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Abstract

The paper studies machine learning problems where each example is described using a
set of Boolean features and where hypotheses are represented by linear threshold elements.
One method of increasing the expressiveness of learned hypotheses in this context is to
expand the feature set to include conjunctions of basic features. This can be done explicitly
or where possible by using a kernel function. Focusing on the well known Perceptron
and Winnow algorithms, the paper demonstrates a tradeoff between the computational
efficiency with which the algorithm can be run over the expanded feature space and the
generalization ability of the corresponding learning algorithm.

We first describe several kernel functions which capture either limited forms of con-
junctions or all conjunctions. We show that these kernels can be used to efficiently run
the Perceptron algorithm over a feature space of exponentially many conjunctions; how-
ever we also show that using such kernels, the Perceptron algorithm can provably make an
exponential number of mistakes even when learning simple functions.

We then consider the question of whether kernel functions can analogously be used
to run the multiplicative-update Winnow algorithm over an expanded feature space of
exponentially many conjunctions. Known upper bounds imply that the Winnow algorithm
can learn Disjunctive Normal Form (DNF) formulae with a polynomial mistake bound in
this setting. However, we prove that it is computationally hard to simulate Winnow’s
behavior for learning DNF over such a feature set. This implies that the kernel functions
which correspond to running Winnow for this problem are not efficiently computable, and
that there is no general construction that can run Winnow with kernels.

1. Introduction

The problem of classifying objects into one of two classes being “positive” and “negative”
examples of a concept is often studied in machine learning. The task in machine learning
is to extract such a classifier from given pre-classified examples - the problem of learning
from data. When each example is represented by a set of n numerical features, an example
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can be seen as a point in Euclidean space ℜn. A common representation for classifiers in
this case is a hyperplane of dimension (n − 1) which splits the domain of examples into
two areas of positive and negative examples. Such a representation is known as a linear
threshold function, and many learning algorithms that output a hypothesis represented in
this manner have been developed, analyzed, implemented, and applied in practice. Of
particular interest in this paper are the well known Perceptron (Rosenblatt, 1958; Block,
1962; Novikoff, 1963) and Winnow (Littlestone, 1988) algorithms that have been intensively
studied in the literature.

It is also well known that the expressiveness of linear threshold functions is quite lim-
ited (Minsky & Papert, 1968). Despite this fact, both Perceptron and Winnow have been
applied successfully in recent years to several large scale real world classification problems.
As one example, the SNoW system (Roth, 1998; Carlson, Cumby, Rosen, & Roth, 1999) has
successfully applied variations of Perceptron and Winnow to problems in natural language
processing. The SNoW system extracts basic Boolean features x1, . . . , xn from labeled pieces
of text data in order to represent the examples, thus the features have numerical values re-
stricted to {0, 1}. There are several ways to enhance the set of basic features x1, . . . , xn

for Perceptron or Winnow. One idea is to expand the set of basic features x1, . . . , xn using
conjunctions such as (x1∧x3∧x4) and use these expanded higher-dimensional examples, in
which each conjunction plays the role of a basic feature, as the examples for Perceptron or
Winnow. This is in fact the approach which the SNoW system takes running Perceptron or
Winnow over a space of restricted conjunctions of these basic features. This idea is closely
related to the use of kernel methods, see e.g. the book of Cristianini and Shawe-Taylor
(2000), where a feature expansion is done implicitly through the kernel function. The ap-
proach clearly leads to an increase in expressiveness and thus may improve performance.
However, it also dramatically increases the number of features (from n to 3n if all conjunc-
tions are used), and thus may adversely affect both the computation time and convergence
rate of learning. The paper provides a theoretical study of the performance of Perceptron
and Winnow when run over expanded feature spaces such as these.

1.1 Background: On-Line Learning with Perceptron and Winnow

Before describing our results, we recall some necessary background on the on-line learning
model (Littlestone, 1988) and the Perceptron and Winnow algorithms.

Given an instance space X of possible examples, a concept is a mapping of instances into
one of two (or more) classes. A concept class C ⊆ 2X is simply a set of concepts. In on-line
learning a concept class C is fixed in advance and an adversary can pick a concept c ∈ C.
The learning is then modeled as a repeated game where in each iteration the adversary
picks an example x ∈ X, the learner gives a guess for the value of c(x) and is then told the
correct value. We count one mistake for each iteration in which the value is not predicted
correctly. A learning algorithm learns a concept class C with mistake bound M if for any
choice of c ∈ C and any (arbitrarily long) sequence of examples, the learner is guaranteed
to make at most M mistakes.

In this paper we consider the case where the examples are given by Boolean features,
that is X = {0, 1}n, and we have two class labels denoted by −1 and 1. Thus for x ∈ {0, 1}n,
a labeled example 〈x, 1〉 is a positive example, and a labeled example 〈x,−1〉 is a negative
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example. The concepts we consider are built using logical combinations of the n base
features and we are interested in mistake bounds that are polynomial in n.

