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and Gabriel Stoltz2

1LTCI, CNRS & Telecom ParisTech, 46 rue Barrault, 75634 Paris Cedex
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We analyze the efficiency of the Wang–Landau algorithm to sample a multimodal distri-

bution on a prototypical simple test case. We show that the exit time from a metastable

state is much smaller for the Wang–Landau dynamics than for the original standard

Metropolis–Hastings algorithm, in some asymptotic regime. Our results are confirmed

by numerical experiments on a more realistic test case.

1 Introduction

The Wang–Landau algorithm was originally proposed in the physics literature to effi-

ciently sample the density of states of Ising-type systems [18, 19]. It belongs to the

class of free-energy biasing techniques [2, 11], which have been introduced in compu-

tational statistical physics to efficiently sample thermodynamic ensembles and to com-

pute free-energy differences [13]. From a computational statistical point of view, it can

be seen as some adaptive importance sampling strategy combined with a Metropolis

algorithm [7, 16]: the target probability distribution is updated at each iteration of the

algorithm in order to have a sampling of the configuration space as uniform as possi-

ble along a given direction. There are numerous physical and biochemical works using

this technique to overcome sampling problems such as the ones encountered in the
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276 G. Fort et al.

computation of macroscopic properties around critical points and phase transitions, or

for the sampling of folding mechanisms for proteins. The original paper [19] is cited

more than one thousand times, according to Web of Knowledge. The success of the tech-

nique motivated its use and study in the statistics literature; see [1, 3, 6, 9, 14, 15] for

instance for previous mathematical and numerical studies.

There are in fact several variations of the original Wang–Landau algorithm; see

the discussion in [6]. We study here the Wang–Landau algorithm with a determinis-

tic adaption sequence (see Section 2.2 for a precise definition of the algorithm). The

aim of this article is to discuss from a mathematical viewpoint the efficiency of the

Wang–Landau procedure. The real practical interest of adaptive importance sampling

techniques is indeed their improved convergence properties, compared with standard

sampling techniques. Although this improvement is obvious to practitioners, it is math-

ematically more difficult to formalize.

This paper is a companion paper to [6] where a convergence result is proven,

without any efficiency analysis. Actually, to our knowledge, the previous mathemati-

cal studies on the Wang–Landau algorithm solely focused on the convergence of the

algorithm, not on its efficiency. Such insight into improved convergence rates has been

obtained for other adaptive importance sampling methods, in particular for Adaptive

Biasing Force techniques, see [5, 8, 10, 12]. These analysis have been performed on the

nonlinear Fokker–Planck equation obtained in the limit of infinitely many interacting

replicas. To the best of our knowledge, there is currently no efficiency analysis of adap-

tive importance sampling techniques based on a single trajectory interacting with its

own past. The aim of this work is to gain some insight on the efficiency of the Wang–

Landau algorithm, which is an example of such a technique. More precisely, we show

here through the analytical study of a toy model and a confirmation by numerical results

in a more complicated case, that the Wang–Landau algorithm indeed allows to effi-

ciently escape from metastable states.

The paper is organized as follows. We describe in Section 2 the algorithm

that we consider. We next turn to a discussion on the efficiency of the method in

Section 3. On a very simple example, we mathematically quantify the improvement

on the convergence properties given by the Wang–Landau dynamics, compared with

a standard Metropolis–Hastings procedure. Our results are confirmed by numerical

experiments on a more realistic 2D test case presented in Section 4. The proofs of our

results are gathered in Section 5. Section 6 is devoted to some refinement of the com-

parison between the standard Metropolis–Hastings procedure and the Wang–Landau

algorithm.
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Efficiency of the Wang–Landau Algorithm 277

2 Description of the Wang–Landau Algorithm

2.1 Notation and preliminaries

Let us consider a normalized target probability density π defined on a Polish space X,

endowed with a reference measure λ defined on the Borel σ -algebra X . As for classi-

cal Metropolis–Hastings procedure, the practical implementation of the algorithm only

requires to specify π up to a multiplicative constant. In statistical physics, the set X is

typically composed of all admissible configurations of the system, while π is a Gibbs

measure with density π(x) = Z−1
β exp(−βU (x)), U being the potential energy function and

β the inverse temperature. In condensed matter physics for instance, actual simulations

are performed on systems composed of N particles in Dimension 2 or 3, living in a cubic

box with periodic boundary conditions. In this case, X = (LT)2N or X = (LT)3N , where L

is the length of the sides of the box and T = R/Z is the 1D torus.

We now consider a partition X1, . . . , Xd of X in d� 2 elements, and define, for any

i ∈ {1, . . . , d},

θ�(i)
def=
∫

Xi

π(x)λ(dx). (2.1)

In the following, Xi will be called the ith stratum. Each weight θ�(i) is assumed to be

positive and gives the relative likelihood of the stratum Xi ⊂ X. In practice, the parti-

tioning could be obtained by considering some smooth function ξ : X → [a, b] (called a

reaction coordinate in the physics literature) and defining, for i = 1, . . . , d− 1,

Xi = ξ−1([αi−1, αi)), (2.2)

and Xd = ξ−1([αd−1, αd]), with a= α0 < α1 < · · · < αd = b (possibly, a= −∞ and/or b = +∞).

Let us emphasize here that the choice of an appropriate function ξ is a difficult

but central issue. It is mostly based on intuition at the time being: practitioners identify

some slowly evolving degrees of freedom responsible for the metastable behavior of the

system, and build a function ξ and then a partition using these slow degrees of free-

dom. Here, metastability refers to the fact that trajectories generated by the reference

(nonadaptive) dynamics, which is ergodic with respect to the target probability mea-

sure π (for example a Metropolis–Hastings algorithm with target π ), remain trapped for

a long time in some region of X, and only occasionally hop to another region, where they

also remain trapped. There are ways to quantify the relevance of the choice of the reac-

tion coordinate, see for instance the discussion in [4]. There are also ways to adaptively

choose the levels (αi)0�i�d; see [3].
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278 G. Fort et al.

The above discussion motivates the fact that the weights θ�(i) typically span sev-

eral orders of magnitude, some sets Xi having very large weights, and other ones being

very unlikely under π . Besides, trajectories bridging two very likely states typically need

to go through unlikely regions. To efficiently explore the configuration space, and sam-

ple numerous configurations in all the strata Xi, it is therefore a natural idea to resort

to importance sampling strategies and to appropriately reweight each subset Xi. A pos-

sible way to do so is the following. Let Θ be the subset of (nondegenerate) probability

measures on {1, . . . , d} given by

Θ =
{

θ = (θ(1), . . . , θ(d))

∣∣∣∣∣0 < θ(i) < 1 for all i ∈ {1, . . . , d} and
d∑

i=1

θ(i) = 1

}
.

For any θ ∈ Θ, we denote by πθ the probability density on (X,X ) (endowed with the ref-

erence measure λ) defined as

πθ(x) =
(

d∑
i=1

θ�(i)

θ(i)

)−1 d∑
i=1

π(x)

θ(i)
1Xi (x). (2.3)

This measure is such that the weight of the set Xi under πθ is proportional to θ�(i)/θ(i).

In particular, all the strata Xi have the same weight under πθ�
. Unfortunately, the vector

θ� is unknown, and sampling under πθ�
is typically unfeasible.

The Wang–Landau algorithm allows precisely to overcome these difficulties: at

each iteration of the algorithm, a weight vector θn = (θn(1), . . . , θn(d)) is updated based on

the past behavior of the algorithm and a new point is drawn from a Markov kernel Pθn

with invariant density πθn. The update of {θn, n� 0} is chosen in such a way to penalize

the already visited strata. The intuition for the convergence of this algorithm is that if

{θn, n� 0} converges to θ∞, then the draws are asymptotically distributed according to

the density πθ∞ and it can be checked from the updating rule (see Equation (2.4)) that

necessarily θ∞ = θ�.

2.2 The Wang–Landau algorithm with deterministic adaption

We now describe the algorithm we study in this article. Let {γn, n� 1} be a [0, 1)-valued

deterministic sequence. For any θ ∈ Θ, denote by Pθ a Markov transition kernel onto

(X,X ) with unique stationary distribution πθ(x)λ(dx); for example, Pθ is one step of a

Metropolis–Hastings algorithm [7, 16] with target probability measure πθ(x)λ(dx).

Consider an initial value X0 ∈ X and an initial set of weights θ0 ∈ Θ (typically,

in absence of any prior information, θ0(i) = 1/d). Define the process {(Xn, θn), n� 0} as

follows: given the current value (Xn, θn),
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Efficiency of the Wang–Landau Algorithm 279

(1) draw Xn+1 under the conditional distribution Pθn(Xn, ·);
(2) the weights are then updated as

θn+1(i) = θn(i)
1 + γn+11Xi (Xn+1)

1 + γn+1θn(I (Xn+1))
for all i ∈ {1, . . . , d}. (2.4)

Here, I : X → {1, . . . , d} defined by

∀x ∈ X, I (x) = i if and only if x ∈ Xi (2.5)

associates to a point x the index I (x) of the stratum where x lies.

As explained above, the idea of the updating strategy (2.4) is that the weights of the

visited strata are increased, in order to penalize already visited states. Note that the

update (2.4) is such that the sum of the weights remains equal to 1.

Let us recall the result of convergence proved in [6]. Three assumptions are

required: on the equilibrium measure (see (A1)), on the transition kernels {Pθ , θ ∈ Θ}
(see (A2)) and on the step-size sequence {γn, n� 1} (see (A3)). It is assumed that

(A1) The probability density π with respect to the measure λ is such that

0 < infX π � supX π < ∞. In addition, inf1�i�d λ(Xi) > 0.

Note that Assumption (A1) implies that inf1�i�d θ�(i) > 0, where θ� is given by (2.1).

(A2) For any θ ∈ Θ, Pθ is a Metropolis–Hastings transition kernel with invariant

distribution πθ dλ, where πθ is given by (2.3), and with symmetric proposal

kernel q(x, y)λ(dy) satisfying infX2 q > 0.

