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Abstract

The concept of network e�ciency, recently proposed to characterize the properties of small-

world networks, is here used to study the e�ects of errors and attacks on scale-free networks.

Two di�erent kinds of scale-free networks, i.e., networks with power law P(k), are considered:

(1) scale-free networks with no local clustering produced by the Barabasi–Albert model and

(2) scale-free networks with high clustering properties as in the model by Klemm and Egu��luz,

and their properties are compared to the properties of random graphs (exponential graphs). By

using as mathematical measures the global and the local e�ciency we investigate the e�ects of

errors and attacks both on the global and the local properties of the network. We show that the

global e�ciency is a better measure than the characteristic path length to describe the response

of complex networks to external factors. We �nd that, at variance with random graphs, scale-free

networks display, both on a global and on a local scale, a high degree of error tolerance and

an extreme vulnerability to attacks. In fact, the global and the local e�ciency are una�ected by

the failure of some randomly chosen nodes, though they are extremely sensitive to the removal

of the few nodes which play a crucial role in maintaining the network’s connectivity.
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1. Introduction

The study of the structural properties of the underlying network can be very important

to understand the functions of a complex system [1]. For instance the architecture of a

computer network is the �rst critical issue to take into account when we want to design

an e�cient communication system. Similarly, the e�ciency of the communication and

of the navigation over the Net is strongly related to the topological properties of the

Internet and of the World Wide Web. The connectivity structure of a population (the

set of social contacts) a�ects the way ideas are di�used, but also the spreading of

epidemics over the network. Only very recently the increasing accessibility of databases

of real networks on one side, and the availability of powerful computers on the other

side, have made possible a series of empirical studies on the properties of biological,

technological and social networks. The results obtained have shown that, in most cases,

real networks are very di�erent from random and regular networks, and display some

common properties as high e�ciency and high degree of robustness. The literature

on complex networks has followed an exponential growth in the last few years; a

comprehensive review can be found in Refs. [2–4]. In the following we enumerate

some of the results appeared in the recent literature that are important in order to

understand the purpose of this paper:

(1) In Ref. [5], Watts and Strogatz have shown that the connection topology of some

real networks is neither completely regular nor completely random. These net-

works, named small-world networks [6], exhibit in fact high clustering coe�cient,

like regular lattices, and small average distance between two generic points (small

characteristic path length), like random graphs. Watts and Strogatz have also pro-

posed a simple model (the WS model) to construct networks with small-world

properties (i.e., networks with high clustering and small average distance), by

rewiring few edges of a regular lattice.

(2) In Ref. [7] two of us have introduced the concept of e�ciency of a network, which

measures how e�ciently the information is exchanged over the network. By using

the e�ciency as a new measure to characterize the network, it has been showed that

small-worlds are systems that are both globally and locally e�cient. Moreover, the

description of a network in terms of its e�ciency extends the small-world analysis

also to unconnected networks and to real systems that are better represented as

weighted networks [8–10].

(3) Small average distance and high clustering are not all the common features of

complex networks. Barabasi and collaborators have studied P(k), the degree dis-

tribution of a network, and found that many large networks (the World Wide

Web, Internet, metabolic networks and protein networks) are scale-free, i.e., have

a power-law degree distribution P(k) ∼ k−
 [11–16]. Neither random graph the-

ory [17], nor the WS model to construct networks with the small-world properties

[5] can reproduce this feature: in fact both give P(k) peaked around the average

value of k. In Ref. [12] Barabasi and Albert have proposed a simple model (the

BA model) to construct a scale-free topology by modeling the dynamical growth

of the network: some ad hoc assumptions in the network dynamics result in a
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network with the correct scale-free features, i.e., with a power-law degree distri-

bution P(k) ∼ k−3.

Moreover in Ref. [14] the authors have shown that scale-free networks, at vari-

ance with random networks, display a high degree of error tolerance. That is the

ability of their nodes to communicate is una�ected by the failure of some randomly

chosen nodes. However, error tolerance comes at a high price in that scale-free

networks are extremely vulnerable to attacks, i.e., to the removal of a few nodes

which play a crucial role in maintaining the network’s connectivity. Such error

tolerance and attack vulnerability typical of scale-free networks have also been

found in real networks [14].

(4) The BA scale-free model produces networks with a power-law connectivity distri-

bution, but not with small-world properties. In fact the BA scale-free networks

have small average distance between two generic points, the �rst property of

a small-world network, while they lack high clustering, the other property of a

small-world network. More recently Klemm and Egu��luz [18] have proposed an al-

ternative model (the KE model) to construct networks where scale-free

degree distributions coexist with small average distances and with strong clu-

stering. Therefore, the KE model reproduces, at the same time, the two distinct

features present in real networks: power-law degree distribution and the small-world

behavior.

In this paper we use the concept of global and local e�ciency to characterize the

properties of scale-free networks (i.e., networks with power-law degree distributions),

and to study their error and attack tolerance. We consider both scale-free networks with

no clustering (the BA model), and scale-free networks with high clustering properties

(the KE model). We analyze the e�ect of errors and attacks not only on the global

properties of the network (as done in Ref. [14] by using as a measure the average

distance between two points) but also on the local properties of the network. More-

over, we compare the results obtained in terms of global and local e�ciency of the

network with the results in terms of average distance and clustering coe�cient. The

three innovative point of our paper are:

• the use of the e�ciency measure to characterize scale-free networks. This allows to

avoid problems due to the divergence of the average distance;

• the parallel study of scale-free networks with no clustering, and scale-free networks

with high clustering;

• the study of the e�ect of errors and attacks not only on the global properties, but

also on the local properties of the network.

