from the 

(1)yij = � + Gi + Bj + eij,

adjusted values of all height measurements and analyzed 

as a different trait. Since all height measurements were 30 

days apart, this was obtained from the following simplified 

equation:

where m is the number of height measurements, and h
i
 is 

height measure at the ith observation.

The model used for single-trait GS was:

where yi is the adjusted means from the first stage, � is a 

constant; gi is the vector of random effect of genotypes with 

g = [g1, g2,⋯ , g
n
]⊤ and g ∼ N(0, A�2

g
) , where �2

g
 is the 

additive genetic variance and A is the realized additive rela-

tionship matrix calculated from the genotypic dataset using 

the A.mat function from rrBLUP package (Endelman and 

Jannink 2012); e
i
 is the identical and independently distrib-

uted residual with e
i
∼ N(0, �2

e
I) , where �2

e
 is the residual 

variance. Genomic heritability ( h2
g
 ) was calculated by the 

ratio of additive and phenotypic variance (de los Campos 

et al. 2015).

The model used for multi-trait GS with p variables, fol-

lowing a notation similar to that used by Ferreira (2011, page 

331) was:

where Y
i
 is the vector of multivariate responses asso-

ciated with genotype i  (i = 1, 2,… , n) ,  in which 

Yi = [Yi1, Yi2,… , Yip]
⊤ , � is the vector of the constants asso-

ciated with each trait, with � = [�1,�2,… ,�
p
]⊤ , g

i
 is the vec-

tor of random effects of genotype i associated with each trait, 

in which g = [g1, g2,… , g
i
,… , g

n
]⊤ , g ∼ Nnp(0, G ⊗ A) , 

e
i
 is the vector of random effects of residuals from the 

multivariate model, e =

[

e1, e2,… , e
i
,… , e

n

]⊤

 , with 

e ∼ Nnp(0, I ⊗ R) . The matrices G and R are the vari-

ance–covariance matrices (VCOV) for genetic and residual 

effects, respectively. In both cases, these are assumed to be 

unstructured, considering correlation for all pairs of traits 

and specific variances for each trait. The multi-trait model 

was used in this study for p = 2 . Genetic and residual cor-

relation were obtained from the multi-trait analysis and 

its respective standard errors were estimated by the Delta 

method, all of which are given as an output of ASReml-R 

(Fikret Isik 2017, page 116).

Cross-validation and prediction accuracy

The prediction accuracy of each model was accessed through 

k − fold cross-validation with k = 5 , randomly splitting the 

dataset in five sets and using four of them to predict the 

(2)A =

m
∑

i=1

(h
i−1 + h

i
)

2
,

(3)yi = � + gi + ei,

(4)Y
i
= � + g

i
+ e

i
,
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remaining set. This process was repeated for each one of the 

five sets, storing all GEBVs before calculating a single Pear-

son’s correlation between five folds of GEBVs and adjusted 

means. This process was repeated 30 times and the same 

folds were used to perform cross-validation for the differ-

ent models. Mean and standard deviation of the correlations 

were calculated and reported as prediction accuracy and its 

standard deviation, respectively. Training set and validation 

set varied according to the model used (Table 1).

In single-trait, multi-trait, and trait-assisted GS, genomic 

predictions of biomass yield itself were used to obtain r. In 

indirect GS, genomic predictions for a correlated trait (eg: 

height) were correlated with x̄ of biomass yield to obtain r. 

In multi-trait indirect GS, genomic predictions for multiple 

correlated traits were scaled to have equal mean and variance 

before the following index was calculated:

where corg(Y ,i)
 is the additive genetic correlation between trait 

i and biomass yield, and b
i
 is the vector of GEBVs for trait 

i. Prediction accuracy of indirect multi-trait GS was calcu-

lated as correlation between this index and biomass x̄ . Multi-

trait and trait-assisted GS differ only in that the latter uses 

100% , rather than 80% , of correlated trait data for prediction 

of the focal trait. Thus, trait-assisted GS uses more total data 

points than multi-trait GS, including correlated trait pheno-

types in the validation population. These strategies are simi-

lar to those used in Burgueño et al. (2012) for a multi-envi-

ronment GS study. Analogously, predictions in multi-trait 

GS were entirely based on record of other lines, as in CV1. 

