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Efficiency of Two Sample Tests via the t-Mean
Survival Time for Analyzing Event Time

Observations

Lu Tian, Haoda Fu, Stephen J. Ruberg, Hajime Uno, and LJ Wei

Abstract

In comparing two treatments with the event time observations, the hazard ratio
(HR) estimate is routinely used to quantify the treatment difference. However,
this model dependent estimate may be difficult to interpret clinically especially
when the proportional hazards (PH) assumption is violated. An alternative es-
timation procedure for treatment efficacy based on the restricted means survival
time or t-year mean survival time (t-MST) has been discussed extensively in the
statistical and clinical literature. On the other hand, a statistical test 1 via the HR
or its asymptotically equivalent counterpart, the logrank test, is asymptotically
distribution-free. In this paper, we assess the relative efficiency of the hazard ratio
and t-MST tests with respect to the statistical power using various PH and non-PH
models under theoretical and practical settings. When the PH assumption is valid,
the t-MST test performs almost as well as the HR test. For non-PH models, the
t-MST test can substantially outperform its HR counter- part. On the other hand,
the HR test can be powerful when the true difference of two survival functions
is quite large at end of the study. Unfortunately, for this case, the HR estimate
may not have a simple clinical interpretation for the treatment effect due to the
violation of the PH assumption.
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Abstract

In comparing two treatments with the event time observations, the
hazard ratio (HR) estimate is routinely used to quantify the treatment
difference. However, this model dependent estimate may be difficult
to interpret clinically especially when the proportional hazards (PH)
assumption is violated. An alternative estimation procedure for treat-
ment efficacy based on the restricted means survival time or t-year
mean survival time (t-MST) has been discussed extensively in the sta-
tistical and clinical literature. On the other hand, a statistical test
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via the HR or its asymptotically equivalent counterpart, the logrank
test, is asymptotically distribution-free. In this paper, we assess the
relative efficiency of the hazard ratio and t-MST tests with respect
to the statistical power using various PH and non-PH models under
theoretical and practical settings. When the PH assumption is valid,
the t-MST test performs almost as well as the HR test. For non-PH
models, the t-MST test can substantially outperform its HR counter-
part. On the other hand, the HR test can be powerful when the true
difference of two survival functions is quite large at end of the study.
Unfortunately, for this case, the HR estimate may not have a simple
clinical interpretation for the treatment effect due to the violation of
the PH assumption.

Keyword Asymptotic relative efficiency; Hazard ratio; Propor-
tional hazards model; Survival analysis; t-year mean survival time

1 Introduction

In a randomized, comparative clinical trial with an event time as the study
end point, treatment difference is often summarized by the hazard ratio (HR)
by assuming a proportional hazards (PH) model, namely, the ratios of two
hazard functions between two treatment groups, labeled as 1 and 0, are ap-
proximately constant over time (Cox, 1972). Under the PH assumption, the
HR can be consistently estimated by maximizing a partial likelihood func-
tion from the Cox model. However, a HR of, for instance, 0.7 for treatment
1 versus treatment 0 cannot be interpreted as a 30% risk reduction in favor
of treatment 1 since the hazard is not a probability measure. Moreover, ow-
ing to the lack of a simple estimator of the hazard function for treatment
0, it is not clear whether a HR of 0.7 is clinically meaningful. For a “low”
hazard function for treatment group 0, a 30% reduction of hazard in treat-
ment group 1 may not be clinically important. Furthermore, when the PH
assumption is violated, the HR estimator from the Cox model converges to
a parameter which is difficult to interpret (Kalbfleisch and Prentice, 1981;
Lin and Wei, 1989). For this case, one often considers the estimated HR
as an approximation to a weighted average of the HR’s over time. Unfortu-
nately, the weights depend on the censoring distributions. This adds another
complexity of translating HR for effective clinical decision making. Other
model-based summary measures for the group difference have similar issues
as the HR (Wei, 1992).