The paper is organized as follows. In Section 2 we de�ne the variable e�ciency

and we illustrate how the small-world behavior can be expressed in terms of the local

and the global e�ciency of the network. In Section 3 we discuss the relevance and the

properties of scale-free networks, and we illustrate the BA model and the KE model.

In Section 4, the central part of the paper, we investigate the e�ects of errors and

attacks both on the global and on the local properties of scale-free networks. We show

that the e�ciency is a better measure than the characteristic path length to describe
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the global properties of complex networks, especially when a large number of nodes is

removed. The local properties of the scale-free networks are equally well described by

the local e�ciency or by the clustering coe�cient. By considering both BA and KE

scale-free networks, we show that scale-free networks are systems resistant to errors

but vulnerable to attacks both at a global and at a local level. In Section 5 we draw

the conclusions.

2. Small-world behavior and e�ciency of a network

In their seminal paper Watts and Strogatz have shown that the connection topology of

some real (biological, social and technological) networks is neither completely regular

nor completely random [5]. Watts and Strogatz have named these networks, that are

somehow in between regular and random networks, small-worlds, in analogy with the

small-world phenomenon, empirically observed in social systems more than 30 years

ago [6]. The mathematical characterization of the small-world behavior is based on

the evaluation of two quantities, the characteristic path length L, measuring the typical

separation between two generic nodes in the network and the clustering coe�cient C,

measuring the average cliquishness of a node. Small-world networks are in fact highly

clustered, like regular lattices, yet having small characteristic path lengths, like random

graphs. Let us give some useful mathematical formalism. A generic unweighted (or

relational) network [9] is represented by a graph G with N vertices (nodes) and K

edges (arcs, links or connections). Such a graph is described by the so-called adjacency

matrix {aij} (also called connection matrix). This is a N ·N symmetric matrix, whose

entry aij is 1 if there is an edge joining vertex i to vertex j, and 0 otherwise. An

important quantity of graph G, which will be used below, is the degree of a generic

vertex i, i.e., the number ki of edges incident with vertex i, the number of neighbors

of i. We have K =
∑

i ki=2 because each link is counted twice, and the average value

of ki is 〈k〉 = 2K=N . To de�ne L we need �rst to construct the shortest path length

dij between two vertices (known in social networks studies as the number of degrees

of separation [6]), measured as the minimum number of edges traversed to get from a

vertex i to another vertex j. By de�nition dij¿ 1 with dij = 1 if there exists a direct

edge between i and j. The characteristic path length L of graph G is de�ned as the

average of the shortest path lengths between two generic vertices:

L(G) =
1

N (N − 1)

∑

i �=j∈G

dij : (1)

Of course this de�nition is valid only if G is totally connected, which means that there

must exist at least a path connecting any couple of vertices with a �nite number of

steps. Otherwise, when from i∗ we cannot reach j∗ then di∗j∗ =+∞ and consequently

L as given in Eq. (1), being divergent, is an ill-de�ned quantity. When studying how

the properties of a network are a�ected by the removal of nodes, one often incurrs in

non-connected networks. In such cases the alternative formalism in terms of e�ciency

here proposed is much more powerful, as will be clari�ed in the following.
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The second measure, the clustering coe�cient C, is a local quantity of G de�ned as

follows. For any node i we consider Gi, the subgraph of neighbors of i. That is once

eliminated i we study how the nodes previously connected to i remain still connected

between each other. If the node i has ki neighbors, then Gi has ki nodes and at most

ki(ki − 1)=2 edges. Ci is the fraction of these edges that actually exist, and C is the

average value of Ci all over the network:

C(G) =
1

N

∑

i∈G

Ci ; Ci =
No: of edges in Gi

ki(ki − 1)=2
: (2)

To illustrate the onset of the small-world, Watts and Strogatz have proposed a one-

parameter model (the WS model) to construct a class of unweighted graphs which

interpolates between a regular lattice and a random graph. The edges of a regular

lattice are rewired with a probability p. As the rewiring probability p increases, the

network becomes increasingly disordered and for p = 1 a random graph is obtained.

Although in the two limiting cases large C is associated to large L (p = 0) and vice

versa small C to small L (p= 1), there is an intermediate regime where the network

is a small-world: highly clustered like a regular lattice and with small characteristic

path lengths like a random graph. In fact, only a few rewired edges (0¡p�1) are

su�cient to produce a rapid drop in L, while C is not a�ected and remains equal to the

value for the regular lattice [5]. By means of this mathematical formalism based on the

evaluation of L and C, Watts and Strogatz have found three examples of small-world

behavior in real networks: (1) the collaboration graph of actors in feature �lms from

Ref. [19], as an example of a social system; (2) the neural network of a nematode,

the C. elegans [20] as an example of a biological network; (3) �nally an example of

a technological network, the electric power grid of the western United States.