1.1.1 Perceptron

Throughout its execution Perceptron maintains a weight vector w ∈ ℜN which is initially
(0, . . . , 0). Upon receiving an example x ∈ ℜN the algorithm predicts according to the
linear threshold function w · x ≥ 0. If the prediction is 1 and the label is −1 (false positive
prediction) then the vector w is set to w−x, while if the prediction is −1 and the label is 1
(false negative) then w is set to w + x. No change is made to w if the prediction is correct.
Many variants of this basic algorithm have been proposed and studied and in particular one
can add a non zero threshold as well as a learning rate that controls the size of update to
w. Some of these are discussed further in Section 3.

The famous Perceptron Convergence Theorem (Rosenblatt, 1958; Block, 1962; Novikoff,
1963) bounds the number of mistakes which the Perceptron algorithm can make:

Theorem 1 Let 〈x1, y1〉, . . . , 〈x
t, yt〉 be a sequence of labeled examples with xi ∈ ℜN , ‖xi‖ ≤

R and yi ∈ {−1, 1} for all i. Let u ∈ ℜN , ξ > 0 be such that yi(u · xi) ≥ ξ for all i. Then

Perceptron makes at most R2‖u‖2

ξ2 mistakes on this example sequence.

1.1.2 Winnow

The Winnow algorithm (Littlestone, 1988) has a very similar structure. Winnow maintains
a hypothesis vector w ∈ ℜN which is initially w = (1, . . . , 1). Winnow is parameterized by
a promotion factor α > 1 and a threshold θ > 0; upon receiving an example x ∈ {0, 1}N

Winnow predicts according to the threshold function w ·x ≥ θ. If the prediction is 1 and the
label is −1 then for all i such that xi = 1 the value of wi is set to wi/α; this is a demotion
step. If the prediction is −1 and the label is 1 then for all i such that xi = 1 the value of wi

is set to αwi; this is a promotion step. No change is made to w if the prediction is correct.

For our purposes the following mistake bound, implicit in Littlestone’s work (1988), is
of interest:

Theorem 2 Let the target function be a k-literal monotone disjunction f(x1, . . . , xN ) =
xi1 ∨ · · · ∨ xik . For any sequence of examples in {0, 1}N labeled according to f the number
of prediction mistakes made by Winnow(α, θ) is at most α

α−1 · N
θ + k(α + 1)(1 + logα θ).

1.2 Our Results

We are interested in the computational efficiency and convergence of the Perceptron and
Winnow algorithms when run over expanded feature spaces of conjunctions. Specifically,
we study the use of kernel functions to expand the feature space and thus enhance the
learning abilities of Perceptron and Winnow; we refer to these enhanced algorithms as
kernel Perceptron and kernel Winnow.

Our first result (cf. also the papers of Sadohara, 1991; Watkins, 1999; and Kowalczyk
et al., 2001) uses kernel functions to show that it is possible to efficiently run the kernel
Perceptron algorithm over an exponential number of conjunctive features.
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Result 1: (see Theorem 3) There is an algorithm that simulates Perceptron over the 3n-
dimensional feature space of all conjunctions of n basic features. Given a sequence of t
labeled examples in {0, 1}n the prediction and update for each example take poly(n, t) time
steps. We also prove variants of this result in which the expanded feature space consists of
all monotone conjunctions or all conjunctions of some bounded size.

This result is closely related to one of the main open problems in learning theory:
efficient learnability of disjunctions of conjunctions, or DNF (Disjunctive Normal Form)
expressions.1 Since linear threshold elements can represent disjunctions (e.g. x1 ∨ x2 ∨ x3

is true iff x1 + x2 + x3 ≥ 1), Theorem 1 and Result 1 imply that kernel Perceptron can be
used to learn DNF. However, in this framework the values of N and R in Theorem 1 can be
exponentially large (note that we have N = 3n and R = 2n/2 if all conjunctions are used),
and hence the mistake bound given by Theorem 1 is exponential rather than polynomial
in n. The question thus arises whether the exponential upper bound implied by Theorem
1 is essentially tight for the kernel Perceptron algorithm in the context of DNF learning.
We give an affirmative answer, thus showing that kernel Perceptron cannot efficiently learn
DNF.

Result 2: There is a monotone DNF f over x1, . . . , xn and a sequence of examples labeled
according to f which causes the kernel Perceptron algorithm to make 2Ω(n) mistakes. This
result holds for generalized versions of the Perceptron algorithm where a fixed or updated
threshold and a learning rate are used. We also give a variant of this result showing
that kernel Perceptron fails in the Probably Approximately Correct (PAC) learning model
(Valiant, 1984) as well.

Turning to Winnow, an attractive feature of Theorem 2 is that for suitable α, θ the bound
is logarithmic in the total number of features N (e.g. α = 2 and θ = N). Therefore, as
noted by several researchers (Maass & Warmuth, 1998), if a Winnow analogue of Theorem 3
could be obtained this would imply that DNF can be learned by a computationally efficient
algorithm with a poly(n)-mistake bound. However, we give strong evidence that no such
Winnow analogue of Theorem 3 can exist.