2

http://biostats.bepress.com/harvardbiostat/paper210



There are several alternatives to summarize a survival distribution. For
example, the median survival time, the t-year event rate and the t-year mean
survival time, t-MST. The t-year mean survival time is also coined as the re-
stricted mean survival time. In this paper we are interested in studying
properties of using a summary measure as a group contrast based on the
t-MST. The inference procedures for t-MST and the function thereof have
been studied extensively, for example, by Karrison (1987); Zucker (1998);
Royston and Parmar (2011); Zhao et al. (2012); Tian et al. (2014) and Uno
et al. (2014). The t-MST has a clear physical and clinical interpretation. For
example, an observed 2.5 year of the 3-year mean survival time means if a pa-
tient is followed up to 3 years, on average, he or she would survive 2.5 years.
The t-MST can be readily estimated via the area under the corresponding
Kaplan-Meier (KM) curve up to t year. Contrary to the model-dependent
nature of the HR, the treatment effect can be quantified by, for example,
the difference in t-MST between two treatment groups, which is purely non-
parametric without requiring any model assumption. This group difference
measure with a reference value of t-MST from the control arm in a compar-
ative study is more informative than the HR.

Since the HR estimate is routinely used for making inference about the
treatment effect, it would be interesting to compare it with the t-MST based
inference procedure. However, since these two estimation procedures empir-
ically quantify different parameters, it seems difficult, if not impossible, to
study their relative merits from an estimation point of view. On the other
hand, under the testing hypothesis paradigm, the HR based test is asymptot-
ically distribution-free. Therefore, it is possible to compare the t-MST and
HR based tests with respect to, for example, their conventional statistical
power profiles. It is interesting to note that recently Trinquart et al. (2016)
utilized the data from a large number of clinical trials to show empirically
these two types of tests are quite concordant in terms of the conventional
statistical significance interpretation. In this paper, we formally compare
these two types of tests under a more theoretical setting. In general, we find
that the test based on t-MST performs well compared with its HR counter-
part when the PH assumption is valid. This is similar to the comparison
of two treatments where the response measure is a continuous variable. In
that situation, the Wilcoxon rank sum test has comparable efficiency to the
t-test when the underlying data model is a normal distribution, but can be
considerably more powerful when the underlying data model deviates from
normality. For certain non-PH models, for instance, when the two survival
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functions are quite large at the end of the study followup time, the HR test
is quite powerful. Unfortunately, the corresponding HR estimate is difficult
to interpret clinically. With this additional finding, the robust, easily inter-
pretable t-MST based inference procedure provides a useful alternative tool
to the HR based counterpart in survival analysis. We use the data from a
recent clinical trial and extensive numerical study with practical settings to
illustrate our findings.

Note that there are quite a few two sample tests available in the litera-
ture to handle non-PH cases (Fleming et al., 1987; Pepe and Fleming, 1989;
Kosorok and Lin, 1999; Uno et al., 2015). Unfortunately they don’t neces-
sarily have the corresponding estimation procedures available. It is ideal if
we have a clinically interpretable, nonparametric estimator for the treatment
effect, which can also serve as a test statistic for testing the equivalence of
two survival functions.

2 The HR and t-MST based tests for the

equivalence of two survival functions

Let T1 and T0 be the event times in treatment groups 1 and 0, respectively.
The group difference in t-MST up to the time point t is defined as

D = E(T1 ∧ t)− E(T0 ∧ t),

which is the area between two survival curves over the time interval [0, t] :∫ t

0

{S1(u)− S0(u)}du,

where Sj(·) is the survival function of the failure time Tj in arm j, j = 0, 1. In
order to make D identifiable based on observed data, πj(t) = pr (Tj ∧ Cj ≥ t)
needs to be bounded below from zero, where Cj denotes the censoring time
in treatment group j, j = 0, 1. In practice, t can be chosen, for example, as
the minimum of the 95th percentiles of observed Tj ∧Cj from two treatment
groups. The difference in t-MST can then be estimated by

D̂ =

∫ t

0

{
Ŝ1(u)− Ŝ0(u)

}
du,
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where Ŝj(t) is the KM estimator for Sj(t). As the sample size n → ∞,√
n(D̂ − D) converges weakly to a mean zero Gaussian distribution whose

variance can be consistently estimated by

σ̂2
D =

∫ t

0

{∫ t

v

Ŝ0(u)du

}2
dΛ̂0(v)

p0π̂0(v)
+

∫ t

0

{∫ t

v

Ŝ1(u)du

}2
dΛ̂1(v)

p1π̂1(v)
, (1)

where pj is the proportion of patients randomized into group j, π̂j(v) is the

empirical counterpart of πj(v) and Λ̂j(t) is the Nelsen-Aalan estimator for
the cumulative hazard function in group j, j = 0, 1. Under the null hypothesis
that there is no difference between two survival functions, the distribution of√
nD̂/σ̂D is approximately the standard normal for large n.