An alternative de�nition of the small-world behavior has been proposed more re-

cently by two of us in Refs. [7,9] and is based on the de�nition of the e�ciency of a

network. Instead of L and C the network is characterized in terms of how e�ciently

it propagates information on a global and on a local scale, respectively. To de�ne the

e�ciency of G let us suppose that every node sends information along the network,

through its edges. We assume that the e�ciency �ij in the communication between

node i and j is inversely proportional to the shortest distance: �ij = 1=dij ∀i; j. With

this de�nition, when there is no path in the graph between i and j; dij = +∞ and

consistently �ij = 0. The global e�ciency of the graph G can be de�ned as

Eglob(G) =

∑
i �=j∈G �ij

N (N − 1)
=

1

N (N − 1)

∑

i �=j∈G

1

dij
(3)

and the local e�ciency, in analogy with C, can be de�ned as the average e�ciency

of local subgraphs:

Eloc(G) =
1

N

∑

i∈G

E(Gi); E(Gi) =
1

ki(ki − 1)

∑

l �=m∈Gi

1

d′lm
; (4)

where Gi, as previously de�ned, is the subgraph of the neighbors of i, which is made

by ki nodes and at most ki(ki − 1)=2 edges. It is important to notice that the quantities

{d′lm} are the shortest distances between nodes l and m calculated on the graph Gi. The
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two de�nitions we have given have the important property that both the global and local

e�ciency are already normalized, that is: 06Eglob(G)6 1 and 06Eloc(G)6 1. 1 The

maximum value of the e�ciency Eglob(G)=1 and Eloc(G)=1 are obtained in the ideal

case of a completely connected graph, i.e., in the case in which the graph G has all

the N (N − 1)=2 possible edges and dij = 1 ∀i; j. In the e�ciency-based formalism a

small-world results as a system with high Eglob (corresponding to low L) and high Eloc

(corresponding to high clustering C), i.e., a network extremely e�cient in exchanging

information both on a global and on a local scale. Moreover, the description of a

network in terms of its e�ciency extends the small-world analysis also to unconnected

networks and, more important, with only a few modi�cations, to weighted networks. A

weighted network is a case in which there is a weight associated to each of the edges.

Such a network needs two matrices to be described: the usual adjacency matrix {aij}
telling about the existence or non-existence of a link (and whose entry aij, as for the

unweighted case, is 1 when there is an edge joining i to j, and 0 otherwise) and a

second matrix, the matrix of the weights associated to each link. All the details of the

applications of the e�ciency-based formalism to study real weighted networks, e.g.,

the Boston subway transportation system, can be found in Refs. [7–9]. In this paper we

focus instead on the simpler case of unweighted networks: we are in fact interested in

the use of the e�ciency formalism to describe in quantitative terms the global and the

local properties of scale-free networks, and to study how these properties are a�ected

by the random removal of nodes or by attacks. A simple example will be very useful to

illustrate the comparison between Eglob; Eloc and L; C, and to explain why the e�ciency

in many cases works better than L and C, even for unweighted networks. In particular,

the di�erences between the description in term of Eglob and the description in terms of

L are evident when the network is unconnected. Fig. 1 is an example of the problems

Fig. 1. The connectivity properties of two graphs G1 and G2, both with N = 5 nodes, are compared.

Di�erently from the e�ciency Eglob, the characteristic path length L is not a representative measure when

the graph is unconnected. At the local level, C is a good approximation of Eloc.

1 The formalism can be easily extended to the case of weighted networks [7,9]. Since in this paper

we are interested in the study of unweighted networks we have directly presented the de�nition of the

e�ciency in the particular and simpler case of unweighted networks. In the general de�nition valid for

weighted and unweighted networks a normalization factor has to be introduced to have 06Eglob(G)6 1

and 06Eloc(G)6 1 (see Refs. [7,9]).
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associated to the calculations of L when the graph is unconnected. We consider two

graphs G1 and G2, both having the same number of nodes N =5, but di�erent number

of edges. By using de�nition (1) we obtain L1 = 13
10

for the graph on the left-hand side

and L2 =∞ for the graph on the right-hand side. An alternative possibility to avoid the

divergence of L2 is to limit the use of de�nition (1) only to a part of the graph, the

main connected component 2 of G2, which is made of three nodes. In this way we get

L2 = 1 and the �nal information we extract from the analysis of the characteristic path

length is that graph G2 has better structural properties than graph G1, since L2¡L1.

This is of course wrong because G1 is certainly much better connected than G2, and

the misleading information comes from the fact that in the second graph we had to

remove two nodes from the analysis. By studying instead the e�ciency of the two

graphs we are allowed to take into account also the nodes not connected to the main

connected component: we get (Eglob)1 = 17
20

and (Eglob)2 = 3
10

, in perfect agreement with

the fact that G1 has a much better connectivity ( 17
20

the e�ciency of the completely

connected graph) than G2.

On the other hand an evaluation of the local clustering of the two graphs gives

C1 = 4
5
; C2 = 3

5
, and an evaluation of the local e�ciency gives (Eloc)1 = 9

10
; (Eloc)2 = 3

5
.

This indicates that the �rst graph has also better local properties than the second one.

Moreover, the variable C is a good approximation of the local e�ciency Eloc (this

is in general true when the subgraphs Gi of a generic node i are composed of small

graphs [9]).