On the other hand, trait-assisted GS took advantage of cor-

related traits, similar to what was done in CV2 for correlated 

environments.

(5)

2
∑

i=1

corg(Y ,i)
bi,

Coincidence between models

Coincidence between x̄ and GEBVs was calculated for the 

top and bottom 20% individuals in each cross-validation run 

using the following coincidence index (CI) (Hamblin and 

Zimmermann 1986):

where B is the number of selected genotypes that is com-

mon in both models; T is the total number of selected geno-

types; and R is the expected number of genotypes selected 

by chance. For example, repeated random selection of 20% 

of genotypes (91 of 453) would yield an expected overlap of 

18 genotypes ( 20% of 91) between random drawings.

All statistical analyses were conducted using R 3.0.3 R 

Core Team (2014) and the GBLUP model was fitted using 

the ASReml-R library (Butler et al. 2009). Phenotypic and 

genotypic information used, as well as scripts for all analysis 

performed in this paper can be found in https://github.com/

samuelbfernandes/Trait-assisted-GS.

Results

Prediction accuracy of the standard GS model was, in gen-

eral, proportional to the square root of the genomic heritabil-

ity for each trait (Fig. 1). The lowest accuracy in this study 

was obtained for H1 (0.33), followed by the one obtained for 

Y (0.40). On the other hand, the square root of the genomic 

heritability (h) for biomass (0.51) was slightly smaller than 

h
H1

 (0.54). The highest h (0.94) and r (0.68) were obtained 

for A, with H3 close behind (Fig. 1). The other traits (M, H2 

and H4) had similar r and h.

All traits were genetically correlated with biomass yield 

(Fig. 2). The genetic correlation between biomass yield and 

moisture was negative, whereas genetic correlations with 

plant height traits were all positive and increased with each 

successive plant height measurement. For H2, H3, H4 and 

A, genetic correlations with Y were greater than residual 

(6)CI =
B − R

T − R
,

Table 1  Training and validation 

sets used in cross-validation for 

each genomic selection model

a Prediction accuracies obtained as r(x̄Yield,GEBVHeight)

b GEBVHeight and GEBV
Moisture

 were scaled and weighted by their genetic correlations with x̄
Yield

Model Training Validation

1 Standard GS Yield (80%) Yield (20%)

2 Indirect GS Height (80%) Height (20%)a

3 Multi-trait indirect GS Height (80%)+  moisture (80%) Height (20%)+  

moisture 

(20%)b

4 Multi-trait GS Yield (80%)+   height (80%) Yield (20%)

5 Trait-assisted GS Yield (80%)+  height (100%) Yield (20%)

https://github.com/samuelbfernandes/Trait-assisted-GS
https://github.com/samuelbfernandes/Trait-assisted-GS
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correlations with Y, suggesting that they could be useful for 

multi-trait prediction of Y (Schaeffer 1984).

Prediction accuracies of indirect GS models (Fig. 3) were 

generally proportional to the genetic correlation of a corre-

lated trait with biomass yield (Fig. 2). Prediction accuracy 

for Y using H3 data ( r
Y∕H3

 ) was slightly higher than r
Y∕H4

 

despite having a lower genetic correlation. The best predic-

tion accuracy from indirect GS, r
Y∕A

 , was nearly ( 92.46% ) as 

high as for standard GS. Multi-trait indirect GS did not show 

any advantage over single-trait indirect GS.

Using information from correlated traits in the training 

population (multi-trait GS) did not provide any increase 

in prediction accuracy over the standard, single-trait GS 

model (Fig. 4). On the other hand, using information from 

correlated traits in both the training and validation popula-

tions (trait-assisted GS) increased prediction accuracy for 

biomass regardless of the secondary trait analyzed with Y, 

with the highest accuracy obtained for YA (0.60) (Fig. 4). 