Similarly, let θ̂ be the estimator of θ =log(HR) by maximizing the partial
likelihood function over the time interval [0, t]. Under the PH model, as
n→∞,

√
n(θ̂ − θ) converges weakly to a mean zero Gaussian distribution ,

whose variance can be consistently estimated by

σ̂2
θ =

[∫ t

0

eθ̂p0p1π̂0(u)π̂1(u)

p0π̂0(u) + eθ̂p1π̂1(u)
dΛ̃0(u)

]−1

, (2)

where Λ̃0(u) is the Breslow estimator for the cumulative hazard function at
the treatment group 0. Note that similar to t-MST, in theory the large sam-
ple normal approximation to the distribution of HR estimator is only valid
with observations within a finite time interval, say [0, t], where π0(t)π1(t) > 0
(p289-290, Chapter 8, Fleming and Harrington (2011)). There is a miscon-
ception that one may use all the observed and censored data to make inference
about the treatment effect via the HR estimate. Under the null hypothesis,
θ = 0 and the distribution of

√
nθ̂/σ̂θ is approximately standard normal for

large n. Therefore, tests based on both D̂ and θ̂ are asymptotical valid in
retaining the appropriate type I error rate.

3 Asymptotical efficiency of the test based on

D̂ and θ̂

In this section, we derive the asymptotic efficiencies of the tests based on D̂
and θ̂ under a sequence of contiguous alternatives (Hoeffding and Rosenblatt,
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1955; Hodges and Lehmann, 1956). Specifically, for the current case, these
alternatives are defined as

log

{
λ1n(u)

λ0(u)

}
=
α(u)√
n
,

where λ0(t) and λ1n(t) are the hazard functions of the failure time T0 from
the treatment 0 and T1n from the treatment 1, whose distribution depends
on the sample size n, respectively (Lagakos, 1988; Slud, 1991). Here, α(·) is
a deterministic function over time providing a specific alternative hypothesis
of interest. For any given α(·), we can derive the asymptotic efficiency of
the test under the mild regularity conditions given in p230-232, Chapter 6,
Fleming and Harrington (2011).

For study size n, it follows from similar arguments in Schoenfeld (1981)
and Harrington and Fleming (1982) that under the above contiguous alter-
natives

√
nD̂ is asymptotic normal with mean∫ t

0

{∫ v

0

α(u)λ0(u)du

}
S0(v)dv

and variance

σ2
D =

∫ t

0

{∫ t

v

S0(u)du

}2
λ0(v)

w(v)
dv, (3)

which is the limit of σ̂2
D defined in (1), where

w(v) =
p0p1π0(v)π1(v)

p0π0(v) + p1π1(v)
.

Thus, the asymptotic efficiency of the test based D̂ is

ξ1 =

[∫ t
0
{
∫ t
v
S0(u)du}α(v)λ0(v)dv

]2
∫ t
0

{∫ t
v
S0(u)du

}2

w(v)−1λ0(v)dv
.

Similarly, it follows from Lin and Wei (1989) that under above contiguous
alternatives the test statistic

√
nθ̂ is also asymptotic normal with mean∫ t

0
w(u)α(u)λ0(u)du∫ t
0
w(u)λ0(u)du
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and variance

σ2
θ =

(∫ t

0

w(u)λ0(u)dt

)−1

, (4)

which is the limit of σ̂2
θ in (2). The asymptotic efficiency for this test is

ξ2 =

[∫ t
0
w(u)α(u)λ0(u)du

]2
∫ t
0
w(u)λ0(u)du

.

It follows that the asymptotical relative efficiency (ARE) of the t-MST based
test relative to the HR-based test is ξ1/ξ2, which can be interpreted approx-
imately as the inverse of the ratio of the sample sizes needed for two tests to
have the same power to detect the alternative λ1n(u) = exp {α(u)/

√
n}λ0(u).

Note that the standard logrank test, a score test based on the Cox partial
likelihood function for testing the equivalence of two survival functions, is
asymptotically equivalent to the Wald-type of test based on the HR and
therefore ξ1/ξ2 is also the ARE of the t-MST based test relative to the logrank
test.