(A3) The sequence {γn, n� 1} is a [0, 1)-valued deterministic sequence such

that

(a) {γn, n� 1} is a (ultimately) nonincreasing sequence and

limnγn = 0;

(b)
∑

nγn = ∞;

(c)
∑

nγ 2
n < ∞.

A typical choice for the step-size sequence {γn, n� 1} is γn = γ�n−α, with 1
2 < α � 1.

Under assumptions (A1)–(A3), it is shown in [6] that the algorithm converges:

P

(
lim

n→+∞ θn = θ�

)
= 1.
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280 G. Fort et al.

More precisely, the proof is done for a slightly different update than (2.4), namely the

following linearized version:⎧⎪⎨
⎪⎩

θn+1(i) = θn(i) + γn+1θn(i)(1 − θn(i)),

θn+1(k) = θn(k) − γn+1θn(k)θn(i) for k �= i.
(2.6)

The update (2.6) is obtained from (2.4) in the limit of small γn. We believe that the argu-

ments used in [6] can be adapted to prove the convergence for the nonlinear update (2.4).

In contrast, we would like to emphasize here that the distinction between the two updat-

ing strategies (2.6) and (2.4) does matter when considering the flat histogram criterium

for the update of the step sizes, as proved in [9].

However, this convergence result does not help to understand the success of the

Wang–Landau algorithm. This algorithm is actually known to be useful in metastable

situations, namely when the original Markov chain (with transition kernel Pθ0 ) remains

trapped for very long times in some regions (called the metastable states). Metastability

is one of the major bottleneck of standard Markov Chain Monte Carlo techniques, since

ergodic averages should be considered over very long times in order to obtain accurate

results. The aim of this article is to show that in such a metastable situation, the Wang–

Landau algorithm indeed is an efficient sampling procedure. Our analysis will be based

on estimates of exit times from metastable states.

3 Analytical Results in a Simple Case

We present in this section results on the improved convergence properties of the Wang–

Landau algorithm (when compared with nonadaptive samplers), by theoretically ana-

lyzing the first exit times out of a metastable state. Indeed, adaptive biasing techniques

such as the Wang–Landau algorithm have been especially designed to be able to switch

as fast as possible from a metastable state to another in order to efficiently explore the

whole configuration space.

We show in this section that the Wang–Landau algorithm allows to rapidly

escape from a metastable state, namely from a large probability stratum surrounded by

small probability strata. More precisely, we consider a toy model composed of only three

strata: two large probability strata (the metastable states) separated by a low probabil-

ity stratum (the transition state). We are able to precisely quantify the time the system

needs to go from the first metastable state to the second one, for adaptive and nonadap-

tive dynamics. We show in particular that the exit time is dramatically reduced with the

Wang–Landau dynamics compared with the corresponding nonadaptive dynamics.

D
ow

nloaded from
 https://academ

ic.oup.com
/am

rx/article/2014/2/275/159677 by U
.S. D

epartm
ent of Justice user on 16 August 2022



Efficiency of the Wang–Landau Algorithm 281

Using the notation of the previous section, we have only three strata and three

states, and thus X = {1, 2, 3} and Xi = {i} for i = 1, 2, 3. Jumps are only allowed between

neighboring states, namely from 1 to {1, 2}, from 2 to {1, 2, 3} and from 3 to {2, 3}. Though

being very simple, we believe that this toy model is prototypical of a metastable dynam-

ics. We will check numerically in the next section that our conclusions on this simple

test case are indeed also valid for more complicated and more realistic situations.

3.1 Definition of the dynamics

We assume that the first and third strata are visited with high probability, and that the

second stratum is visited with low probability. More precisely, we set

θ�(2) = ε

2 + ε
, θ�(1) = θ�(3) = 1

2 + ε
, (3.1)

for a small positive parameter ε ∈ (0, 1), and consider the limit ε → 0. The target den-

sity π on X is thus defined as: π({i}) = θ�(i) for i = 1, 2, 3 (the reference measure λ being

the uniform measure on X = {1, 2, 3}). The parameters θ�(i) depend on ε, even though we

do not explicitly indicate this dependence to keep the notation simple. In this specific

setting, the biased probability measure (2.3) is

πθ(i) =
⎛
⎝ 3∑

j=1

θ�( j)

θ( j)

⎞
⎠

−1

θ�(i)

θ(i)
for i ∈ {1, 2, 3}.

Note that πθ�
= ( 1

3 , 1
3 , 1

3 ) is the uniform measure on X.

The basic building block for the reference nonadaptive Markov chain {X̄n, n� 0}
is a symmetric proposal kernel allowing transitions to nearest-neighbor strata only:

Q =

⎡
⎢⎢⎢⎢⎢⎣

2

3

1

3
0

1

3

1

3

1

3

0
1

3

2

3

⎤
⎥⎥⎥⎥⎥⎦ .

The corresponding nonadaptive Markov chain is built using a Metropolis–Hastings

algorithm [7, 16], with Q as the proposal kernel, and π as the target distribution. To

compute the kernel P̄ of the Metropolis algorithm, we evaluate its off-diagonal terms,

and adjust the diagonal in order for the rows to sum up to 1. For symmetric propos-

als, the Metropolis procedure consists in proposing a new configuration X̃n+1 from the

previous state X̄n according to the proposal kernel Q, and then to accept this proposal

with probability 1 ∧ (π(X̃n+1)/π(X̄n)), in which case X̄n+1 = X̃n+1; otherwise, X̄n+1 = X̄n.
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282 G. Fort et al.

For instance, the probability to go from 1 to 2 reads

P̄12 = Q12

(
1 ∧ π({2})

π({1})
)

= 1

3

(
1 ∧ θ�(2)

θ�(1)

)
. (3.2)

Since ε < 1, the kernel P̄ is given by

P̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − ε

3

ε

3
0

1

3

1

3

1

3

0
ε

3
1 − ε

3

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.3)

The nonadaptive dynamics {X̄n, n� 0} is metastable, in the sense that the time to go from

the stratum 1 to the stratum 3

T̄1→3 = min{n : X̄n = 3 starting from X̄0 = 1}

is very large, and more precisely of order 6/ε (see Proposition 3.1). This is due to the fact

that, in order to go from 1 to 3, the chain has to visit the very low probability transition

state 2. This is a prototypical metastable dynamics reminiscent of what happens along

molecular dynamics trajectories: due to the very high-dimensional configuration space,

only local moves are allowed (otherwise, they would be mostly rejected) and thus, it is

difficult to go from a very likely region to another one since they are usually separated

by low probability zones.

For the associated adaptive Wang–Landau dynamics {(Xn, θn), n� 0}, the transi-

tion kernel Pθn to go from Xn to Xn+1 is the Metropolis–Hastings kernel corresponding to

the proposal kernel Q and the target distribution πθn. The expression of Pθ is obtained

with computations similar to the ones leading to the expression (3.3) of the transition

kernel of the nonadaptive dynamics. In fact, it suffices to replace π by πθ in equalities

such as (3.2). More precisely,

Pθ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 1

3

(
ε
θ(1)

θ(2)
∧ 1
)

1

3

(
ε
θ(1)

θ(2)
∧ 1
)

0

1

3

(
1

ε

θ(2)

θ(1)
∧ 1
)

1 − 1

3

(
1

ε

θ(2)

θ(1)
∧ 1 + 1

ε

θ(2)

θ(3)
∧ 1
)

1

3

(
1

ε

θ(2)

θ(3)
∧ 1
)

0
1

3

(
ε
θ(3)

θ(2)
∧ 1
)

1 − 1

3

(
ε
θ(3)

θ(2)
∧ 1
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

In addition, the step-size sequence in (2.4) is

γn = γ�n
−α, (3.5)
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Efficiency of the Wang–Landau Algorithm 283

for a positive constant γ�, and a parameter α ∈ [ 12 , 1
]

(note that we allow here the value
1
2 , see Remark 3.1).

We start from initially equiprobable strata θ0(1) = θ0(2) = θ0(3) = 1
3 , so that πθ0 =

π . Note that the nonadaptive dynamics is simply the Markov chain with transition ker-

nel P( 1
3 , 1

3 , 1
3 ). It can be obtained from the adaptive dynamics by setting γ� = 0, in which

case θn = θ0 = ( 1
3 , 1

3 , 1
3 ) for all n� 0. As above for the nonadaptive dynamics, we define the

time to go from the stratum 1 to the stratum 3 for the Wang–Landau dynamics as

T1→3 = min{n : Xn = 3 starting from X0 = 1}.

The aim of this section is to show that, in some sense to be made precise, T̄1→3

is much larger than T1→3 that is, the Wang–Landau dynamics is much less metastable

than the corresponding nonadaptive dynamics. This is related to the fact that, when the

stochastic process {Xn, n� 0} remains stuck in the stratum 1, this stratum gets more and

more penalized (θn(1) increases, see (2.4)), so that a transition to the stratum 2 becomes

more and more favorable. From the stratum 2, a jump to the stratum 3 is then very likely.

This is the bottom line of the whole adaptive procedure: penalizing the already visited

strata in order to explore very quickly new regions.

3.2 Precise statement on the exit times

We now provide a precise statement on how the exit times T̄1→3 and T1→3 scale when ε

goes to zero. For the nonadaptive dynamics, it holds (see Section 5.1 for the proof):

Proposition 3.1. The time T̄1→3 scales like 6/ε, in the following sense:

ε

6
E(T̄1→3) = 1 + ε

2
−→
ε→0

1, (3.6)

∀c � 0, lim
ε→0

P

( ε
6

T̄1→3 > c
)

= e−c. (3.7)

�

Equation (3.7) states that when ε → 0, εT̄1→3 converges in distribution to an expo-

nential random variable with parameter 1
6 .

Let us now consider the Wang–Landau dynamics (5.5). The following result holds

(see Section 5.2 for the proof).