3. Scale-free networks

An important information to characterize a graph G, as previously mentioned, is

the degree of a generic vertex i, i.e., the number ki of edges incident with vertex i,

the number of neighbors of i. Barabasi and collaborators focussed their attention on

P(k), the degree distribution of a network, and showed that many real-large networks,

as the World Wide Web, the Internet, metabolic and protein networks, are scale-free,

that is, their degree distribution follows a power law for large k [11–16]. Also, some

social systems of interest for the spreading of sexually transmitted diseases [21,22], and

the connectivity network of atomic clusters’ systems [23] display a similar behavior.

Neither random graphs [17], nor small-world networks constructed according to the WS

model, have a power-law degree distribution P(k) like the one observed in real-large

networks. In fact for a random graph P(k) is described by a Poisson distribution

P(k) = 〈k〉k =k!e−〈k〉, a curve peaked at k = 〈k〉 and exponentially decaying for large k,

in contrast to the power-law decay of scale-free graph. This is the reason why random

graphs are sometimes referred in the literature as exponential graphs [14]. Also in

the case of the WS small-world model P(k) is strongly peaked around the average

value of k (since it is very close to the P(k) of regular graphs). Furthermore, even

for those real networks for which P(k) is not clearly a power law for all values of

2 As done for example in Ref. [5] when the collaboration network of movie actors is studied, or in all

the examples of Ref. [14].
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k, and has for instance an exponential cut o� for very large k, the degree distribution

signi�cantly deviates from the Poisson expected for random graphs [24]. At this point

two natural questions come up to the mind: (1) What is the mechanism responsible for

the emergence of a scale-free structure in such a huge number of real networks? (2)

What are the main properties of a scale-free topology, and why is it privileged with

respect to the other topologies?

An answer to the �rst question and a concrete algorithm to construct a scale-free

network has been proposed by Barabasi and collaborators. In Refs. [12,13] the authors

argue that the scale-free nature of real networks is rooted in two generic mechanisms

occurring in many real networks. First of all most real-world networks describe open

systems which grow by the continuous addition of new nodes: as an example the WWW

grows exponentially in time by the addition of new web pages, or the research literature

constantly grows by the publication of new papers. Moreover most real networks exhibit

preferential attachment, that is, the likelihood of connecting to a node depends on the

node’s degree. A webpage will most likely include hyperlinks to popular documents

which already have a high degree, because such highly connected documents are easier

to �nd. A new manuscript will most likely cite a well-known one increasing furthermore

its high number of citations. Growth and preferential attachment are the two su�cient

ingredients to produce a scale-free network. The Barabasi–Albert (BA) model proposed

in Refs. [12,13] is a simple way to generate a network with a power-law degree

distribution P(k) ∼ k−
, and with 
=3. On the contrary, neither of the two ingredients

is present in the small-world model discussed in Section 2, that assumes instead a

�xed number N of vertices and a probability that two nodes are connected (or their

connection is rewired) independent of the nodes’ degree.

Concerning the second question, the authors of Ref. [14] have studied the response of

scale-free networks to errors and to attacks. By error and attack they indicate, respec-

tively, the removal of randomly chosen nodes, and the removal of the most connected

nodes. In particular, they study the change of the characteristic path length L when

a small fraction of the nodes is eliminated: in fact the removal of a node in general

increases the distance between the remaining nodes, because it can eliminate paths

contributing to the connectivity of the system. Di�erently from random networks, the

scale-free networks display a high degree of error tolerance, i.e., the ability of their

nodes to communicate is una�ected by the failure of some randomly chosen nodes.

On the contrary, these networks are extremely vulnerable to attacks, i.e., the removal

of a few nodes that play a vital role in maintaining the network’s connectivity. In

practice the presence of the scale-free topology in so many real cases [11,15,16,21]

can be attributed to the need to construct systems with a high degree of tolerance

against errors. Though the error tolerance comes at a high price in that the scale-

free networks are extremely vulnerable to attacks. The response of scale-free net-

works to the removal of nodes is also one of the main points of our paper. In fact, in

Section 4 we will extend the analysis of Ref. [14], that was only based on the

quantity L, to both the global and local properties of the network. In order to charac-

terize the local properties of a graph we will use either C and Eloc. For the global

properties we will see that Eglob is better than L especially when a large number of

nodes are removed.
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The BA scale-free model reproduces the power-law connectivity distribution, but

not the small-world e�ect. In fact it produces networks with small average distance

between two generic nodes, like a small-world network, but lacks high clustering,

which is typical of a small-world network. On the contrary, most large real networks

with power-law connectivity distribution shows also a high clustering coe�cient. As

an example the values of C obtained from the two databases of Internet and of the

World Wide Web studied, are orders of magnitude larger than the clustering coe�cients

for the corespective random graphs [3]. In order to overcome this problem Klemm

and Egu��luz [18] have recently proposed an alternative model, the KE model, which

produces networks with scale-free degree distributions, small average distances and with

strong clustering. With a minimal amount of changes to the BA model, the KE model

reproduces, at the same time, the two distinct features of real networks: power-law

degree distribution and small-world e�ect. We do not go into the details of the KE

model now. Since the subject of this paper is the study of the properties of scale-free

networks, in the next section we will discuss how to construct scale-free networks

with the BA model, and scale-free networks with high clustering by means of the KE

model.

4. E�ciency in scale-free networks

We are �nally ready to study how the e�ciency of a network with scale-free topology

is a�ected by the removal of some of its nodes. We will make use of the measures

de�ned in formulas (3) and (4), and compare the results with the ones obtained in

terms of L and C. The �rst step is the construction of a scale-free network: for this

purpose we consider both the BA model and the KE model.