Result 3: There is no polynomial time algorithm which simulates Winnow over exponen-
tially many monotone conjunctive features for learning monotone DNF unless every problem
in the complexity class #P can be solved in polynomial time. This result holds for a wide
range of parameter settings in the Winnow algorithm.

We observe that, in contrast to this negative result, Maass and Warmuth have shown
that the Winnow algorithm can be simulated efficiently over exponentially many conjunctive
features for learning some simple geometric concept classes (Maass & Warmuth, 1998).

Our results thus indicate a tradeoff between computational efficiency and convergence
of kernel algorithms for rich classes of Boolean functions such as DNF formulas; the kernel

1. Angluin (1990) proved that DNF expressions cannot be learned efficiently using equivalence queries
whose hypotheses are themselves DNF expressions. Since the model of exact learning from equivalence
queries only is equivalent to the mistake bound model which we consider in this paper, her result implies
that no online algorithm which uses DNF formulas as hypotheses can efficiently learn DNF. However,
this result does not preclude the efficient learnability of DNF using a different class of hypotheses. The
kernel Perceptron algorithm generates hypotheses which are thresholds of conjunctions rather than DNF
formulas, and thus Angluin’s negative results do not apply here.
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Perceptron algorithm is computationally efficient to run but has exponentially slow con-
vergence, whereas kernel Winnow has rapid convergence but seems to require exponential
runtime.

2. Kernel Perceptron with Many Features

It is well known that the hypothesis w of the Perceptron algorithm is a linear combination
of the previous examples on which mistakes were made (Cristianini & Shaw-Taylor, 2000).
More precisely, if we let L(v) ∈ {−1, 1} denote the label of example v, then we have that
w =

∑

v∈M L(v)v where M is the set of examples on which the algorithm made a mistake.
Thus the prediction of Perceptron on x is 1 iff w ·x = (

∑

v∈M L(v)v)·x =
∑

v∈M L(v)(v ·x) ≥
0.

For an example x ∈ {0, 1}n let φ(x) denote its transformation into an enhanced feature
space such as the space of all conjunctions. To run the Perceptron algorithm over the
enhanced space we must predict 1 iff wφ · φ(x) ≥ 0 where wφ is the weight vector in
the enhanced space; from the above discussion this holds iff

∑

v∈M L(v)(φ(v) · φ(x)) ≥ 0.
Denoting K(v, x) = φ(v) · φ(x) this holds iff

∑

v∈M L(v)K(v, x) ≥ 0.

Thus we never need to construct the enhanced feature space explicitly; in order to run
Perceptron we need only be able to compute the kernel function K(v, x) efficiently. This is
the idea behind all so-called kernel methods, which can be applied to any algorithm (such
as support vector machines) whose prediction is a function of inner products of examples.
A more detailed discussion is given in the book of Cristianini and Shawe-Taylor (2000).
Thus the next theorem is simply obtained by presenting a kernel function capturing all
conjunctions.

Theorem 3 There is an algorithm that simulates Perceptron over the feature spaces of
(1) all conjunctions, (2) all monotone conjunctions, (3) conjunctions of size ≤ k, and (4)
monotone conjunctions of size ≤ k. Given a sequence of t labeled examples in {0, 1}n the
prediction and update for each example take poly(n, t) time steps.

Proof: For case (1) φ(·) includes all 3n conjunctions (with positive and negative literals) and
K(x, y) must compute the number of conjunctions which are true in both x and y. Clearly,
any literal in such a conjunction must satisfy both x and y and thus the corresponding bit
in x, y must have the same value. Thus each conjunction true in both x and y corresponds
to a subset of such bits. Counting all these conjunctions gives K(x, y) = 2same(x,y) where
same(x, y) is the number of original features that have the same value in x and y, i.e. the
number of bit positions i which have xi = yi. This kernel has been obtained independently
by Sadohara (2001).

To express all monotone monomials as in (2) we take K(x, y) = 2|x∩y| where |x ∩ y| is
the number of active features common to both x and y, i.e. the number of bit positions
which have xi = yi = 1.

Similarly, for case (3) the number of conjunctions that satisfy both x and y is K(x, y) =
∑k

l=0

(same(x,y)
l

)

. This kernel is reported also by Watkins (1999). For case (4) we have

K(x, y) =
∑k

l=0

(|x∩y|
l

)

. ✷
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3. Kernel Perceptron with Many Mistakes

In this section we describe a simple monotone DNF target function and a sequence of
labeled examples which causes the monotone monomials kernel Perceptron algorithm to
make exponentially many mistakes.