Proposition 3.2. Let γ� and α be the two constants defining the sequence γn, as given

by (3.5). Let us assume that α ∈ [ 12 , 1
]
, with γ� < 1 if α = 1

2 .
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(1) In the case α ∈ [ 1
2 , 1), the random variables (| ln ε|−1/(1−α)T1→3)ε>0 converge in

probability to
(

1−α
γ�

)1/(1−α)

when ε goes to 0

(2) In the case α = 1, for any function h such that limε→0 h(ε) = +∞,

lim
ε→0

P

(
1

h(ε)
< ε1/(1+γ�)T1→3 < h(ε)

)
= 1. (3.8)

�

In the case α = 1, one should think of functions h going very slowly to infinity,

so that the above result essentially means that

as ε → 0, T1→3 scales like

⎧⎪⎪⎨
⎪⎪⎩
(

1 − α

γ�

)1/(1−α)

| ln ε|1/(1−α) if α ∈ [ 1
2 , 1),

ε−1/(1+γ�) if α = 1.

(3.9)

In any case, the Wang–Landau algorithm is such that T1→3 is much smaller than T̄1→3 in

the limit ε → 0 (namely in metastable situations).

Note that at time T1→3, the Wang–Landau algorithm cannot go back immediately

to state 2. It still has to get rid of part of the initial metastability: in particular, θ̃T1→3(2) �
θ̃T1→3(3) since state 2 has been visited at least once before T1→3 and the sequence of step

sizes is decreasing. As a consequence, the entry (3, 2) of the matrix PθT1→3
which gives

the probability for the algorithm to go back to state 2 at time T1→3 + 1 is smaller than ε
3 .

Section 6 is dedicated to a formal analysis of the scaling in terms of ε of the successive

durations between a visit by the algorithm of one of the extremal states 1 and 3 and the

next visit of the other extremal state. Some hint at the total time necessary to get rid of

the metastability is also given.

Remark 3.1. Two points should be mentioned about the convergence result from

Proposition 3.2:

(1) The convergence in probability in the case α ∈ [ 1
2 , 1) is equivalent to, for all

Ca and Cb such that 0 < Ca <
(

1−α
γ�

)1/(1−α)

< Cb,

lim
ε→0

P(T1→3 ∈ (Ca| ln ε|1/(1−α), Cb| ln ε|1/(1−α))) = 1.

According to Proposition 5.1, this limiting probability is still one with a

lower bound slightly larger than Ca| ln ε|1/(1−α).

(2) Note that we obtain results on first exit times also for α = 1
2 , which is an

excluded value to obtain the almost sure convergence of the Wang–Landau

algorithm (see Assumption (A3)). �
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4 Numerical Illustrations

The aim of this section is to show that (most of) the results obtained for the very simple

three-state model of Section 3 are still valid for a less simple example inspired by target

measures used in computational statistical physics. In these numerical experiments, we

also investigate the behavior of the algorithm for values of α in the interval (0, 1
2 ], which

are excluded values to prove the theoretical convergence of stochastic approximation

procedures in general, and in particular of the Wang–Landau algorithm (see Assump-

tion (A3)). Notice that if α ∈ (0, 1/2), the Markov process associated to the Wang-Landau

algorithm escapes very quickly from metastable states and it is therefore easy to inves-

tigate numerically the behavior of the algorithm for such values of α, even for very large

values of β.

Our aim is to study the behavior of the exit times out of a metastable state as the

temperature in the system goes to zero. The temperature will thus play a role similar to

the role of ε in Section 3 (see formula (4.2), where β is the inverse temperature).

4.1 Presentation of the model and of the dynamics

We consider the system based on the 2D potential suggested in [17]. The state space

is X = [−R, R] × R (with R> 0), and we denote by x = (x1, x2) a generic element of X. The

reference measure λ is the Lebesgue measure. The density of the target measure reads

π(x) ∝ 1[−R,R](x1) e−βU (x1,x2),

for some positive inverse temperature β, with

U (x1, x2) = 3 exp

(
−x2

1 −
(

x2 − 1

3

)2
)

− 3 exp
(
−x2

1 − (x2 − 5
3

)2)

− 5 exp
(−(x1 − 1)2 − x2

2

)− 5 exp
(−(x1 + 1)2 − x2

2

)+ 0.2x4
1 + 0.2

(
x2 − 1

3

)4

.

(4.1)

We introduce d strata X
 = (a
, a
+1) × R, with a
 = −R + 2(
 − 1)R/d and 
 = 1, . . . , d.

A plot of the level sets of the potential U is presented in Figure 1(Left). The global

minima of the potential U are located at the points x− = (−1, 0) and x+ = (1, 0). We also

provide a plot of the biased potential associated with πθ�
(for β = 20, R= 1.1 and d= 22

strata) in Figure 1(Right).

From Laplace’s method, the ratio between the weight of the stratum in the tran-

sition region around x1 = 0 and the strata located near the global minima of the potential
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Fig. 1. Left: Level sets of the potential U defined in (4.1). The minima are located at the positions

x± = (±1, 0), and there are three saddle points, at the positions xsd,1
± � (±0.6, 1.15) and xsd,2 �

(0, −0.3). The energy differences of these saddle points with respect to the minimal potential

energy are, respectively, ΔU1 = 2.2 and ΔU2 = 2.7. Right: Level sets of the biased potential U +
β−1 log θ� ∝ −β−1 log πθ�

for β = 20, R= 1.1, and d= 55 (θ� being considered as a function with

constant values on the strata X
). The position of the saddle point xsd,2 is unaffected, while the

saddle points xsd,1
± are shifted to (±0.35, 0.7). The energy differences of the saddle points with

respect to the minimal energy are now respectively ΔU1,biased � 1.65 and ΔU2,biased � 1.25.

U (i.e., around x±) scales like C̄ exp(−βμ0) for some positive values C̄ and μ0, in the limit

β → ∞. In view of (3.1), we thus expect that the equivalent of the parameter ε of Section 3

in terms of β should be

ε(β) = C̄ exp(−βμ0). (4.2)

The aim of this section is to check numerically that, assuming this relation between

β and ε, the scaling behaviors we obtained in the previous section on exit times for

the very simple toy model with three states are indeed also observed for a Markovian

dynamics with local moves on the 2D potential U . Let us now make precise the dynamics

we consider.

The reference (nonadaptive) Markov chain X̄n is obtained by a Metropolis

algorithm, using an isotropic Gaussian proposal with variance-covariance matrix υ2 Id,

where Id is the 2 × 2 identity matrix. This dynamics is metastable: for local moves (υ of

the order of a fraction of ‖x+ − x−‖, in the following we choose υ in {0.025, 0.05, 0.1, 0.2}),
it takes a lot of time to go from the left to the right, or from the right to the left (note

that the potential is symmetric with respect to the y-axis). More precisely, there are

two main metastable states: one located around x− = (−1, 0) and another one around

x+ = (1, 0). These two states are separated by a region of low probability. The metasta-

bility of the dynamics increases with β (i.e., as the temperature decreases). The larger β

is, the larger is the ratio between the weight under π of the strata located near the main
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metastable states and the weight under π of the transition region around x1 = 0, and the

more difficult it is to leave the left metastable state to enter the one on the right (and

conversely). We compare the reference (nonadaptive) Markov chain with the associated

Wang–Landau dynamics Xn. In particular, the proposal kernel used in the Metropolis

algorithm is the same for the Wang–Landau dynamics and for the reference dynamics.

As in the previous section, the nonlinear update (2.4) is used. The step-size sequence is

chosen as in (3.5). The initial weight vector θ0 is (1/d, . . . , 1/d). Note that the reference

dynamics corresponds to the case when γ� = 0 (no adaption).

4.2 Expected scalings in the small temperature regime

Average exit times are obtained by performing independent realizations of the following

procedure: initialize the system in the state x− = (−1, 0), and run the dynamics until the

first time index N such that XN ,1 > 1 (i.e., the first component of XN is larger than 1).

This average exit time is denoted tβ for the Wang–Landau dynamics, and t̄β for the ref-

erence dynamics.

Before giving the numerical results, let us state the expected scaling behaviors

for t̄β and tβ in the limit β → ∞, in view of Propositions 3.1, 3.2, and (4.2). First, the

scaling (3.6) implies that for the reference dynamics, under the relation (4.2) (in the limit

β → ∞),

t̄β ∼ 6

C̄
exp(βμ0). (4.3)

Secondly, for the Wang–Landau dynamics, (3.9) implies that, under the relation (4.2) (in

the limit β → ∞): for α ∈ [ 1
2 , 1) (and we will even consider α ∈ (0, 1) below),

tβ ∼
(

(1 − α)μ0

γ�

β

)1/(1−α)

, (4.4)

while, for α = 1,

tβ ∼ Cγ�
exp
(

β
μ0

1 + γ�

)
. (4.5)

In practice, the range of values of β required to observe the asymptotic regime β → ∞
depends on the values of α and γ� (see Figure 3).

4.3 Choice of the numerical parameters

For a given value of the inverse temperature β, the computed average exit times tβ and

t̄β are obtained by averaging over M independent realizations of the process started at

x−. We use the Mersenne-Twister random number generator as implemented in the GSL
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Fig. 2. Left: In the case α = 0.125 and γ� = 1 in the step-size sequence (3.5), the scaling of the

average exit times is independent of the number of bins, even if υ is of the order of several Δx.

Right: In the case α = 1 and γ� = 8, the exponential rate a for the scaling tβ ∼ C exp(aβ) depends

on Δx (see Table 1).

library. We choose M such that the relative error on tβ or t̄β is less than a few percents

in the worst cases. For computational reasons, M is of the order of a few hundreds for

the largest exit times, while M = 105 in the easiest cases.

The choice of the number of bins is a more delicate matter. We consider in the

sequel R= 1.1 since we want to observe transitions from x− to x+, and decompose the

interval [−R, R] into d strata of width 2R/d= Δx. In order to sufficiently refine the vari-

ations of the potential and to produce a not-too-coarse free-energy profile, we consider

bin widths Δx smaller than 0.2. In order to preserve the locality of the moves, the mag-

nitude of the random displacements (which are of order υ) is chosen in order to be

comparable with the width Δx of one stratum. Therefore, from one stratum, the neigh-

boring ones are the most likely to be visited. This is reminiscent of the dynamics used

on the toy model in the previous section.