4.1. Barabasi–Albert (BA) scale-free networks

First we construct the scale-free network following the BA model [12,13]. As pre-

viously mentioned the two ingredients of the BA model are growth and preferential

attachment. In fact the algorithm [12] is based on the iteration of the following two

steps:

(1) Addition of nodes: Starting with a small number (m0) of nodes, at every timestep

a new node with m(6m0) edges is added. The edges link the new node to m

di�erent nodes already present in the system.

(2) Preferential attachment of new edges: When choosing the nodes to which the new

node connects, the probability � that the new node will be connected to node i

is assumed to depend on the degree ki of node i, according to

�(ki) =
ki∑
j kj
: (5)

After t timesteps the algorithm produces a network with N = t + m0 nodes and

mt edges. The analytical solution of the BA model in the mean �eld approximation
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Fig. 2. Degree distribution for the BA scale-free model (indicated as SFBA with full circles) and for the

KE scale-free model (indicated as SFKE with open squares). Two system sizes are considered N = 5000,

K = 10 000 in (a), and N = 15 000, K = 75 000 in (b). For N = 5000 the results reported are obtained as

averages over 10 di�erent realizations. While in the case N = 15 000 only one realization is considered. The

dashed line is P(k) ∼ k−
 with 
 = 3.

predicts a degree distribution P(k) = (2m2t=m0 + t)k−3. This function asymptotically

converges for t → ∞ to a time-independent degree distribution P(k) ∼ 2m2k−
, i.e., to

a power law with an exponent 
= 3. It is interesting to notice that 
 does not depend

neither on m nor on the size N = m0 + t of the network.

The mean �eld predictions are con�rmed by other analytical approaches (master

equation [25] and rate equation [26]) and by numerical simulations. Both the two

ingredients, growth and preferential attachment, are necessary in the BA model for the

emergence of the power-law scaling. Barabasi et al. have in fact checked that a model

with growth but no preferential attachment gives for t → ∞ an exponential degree

distribution. On the other hand, a model with preferential attachment but no growth

predicts that the degree distribution becomes a Gaussian around its mean value. The

BA model can be considered as a particular case of a model proposed by Simon [27]

in 1955 to describe the scaling behavior observed in distributions of words frequencies

in texts, and in population �gures of cities [28]. The original Simon’s model has been

reformulated recently for networks growth in Ref. [29].

In Fig. 2 we report the degree distribution of a scale-free network obtained from

the BA model (reported in black dots and indicated as SFBA). We have constructed

two networks, the �rst with N = 5000, K = 10 000, and the second with N = 15 000,

K = 75 000. In the �rst case the results reported are obtained as averages over 10

di�erent realizations. While in the case N = 15 000 only one realization is su�cient to

have a good statistics.
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4.2. Klemm–Egu��luz (KE) scale-free networks

In this section we introduce a di�erent class of scale-free networks with high cluster-

ing coe�cient. We follow the method developed by Klemm and Egu��luz in Ref. [18].

In the KE model, each node of the network is assigned a binary state variable and can

be either in an active state or in a non-active state. Taking a completely connected

network of m active nodes as initial condition, the time-discrete dynamics of the KE

model is based on the iteration of the following three steps:

(1) Addition of nodes: A new node with m edges is added to the network.

(2) Preferential attachment: For each of the m edges of the new node it is decided

with a probability � whether the link connects to one of the active nodes or if

it connects to a non-active node. In the latter case the random node is chosen

according to the same rule of the BA model, the linear preferential attachment of

Eq. (5), i.e., the probability that node i obtains a link is proportional to the node’s

degree: �(ki)= ki=
∑

j kj. The limit case �=1 of the KE model is the BA model.

The limit case �=0 is a model with high clustering but large path length: in fact,

as a function of the system size, C quickly converges to a constant value, whereas

L increases linearly [30].

(3) Activation and deactivation of nodes. One of the m active nodes is deactivated:

the probability that node i is chosen for deactivation is �deact
i = k−1

i =
∑

l k
−1
l . The

new node is set in the active state.

The KE model generates scale-free networks with degree distribution P(k) = 2m2k−3

(for k¿m) and average connectivity 〈k〉 = 2K=N = 2m [30]. Furthermore, by varying

� in the interval [0, 1] the model makes possible to study the cross-over between a

case with high L and C (the model � = 0 has been studied previously in Ref. [30]),

and a case with small L and C (�= 1 corresponds exactly to the BA model). Klemm

and Egu��luz have shown in Fig. 1 of Ref. [18] that a few “long-range” connections are

su�cient to have a small-world transition: in fact, as soon as � is di�erent from zero,

the average shortest path length L drops rapidly approaching the minimum value of

the BA model, while the clustering coe�cient C remains practically constant. Thus the

KE model with � �= 0 and ��1 reproduces the three generic properties of real-world

networks: power-law degrees distribution, small L and high C. In our simulations

below, we have used the KE model with � = 0:1.

In Fig. 2 we report the degree distribution obtained for two di�erent networks N =

5000, K = 10 000 and N = 15 000, K = 75 000. Numerical simulations are shown both

for the BA model (full circles) and the KE model (open squares). A good power-law

behavior is obtained with an exponent 
= 3 as expected. The results for N = 5000 are

obtained as averages over 10 di�erent realizations. While in the case N = 15 000 only

one realization is su�cient to have a good statistics.