For x, y ∈ {0, 1}n we write |x| to denote the number of 1’s in x and, as described above,
|x∩y| to denote the number of bit positions i which have xi = yi = 1. We need the following
well-known tail bound on sums of independent random variables which can be found in,
e.g., Section 9.3 of the book by Kearns and Vazirani (1994):

Fact 4 Let X1, . . . , Xm be a sequence of m independent 0/1-valued random variables, each
of which has E[Xi] = p. Let X denote

∑m
i=1 Xi, so E[X] = pm. Then for 0 ≤ γ ≤ 1, we

have

Pr[X > (1 + γ)pm] ≤ e−mpγ2/3 and Pr[X < (1 − γ)pm] ≤ e−mpγ2/2.

We also use the following combinatorial property:

Lemma 5 There is a set S of n-bit strings S = {x1, . . . , xt} ⊂ {0, 1}n with t = en/9600

such that |xi| = n/20 for 1 ≤ i ≤ t and |xi ∩ xj | ≤ n/80 for 1 ≤ i < j ≤ t.

Proof: We use the probabilistic method. For each i = 1, . . . , t let xi ∈ {0, 1}n be chosen
by independently setting each bit to 1 with probability 1/10. For any i it is clear that
E[|xi|] = n/10. Applying Fact 4, we have that Pr[|xi| < n/20] ≤ e−n/80, and thus the
probability that any xi satisfies |xi| < n/20 is at most te−n/80. Similarly, for any i 6= j we
have E[|xi ∩ xj |] = n/100. Applying Fact 4 we have that Pr[|xi ∩ xj | > n/80] ≤ e−n/4800,
and thus the probability that any xi, xj with i 6= j satisfies |xi ∩ xj | > n/80 is at most
(t
2

)

e−n/4800. For t = en/9600 the value of
(t
2

)

e−n/4800 + te−n/80 is less than 1. Thus for some
choice of x1, . . . , xt we have each |xi| ≥ n/20 and |xi ∩ xj | ≤ n/80. For any xi which has
|xi| > n/20 we can set |xi| − n/20 of the 1s to 0s, and the lemma is proved. ✷

Now using the previous lemma we can construct a difficult data set for kernel Perceptron:

Theorem 6 There is a monotone DNF f over x1, . . . , xn and a sequence of examples labeled
according to f which causes the kernel Perceptron algorithm to make 2Ω(n) mistakes.

Proof: The target DNF with which we will use is very simple: it is the single conjunction
x1x2 . . . xn. While the original Perceptron algorithm over the n features x1, . . . , xn is easily
seen to make at most poly(n) mistakes for this target function, we now show that the
monotone kernel Perceptron algorithm which runs over a feature space of all 2n monotone
monomials can make 2 + en/9600 mistakes.

Recall that at the beginning of the Perceptron algorithm’s execution all 2n coordinates
of wφ are 0. The first example is the negative example 0n. The only monomial true in this
example is the empty monomial which is true in every example. Since wφ · φ(x) = 0 Per-
ceptron incorrectly predicts 1 on this example. The resulting update causes the coefficient
wφ
∅ corresponding to the empty monomial to become −1 but all 2n − 1 other coordinates

of wφ remain 0. The next example is the positive example 1n. For this example we have
wφ · φ(x) = −1 so Perceptron incorrectly predicts −1. Since all 2n monotone conjunctions
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are satisfied by this example the resulting update causes wφ
∅ to become 0 and all 2n − 1

other coordinates of wφ to become 1. The next en/9600 examples are the vectors x1, . . . , xt

described in Lemma 5. Since each such example has |xi| = n/20 each example is negative;
however as we now show the Perceptron algorithm will predict 1 on each of these examples.

Fix any value 1 ≤ i ≤ en/9600 and consider the hypothesis vector wφ just before example
xi is received. Since |xi| = n/20 the value of wφ · φ(xi) is a sum of the 2n/20 different

coordinates wφ
T which correspond to the monomials satisfied by xi. More precisely we have

wφ · φ(xi) =
∑

T∈Ai
wφ

T +
∑

T∈Bi
wφ

T where Ai contains the monomials which are satisfied
by xi and xj for some j 6= i and Bi contains the monomials which are satisfied by xi but
no xj with j 6= i. We lower bound the two sums separately.

Let T be any monomial in Ai. By Lemma 5 any T ∈ Ai contains at most n/80 variables

and thus there can be at most
∑n/80

r=0

(n/20
r

)

monomials in Ai. Using the well known bound
∑αℓ

j=0

(ℓ
j

)

= 2(H(α)+o(1))ℓ where 0 < α ≤ 1/2 and H(p) = −p log p − (1 − p) log(1 − p) is
the binary entropy function, which can be found e.g. as Theorem 1.4.5 of the book by
Van Lint (1992), there can be at most 20.8113·(n/20)+o(n) < 20.041n terms in Ai. Moreover

the value of each wφ
T must be at least −en/9600 since wφ

T decreases by at most 1 for each

example, and hence
∑

T∈Ai
wφ

T ≥ −en/960020.041n > −20.042n. On the other hand, any T ∈ Bi

is false in all other examples and therefore wφ
T has not been demoted and wφ

T = 1. By
Lemma 5 for any r > n/80 every r-variable monomial satisfied by xi must belong to Bi,

and hence
∑

T∈Bi
wφ

T ≥
∑n/20

r=n/80+1

(n/20
r

)