Prediction accuracy increases with trait-assisted GS ranged 

from 11.8% using YM to 50% with YA, relative to standard 

single-trait GS. For highly correlated traits (H3, H4, and A), 

trait-assisted GS models maintained their advantage over 

standard GS even when the training population was reduced 

to 20% of the dataset ( n = 90 ), though this was not true for 

moderately correlated traits (M, H1, and H2; Fig. S1). Inter-

estingly, the reduction in variance of GEBVs relative to x̄ 

was also less dramatic for trait-assisted GS compared to the 

other GS models. Whereas, biomass yield x̄ had a standard 

deviation of 2.13 tons/ha, single trait, multi-trait, and trait-

assisted GEBVs had standard deviations of 0.85, 0.86, and 

1.21 tons/ha respectively, using A as the correlated trait.

Coincidence indices (CIs) between the top and bot-

tom 20% of x̄ and GEBVs were compared between single-

trait, multi-trait, and trait-assisted GS models. In all cases 

CIs were below 0.5. However, CIs between trait-assisted 

GEBVs and x̄ were higher than between single- and multi-

trait GEBVs and x̄ when the correlated trait was H2, H3, 
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Fig. 1  Prediction accuracy of standard GS for biomass (Y), moisture 

(M), height at 30 (H1), 60 (H2), 90 (H3), 120 (H4) DAP and the area 

under growth progress curve (A). Standard deviations across 30 cross-

validation runs are shown. The square root of the heritability (h) is 

shown inside each bar
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H4, or A. Higher CIs were observed for the bottom 20% 

than for the top 20% , likely reflecting the asymmetric 

distribution of the underlying x̄ (Table 2).

We next compared the expected selection accuracy of 

multi-trait and trait-assisted GS to phenotypic selection 

and indirect phenotypic selection, given the heritabilities 

and genetic correlations observed for the focal trait (Y) 

and the correlated traits (M, H1, H2, H3, H4, A) in this 

study. Compared to phenotypic selection, multi-trait GS 

was always less accurate whereas trait-assisted GS was 

more accurate when using H3, H4 or A as correlated traits 

(Table 3). Compared to indirect phenotypic selection, 

both multi-trait and trait-assisted GS were less accurate 

when the correlated trait had a low genetic correlation 

with the focal trait (M, H1), and both were less accurate 

when this genetic correlation was high (H2, H3, H4, A).

Discussion

In this study, we consider strategies for genomic selection 

of an expensive, low-heritability focal trait when corre-

lated traits with higher heritability can be measured more 

easily, cost-effectively, or earlier in the life cycle. These 

strategies include single- and multi-trait direct and indirect 

GS, as well as a new approach we call trait-assisted GS.

Single-trait GS

Marker-based prediction relies on good phenotyping, and 

prediction accuracy generally increases with heritability 

(Combs and Bernardo 2013). In this study, sorghum bio-

mass yield showed low h2
g
 (0.26) and moderate r (0.40). 

Similar results have been obtained in other crops such as 

wheat, where h2 and r of biomass were 0.38 and 0.37, 

respectively (Combs and Bernardo 2013). In a study con-

duced by Lehermeier et al. (2014), r for biomass in corn 

varied from 0.17 in multi-parental to 0.41 in full-sib lines 

from a dent pool and from 0.30 in multi-parental to 0.48 

in full-sib lines of a flint pool. GS offers the potential 

advantages of increasing selection intensity (Sonesson and 

Meuwissen 2009; Riedelsheimer et al. 2013) and allowing 

more selection cycles per unit time, both of which could 

result in higher genetic gain in comparison with pheno-

typic selection (Heffner et al. 2010). One previous study 

performed GS for biomass yield in sorghum (Yu et al. 

2016), and found that r ranged from 0.69 using five-fold 

CV in a training set of 299 lines, to 0.76 in a validation set 

enriched for predicted-high and predicted-low lines, to 

0.56 in an independent panel. The lower value of r in our 

study perhaps reflects the fact that our panel, while cer-

tainly not elite, had been pre-screened to exclude extremes 

of maturity variation, dwarfism, and lodging.

Height is usually a high-heritability trait (Heffner et al. 