4.3. Error and attack tolerance of BA scale-free networks

Now we address the problem of how the global and the local properties of a

scale-free network are a�ected by the removal of some of the nodes. We consider �rst
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the class of scale-free networks generated by means of the BA model of Section 4.1.

The malfunctioning of a node in general makes less e�cient the communication be-

tween the remaining nodes, because it can eliminate some of the edges and conse-

quently some of the paths that contribute to the interconnectedness of the system. This

will a�ect not only the global, but also the local properties of the graph (though the

latter have never been addressed in the literature before). As a starting point in our

numerical experiments we consider a BA scale-free network with N = 5000 nodes and

K = 10 000 edges, corresponding to 〈k〉 = 4. The error and attack tolerance of this

network is compared to that of a random graph with the same number of nodes and

edges. As previously mentioned, the P(k) of a random graph is a Poisson distribution,

a curve which for large k decays exponentially and not as a power law. For this reason

the random graph is indicated in the �gures’ captions as exponential graph (EXP). In

removing the nodes, we use two di�erent strategies. We can simulate an error in the

system, as the failure of a node chosen at random among all the possible nodes. In

alternative we can simulate an attack on the system by sorting the nodes in order of

importance, according to their degree ki, and then removing them one by one starting

from the node with the highest degree. In fact an agent well informed about the whole

structure of the network and wanting to deliberately damage the network will not target

the nodes randomly, but will preferentially attack the most connected nodes. Both for

failures and attacks a fraction p of the N nodes is removed and the properties of the

networks are studied computing the two quantities L and C, or the two quantities Eglob

and Eloc, as a function of p (see Section 4.4).

4.3.1. Global properties

In Figs. 3 and 4 we report L and Eglob as a function of the fraction p of nodes

removed. We �rst perform the same analysis of Ref. [14] by studying the changes in

the characteristic path length L. The scale-free graph considered initially has L ∼ 4:6

(on average, two generic nodes can be connected in less than �ve steps), a value lower

than that of the random graph (L ∼ 6:7). In the upper part of Fig. 3, we observe for

the exponential network a slow monotonic increase of L with p (for p�1), both for

failures and for attacks. In practice there is no substantial di�erence whether the nodes

are selected randomly or in decreasing order of connectivity. This behavior is rooted in

the homogeneity of the network: since all nodes have approximately the same number

of links, they all contribute equally to the network characteristic path length, thus the

removal of a generic node or the best connected one causes about the same amount of

damage. On the other hand, we observe a drastically di�erent behavior for scale-free

networks (the same observed in Ref. [14]): L remains almost unchanged under an

increasing level of errors, while it increases rapidly when the most connected nodes are

eliminated. For example, when 2% of the nodes fails (p = 0:02), the communication

between the remaining nodes in the network is una�ected, while, when the 2% of

the most connected nodes is removed, then L almost doubles its original value. This

robustness to failures and at the same time vulnerability to attacks is rooted in the

inhomogeneity of the connectivity distribution P(k): the connectivity is maintained by

a few highly connected nodes, whose removal drastically alters the network’s topology,

and decreases the ability of the remaining nodes to communicate with each other.
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Fig. 3. Resistance to failures and attacks: analysis of the global characteristics. BA scale-free graphs (SFBA)

are compared with random graphs (EXP). In both cases we start with two graphs with N = 5000 nodes and

K = 10 000 edges, and we remove a fraction p of the nodes with two di�erent prescriptions: failure and

attack (see text). The correlation length L, in panel (a), and the global e�ciency Eglob, in panel (b), are

plotted as a function of p. The results reported here and in all the following �gures are averages over 10

di�erent realizations.

In the following we show that this behavior can be better quanti�ed by using Eglob,

since the variable in formula (3) is normalized to the ideal case, obtained when all

the N (N − 1)=2 links are present in the graph. In the lower part of Fig. 3 we observe

that initially the scale-free graph has Eglob = 0:24 and the random graph has Eglob =

0:15, respectively 24% and 15% the e�ciency of a completely connected graph. When

p= 0:02 and the nodes are removed under attack (i.e., according to their degree), the

e�ciency of the scale-free graph has rapidly decreased to Eglob = 0:12: by attacking

only a tiny fraction of nodes as the 2%, the scale-free network has already lost 50%

of its e�ciency. Conversely the global e�ciency of the scale-free graph does not vary

a lot in the case of failures. The same thing happens for the exponential graph, where

the communication between the remaining nodes of the network is una�ected either

from failures and from attacks.