Results on the dependence of the average first exit times tβ as a function of Δx

are presented in Figure 2. The conclusions which can be drawn from these results are

the following:

(i) when α = 0.125 and γ� = 1 (as already hinted at in the beginning of Section 4,

the interest of this case, which is not covered by the theoretical analy-

sis of Section 3, is that the Wang–Landau algorithm quickly escapes from

metastable states and it is easier to investigate numerically very large values

of β), the average exit time scales in all cases as tβ ∼ Cβ1/(1−α), as predicted

by (4.4), and only the prefactor depends on the number of bins d. A more
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Table 1 Fitted value of a as a function of the bin width Δx = 2R/d

for the expected scaling relation tβ ∼ C exp(aβ) corresponding to the

data presented in Figure 2(Right), when α = 1 and γ� = 8

Δx a

0.025 1.47

0.05 1.21

0.1 0.92

0.2 0.63

precise look at the results shows that the prefactor C is proportional to d.

Note also that the average exit time increases when υ decreases, although

this increase is moderate;

(ii) when α = 1 and γ� = 8, the asymptotic behavior depends more dramatically

on the number of bins. For all our choices of Δx, the average exit time scales

as tβ ∼ C exp(aβ), as suggested by (4.5), but the value a depends on Δx. More

precisely, the rate a decreases as Δx is increased (see the precise results in

Table 1).

We expect the same conclusions to hold for other values of α and γ∗, the important

distinction being whether α < 1 or α = 1.

In the sequel (except in Section 6.2), we choose R= 1.1 and d= 22 in order to

have a sufficiently refined free-energy profile. Consistently with the above discussion,

we set υ = 0.1.

4.4 Numerical results

Let us first check that we indeed recover the correct scaling behavior (4.3) on the average

exit times for the reference (nonadaptive) dynamics. In Figure 3.1, we plot, as a function

of β, the average exit time t̄β for the nonadaptive dynamics, using a logarithmic scale

on the y-axis. The affine fit is very good, and yields an approximate value for the slope:

μ0 � 2.32. This value is of the order of the saddle point energy difference ΔU1 (see the

caption of Figure 1).

We then plot tβ as a function of β in the case α = 1 and γ� = 2 in Figure 3.2, still

using a logarithmic scale on the y-axis. As expected from (4.5), we indeed observe some

exponential asymptotic behavior tβ ∼ Cγ�
exp(βμγ�

). This is true for other values of γ�.

We report the corresponding slopes μγ�
for various values of γ� in Table 2. Although

the exponential dependence of tβ on β consistent with (4.5) is reproduced, the exact
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1 2

3 4

Fig. 3. Average exit time as a function of β for various step-size sequences (3.5). (1) Reference

dynamics (logarithmic scale on the y-axis). (2) α = 1 and γ∗ = 2 (logarithmic scale on the y-axis).

(3) α = 0.75 (logarithmic scale on the x and y-axis). (4) α = 0.125 (logarithmic scale on the x and

y-axis).

dependence on γ� of the constant in the exponential predicted by the analytical example

is not exactly observed here since μγ�
�= μ0/(1 + γ�). In fact, μγ�

is systematically larger

than μ0/(1 + γ�). This was expected in view of the results presented in Section 4.3 (since

the exponential rate increases as Δx decreases).

We now turn to the case α ∈ (0, 1) where we expect tβ ∼ Cαβ1/(1−α); see (4.4). Note

that we also consider the case α ∈ (0, 1
2 ) which was not covered by the theoretical anal-

ysis of Section 3. To confirm the expected behavior, we plot tβ as a function of β in a

log–log scale; see Figure 3.3 and 3.4 for the cases α = 0.75 and α = 0.125, respectively.

We observe in all cases a dependence tβ ∼ Cαβμα , the value of the exponent μα being

the slope of the affine fit in the log–log diagram. The estimated exponents are gathered

in Table 3 for various values of α when γ� = 1. They compare very well with the value
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Table 2 Update with step sizes γn = γ�/n (α = 1,

d= 22 or equivalently, Δx = 0.1). Exponents of the

law tβ ∼ Cγ�
exp(μγ�

β) for various values of γ�

γ� μγ�
μ0/(1 + γ�)

0 2.32 2.32

1 1.74 1.16

2 1.51 0.77

4 1.25 0.46

8 0.92 0.26

Table 3 Update with step sizes γn = n−α .

Exponents of the scaling law tβ ∼ Cαβμα

for α ∈ (0, 1)

α μα 1/(1 − α)

0.125 1.11 1.14

0.25 1.30 1.33

0.375 1.55 1.60

0.5 2.02 2.00

0.625 2.72 2.67

0.75 4.06 4.00

1/(1 − α) predicted from (4.4). On the other hand, we were not able to obtain a meaning-

ful dependence of the prefactor Cα on the parameter α. This is related to the dependence

of the prefactor on the number of bins (see Section 4.3).

In conclusion, these numerical experiments are in very good agreement with our

theoretical findings of Section 3.

5 Proof of the Results Presented in Section 3

In the following, we denote by �x� the integer part of x ∈ R, namely the integer such that

�x� � x < �x� + 1. We will also use the notation �x� for the integer such that �x� − 1 <

x � �x�. For i �= j ∈ {1, 2, 3}, the time to go from i to j for the nonadaptive dynamics is

denoted

T̄i→ j = min{n : X̄n = j starting from X̄0 = i}. (5.1)

A similar definition holds for the time Ti→ j to go from i to j for the Wang–Landau

dynamics.
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5.1 Proof of Proposition 3.1

Using the Markov property and decomposing a trajectory from state 1 to state 3 as

successive attempts from 1 to 2 back to 1, and eventually a successful transition from 1

to 2 up to 3, it is easy to check that

T̄1→3 =
N∑

n=1

(
T̄n

1→2 + T̄n
2→{1,3}

)
, (5.2)

where

N ∼ Geo
(

1

2

)
, T̄n

1→2 ∼ Geo
( ε

3

)
, T̄n

2→{1,3} ∼ Geo
(

2

3

)

are independent geometric random variables. The random variable N is the number of

jumps from 1 to 2 before 3 is eventually visited. The random variables T̄n
1→2 (respectively,

T̄n
2→{1,3}) are the nth sojourn time in state 1 (respectively, state 2). Notice that we have used

here the fact that starting from state 2, the probability to go to state 1 is equal to the

probability to go to state 3, which implies that the parameter of the geometric random

variable N is 1
2 .

Let us show that (3.6) and (3.7) are easily obtained from (5.2). Indeed, using the

fact that for independent geometric random variables A∼ Geo(a) and Bk ∼ Geo(b) (the

random variables Bk being i.i.d.),

A∑
k=1

Bk ∼ Geo(ab),

it is easily seen that T̄1→3
(d)= N1 + N2, where N1 and N2 are (nonindependent) geometric

random variables

N1 ∼ Geo
( ε

6

)
, N2 ∼ Geo

(
1

3

)
.

Therefore, E(T̄1→3) = 6
ε

+ 3 so that (3.6) holds. Note that, in the limit ε → 0, we have the

following convergences in law:

εN1 → E ( 1
6 ), εN2 → 0,

where E ( 1
6 ) denotes an exponential random variable with parameter 1

6 . The result (3.7)

is then easily obtained by the Slutsky theorem.

5.2 Proof of Proposition 3.2

The heuristic of the proof is the following. In the limit of small ε, to go from 1 to 3, a

typical path first needs to stay sufficiently long in 1, in order for a transition to 2 to be

D
ow

nloaded from
 https://academ

ic.oup.com
/am

rx/article/2014/2/275/159677 by U
.S. D

epartm
ent of Justice user on 16 August 2022



Efficiency of the Wang–Landau Algorithm 293

more likely (when θn(1) becomes sufficiently large). Then, from 2, the time it takes to go

to 3 is small compared with the time spent to leave 1 for the first time. The aim of this

proof is to quantify that by: (i) showing that a transition from 1 to 2 in a well-chosen

time is very likely and then (ii) showing that once 2 is reached, the time it remains to go

to 3 is small compared with the first transition time from 1 to 2. The precise result is

the following.

Proposition 5.1. Consider the Wang–Landau dynamics defined in Section 3.1. Let us

assume that α ∈ [ 1
2 , 1] and that, if α = 1

2 , γ� < 1. Then,

lim
ε→0

P(T1→3 ∈ (a(ε), b(ε))) = 1, (5.3)

with

(1) for α ∈ [ 1
2 , 1),

a(ε) =
(

1 − α

γ�

[| ln ε| − β(ε)]
)1/(1−α)

, b(ε) = Cb| ln ε|1/(1−α),

where Cb is any constant such that

Cb >

(
1 − α

γ�

)1/(1−α)

and β(ε) is any non-negative function smaller than | ln(ε)| and such that

lim
ε→0

| ln ε|α/(1−α) e−β(ε) = 0; (5.4)

(2) for α = 1,

a(ε) = ε−1/(1+γ�) f(ε), b(ε) = ε−1/(1+γ�)g(ε),

for any positive functions f and g such that

lim
ε→0

f(ε) = 0, lim
ε→0

g(ε) = ∞. �

In the case α ∈ [ 1
2 , 1), an example of a simple admissible lower bound is a(ε) =

Ca| ln ε|1/(1−α) where Ca is any constant such that Ca < ( 1−α
γ�

)1/(1−α). In this case, one

should consider β(ε) = (1 − γ�C 1−α
a

1−α
)| ln ε|, which indeed satisfies (5.4). Therefore, Propo-

sition 5.1 implies Proposition 3.2.
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Before proving the proposition, let us first introduce some notation. A convenient

rewriting of the Wang–Landau dynamics is: for all n� 0, given (Xn, θ̃n),⎧⎨
⎩Xn+1 is sampled according to the kernel Pθn(Xn, ·),

θ̃n+1(i) = θ̃n(i)(1 + γn+11Xn+1=i),
(5.5)

where θ̃0 = (1, 1, 1), Pθ is defined by (3.4), and the normalized weights θn associated with

the unnormalized weights θ̃n are

θn(i) =
⎛
⎝ 3∑

j=1

θ̃n( j)

⎞
⎠

−1

θ̃n(i).