For comparing two tests, the ARE may not be informative since there is
no reference value to interpret the ratio. Since ARE is approximately a ratio
of the sample size of two tests to have similar power for testing the same al-
ternative hypothesis, this connection provides a clear practical interpretation
of ARE (Schoenfeld and Richter, 1982; Zhang and Quan, 2009). Specifically,
assuming that the alternative hypothesis consists of two fixed unequal hazard
functions, say, λ0(u) and λ1(u), the sample size needed for the t-MST based
test can be approximated by (z1−α/2 + z1−β)2/ξ1, if this alternative is “close”
to the null hypothesis, where zq is qth quantile of the standard normal and
α and β are the Type I and II error rates, respectively. More generally, a
more accurate sample size estimator for 100(1− β)% power at the two-sided
significance level of α is

(z1−α/2 + z1−β)2

∫ t
0

[{∫ t
v
S0(u)du

}2
λ0(v)
p0π0(v)

+
{∫ t

v
S1(u)du

}2
λ1(v)
p1π1(v)

]
dv[∫ t

0
{S1(u)− S0(u)}du

]2 , (5)

for any pair of {λ0(u), λ1(u)}. Similarly, the corresponding sample size esti-
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mate analogy for HR based test is

(z1−α/2 + z1−β)2

∫ t
0
w(u)2

{
λ0(u)
p0π0(u)

+ λ1(u)
p1π1(u)

}
du[∫ t

0
w(u) {λ1(u)− λ0(u)} du

]2 . (6)

When λ1(u) is close to λ0(u), the ratio of the two sample size estimates
is approximately equal to the inverse of ARE. The ARE, coupled with these
two sample size estimates, may provide a meaningful comparison of the two
tests. However, when λ1(u) is quite different from λ0(u), ARE may not be
a good approximation to the ratio of the sample sizes needed for two tests
of interest. In such a case, one may consider the empirical relative efficiency
(ERE), E2

D/E
2
θ , where

ED =
E(D̂)

se(D̂)
and Eθ =

E(θ̂)

se(θ̂)

are the effect sizes standardized by their standard errors for tests based on
D̂ and θ̂, respectively. Unlike ARE, ERE often does not have a closed-form
expression and can only be approximated by numerical simulations for given
sample sizes. Although computing ERE is in general more difficult than
ARE, it can approximate the ratio of (5) and (6) fairly well and be used to
evaluate the relative merits of two tests under any alternative. An example
is given in the next section to illustrate this point.

4 Example and Numerical Study

In this section, we first use a study recently conducted by the ECOG-ACRIN
Cancer Research Group to compare low- and high-dose dexamethasone for
treating newly diagnosed multiple myeloma (Rajkumar et al., 2010) to illus-
trate how to interpret the ARE (t-MST vs. HR based tests). This study
randomized 222 patients to the low-dose group and 223 patients to the high-
dose group. Figure 2a shows the resulting KM curves of overall survival by
treatment groups. Visually it seems that the patients in the low-dose group
survived longer than those in the high dose group. The p-values from the
tests based on HR and t-MST are 0.47 and 0.04, respectively. The discrep-
ancy is likely due to the presence of crossing hazards. In this study, the
nonparametric KM curves are fairly similar to their parametric counterparts
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based on a Weibull model (Figure 1b). Now, suppose that we are interested
in designing a new study using the results from this ECOG-ACRIN study.
That is, assume that the observed pattern of the two observed hazard func-
tions from this study is the alternative hypothesis for a new study. The
question is how the t-MST test would perform compared with the HR based
test with respect to the ARE and how to interpret this ratio measuring the
relative merit of these two tests. To this end, we assume that the under-
lying hazard functions follow Weibull distributions as shown in Figure 1b.
Furthermore, we assume this new study would have similar patient’s accrual
and follow up time patterns, that is the entire study duration is about 43
months with a 19-month enrollment period. Furthermore, we let the time of
loss of follow-up follows an exponential distribution with an annual drop-off
rate of 1% for both arms without accounting for the administrative censor-
ing due to the staggered entry of study patients. We also let t = 40 months
for defining the follow-up period of interest for t-MST and HR. Under these
assumptions, the required sample size for 80% power at the significance level
of 0.05 is nθ = 2392 per arm for the HR-based test and nD = 564 per arm for
the t-MST based test. The ARE is 2.09, which also strongly favors t-MST
based test but quantitatively different nθ/nD. In this case, we also can use
simulation to directly estimate the ERE, the finite sample analogy of ARE.
To this end, we simulate 5000 sets of data consisting of 1000 patients each
under the assumed alternatives and obtain the corresponding D̂ and θ̂ from
each simulated data set. We then approximate the expectation and variance
of D̂ (and θ̂) by their empirical counterparts. The resulting ERE is 4.14,
which is pretty close to nθ/nD. It suggests that the “alternative” of interest
is not adequately close to null and ARE may not accurately reflect the ratio
of the needed sample sizes of the two tests. With the above sample size es-
timates, one still can assess the practical gain from the t-MST test over the
HR test. We have performed the additional simulation studies to empirically
estimate the true power of HR and t-MST based tests with the estimated
sample sizes. The empirical powers based on 5000 simulations are 79.5%
and 80.5% for t-MST and HR based tests, respectively, which confirms the
adequacy of the estimated sample sizes based on (5) and (6).