In so far we have only considered the removal of a small percentage of nodes. What

happens now if we extend the analysis to larger values of p, even to values of the order

of 1? In this case, it will become evident that the e�ciency variable is a better quantity

to study. In fact, for large values of p, we have to deal with the problem of the graph
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Fig. 4. (a,b) Resistance to failures and attacks: analysis of the global characteristics. BA scale-free graphs are

compared with random graphs. Same as in the previous �gure, but here the whole range of p is considered.

becoming unconnected. In the upper part of Fig. 4, we observe that L reaches very high

values when more and more nodes are removed. In practice, as explained in Section 2,

a straightforward application of the de�nition in formula (1) would give L=∞ for p

larger than a certain value p∗ for which the graph becomes unconnected. To avoid this

divergence we have to limit the use of de�nition (1) only to a part of the graph, the

main connected component (as also done in Ref. [14]). In this way for di�erent values

of p we compare graphs with di�erent number of nodes, and this can give unrealistic

results (see Fig. 1) as the maxima of L observed in Fig. 4(a). See for example the BA

scale-free network (SFBA) under attacks: we have L= 30 for p= 0:1 and then a rapid

drop to L = 4 for p = 0:2. This e�ect indicates that the network for p = 0:1 starts to

fragment into many unconnected small parts (each with more or less the same size) as

evidenced from the cluster size distribution studied in Ref. [14], but at the same time

makes unfeasible the comparison of the connectivity properties of graphs with di�erent

p. In fact the misleading information we get from L is that, by increasing p, i.e., by

removing more nodes we can get a network with better connectivity (shorter L). In

reality, when we want to compare graphs with p varying in a wide range of values, it

is better to use the e�ciency variable. In the lower part of Fig. 4, one can clearly see

that, evaluating Eglob as a function of p we get four monotonically decreasing curves,

and we avoid the problem of the unphysical change of slope of L. Again we notice the
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Fig. 5. Resistance to failures and attacks: analysis of the local characteristics. BA scale-free graphs are

compared with random graphs. In both cases we consider two graphs with the same initial number of nodes

N = 5000 and edges K = 10 000. The clustering coe�cient C, in panel (a), and the local e�ciency Eloc, in

panel (b), are plotted as a function of p, the fraction of nodes removed.

rapid drop in the global e�ciency of a scale-free network under attack: the removal

of the 10% of the nodes completely destroys the global e�ciency that drops to values

Eglob ∼ 0. The removal of nodes by failure produces instead a slower decreases of Eglob

with p. When we compare these two curves with the two analog curves obtained for

an exponential graph, we observe that in the case of a random graph the di�erence

between failure and attack is less pronounced (though clearly visible on such a scale

of p, while it was not visible in the short range p scale used in Fig. 3(b)) than in the

case of the SFBA network. This means that, besides the sudden drop of Eglob observed

for SFBA under attack there are no other qualitative di�erences between scale-free and

random graphs when their properties are compared on a large scale of p.

The results we have reported in Figs. 3 and 4 are averages over 10 di�erent realiza-

tions. The average makes no important di�erences in the case of the global properties,

although can be very important for the local quantities, which are in general a�ected

by larger 
uctuations.

4.3.2. Local properties

In Figs. 5 and 6 we report C and Eloc as a function of the nodes removed. We

start, as before, with two networks, a BA scale-free network and a random graph, with

N = 5000 nodes and K = 10 000 links. Of course both the networks considered have,
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Fig. 6. (a,b) Resistance to failures and attacks: analysis of the local characteristics. BA scale-free graphs are

compared with random graphs. Same as in previous �gure, but here the whole range of p is considered.

by construction, a very small local clustering, as indicated by the small values of C

(0.007 for the BA scale-free network and less than 0.001 for the random graph) or

by the small values of Eloc (again 0.007 for the BA scale-free network and less than

0.001 for the random graph). The �rst thing to notice is that, in agreement with what

is said in Section 2, the values of C and Eloc are very similar. In fact we expect C

to be a reasonable approximation for Eloc when the subgraphs Gi of the neighbors of

a generic node i are composed by very small graphs [7,9]. This is the case for both

the random graph, and also the scale-free network of the BA model (things will be

di�erent for KE scale-free networks). Since the local clustering is very small we have

large 
uctuations among di�erent realizations, and we must consider an average over

di�erent realizations to obtain stable results. The curves reported in Figs. 5 and 6 are

averages over 10 di�erent realizations. Though the local clustering of the two networks

is very small, we observe a rapid drop in the local e�ciency (similarly to that observed

for the global e�ciency) of a scale-free network under attacks.

4.4. Error and attack tolerance of KE scale-free networks

We now repeat the same analysis for the class of scale-free networks generated by

the KE model, i.e., for networks with power-law degree distribution and at the same
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Fig. 7. (a,b) Resistance to failures and attacks: analysis of the global characteristics. KE scale-free graphs

are compared with random graphs. In both cases we have two graphs with the same initial number of nodes

N = 5000 and edges K = 10 000. The correlation length L and the global e�ciency Eglob are plotted as a

function of p, the fraction of nodes removed.

time strong clustering. We can consider such networks as small-worlds with power-law

degree distribution. We start by considering a KE scale-free (SFKE) network with

N = 5000 nodes and K = 10 000 edges, generated by the prescription of the KE model

of Section 4.2 with �=0:1 (such a scale-free network has also small-world properties,

in fact it has Eglob = 0:12 and Eloc = 0:54). As in the previous section we remove

the nodes by using the two di�erent strategies simulating failures or attacks, and we

investigate how the properties of the network change by reporting as a function of p

the two quantities L and C, or the two quantities Eglob and Eloc.

4.4.1. Global properties

In Figs. 7 and 8 we report L and Eglob as a function of the fraction p of nodes

removed. The KE scale-free graph considered initially has now L ∼ 9:5 (two generic

nodes can be connected in an average of 10 steps). This value is higher than the value

obtained for SFBA networks (L ∼ 4:6), and also higher than that of random graphs

(L ∼ 6:7). This is of course the price to pay to have a strong local clustering: the

increase in local connectivity is obtained at the expenses of the global connectivity.