2011; Lipka et al. 2014; Burks et al. 2015), and the predic-

tion accuracies of all height measurements except for the 

first one (H1, at 30 DAP) were higher then r
Y
 . Each height 

measurement was analyzed individually in addition to the 

area under growth progress curve (A). The H1 measurement 

by itself is clearly too early for accurate selection. Interest-

ingly, H3 showed higher h2
g
 and r than H4, possibly due to 

residual variation in maturity and lodging among genotypes 

that affected height measurements at the end of the season. 

The highest h2
g
 and r were obtained for A. Given increasing 

adoption of high-throughput phenotyping techniques (Araus 

and Cairns 2014), more work could be done comparing the 

use of integrated measures such as A with multivariate mod-

els that include all individual time points.

Table 2  Coincidence index between biomass x̄ and GEBVs in multi-

trait and trait-assisted GS models

Results are shown for a selection intensity of 20% (top and bottom) 

with standard deviations
a Standard GS model is shown for comparison

Trait Top 20% Bottom 20%

Multi-trait Trait-assisted Multi-trait Trait-assisted

Ya 0.33 ± 0.02 0.34 ± 0.02

YM 0.32 ± 0.02 0.35 ± 0.02 0.33 ± 0.02 0.37 ± 0.02

YH1 0.33 ± 0.02 0.36 ± 0.02 0.34 ± 0.02 0.35 ± 0.02

YH2 0.35 ± 0.02 0.40 ± 0.02 0.34 ± 0.02 0.40 ± 0.02

YH3 0.33 ± 0.02 0.40 ± 0.02 0.34 ± 0.02 0.44 ± 0.02

YH4 0.33 ± 0.02 0.39 ± 0.02 0.35 ± 0.02 0.44 ± 0.02

YA 0.30 ± 0.02 0.41 ± 0.02 0.35 ± 0.02 0.46 ± 0.02

Table 3  Expected selection accuracy of multi-trait and trait-assisted 

GS relative to phenotypic selection ( PS; r = h
Y
 ) and indirect pheno-

typic selection ( IPS; r = hx ∗ corg(x,Y)
 ), where x and Y are the corre-

lated and focal traits

Traits MTA/PS MTA/IPS

Multi-trait Trait-assisted Multi-trait Trait-assisted

YM 0.76 0.87 1.22 1.38

YH1 0.78 0.88 1.85 2.05

YH2 0.82 0.92 0.63 0.73

YH3 0.80 1.14 0.56 0.80

YH4 0.80 1.16 0.55 0.82

YA 0.73 1.18 0.47 0.76
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Indirect GS

Indirect GS using predictions of H2, H3, H4, or A to pre-

dict biomass appears promising, with the A model achieving 

92.5% of the prediction accuracy of the standard, direct GS 

model ( r
Y∕A

= 0.37 ; r
Y
= 0.40 ). Assuming that equivalent 

height heritabilities would be obtained from smaller plots, 

selection intensity and genetic gain could be increased by 

selecting on height instead of biomass in much larger popu-

lation at equivalent field cost. An additional consideration 

in biomass sorghum is that measurement of vegetative bio-

mass yield is incompatible with seed production. Indirect 

GS using an early-season trait such as H2 could potentially 

allow time for flowering induction and within-season seed 

production in selected lines, greatly reducing cycle length.

The failure of multi-trait indirect GS to increase predic-

tion accuracy over single-trait indirect GS is very likely 

a consequence of the limited number of correlated traits 

measured in this study. Adding moisture information did 

not improve the ability of height models to predict biomass 

yield, but it seems likely that lodging, stand count, and a 

variety of architectural and spectral traits could be tested for 

improving multi-trait indirect GS models of biomass yield 

in sorghum.

Multi-trait and trait-assisted GS

An alternative to indirect GS is to include one or more cor-

related traits along with the focal trait in a multi-trait model. 

In this strategy, marker effects for biomass yield are influ-

enced by information from higher heritability traits [Mrode 

2014, page 70] such as plant height. Multi-trait GS provided 

no advantage over standard, single-trait GS in this study, in 

contrast to several previous results using simulated (Guo 

et al. 2014; Calus and Veerkamp 2011) and real data (Jia and 

Jannink 2012; Schulthess et al. 2016), and in agreement with 

one previous study (dos Santos et al. 2016). Similar to what 

was obtained by Burgueño et al. (2012) in CV1, this result 

was somehow expected, since no information is recovered 

within lines across traits.