The updating rule in (5.5) is exactly the standard update (2.4).

A crucial role will be played by the time the dynamics needs to first reach 2:

T0
1→2 = min{n : Xn = 2 starting from X0 = 1}. (5.6)

The probability to go from state 1 to state 2 in exactly n moves is

P(T0
1→2 = n) = p0

11 · · · pn−2
11 pn−1

12 , (5.7)

with

pm
11 = 1 − 1

3 (εΞm ∧ 1), pm
12 = 1 − pm

11 = 1
3 (εΞm ∧ 1),

where

Ξm =
m∏

k=1

(1 + γk) (5.8)

with the convention Ξ0 = 1. The first n− 1 factors in (5.7) correspond to staying in state 1

(with the appropriate update of the weights), and the last one corresponds to the tran-

sition from state 1 to state 2. An important inequality, which will be used below, is

pm
12 � pn

12 (and thus pm
11 � pn

11) for m � n: when the system is stuck in state 1, as time goes,

the probability to go to state 2 increases.

Estimates on the exit time T1→3 are based on the following equality:

T1→3 = T0
1→2 +

N2→1∑
i=1

Ti
1→2 + N2, (5.9)

where N2 =∑T1→3
n=0 1{Xn=2} is the time the chain spends in 2 before going to 3, N2→1 is the

number of jumps from 2 back to 1 before going to 3, and Ti
1→2 is the time it takes to leave
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Fig. 4. Schematic representation of the successive passage times and exit times out of 1.

1 at the ith return to the state 1 from 2. Note that

N2→1 � N2.

To make these quantities more precise, let us introduce the successive passage times:

for i � 1,

τ i
2→1 = inf{n> τ i−1

1→2, Xn = 1}, (5.10)

with, by convention τ 0
1→2 = T0

1→2 and,

τ i
1→2 = inf{n> τ i

2→1, Xn = 2}.

Note that Ti
1→2 = τ i

1→2 − τ i
2→1. We refer the reader to Figure 4 for a schematic representa-

tion of all these times.

Let us first state a simple result concerning N2, which is based on the fact that

before visiting the state 3, θ̃n(3) = 1 remains unchanged while θ̃n(2) � 1. This means that

for n� T1→3,

Pθn(2, 3) = 1

3

(
θ̃n(2)

εθ̃n(3)
∧ 1

)
= 1

3

(
θ̃n(2)

ε
∧ 1

)
= 1

3
,

where we have used the inequality ε < 1. At each time the system is in state 2, it stays in

state 2 or goes to state 1 at the next time with probability 2
3 . This gives the intuition of

the following result, the formal proof of which is postponed to Section 5.3.

Lemma 5.1. The random variable N2 is geometric with parameter 1
3 : for all n� 0,

P(N2 � n) = ( 2
3 )n.

�

Thus, in (5.9), the last term plays no role in the limit ε → 0. We show below that

this is also true for the second term: the main role is played by T0
1→2. This is why we first

need to precisely estimate the time T0
1→2. This can be done for any α ∈ (0, 1] (and not only

in [ 1
2 , 1]), and without any restriction on γ�.
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Lemma 5.2. Fix α ∈ (0, 1]. For α ∈ [ 1
2 , 1], let a be the function defined in Proposition 5.1.

For α ∈ (0, 1
2 ), let the function a be defined in the same way as for α ∈ [ 1

2 , 1). Then,

lim
ε→0

P(T0
1→2 ∈ (a(ε), b̃(ε))) = 1, (5.11)

where

(1) if α ∈ (0, 1), b̃(ε) = Cb̃| ln ε|1/(1−α), where Cb̃ is any constant such that Cb̃ >

( 1−α
γ�

)1/(1−α);

(2) if α = 1, b̃(ε) = g̃(ε)ε−1/(1+γ�) for any positive function g̃ such that

limε→0 g̃(ε) = ∞. �

The proof of Lemma 5.2 can be read in Section 5.3.

Remark 5.1. To guess the correct scaling for T0
1→2, one may consider the typical time

n(ε) for which P(T0
1→2 � n(ε)) = 1 −∏n(ε)−1

k=0 (1 − 1
3 (εΞk ∧ 1)) has a positive limit when ε

goes to 0. Using an expansion when ε goes to 0, assuming that εΞn(ε) goes to zero, we

obtain that n(ε) satisfies
∑n(ε)−1

k=0 Ξk ∼ C
ε

for some constant C > 0. A guess for the scaling

of the time T0
1→2 is thus n(ε) = arg minn{

∑n−1
k=0 Ξk � 1

ε
} (obtained by choosing C = 1). Using

Lemma 5.4, this yields various asymptotic behaviors for n(ε) depending on the values of

α and γ� in (3.5):

(1) When α ∈ (0, 1), from (5.14), we obtain that n(ε) ∼ ( 1−α
γ�

)1/(1−α)| ln ε|1/(1−α).

(2) When α = 1, from (5.13), we obtain n(ε) ∼ Γ (2 + γ�)
1/(1+γ�)ε−1/(1+γ�).

This motivates the scaling for T0
1→2. �

We are now in position to prove Proposition 5.1.

Proof of Proposition 5.1. Let a and b satisfy the assumptions of Proposition 5.1. Since

T1→3 � T0
1→2 + 1, the lower bound in Proposition 5.1 (i.e., the fact that limε→0 P(T1→3 �

a(ε)) = 0) immediately follows from Lemma 5.2. The upper bound requires some more

work. We choose b̃(ε) satisfying the assumptions of Lemma 5.2 with ( 1−α
γ�

)1/(1−α) < Cb̃ < Cb

if α ∈ [ 1
2 , 1) and g̃ < g if α = 1. In particular, b̃ < b. Let us also introduce a positive function
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Δ(ε) going to infinity as ε → 0, that will be specified later on. Then, using (5.9),

P(T1→3 � b(ε)) � P(T0
1→2 /∈ (a(ε), b̃(ε))) + P(N2 � Δ(ε))

+ P(T0
1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε), T1→3 � b(ε))

� P(T0
1→2 /∈ (a(ε), b̃(ε))) + P(N2 � Δ(ε))

+ P

(
T0

1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε),
N2→1∑
i=1

Ti
1→2 � b(ε) − Δ(ε) − b̃(ε)

)
.

(5.12)

The first term in the right-hand side goes to zero as ε → 0 by Lemma 5.2. Since Δ(ε)

tends to ∞ when ε goes to zero, the second term goes to zero by Lemma 5.1. Concerning

the third term, the idea is the following: we would like to choose b̃ and Δ such that,

on the event T0
1→2 ∈ (a(ε), b̃(ε)) and N2 � Δ(ε), the times Ti

1→2 can be simply controlled

using the fact that state 1 has already been visited for a long time (namely T0
1→2 > a(ε)

and therefore θ̃T0
1→2

(1) is large) and state 2 is not visited many times (this corresponds

to N2 � Δ(ε) so that θ̃n(2) remains small). This idea will be quantified in Lemma 5.5 in

Section 5.3 from which we will deduce.

Lemma 5.3. Assume that Δ(ε) = O(aα(ε)) as ε → 0. Then, there exist constants

C , C ′, ε̄ > 0 such that for ε ∈ (0, ε̄),

P

(
T0

1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε),
N2→1∑
i=1

Ti
1→2 � b(ε) − Δ(ε) − b̃(ε)

)

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δ(ε) exp
(

−C
1

Δ(ε)
| ln ε|2−γ 2

� exp(−β(ε))

)
if α = 1

2
,

Δ(ε) exp
(

−C
1

Δ(ε)
| ln ε|1/(1−α) exp(−β(ε))

)
if α ∈

(
1

2
, 1
)

,

C ′Δ(ε) exp
(

−C
g(ε) − g̃(ε)

Δ(ε)
f(ε)γ�

)
if α = 1.

�

Let us first conclude in the case α ∈ [ 1
2 , 1). We may choose Δ satisfying Δ(ε) =

O(aα(ε)) and going to infinity as slowly as needed. Then, for the upper bound of the

third term of the right-hand side of (5.12) given by Lemma 5.3 to vanish as ε → 0, it is

enough that

lim
ε→0

| ln ε|1/(1−α) exp(−β(ε)) = +∞ if α ∈
(

1

2
, 1
)

,

lim
ε→0

| ln ε|2−γ 2
� exp(−β(ε)) = +∞ if α = 1

2
.
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For this limit to hold, it is always possible to decrease β as long as (5.4) holds, that is,

lim
ε→0

| ln ε|α/(1−α) e−β(ε) = 0

since the smaller β, the larger a, and stronger the conclusion (5.3) of Proposition 5.1.

This is possible without restriction when α ∈ ( 1
2 , 1) and if and only if 2 − γ 2

� > 1 when

α = 1
2 .