In any case, the results are similar to those obtained for the BA scale-free networks,

though the di�erence between scale-free and exponential network is less marked. In

the upper part of Fig. 7 we observe on one hand that the exponential network has a
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Fig. 8. (a,b) Resistance to failures and attacks: analysis of the global characteristics. KE scale-free graphs

are compared with random graphs. Same as in previous �gure, but here the whole range of p is considered.

slow monotonic increase of L with p (for p�1), both for failures and for attacks,

and on the other hand that for scale-free networks L remains almost unchanged un-

der an increasing level of errors, while it increases rapidly when the most connected

nodes are eliminated. In the lower part of Fig. 7 we see that the same behavior is

con�rmed when the global connectivity of the graph is expressed in terms of the

e�ciency Eglob: the initial e�ciency of the scale-free graph Eglob = 0:12 (12% the

e�ciency of the completely connected graph) decreases to Eglob = 0:08 by attacking

2% of the nodes (though this results is not as drastic as in the case of BA networks,

compare with Fig. 3). The global e�ciency of the scale-free graph does not vary a

lot in the case of failures. In Fig. 8 we consider a larger range of values of p. From

panel (a) we see again that the correct variable to evaluate is Eglob and not L. In

fact L would give unphysical result as the presence of a spurious maximum when

the network becomes unconnected. From the plot of Eglob versus p in Fig. 8(b) we

observe that the KE scale-free and the exponential graph have a similar behavior as

a function of p, when compared on the whole scale of p, apart from a di�erent nor-

malization factor, i.e., a di�erent value at p = 0. A qualitatively di�erent behavior

in the global properties of KE scale-free and exponential graphs is observed only for

p¡ 0:02 (compare Fig. 7 to Fig. 8), i.e., only when a very small fraction of nodes is

removed.
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Fig. 9. (a,b) Resistance to failures and attacks: analysis of the local characteristics. KE scale-free graphs are

compared with random graphs. In both cases we have two graphs with the same initial number of nodes

N = 5000 and edges K = 10 000. The clustering coe�cient C and the local e�ciency Eloc are plotted as a

function of p, the fraction of nodes removed.

4.4.2. Local properties

In Figs. 9 and 10 we report C and Eloc as a function of the nodes removed. We

observe that the KE scale-free network has a good local connectivity expressed by a

clustering coe�cient C = 0:43 and Eloc = 0:54 (meaning that the graph has 54% of

the local e�ciency of the completely connected graph). Notice that, for KE scale-free

networks the numerical values of Eloc and C are not similar to each other, as they were

in BA scale-free networks. In fact for SFKE networks the subgraph Gi of the neighbors

of a generic node i is not always a very small graph and therefore C is not a good

approximation of Eloc anymore [7,9]. Though the numerical value of C is di�erent

from that of Eloc, the information we get from the behavior of these two quantities

as a function of p is similar. We observe, both in Fig. 9 and in Fig. 10, a rapid

decrease in the local e�ciency (and in the clustering coe�cient C) of SFKE networks

under attacks, while the local e�ciency (and C) decreases much slower under failures.

Eloc(p) and C for random graphs, the same curves were plotted in Figs. 5 and 6 in

larger scale, are here order of magnitude smaller than the values of the local e�ciency

of SFKE networks, and are practically indistinguishable from zero in the scale adopted.
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Fig. 10. (a,b) Resistance to failures and attacks: analysis of the local characteristics. KE scale-free graphs

are compared with random graphs. Same as in previous �gure, but here the whole range of p is considered.

5. Conclusions

In this paper we have studied the e�ects of errors and attacks on the e�ciency of

scale-free networks. Two di�erent kinds of scale-free networks have been considered

and compared to random graphs: scale-free networks with no local clustering produced

by the Barabasi–Albert (BA) model, and scale-free networks with high clustering prop-

erties as in the model by Klemm and Egu��luz (KE). By using as mathematical measures

the global and the local e�ciency, we have investigated the e�ects of errors and attacks

both on the global and on the local properties of the network. We have found that both

the global and the local e�ciency of scale-free networks are una�ected by the failure of

some of the nodes, i.e., when some (up to 2%) of the nodes are chosen at random and

removed. On the other hand, at variance with random graphs, in scale-free networks

the global and the local e�ciency rapidly decrease when the nodes removed are those

with higher connectivity ki, i.e., scale-free networks are extremely sensitive to attacks.

These properties are true both for BA networks and for KE networks, though KE net-

works have higher local e�ciency but lower global e�ciency than BA networks. We

have also studied the e�ects of errors and attacks when a large number of nodes (even

up to 80% of the nodes of the network) are removed. On a such larger scale of p

the di�erence between scale-free networks and random graph is less pronounced than
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in the smaller scale p¡ 0:02. When a large number of nodes are removed, especially

when the network become unconnected, the e�ciency variable is de�nitely a better

quantity than the characteristic path length L to measure the response of the networks

to external factors.

Note added in proof

After our manuscript was submitted for publication we found that a similar analysis

has been presented by P. Holmes, B.J. Kim, C.N. Yoon and S.K. Han in Phys. Rev.

E 65 (2002) 056109.
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