> 20.049n. Combining these inequalities we have

w · xi ≥ −20.042n + 20.049n > 0 and hence the Perceptron prediction on xi is 1. ✷

Remark 7 At first sight it might seem that the result is limited to a simple special case of
the perceptron algorithm. Several variations exist that use: an added feature with a fixed
value that enables the algorithm to update the threshold indirectly (via a weight ŵ), a non
zero fixed (initial) threshold θ, and a learning rate α, and in particular all these three can
be used simultaneously. The generalized algorithm predicts according to the hypothesis
w · x + ŵ ≥ θ and updates w ← w + αx and ŵ ← ŵ + α for promotions and similarly
for demotions. We show here that exponential lower bounds on the number of mistakes
can be derived for the more general algorithm as well. First, note that since our kernel
includes a feature for the empty monomial which is always true, the first parameter is
already accounted for. For the other two parameters note that there is a degree of freedom
between the learning rate α and fixed threshold θ since multiplying both by the same factor
does not change the hypothesis and therefore it suffices to consider the threshold only. We
consider several cases for the value of the threshold. If θ satisfies 0 ≤ θ ≤ 20.047 then we
use the same sequence of examples. After the first two examples the algorithm makes a
promotion on 1n (it may or may not update on 0n but that is not important). For the

examples in the sequence the bounds on
∑

T∈Ai
wφ

T and
∑

T∈Bi
wφ

T are still valid so the
final inequality in the proof becomes w · xi ≥ −20.042n + 20.049n > 20.047n which is true for
sufficiently large n. If θ > 20.047n then we can construct the following scenario. We use the
function f = x1 ∨ x2 ∨ . . . ∨ xn, and the sequence of examples includes θ

2 − 1 repetitions of
the same example x where the first bit is 1 and all other bits are 0. The example x satisfies
exactly 2 monomials and therefore the algorithm will make mistakes on all the examples in
the sequence. If θ < 0 then the initial hypothesis misclassifies 0n. We start the example
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sequence by repeating the example 0n until it is classified correctly, that is ⌈−θ⌉ times.
If the threshold is large in absolute value e.g. θ < −20.042n we are done. Otherwise we
continue with the example 1n. Since all weights except for the empty monomial are zero at
this stage the examples 0n and 1n are classified in the same way so 1n is misclassified and
therefore the algorithm makes a promotion. The argument for the rest of the sequence is as
above (except for adding a term for the empty monomial) and the final inequality becomes
w ·xi ≥ −20.042n −20.042n +20.049n > −20.042n so each of the examples is misclassified. Thus
in all cases kernel Perceptron may make an exponential number of mistakes.

3.1 A Negative Result for the PAC Model

The proof above can be adapted to give a negative result for kernel Perceptron in the PAC
learning model (Valiant, 1984). In this model each example x is independently drawn from
a fixed probability distribution D and with high probability the learner must construct a
hypothesis h which has high accuracy relative to the target concept c under distribution D.
See the Kearns-Vazirani text (1994) for a detailed discussion of the PAC learning model.

Let D be the probability distribution over {0, 1}n which assigns weight 1/4 to the ex-
ample 0n, weight 1/4 to the example 1n, and weight 1

2
1

en/9600 to each of the en/9600 examples

x1, . . . , xt.

Theorem 8 If kernel Perceptron is run using a sample of polynomial size p(n) then with
probability at least 1/16 the error of its final hypothesis is at least 0.49.

Proof: With probability 1/16, the first two examples received from D will be 0n and then
1n. Thus, with probability 1/16, after two examples (as in the proof above) the Perceptron

algorithm will have wφ
∅ = 0 and all other coefficients of wφ equal to 1.

Consider the sequence of examples following these two examples. First note that in any
trial, any occurrence of an example other than 1n (i.e. any occurrence either of some xi or of
the 0n example) can decrease

∑

T⊆[n] w
θ
T by at most 2n/20. Since after the first two examples

we have wφ ·φ(1n) =
∑

T⊆[n] w
θ
T = 2n − 1, it follows that at least 219n/20 − 1 more examples

must occur before the 1n example will be incorrectly classified as a negative example. Since
we will only consider the performance of the algorithm for p(n) < 219n/20 − 1 steps, we
may ignore all subsequent occurrences of 1n since they will not change the algorithm’s
hypothesis.

Now observe that on the first example which is not 1n the algorithm will perform a
demotion resulting in wφ

∅ = −1 (possibly changing other coefficients as well). Since no

promotions will be performed on the rest of the sample, we get wφ
∅ ≤ −1 for the rest of

the learning process. It follows that all future occurrences of the example 0n are correctly
classified and thus we may ignore them as well.