Let us now suppose that α = 1. Up to increasing f , which makes the conclu-

sion of Proposition 5.1 stronger, while preserving limε→0 f(ε) = 0, one may assume that

g(ε) f(ε)γ� goes to infinity as ε goes to zero. In addition, it is always possible to choose

g̃ � g such that (g(ε) − g̃(ε)) f(ε)γ� goes to infinity as ε goes to zero. Then one can choose

Δ, which grows sufficiently slowly at infinity so that Δ(ε) exp(−C g(ε)−g̃(ε)

Δ(ε)
f(ε)γ�) tends

to 0. �

5.3 Proofs of the technical lemmas

Proof of Lemma 5.1. Let (Fn)n�0 denote the filtration generated by the Markov chain

{(Xn, θ̃n), n� 0}. Let us also introduce the successive visit times of state 2. For i � 1

let ηi = inf{n> ηi−1 : Xn = 2} with convention η0 = 0. For n∈ N
∗, one has {N2 � n+ 1} =⋂n

k=1{Xηk+1 ∈ {1, 2}}. Therefore,

P(N2 � n+ 1) = E

(
E

(
n∏

k=1

1{Xηk+1∈{1,2}}|Fηn

))
= E

(
n−1∏
k=1

1{Xηk+1∈{1,2}}P(Xηn+1 ∈ {1, 2}|Fηn)

)

= E

(
n−1∏
k=1

1{Xηk+1∈{1,2}}(1 − Pθηn
(2, 3))

)
,

where we used that the event
⋂n−1

k=1{Xηk+1 ∈ {1, 2}} is Fηn-measurable for the second equal-

ity and the strong Markov property for the chain {(Xl , θ̃l), l � 0} for the last equality. On⋂n−1
k=1{Xηk+1 ∈ {1, 2}}, the sequence {Xl , l � 0} has not visited state 3 before the stopping

time ηn, which implies Pθηn
(2, 3) = 1

3 . Hence,

P(N2 � n+ 1) = 2

3
E

(
n−1∏
k=1

1{Xηk+1∈{1,2}}

)
= 2

3
P(N2 � n)

and one concludes by induction on n. �

To prove Lemmas 5.2 and 5.3, we need the following estimations on Ξn.

D
ow

nloaded from
 https://academ

ic.oup.com
/am

rx/article/2014/2/275/159677 by U
.S. D

epartm
ent of Justice user on 16 August 2022



Efficiency of the Wang–Landau Algorithm 299

Lemma 5.4. For α = 1,

Ξn ∼ nγ�

Γ (1 + γ�)
as n→ ∞. (5.13)

For α ∈ (0, 1),

ln(Ξn) ∼ γ�

1 − α
n1−α as n→ ∞, (5.14)

∀n, Ξn � exp
(

γ�

1 − α
n1−α

)
, (5.15)

and there exists a constant C > 0 independent of n such that

∀n, Ξn �

⎧⎪⎪⎨
⎪⎪⎩

C exp
(

2γ�

√
n− γ 2

�

2
ln n
)

for α = 1

2
,

C exp
(

γ�

1 − α
n1−α

)
for α ∈

(
1

2
, 1
)

.
(5.16)

�

Proof of Lemma 5.4. In the case α = 1, using the Stirling formula, we have

Ξn =
n∏

k=1

(1 + γk) =
n∏

k=1

(
1 + γ�

k

)
= Γ (n+ 1 + γ�)

Γ (1 + γ�)Γ (n+ 1)
∼ nγ�

Γ (1 + γ�)
,

which is (5.13). Now, for α ∈ (0, 1), as n→ ∞,

ln(Ξn) = ln

(
n∏

k=1

(1 + γk)

)
∼ γ�

n∑
k=1

k−α ∼ γ�

1 − α
n1−α.

Moreover,

ln(Ξn) � γ�

n∑
k=1

k−α � γ�

n∑
k=1

∫ k

k−1
x−α dx = γ�

1 − α
n1−α.

To prove (5.16), we start from the lower bound

ln(Ξn) �
n∑

k=1

γk − 1

2

n∑
k=1

γ 2
k .

For α ∈ (0, 1),

n∑
k=1

γk � γ�

n∑
k=1

∫ k+1

k
x−α dx = γ�

1 − α
((n+ 1)1−α − 1) � γ�

1 − α
(n1−α − 1),

so that

ln(Ξn) � γ�

1 − α
(n1−α − 1) − 1

2

n∑
k=1

γ 2
k .
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We now distinguish between two cases. For α ∈ ( 1
2 , 1),

n∑
k=1

γ 2
k = γ 2

�

n∑
k=1

k−2α � γ 2
� + γ 2

�

n∑
k=2

∫ k

k−1
x−2α dx = γ 2

� + γ 2
�

2α − 1
(1 − n1−2α) � 2γ 2

� α

2α − 1
.

Therefore, for n� 1,

ln(Ξn) � γ�

1 − α
(n1−α − 1) − γ 2

� α

2α − 1
,

which gives the expected result. For α = 1
2 ,

n∑
k=1

γ 2
k � γ 2

� + γ 2
�

n∑
k=2

∫ k

k−1
x−1 dx = γ 2

� (1 + ln n),

so that, for n� 1,

ln(Ξn) � 2γ�(
√

n− 1) − γ 2
�

2
(1 + ln n),

which also gives the claimed result. �

Proof of Lemma 5.2. Let us first deal with α ∈ (0, 1). We start by the lower bound on

T0
1→2. Let a be of the form a(ε) = ( 1−α

γ�
(| ln ε| − β(ε)))1/(1−α) for any non-negative function

β(ε) smaller than | ln(ε)| and satisfying (5.4). By (5.7),

ln(P{T0
1→2 > a(ε)}) = ln

(�a(ε)�∏
k=0

pk
11

)
=

�a(ε)�∑
k=0

ln
(

1 − 1

3
(εΞk ∧ 1)

)
� −C0

3

�a(ε)�∑
k=0

(εΞk ∧ 1)

� −C0ε

3

�a(ε)�∑
k=0

Ξk,

where we have used that, by concavity of the function ln, ln(1 − x) � −C0x for x ∈ (0, 1
3 )

with C0 = −3 ln(2/3) > 0. Now, by (5.15),

n∑
k=0

Ξk �
n∑

k=0

exp
(

γ�

1 − α
k1−α

)
�

n∑
k=0

∫ k+1

k
exp
(

γ�

1 − α
x1−α

)
dx

=
∫ n+1

0
exp
(

γ�

1 − α
x1−α

)
dx � (n+ 1)α

γ�

∫ n+1

0
γ�x−α exp

(
γ�

1 − α
x1−α

)
dx

� 1

γ�

(n+ 1)α exp
(

γ�

1 − α
(n+ 1)1−α

)
.

Hence, using the inequality (x + y)δ � xδ + yδ for any (x, y) ∈ R
2
+ and δ ∈ (0, 1),

ln(P{T0
1→2 > a(ε)}) � −C0ε

3γ�

(a(ε) + 1)α exp
(

γ�

1 − α
(a(ε) + 1)1−α

)

� −C1εa(ε)α exp
(

γ�

1 − α
a(ε)1−α

)
,
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where C1 is a constant independent of ε. Therefore,

ln(P{T0
1→2 > a(ε)}) � −C1ε

(
1 − α

γ�

(| ln ε| − β(ε))

)α/(1−α)

exp(| ln ε| − β(ε))

= −C2(| ln ε| − β(ε))α/(1−α) exp(−β(ε)), (5.17)

where C2 = C1(
1−α
γ�

)α/(1−α) is a constant independent of ε. Thus, under the assump-

tion (5.4), we indeed obtain that limε→0 P(T0
1→2 ≤ a(ε)) = 0.

We now turn to an estimate of an upper bound for T0
1→2. Let us introduce a

function b̃(ε) = Cb̃| ln ε|1/(1−α) where Cb̃ is any constant such that Cb̃ > ( 1−α
γ�

)1/(1−α). We also

define an intermediate time ñ(ε) � b̃(ε) such that pñ(ε)
12 = 1

3 , which equivalently writes

1
3 (εΞñ(ε) ∧ 1) = 1

3 that is εΞñ(ε) � 1.

We choose

ñ(ε) = �C̃ | ln ε|1/(1−α)�,
(

1 − α

γ�

)1/(1−α)

< C̃ < Cb̃.

In view of (5.14), and since C̃ α−1 <
γ�

1−α
, it holds Ξn � exp(C̃ α−1n1−α) for n large enough.

Thus, for ε small enough, we obtain

Ξñ(ε) � exp(C̃ α−1�C̃ | ln ε|1/(1−α)�1−α) � 1

ε
,

so that pñ(ε)
12 = 1

3 . An upper bound on T0
1→2 is then obtained as (note that for ε small

enough, �b̃(ε)� − 2 � ñ(ε)):

P(T0
1→2 � b̃(ε)) =

�b̃(ε)�−2∏
k=0

pk
11 �

�b̃(ε)�−2∏
k=ñ(ε)

pk
11 �
(

2

3

)�b̃(ε)�−2−ñ(ε)

� 81

16
exp
[(

ln
3

2

)
(C̃ − Cb̃)| ln ε|1/(1−α)

]
.

The right-hand side goes to zero when ε goes to 0, which yields the result for the asymp-

totic upper bound b̃(ε). This ends the proof of Lemma 5.2 in the case α ∈ (0, 1).

In the case α = 1, for the lower bound, we choose a(ε) = f(ε)ε−1/(1+γ�) for any

function f such that limε→0 f(ε) = 0. We have, using (5.13) for the fourth inequality and
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denoting by C a positive constant which may change from line to line

P(T0
1→2 � a(ε)) = 1 − P(T1→2 > �a(ε)�) = 1 −

�a(ε)�−1∏
k=0

pk
11

� 1 − (p�a(ε)�
11 )�a(ε)� = 1 − exp(�a(ε)� ln(p�a(ε)�

11 )) � −�a(ε)� ln(p�a(ε)�
11 )

= −�a(ε)� ln
(

1 − 1

3
(εΞ�a(ε)� ∧ 1)

)
� −�a(ε)� ln

(
1 − 1

3
εΞ�a(ε)�

)

� −�a(ε)� ln(1 − C εa(ε)γ�) � −�a(ε)� ln(1 − C ε1/(1+γ�) f(ε)γ�)

� C �a(ε)�ε1/(1+γ�) f(ε)γ� � C f(ε)1+γ� ,

which converges to 0 as ε goes to 0.

We now consider the upper bound. We set b(ε) = g(ε)ε−1/(1+γ�) with limε→0 g(ε) =
∞. In the following, we assume that g grows sufficiently slowly so that limε→0 ε(b(ε))γ� =
0. This is not a restrictive assumption since the probability P(T0

1→2 � b(ε)) is even

lower when the function g goes faster to infinity. Moreover, upon replacing g(ε) by

ε1/(1+γ�)�ε−1/(1+γ�)g(ε)�, we may assume that b : (0, 1) → N. One has

P(T0
1→2 � b(ε)) =

b(ε)−2∏
k=0

pk
11 =

b(ε)−2∏
k=0

(
1 − 1

3
(εΞk ∧ 1)

)
.