Now, we use the above setting, but modify the underlying Weibull distri-
bution of the low dose group to follow the PH assumption with a true HR
of 0.70 against the high-dose arm. The survival curves of this alternative are
plotted in Figure 1c. With this specific PH alternative, the required sample
sizes are nD = 641 for t-MST based test and nθ = 593 for HR based test.
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Both ARE and ERE are 0.92, which is pretty close to nθ/nD. This exam-
ple suggests that even when the PH assumption is valid, the t-MST test is
essentially as powerful as the HR test.

We further explore extensively the relative merits between the two tests
under various scenarios. Firstly, we consider the case where the PH assump-
tion holds true, i.e., α(u) = 1. For this case, the ARE is{∫ t

0
{
∫ t
v
S0(u)du}λ0(v)dv

}2

∫ t
0

{∫ t
v
S0(u)du

}2

w(v)−1λ0(v)dv ×
∫ t
0
w(u)λ0(u)du

,

which is always ≤ 1 by Cauchy inequality, suggesting that the HR-based test
is more powerful under the PH assumption. To quantify the efficiency loss of
the t-MST based test under practical settings, we assume that the study has a
recruitment period of 19 months and additional follow-up of 24 months after
the last patient entered the trial as in the aforementioned ECOG-ACRIN
study. Specifically, the censoring time is assumed to be the minimum of
CL ∼ EXP(λc) and CA ∼ U(τL, τU), reflecting the loss of follow-up and
administrative censoring due to staggered entry, respectively. It follows that
the survival function for the censoring time is

SC(u) = e−λcu
{τU −max(u, τL)}

(τU − τL)
I(u ≤ τU),

where [τL, τU ] = [24, 43]. Here, we let t = 40 months. Furthermore, we set
λc = 0.06% matching the annual loss of follow-up rate observed in the ECOG-
ACRIN study and λc = 2.5%, an annual loss of follow-up rate of 26%, to
represent heavier censoring caused by, for example, drop-out. Lastly, we also
assume that the survival time in the treatment group 0 follows a Weibull dis-
tribution with the shape parameter being the maximum likelihood estimator
in the high-dose group of the ECOG-ACRIN study, that is, having a decreas-
ing hazard function λ0(u) = a0u

−0.174. With this setup, ARE is determined
by a0, the scale parameter of the Weibull distribution in the treatment group
0. We adjusted the scale parameter so that S0(t) = 0.1, · · · , 0.9. The detailed
results on ARE are summarized in Table 1. Under the PH assumption, the
HR-based test is slightly more powerful as anticipated. Furthermore, when
the cumulative event rate is relatively high, for example, pr(T0 < t) ≥ 0.5,
as for studies of serious diseases with high event rates, the efficiency loss of
t-MST based test relative to the HR based optimal test is almost negligible.
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Table 1: Asymptotical relative efficiency ARE) and empirical relative effi-
ciency (ERE) under PH alternatives with a HR of 0.7; EREs are estimated
based on 5000 sets simulated data.

ARE(ERE)
Censoring light heavy
S0(t) = 0.90 0.90(0.92) 0.99(1.02)
S0(t) = 0.80 0.91(0.93) 0.99(1.01)
S0(t) = 0.70 0.92(0.94) 0.99(1.01)
S0(t) = 0.60 0.93(0.92) 1.00(1.02)
S0(t) = 0.50 0.94(0.95) 1.00(1.02)
S0(t) = 0.40 0.95(0.96) 1.00(1.02)
S0(t) = 0.30 0.97(0.99) 1.00(1.02)
S0(t) = 0.20 0.98(1.00) 0.99(1.01)
S0(t) = 0.10 0.99(1.01) 0.98(1.01)

To confirm these theoretical AREs, we have also performed numerical
simulations to obtain the ERE by estimating ED and ER based on results
from 5000 simulated data sets. The true HR for two treatment groups (treat-
ment group 1 vs. 0) is 0.70. The resulting EREs are all very close to their
asymptotical counterparts (Table 1). For example, when λc = 0.06% and
S0(t) = 0.50, the ARE and ERE are 0.94 and 0.95, respectively.