Considering examples xi from the sequence constructed above, we may ignore any ex-
ample that is correctly classified since no update is made on it. It follows that when the
perceptron algorithm has gone over all examples, its hypothesis is formed by demotions on
examples in the sequence of xi’s. The only difference from the scenario above is that the
algorithm may make several demotions on the same example if it occurs multiple times in
the sample. However, an inspection of the proof above shows that for any xi that has not
been seen by the algorithm, the bounds on

∑

T∈Ai
wφ

T and
∑

T∈Bi
wφ

T are still valid and
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therefore xi will be misclassified. Since the sample is of size p(n) and the sequence is of
size en/9600 the probability weight of examples in the sample is at most 0.01 for sufficiently
large n so the error of the hypothesis is at least 0.49. ✷

4. Computational Hardness of Kernel Winnow

In this section, for x ∈ {0, 1}n we let φ(x) denote the (2n − 1)-element vector whose coor-
dinates are all nonempty monomials (monotone conjunctions) over x1, . . . , xn. We say that
a sequence of labeled examples 〈x1, b1〉, . . . , 〈x

t, bt〉 is monotone consistent if it is consistent
with some monotone function, i.e. xi

k ≤ xj
k for all k = 1, . . . , n implies bi ≤ bj . If S is

monotone consistent and has t labeled examples then clearly there is a monotone DNF
formula consistent with S which contains at most t conjunctions. We consider the following
problem:

KERNEL WINNOW PREDICTION(α, θ) (KWP)
Instance: Monotone consistent sequence S = 〈x1, b1〉, . . . , 〈x

t, bt〉 of labeled examples with
each xi ∈ {0, 1}m and each bi ∈ {−1, 1}; unlabeled example z ∈ {0, 1}m.
Question: Is wφ · φ(z) ≥ θ, where wφ is the N = (2m − 1)-dimensional hypothesis vector
generated by running Winnow(α, θ) on the example sequence 〈φ(x1), b1〉, . . . 〈φ(xt), bt〉?

In order to run Winnow over all 2m − 1 nonempty monomials to learn monotone DNF,
one must be able to solve KWP efficiently. Our main result in this section is a proof
that KWP is computationally hard for a wide range of parameter settings which yield a
polynomial mistake bound for Winnow via Theorem 2.

Recall that #P is the class of all counting problems associated with NP decision prob-
lems; it is well known that if every function in #P is computable in polynomial time then
P = NP. See the book of Papadimitriou (1994) or the paper of Valiant (1979) for details
on #P. The following problem is #P-hard (Valiant, 1979):

MONOTONE 2-SAT (M2SAT)
Instance: Monotone 2-CNF Boolean formula F = c1 ∧ c2 ∧ . . . ∧ cr with ci = (yi1 ∨ yi2)
and each yij ∈ {y1, . . . , yn}; integer K such that 1 ≤ K ≤ 2n.
Question: Is |F−1(1)| ≥ K, i.e. does F have at least K satisfying assignments in {0, 1}n?

Theorem 9 Fix any ǫ > 0. Let N = 2m − 1, let α ≥ 1 + 1/m1−ǫ, and let θ ≥ 1 be such
that max( α

α−1 · N
θ , (α + 1)(1 + logα θ)) = poly(m). If there is a polynomial time algorithm

for KWP(α, θ), then every function in #P is computable in polynomial time.

Proof: For N, α and θ as described in the theorem a routine calculation shows that

1 + 1/m1−ǫ ≤ α ≤ poly(m) and
2m

poly(m)
≤ θ ≤ 2poly(m). (1)

The proof is a reduction from the problem M2SAT. The high level idea of the proof is
simple: let (F, K) be an instance of M2SAT where F is defined over variables y1, . . . , yn. The

Winnow algorithm maintains a weight wφ
T for each monomial T over variables x1, . . . , xn. We

define a 1-1 correspondence between these monomials T and truth assignments yT ∈ {0, 1}n
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for F, and we give a sequence of examples for Winnow which causes wφ
T ≈ 0 if F (yT ) = 0

and wφ
T = 1 if F (yT ) = 1. The value of wφ · φ(z) is thus related to |F−1(1)|. Note that

if we could control θ as well this would be sufficient since we could use θ = K and the
result will follow. However θ is a parameter of the algorithm. We therefore have to make
additional updates so that wφ · φ(z) ≈ θ + (|F−1(1)| − K) so that wφ · φ(z) ≥ θ if and
only if |F−1(1)| ≥ K. The details are somewhat involved since we must track the resolution
of approximations of the different values so that the final inner product will indeed give a
correct result with respect to the threshold.