For k� b(ε), it holds εΞk � εΞ�b(ε)� with the right-hand side smaller than C εb(ε)γ�

by (5.13). This upper bound goes to zero as ε goes to zero by assumption. Thus, for ε

sufficiently small,

P(T0
1→2 � b(ε)) =

b(ε)−2∏
k=0

(
1 − 1

3
εΞk

)
�

b(ε)−2∏
k=0

(1 − C εkγ� ), (5.18)

where C is a constant independent of ε. Then, using the fact that εb(ε)γ� is smaller than

1/C for ε sufficiently small, we have in this limit

ln

(
b(ε)−2∏

k=0

(1 − C εkγ� )

)
=

b(ε)−2∑
k=0

ln (1 − C εkγ� ) � −C ε

b(ε)−2∑
k=1

kγ�

� −C ε

b(ε)−2∑
k=1

∫ k

k−1
xγ� dx = −C ε

∫ b(ε)−2

0
xγ� dx

= − C

γ� + 1
ε(b(ε) − 2)γ�+1 � − C

γ� + 1

(
1 − 2

b(ε)

)γ�+1

g(ε)γ�+1.

Using this estimate in (5.18) leads to the existence of a modified positive constant C such

that for ε small enough, P(T0
1→2 � b(ε)) � exp(−Cg(ε)γ�+1), the right-hand side going to 0

as ε → 0. This therefore concludes the proof of Lemma 5.2 in the case α = 1. �
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Remark 5.2. Considering the Equation (5.17), one could think of replacing the assump-

tion (5.4) on β by the seemingly weaker one:

lim
ε→0

(| ln ε| − β(ε))α/(1−α) exp(−β(ε)) = 0.

But both conditions are equivalent since

| ln ε|α/(1−α) exp(−β(ε)) � 1{β(ε)�| ln ε|/2}2α/(1−α)(| ln ε| − β(ε))α/(1−α) exp(−β(ε))

+ 1{β(ε)>| ln ε|/2}(| ln ε|)α/(1−α) exp(−| ln ε|/2).
�

In order to prove Lemma 5.3, we need, as explained in the proof of Proposi-

tion 5.1, to ensure that θ̃n(2) remains small when T0
1→2 > a(ε) and N2 � Δ(ε).

Lemma 5.5. Let us assume that α ∈ (0, 1]. Let us consider a non-negative constant Δ and

a constant a� 1. Let ν2(n) denote the number of visits of state 2 up to time n included.

Then, on the event {T0
1→2 > a}, for any n such that ν2(n) � Δ,

θ̃n(2) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

(
γ�

1 − α
�a�1−α

((�a + Δ� + 1

�a�
)1−α

− 1

))
if α ∈ (0, 1),

(�a + Δ� + 1

�a�
)γ�

if α = 1.

(5.19)

�

Proof of Lemma 5.5. On the event {T0
1→2 > a}, for n such that ν2(n) � Δ, it holds

θ̃n(2) ≤
�a+Δ�+1∏
k=�a�+1

(
1 + γ�

kα

)
.

Now,

ln

⎛
⎝�a+Δ�+1∏

k=�a�+1

(
1 + γ�

kα

)⎞⎠=
�a+Δ�+1∑
k=�a�+1

ln
(
1 + γ�

kα

)
�

�a+Δ�+1∑
k=�a�+1

γ�

kα

�
�a+Δ�+1∑
k=�a�+1

∫ k

k−1

γ�

xα
dx =
∫ �a+Δ�+1

�a�

γ�

xα
dx.

When α = 1, the right-hand side is equal to γ� ln
(

�a+Δ�+1
�a�
)
, which gives the claimed

result. When α ∈ (0, 1), the right-hand side is equal to

γ�

1 − α
�a�1−α

((�a + Δ� + 1

�a�
)1−α

− 1

)
,
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which concludes the proof. �

Proof of Lemma 5.3. Let c(ε) = � b(ε)−b̃(ε)

Δ(ε)
� − 1. Using the fact that N2→1 � N2, and recall-

ing that (Fn)n�0 denotes the filtration generated by ((Xn, θn))n�0, it holds

P

(
T0

1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε),
N2→1∑
i=1

Ti
1→2 � b(ε) − Δ(ε) − b̃(ε)

)

� P

(
T0

1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε), ∃i ∈ {1, . . . , N2→1}, Ti
1→2 � b(ε) − b̃(ε)

Δ(ε)
− 1

)

�
Δ(ε)∑
l=1

P(T0
1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε), N2→1 = l, ∃i ∈ {1, . . . , l}, Ti

1→2 � c(ε))

�
Δ(ε)∑
l=1

l∑
i=1

P(T0
1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε), N2→1 = l, Ti

1→2 � c(ε))

=
Δ(ε)∑
i=1

P(T0
1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε), N2→1 � i, Ti

1→2 � c(ε))

�
Δ(ε)∑
i=1

E(1{T0
1→2>a(ε),N2→1�i}P(N2 � Δ(ε), Ti

1→2 � c(ε)|Fτ i
2→1

)), (5.20)

where τ i
2→1 is defined by (5.10). We recall that ν2(n) denotes the number of visits of state

2 up to time n included. On N2→1 � i, N2 � ν2(τ
i
2→1 + Ti

1→2) and therefore, by using the

strong Markov property of the chain ((Xn, θn))n�0, we obtain that, on the event {N2→1 � i},

P(N2 � Δ(ε), Ti
1→2 � c(ε)|Fτ i

2→1
)

� E(1{ν2(τ i
2→1+c(ε)−2)�Δ(ε),X

τ i
2→1

=1,...,X
τ i
2→1+c(ε)−2=1}P(Xτ i

2→1+c(ε)−1 = 1|Fτ i
2→1+c(ε)−2)|Fτ i

2→1
)

= E(1{ν2(τ i
2→1+c(ε)−2)�Δ(ε),X

τ i
2→1

=1,...,X
τ i
2→1+c(ε)−2=1}(1 − Pθ

τ i
2→1+c(ε)−2

(1, 2))|Fτ i
2→1

). (5.21)

We recall that

Pθn(1, 2) = 1

3

(
ε
θ̃n(1)

θ̃n(2)
∧ 1

)
.

On the event {T0
1→2 > a(ε)}, we have, for n� a(ε), θ̃n(1) � Ξa(ε), so that Pθn(1, 2) � εΞa(ε)

3θ̃n(2)
∧ 1

3 .

Since Δ(ε) = O(a(ε)α), by Lemma 5.5, there exist constants M ∈ (0, +∞) and ε̄ ∈ (0, 1) such

that for

∀ε ∈ (0, ε̄), on the event {T0
1→2 > a(ε)}, ∀n s.t. ν2(n) � Δ(ε), θ̃n(2) � M. (5.22)

As a consequence, for ε ∈ (0, ε̄), on the event {T0
1→2 > a(ε)} ∩ {N2→1 � i} ∩ {ν2(τ

i
2→1 + c(ε) −

2) � Δ(ε)}, θ̃τ i
2→1+c(ε)−2(2) � M and therefore Pθ

τ i
2→1+c(ε)−2

(1, 2) � εΞa(ε)

3M ∧ 1
3 . Since, from (5.15),
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εΞa(ε) � exp(−β(ε)) which goes to zero as ε goes to 0, we deduce that, up to diminishing

ε̄, for any ε ∈ (0, ε̄),

Pθ
τ i
2→1+c(ε)−2

(1, 2) � εΞa(ε)

3M̃
on the event {T0

1→2 > a(ε)} ∩ {N2→1 � i} ∩ {ν2(τ
i
2→1

+ c(ε) − 2) � Δ(ε)}.

With (5.21), we deduce that on {T0
1→2 > a(ε)} ∩ {N2→1 � i},

P(N2 � Δ(ε), Ti
1→2 � c(ε)|Fτ i

2→1
)

� E

(
1{ν2(τ i

2→1+c(ε)−3)�Δ(ε),X
τ i
2→1

=1,...,X
τ i
2→1+c(ε)−3=1}

(
1 − εΞa(ε)

3M

)
(1 − Pθ

τ i
2→1+c(ε)−3

(1, 2))

∣∣∣∣Fτ i
2→1

)
.

Iterating the reasoning, we obtain that, on {T0
1→2 > a(ε)} ∩ {N2→1 � i},

P(N2 � Δ(ε), Ti
1→2 � c(ε)|Fτ i

2→1
) �
(

1 − εΞa(ε)

3M

)c(ε)−1

.

With (5.20) and the definition of c(ε), we deduce that

P

(
T0

1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε),
N2→1∑
i=1

Ti
1→2 � b(ε) − Δ(ε) − b̃(ε)

)

� Δ(ε) exp

((⌈
b(ε) − b̃(ε)

Δ(ε)

⌉
− 2

)
ln
(

1 − εΞa(ε)

3M

))
(5.23)

For α ∈ [ 1
2 , 1), we deduce that

P

(
T0

1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε),
N2→1∑
i=1

Ti
1→2 � b(ε) − Δ(ε) − b̃(ε)

)

� Δ(ε) exp
(

−K
1

Δ(ε)
| ln ε|1/(1−α)εΞa(ε)

)

for some positive constant K > 0. We conclude by (5.16), which ensures

1

Δ(ε)
| ln ε|1/(1−α)εΞa(ε) � C

1

Δ(ε)
| ln ε|1/(1−α)ε exp

(
γ�

1 − α
a(ε)1−α

)

= C
1

Δ(ε)
| ln ε|1/(1−α) exp(−β(ε)),
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for α ∈ ( 1
2 , 1) and

1

Δ(ε)
| ln ε|1/(1−α)εΞa(ε) � C

1

Δ(ε)
| ln ε|2ε exp

(
2γ�

√
a(ε) − γ 2

�

2
ln(a(ε))

)

= C
1

Δ(ε)
| ln ε|2 exp(−β(ε))(| ln ε| − β(ε))−γ 2

�

� C
1

Δ(ε)
| ln ε|2−γ 2

� exp(−β(ε)),

for α = 1
2 .