Next, we consider three non-PH settings: (i) HR is monotone increasing
from < 1 at time 0 to > 1 at time t; (ii) HR is monotone increasing from < 1
at time 0 to 1 at time t; and (iii) HR is monotone decreasing from 1 at time 0
to < 1 at time t. The first setting corresponds to the worst violation of the PH
assumption: crossing hazards. In this case, we let α(u) = log(0.46) + (u/t)s,
i.e., the HR is 0.46 at time zero, crosses 1 and eventually increases to 1.25
at time t. In this case, the parameter s dictates how fast the HR increases
with time and ARE. Although HR crosses one, two survival functions here
don’t cross within the interval [0, t]. The second setting corresponds to the
case where the treatment benefit is large at time 0 but gradually diminishes.
To characterize this pattern, we let α(u) = −c(t − u)s, where the constant
c is chosen such that the average HR, t−1

∫ t
0

exp{α(u)}du, is approximately
0.7. The last setting corresponds to the case, where the treatment benefit is
small at the beginning but grows gradually during the follow-up. Specifically,
we let α(u) = −cus, where c is a constant such that the average HR is
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approximately 0.7. For all three settings, both the analytic ARE and ERE
based on 5000 simulations are evaluated for all combinations of s ∈ {0.5, 1, 2},
λc ∈ {0.06%, 2.5%} and survival rates S0(t) ∈ {0.30, 0.50, 0.70} and reported
in Table 2.

When HR is monotone increasing and crosses one during the follow-up
(Case i), the t-MST based test can be substantially more efficient than the
HR-based test; when the HR is less than one at time 0 and increases to 1
at the end the study (Case ii), the t-MST based test is also more efficient
than the HR-based test but the difference is modest; and when the HR is
1 at time 0 and decreases over time (Case iii), the t-MST based test can
be less efficient than the HR-based test. Similar to the case where the PH
assumption holds, the EREs are in general consistent with their asymptotical
counterparts in all settings, supporting the use of AREs for evaluating the
finite sample performances of two tests.

It is interesting to note that under the contiguous alternative, the t-MST
based test is asymptotically equivalent to the test based on∫ t

0

∫ t
v
S0(u)du∫ t

0
S0(u)du

d
{

Λ̂1(v)− Λ̂0(v)
}
,

while the HR-based test is equivalent to the test based on∫ t

0

SC(v)S0(v)d
{

Λ̂1(v)− Λ̂0(v)
}
.

The difference between these two tests thus only depends on the choice of
weight function, which may explain the results of the above numerical studies.
Here we assume that the censoring distributions at two groups are identical
and thus w(v) ∝ SC(v)S0(v). To be specific, let

wD(v) =

∫ t
v
S0(u)du∫ t

0
S0(v)dv

and wθ(v) = SC(v)S0(v)

be the weight functions of the t-MST and HR based tests, respectively. wD(v)
is independent of the censoring distribution and monotone decreasing from
1 to 0, while wθ(v) depends on the censoring distribution and monotone
decreasing from 1 to SC(t)S0(t) > 0. In Figure 2, we plot the weight functions
for both tests with following survival functions for the censoring distribution

SC(v) = e−λcv
{τu −max(v, τl)}

(τu − τl)
I(v ≤ τu),
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Table 2: Asymptotical relative efficiency (ARE) and empirical relative ef-
ficiency (ERE) under nonproportional hazards alternatives; EREs are esti-
mated based on 5000 sets simulated data.