General setup of the construction. In more detail, let

• U = n + 1 + ⌈(⌈logα 4⌉ + 1) log α⌉,

• V = ⌈ n+1
log α⌉ + 1,

• W = ⌈U+2
log α⌉ + 1

and let m be defined as

m = n + U + 6V n2 + 6UW + 3. (2)

Since α ≥ 1 + 1/m1−ǫ, using the fact that log(1 + x) ≥ x/2 for 0 < x < 1 we have that
log α ≥ 1/(2m1−ǫ), and from this it easily follows that m as specified above is polynomial in
n. We describe a polynomial time transformation which maps an n-variable instance (F, K)
of M2SAT to an m-variable instance (S, z) of KWP(α, θ) where S = 〈x1, b1〉, . . . , 〈x

t, bt〉
is monotone consistent, each xi and z belong to {0, 1}m, and wφ · φ(z) ≥ θ if and only if
|F−1(1)| ≥ K.

The Winnow variables x1, . . . , xm are divided into three sets A, B and C where A =
{x1, . . . , xn}, B = {xn+1, . . . , xn+U} and C = {xn+U+1, . . . , xm}. The unlabeled example z
is 1n+U0m−n−U , i.e. all variables in A and B are set to 1 and all variables in C are set to 0.
We thus have wφ·φ(z) = MA+MB+MAB where MA =

∑

∅6=T⊆A wφ
T , MB =

∑

∅6=T⊆B wφ
T and

MAB =
∑

T⊆A∪B,T∩A6=∅,T∩B 6=∅ wφ
T . We refer to monomials ∅ 6= T ⊆ A as type-A monomials,

monomials ∅ 6= T ⊆ B as type-B monomials, and monomials T ⊆ A∪B, T∩A 6= ∅, T∩B 6= ∅
as type-AB monomials.

The example sequence S is divided into four stages. Stage 1 results in MA ≈ |F−1(1)|;
as described below the n variables in A correspond to the n variables in the CNF formula
F. Stage 2 results in MA ≈ αq|F−1(1)| for some positive integer q which we specify later.
Stages 3 and 4 together result in MB +MAB ≈ θ−αqK. Thus the final value of wφ ·φ(z) is
approximately θ + αq(|F−1(1)| − K), so we have wφ · φ(z) ≥ θ if and only if |F−1(1)| ≥ K.

Since all variables in C are 0 in z, if T includes a variable in C then the value of wφ
T

does not affect wφ · φ(z). The variables in C are “slack variables” which (i) make Winnow
perform the correct promotions/demotions and (ii) ensure that S is monotone consistent.

Stage 1: Setting MA ≈ |F −1(1)|. We define the following correspondence between
truth assignments yT ∈ {0, 1}n and monomials T ⊆ A : yT

i = 0 if and only if xi is not
present in T. For each clause yi1 ∨ yi2 in F, Stage 1 contains V negative examples such that
xi1 = xi2 = 0 and xi = 1 for all other xi ∈ A. We show below that (1) Winnow makes a
false positive prediction on each of these examples and (2) in Stage 1 Winnow never does a
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promotion on any example which has any variable in A set to 1. Consider any yT such that
F (yT ) = 0. Since our examples include an example yS such that yT ≤ yS the monomial T

is demoted at least V times. As a result after Stage 1 we will have that for all T , wφ
T = 1

if F (yT ) = 1 and 0 < wφ
T ≤ α−V if F (yT ) = 0. Thus we will have MA = |F−1(1)| + γ1 for

some 0 < γ1 < 2nα−V < 1
2 .

We now show how the Stage 1 examples cause Winnow to make a false positive prediction
on negative examples which have xi1 = xi2 = 0 and xi = 1 for all other i in A as described
above. For each such negative example in Stage 1 six new slack variables xβ+1, . . . , xβ+6 ∈ C
are used as follows: Stage 1 has ⌈logα(θ/3)⌉ repeated instances of the positive example which
has xβ+1 = xβ+2 = 1 and all other bits 0. These examples cause promotions which result
in θ ≤ wφ

xβ+1
+ wφ

xβ+2
+ wφ

xβ+1xβ+2
< αθ and hence wφ

xβ+1
≥ θ/3. Two other groups of

similar examples (the first with xβ+3 = xβ+4 = 1, the second with xβ+5 = xβ+6 = 1) cause
wφ

xβ+3
≥ θ/3 and wφ

xβ+5
≥ θ/3. The next example in S is the negative example which has

xi1 = xi2 = 0, xi = 1 for all other xi in A, xβ+1 = xβ+3 = xβ+5 = 1 and all other bits 0.
For this example wφ · φ(x) > wφ

xβ+1
+ wφ

xβ+3
+ wφ

xβ+5
≥ θ so Winnow makes a false positive

prediction.
Since F has at most n2 clauses and there are V negative examples per clause, this

construction can be carried out using 6V n2 slack variables xn+U+1, . . . , xn+U+6V n2 . We
thus have (1) and (2) as claimed above.