When α = 1, (5.23) implies

P

(
T0

1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε),
N2→1∑
i=1

Ti
1→2 � b(ε) − Δ(ε) − b̃(ε)

)

� Δ(ε) exp
((

g(ε) − g̃(ε)

Δ(ε)
ε−1/(1+γ�) − 2

)
ln
(

1 − εΞa(ε)

3M

))
.

Using the fact that, by (5.13), there exists a constant C independent of ε such that

εΞa(ε) � C f(ε)γ�ε1/(1+γ�),

so that the left-hand side goes to zero when ε goes to zero, we obtain (the constants C , C ′

are independent from ε small enough, and their values may change from one occurrence

to another)

P

(
T0

1→2 ∈ (a(ε), b̃(ε)), N2 � Δ(ε),
N2→1∑
i=1

Ti
1→2 � b(ε) − Δ(ε) − b̃(ε)

)

� C ′Δ(ε) exp
(

−C
g(ε) − g̃(ε)

Δ(ε)
ε−1/(1+γ�)εΞa(ε)

)

� C ′Δ(ε) exp
(

−C
g(ε) − g̃(ε)

Δ(ε)
f(ε)γ�

)
. �

6 Discussion of the Successive Exit Times of the Metastable States

In this section, we consider the scaling of the successive transition times back and forth

between states 1 and 3, and not only of the first transition time from 1 to 3. For the sake

of conciseness, we do not provide complete proofs of the results, but only indicate how

to adapt the previous reasoning to the successive exit times.

For the nonadaptive dynamics {X̄n, n≥ 0}, the analysis is very easy. Let T̄3→1

denote the time between T̄1→3 and the first subsequent return to state 1 : T̄3→1 = min{n>

T̄1→3 : X̄n = 1} − T̄1→3. Of course by symmetry, the asymptotic behavior of εT̄3→1 as ε → 0
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is the same as the one of εT̄1→3 given by Proposition 3.1: εT̄3→1 scales like 6/ε and con-

verges in distribution to an exponential random variable with parameter 1/6. And more

generally, all the successive durations needed by the Metropolis–Hastings algorithm to

go from one of the extremal states 1 and 3 to the other scale like 6/ε.

Let us now discuss the successive exit times of the Wang–Landau algorithm. We

first consider the easier case α ∈ [ 1
2 , 1) in Section 6.1, which is illustrated by numerical

experiments in Section 6.2. We finally discuss the case α = 1 in Section 6.3.

6.1 Successive exit times of the Wang–Landau algorithm for α ∈ [ 1
2 , 1)

Setting n(ε) = ( 1−α
γ�

)1/(1−α)| ln ε|1/(1−α), one has T1→3 ∼ n(ε) according to Proposition 3.2.

Let T3→1 denote the time between T1→3 and the first subsequent return to state 1

: T3→1 = min{n> T1→3 : Xn = 1} − T1→3. To analyze the asymptotic behavior of T3→1 as

ε → 0, one needs the vector θ̃T1→3 of unnormalized weights at time T1→3. One has θ̃T1→3(3) =
1 + γ�T

−α
1→3 = 1 + o(1). By the proof of Proposition 3.2 (see in particular Lemma 5.2

and (5.22)), there is a finite constant M such that limε→0 P(θ̃T1→3(2) � M) = 1. Last, since

before time T1→3, the algorithm stays in state 1 at least during the time interval

[0, T1→2 − 1] and at most during the time interval [0, T1→3 − 2],

ΞT0
1→2−1 � θ̃T0

1→2
(1) � θ̃T1→3(1) � ΞT1→3−2. (6.1)

For c ∈ (1, +∞), choosing Ca = ( 1−α
cγ�

)1/(1−α) and Cb = ( c(1−α)

γ�
)1/(1−α), one deduces by

Lemma 5.2, Proposition 3.2, and (5.14), that

lim
ε→0

P

(
1

c
| ln ε| � ln(θ̃T1→3(1)) � c| ln ε|

)
= 1.

This means that θ̃T1→3(1) is approximately of order 1
ε
. We will perform the analysis of

T3→1, under the simplifying assumption that θ̃T1→3(1) � C
ε

so that, as long as state 1 has

not been reached again after T1→3, the transition probability from state 2 to state 1

remains of order 1. Then the only difference with the analysis of T1→3 is that the step

sizes of the Wang–Landau algorithm have been shifted into (
γ�

(T1→3+n)α
)n�1. Repeating the

analysis performed in the proof of Lemma 5.2, we see that the time T0
3→2 needed by the

algorithm to reach again state 2 will be of order n2(ε) such that

n2(ε)∑
k=n(ε)

exp

⎛
⎝ k∑

j=n(ε)

γ�

jα

⎞
⎠= O

(
1

ε

)
.

This condition gives n2(ε) ∼ ( 2(1−α)

γ�
)1/(1−α)| ln ε|1/(1−α). So, repeating the arguments given

in the proof of Proposition 3.2, one expects that T3→1 is of order ( 2(1−α)

γ�
)1/(1−α)| ln ε|1/(1−α)
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Fig. 5. Left: Scaling of successive exit times as a function of the inverse temperature (in log–log

scale) in the case α = 0.6 and γ� = 1. The first three exit times are of the same order of magnitude.

All the subsequent exit times have similar orders of magnitudes. The exit times starting from the

third one are much smaller than the first two. Right: Typical trajectory for β = 15 when α = 0.6

and γ� = 1. Note how the system first explores the two metastability basins before more freely

switching from one basin to the other.

and that θ̃T1→3+T3→1(2) remains bounded. Moreover, one also expects that θ̃T1→3+T3→1(3) is

approximately of order 1
ε
.

At time T1→3 + T3→1, one has θ̃T1→3+T3→1(2) bounded uniformly in ε whereas

θ̃T1→3+T3→1(1) and θ̃T1→3+T3→1(3) are both approximately of order 1
ε

so that every entry in

the transition matrix PθT1→3+T3→1
but the ones with indices (1, 3) and (3, 1) are approx-

imately of order 1. So one expects, that after time T1→3 + T3→1 which is of order

(1 + 21/(1−α))( 1−α
γ�

)1/(1−α)| ln ε|1/(1−α), the Wang–Landau algorithm has got rid of the ini-

tial metastability and moves freely from any of the extremal states 1 and 3 to the other

one with the only constraint of going through state 2.

6.2 Numerical results

The above theoretical results on the scaling of the exit times for a simple three-state

model can be numerically checked for the model presented in Section 4. We present in

Figure 5 the average successive exit times as a function of the inverse temperature in

the case α = 0.6 and γ� = 1, as well as a typical trajectory in order to visualize more

clearly the qualitative behavior of the system. We denote by tk
β the average kth exit

time, obtained by averaging exit times obtained for M = 105 independent realizations

for the smallest values of β, and a few thousands for the largest values of β (the other
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parameters being the same as in Section 4.4, namely R= 1.1, d= 22, υ = 0.1). The time t1
β

is the first transition time tβ introduced in Section 4, t2
β is the average of the first transi-

tion time from the value x1 = 1 back to x1 = −1, t3
β is the average of the second transition

time from the value x1 = −1 to x1 = 1, and so forth. Our numerical results show that

tk
β ∼ Ckβ

a

with a= 2.5 for k= 1, 2, 3, while a� 1.7 for k� 4. Several conclusions can be drawn. First,

the first two exit times indeed have the same scaling, as expected from the analysis

in the previous section. Moreover, the subsequent exit times (except for the third one)

also have the same scalings, but are much shorter in average than the first two exit

times. They are however still growing with β. This is due to the fact that, in this case

which is more complex than the simple three-state model, some metastability remains,

as illustrated by Figure 1(Right): there are still energy (or free energy) barriers to cross,

even for the biased potential.

6.3 Successive exit times of the Wang–Landau algorithm for α = 1

In the case α = 1, by Proposition 3.2, T1→3 is approximately of order n(ε) = ε−1/(1+γ�).

One still has θ̃T1→3(3) = 1 + γ�T
−1
1→3 = 1 + o(1) and θ̃T1→3(2) bounded uniformly in ε small

enough. Moreover, (6.1), Proposition 3.2, Lemma 5.2, and (5.13), imply that for any func-

tion h such that limε→0 h(ε) = +∞,

lim
ε→0

P(h(ε)−γ�ε−γ�/(1+γ�) � θ̃T1→3(1) � h(ε)γ�ε−γ�/(1+γ�)) = 1.

In particular, θ̃T1→3(1) � C
ε
. Now, the time T0

3→2 needed by the algorithm to reach again

state 2 will be of order n2(ε) such that
∑n2(ε)

k=n(ε)

∏k
j=n(ε)(1 + γ�

j ) = O( 1
ε
). With this condi-

tion, we deduce that T0
3→2 and T3→1 will be approximately of order ε

− 1+2γ�

(1+γ�)2 . As a conse-

quence T1→3 = o(T3→1), which we could guess from the explosion as α → 1 of the factor

21/(1−α) appearing in the analysis for α ∈ [ 1
2 , 1). Now, while θ̃T1→3+T3→1(2) remains bounded,

θ̃T1→3+T3→1(1) is approximately of order ε−γ�/(1+γ�) while θ̃T1→3+T3→1(3) is approximately of

order
∏n2(ε)

j=n(ε)(1 + γ�

j ), that is, of order ε
−(

γ�
1+γ�

)2

. So there remains some metastability pre-

venting the algorithm to move quickly from any of the extremal states to the other one.

For instance, the time it will need after T1→3 + T3→1 to go back to state 3 will be approxi-

mately of order ε−(1+2γ�+2γ 2
� )/(1+γ�)

3
, which is intermediate between the orders of T1→3 and

T3→1. Next, it will take a time of approximate order ε−(1+2γ�)/(1+γ�)
2

to go back to state 1

and the next transition times should be smaller since the orders of θ̃ (1) and θ̃ (3) have

increased but the shift in the sequence of step sizes is only multiplied by a constant.
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