Trait-assisted GS is a new strategy in which correlated 

traits are used along with marker data in the validation 

panel. In the five-fold cross-validation scheme used in this 

study, this meant that 80% of the yield data and 100% of 

the height data were used, along with molecular markers, to 

predict the remaining 20% of the yield data. Trait-assisted 

GS yielded dramatic improvements in prediction accuracy 

over all other GS models, with r
YA

 showing an improvement 

of 50% over prediction accuracy of Y in single-trait GS. Even 

r
MY

 and r
H1Y

 showed a 12% improvement over the standard 

GS model, which was somewhat surprising given the rela-

tively low genetic correlations of these traits with biomass 

(Schaeffer 1984; Galesloot et al. 2014). However, models 

including these traits did not maintain their advantage when 

the training population was reduced to a size as small as 

20% of the dataset (Fig. S1). These results suggest that even 

traits weakly correlated with a focal trait could be exploited 

in trait-assisted GS, given a training population of sufficient 

size.

Two other noteworthy results were obtained using the 

trait-assisted GS model. First, the standard deviations of the 

GEBVs were much higher in the trait-assisted models than 

in other GS models, though still greatly reduced relative to 

the standard deviations of x̄ . Second, the coincidence indices 

between biomass x̄ and GEBVs were also highest for the 

trait-assisted GS models. These results suggest that differen-

tiation of favorable and unfavorable genotypes is enhanced 

using trait-assisted GS, facilitating selection in a breeding 

program (Kadarmideen et al. 2003).

Trait-assisted GS has similarities with both multi-trait 

and indirect GS, as well as indirect phenotypic selection 

(IPS). Like IPS, selections are made using direct observation 

of correlated traits in individuals. Like standard GS, how-

ever, trait-assisted GS makes use of focal trait phenotypes 

in a training population, and genotypes in both training and 

selection populations, to perform selection. Like multi-trait 

GS, trait-assisted GS borrows information from correlated 

traits to inform focal trait marker effects. Trait-assisted GS 

shares all previously mentioned advantages of indirect (sin-

gle- and multi-trait) GS for biomass sorghum improvement. 

However, it seems pointless to exclude focal trait data from a 

prediction model, as in canonical indirect GS and IPS, even 

if this data is limited in scope compared to the correlated 

trait data.

Several limitations of this study also deserve mention. 

First, Table 3 compares the expected selection accuracy of 

various strategies, but does not take into account possible 

differences in cycle length and selection intensity between 

them. Trait-assisted GS is probably intermediate to stand-

ard GS and traditional phenotypic selection in both cycle 

length and selection intensity. Second, this study used a 

highly structured pre-breeding population and no attempt 

was made to account for population structure. Therefore, 

we can expect that prediction accuracies of all GS models 

might be inflated relative to what might be observed in an 

elite population. Third, this study used x̄ calculated across 

multiple years as input for the trait-assisted GS models. In 

an actual trait-assisted GS scenario in biomass sorghum, a 

single year of height data might be collected from a selection 

population, and used along with molecular markers and mul-

tiple years of height and yield data in a training population 

to perform selection.

Trait-assisted GS is probably intermediate to standard 

GS and traditional phenotypic selection in both cycle length 

and selection intensity. In biomass sorghum, for example, 

trait-assisted GS could reduce cycle length by selecting on 
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correlated traits available prior to flowering (eg: H1, H2), 

and could increase selection intensity by reducing plot size 

for measurement of correlated traits with higher heritabili-

ties (eg: one-row plots for plant height versus four-row plots 

for biomass yield).

Conclusion

In this study, we show that phenotypic data on correlated 

traits in the validation set can be exploited to achieve sub-

stantial increases in prediction accuracy in a focal trait. This 

strategy should be useful whenever correlated traits can be 

measured earlier or more cheaply than a focal trait. Many 

plant and animal domesticates take years or decades to 

mature and allow full evaluation of yield and quality traits, 

and in these situations trait-assisted GS may allow dramatic 

increases in prediction accuracy and genetic gain.
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