S0(t) = 0.30 S0(t) = 0.50 S0(t) = 0.70

ARE(ERE) ARE(ERE) ARE(ERE)
Censoring light heavy light heavy light heavy

α(u) = log(0.46) + (u/t)s

s = 0.5 1.99(1.81) 1.13(1.10) 2.48(2.17) 1.24(1.19) 2.98(2.57) 1.36(1.29)
s = 1.0 1.40(1.32) 1.09(1.05) 1.50(1.41) 1.13(1.09) 1.59(1.49) 1.17(1.14)
s = 2.0 1.20(1.14) 1.08(1.02) 1.24(1.18) 1.09(1.05) 1.29(1.21) 1.12(1.04)

α(u) = −c(α)(t− u)s

s = 0.5 1.07(1.05) 1.05(1.01) 1.09(1.06) 1.06(1.03) 1.09(1.06) 1.06(1.04)
s = 1.0 1.19(1.15) 1.07(1.03) 1.22(1.18) 1.09(1.05) 1.25(1.20) 1.10(1.07)
s = 2.0 1.38(1.32) 1.10(1.05) 1.45(1.39) 1.13(1.09) 1.50(1.44) 1.17(1.13)

α(u) = −c(α)us

s = 0.5 0.81(0.80) 0.99(0.97) 0.78(0.77) 0.97(0.95) 0.76(0.75) 0.96(0.93)
s = 1.0 0.72(0.71) 0.97(0.95) 0.69(0.68) 0.94(0.92) 0.66(0.65) 0.90(0.89)
s = 2.0 0.60(0.59) 0.95(0.93) 0.57(0.55) 0.89(0.87) 0.54(0.52) 0.84(0.82)
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where λc = 0.06% or 2.5% and [τl, τu] = [24, 43]. We also assume that
the survival function of the failure time is S0(v) = exp(−0.016v0.826), i.e.,
S0(40) ≈ 0.7. It is clear that wD(v) assigns less weights to later difference
in hazard function compared with wθ(v) when the censoring is light. It sug-
gests that when the treatment difference is anticipated at later study time
points, the t-MST based test tends to be less powerful than the HR based
test. On the other hand, wD(v) is very similar to wθ(v), when the drop-out
rate is high, which explains that AREs and EREs of the t-MST based test
compared to HR based test are fairly close to one in the heavy censoring
settings of Table 2.

14

http://biostats.bepress.com/harvardbiostat/paper210



5 Remarks

In this paper, we compared the inference procedures based on HR and the
t-MST difference under a hypothesis testing paradigm. Through an exten-
sive numerical study with various treatment difference profiles, the AREs for
the t-MST and HR tests are similar under the PH-models. For the non-PH
models, unless the true difference of two survival functions is quite large near
the end of the study and the censoring is light during the study follow-up, the
t-MST test generally outperforms the HR test. Referring again to the two
sample test for continuous data, there are approaches for measuring the de-
gree of deviation from normality in order to construct highly efficient tests for
shift in location relative to the t-test (Ruberg, 1986). Perhaps a line of future
research is to measure deviations from the PH model and construct a family
of optimal tests that account for the degree of deviation from PH. Although it
is important to obtain a p-value to assess statistical significance for a compar-
ative study, estimation of the treatment effect is more informative for clinical
decision makings. To make coherent evaluation on the group difference, we
suggest using the estimation procedure to conduct hypothesis testing. There
are quite a few novel statistical tests for non-proportional hazards alterna-
tives proposed and discussed in the literature (Fleming et al., 1987; Pepe and
Fleming, 1989; Kosorok and Lin, 1999; Uno et al., 2015). However, there are
no coherent corresponding estimation procedures to quantify the treatment
difference. A more powerful test than the HR test for a non-PH case without
a companion estimation procedure would have limited value clinically.

There are very few two-sample model-free estimating procedures for treat-
ment effect, which can also be used for testing the equivalence of two survival
functions in survival analysis. For example, one may use the difference or
ratio of two t-year event rates, median survival times, and t-MSTs. Often
the median event time is not estimable due to a short study followup time.
Moreover, the standard error of the estimated difference of two median event
times can be quite large. Using the t-year event rate difference as the primary
parameter of interest would ignore the temporal profile of the treatment effect
before time point t. The estimate for the t-MST difference or ratio appears
to be a useful tool for analyzing event time observations.
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Figure 1: (a) The KM curves in two arms of the ECOG-ACRIN study; (b)
The survival curves based on the Weibull model in two arms of the ECOG-
ACRIN study without assuming the PH assumption; (c) The survival curves
based on the Weibull model in the high dose arm of the ECOG-ACRIN study
assuming the PH assumption with a HR of 0.7; solid: high dose arm; dotted:
low dose arm.
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Figure 2: The weight functions for t-MST and HR based tests; solid: weight
function for t-MST based test; dotted: weight function for HR based test;
(a) light drop-out rate with λc = 0.06% and (b) high drop-out rate with
λc = 2.5%
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