Stage 2: Setting MA ≈ αq|F −1(1)|. The first Stage 2 example is a positive example
with xi = 1 for all xi ∈ A, xn+U+6V n2+1 = 1 and all other bits 0. Since each of the 2n

monomials which contain xn+U+6V n2+1 and are satisfied by this example have wφ
T = 1,

we have wφ · φ(x) = 2n + |F−1(1)| + γ1 < 2n+1. Since θ > 2m/poly(m) > 2n+1 (recall
from equation (2) that m > 6n2), after the resulting promotion we have wφ · φ(x) =
α(2n + |F−1(1)| + γ1) < α2n+1. Let

q = ⌈logα(θ/2n+1)⌉ − 1

so that

αq2n+1 < θ ≤ αq+12n+1. (3)

Stage 2 consists of q repeated instances of the positive example described above. After
these promotions we have wφ · φ(x) = αq(2n + |F−1(1)| + γ1) < αq2n+1 < θ. Since 1 <
|F−1(1)| + γ1 < 2n we also have

αq < MA = αq(|F−1(1)| + γ1) < αq2n < θ/2. (4)

Equation (4) gives the value which MA will have throughout the rest of the argument.

Some Calculations for Stages 3 and 4. At the start of Stage 3 each type-B and type-
AB monomial T has wφ

T = 1. There are n variables in A and U variables in B so at the
start of Stage 3 we have MB = 2U − 1 and MAB = (2n − 1)(2U − 1). Since no example in
Stages 3 or 4 satisfies any xi in A, at the end of Stage 4 MA will still be αq(|F−1(1)| + γ1)
and MAB will still be (2n − 1)(2U − 1). Therefore at the end of Stage 4 we have

wφ · φ(z) = MB + αq(|F−1(1)| + γ1) + (2n − 1)(2U − 1).
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To simplify notation let

D = θ − (2n − 1)(2U − 1) − αqK.

Ideally at the end of Stage 4 the value of MB would be D−αqγ1 since this would imply that
wφ ·φ(z) = θ +αq(|F−1(1)| −K) which is at least θ if and only if |F−1(1)| ≥ K. However it
is not necessary for MB to assume this exact value, since |F−1(1)| must be an integer and
0 < γ1 < 1

2 . As long as

D ≤ MB < D +
1

2
αq (5)

we get that

θ + αq(|F−1(1)| − K + γ1) < wφ · φ(z) < θ + αq(|F−1(1)| − K + γ1 +
1

2
).

Now if |F−1(1)| ≥ K we clearly have wφ · φ(z) ≥ θ. On the other hand if |F−1(1)| < K
then since |F−1(1)| is an integer value |F−1(1)| ≤ K−1 and we get wφ ·φ(z) < θ. Therefore
all that remains is to construct the examples in Stages 3 and 4 so that that MB satisfies
Equation (5).

We next calculate an appropriate granularity for D. Note that K ≤ 2n, so by Equa-
tion (3) we have that θ − αqK > θ/2. Now recall from Equations (2) and (1) that m >
n + U + 6n2 and θ > 2m/poly(m), so θ/2 ≥ 2n+U+6n2

/poly(m) ≫ 2n2U . Consequently we
certainly have that D > θ/4, and from Equation (3) we have that D > θ/4 > αq2n−1 > 1

4αq.
Let

c = ⌈logα 4⌉,

so that we have

αq−c ≤
1

4
αq < D. (6)

There is a unique smallest positive integer p > 1 which satisfies D ≤ pαq−c < D + 1
4αq. The

Stage 3 examples will result in MB satisfying p < MB < p + 1
4 . We now have that:

αq−c < D ≤ pαq−c < D +
1

4
αq

≤ θ −
3

4
αq (7)

≤ αq+12n+1 − 3αq−c (8)

= αq−c · (αc+12n+1 − 3). (9)

Here (7) holds since K ≥ 1, and thus (by definition of D) we have D + αq ≤ θ which is
equivalent to Equation (7). Inequality (8) follows from Equations (6) and (3).

Hence we have that

1 < p ≤ αc+12n+1 − 3 ≤ 2n+1+⌈(c+1) log α⌉ − 3 = 2U − 3, (10)

where the second inequality in the above chain follows from Equation (9). We now use the
following lemma:
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Lemma 10 For all ℓ ≥ 1, for all 1 ≤ p ≤ 2ℓ − 1, there is a monotone CNF Fℓ,p over
ℓ Boolean variables which has at most ℓ clauses, has exactly p satisfying assignments in
{0, 1}ℓ, and can be constructed from ℓ and p in poly(ℓ) time.

Proof: The proof is by induction on ℓ. For the base case ℓ = 1 we have p = 1 and Fℓ,p = x1.
Assuming the lemma is true for ℓ = 1, . . . , k we now prove it for ℓ = k + 1 :

If 1 ≤ p ≤ 2k − 1 then the desired CNF is Fk+1,p = xk+1 ∧Fk,p. Since Fk,p has at most k
clauses Fk+1,p has at most k + 1 clauses. If 2k + 1 ≤ p ≤ 2k+1 − 1 then the desired CNF is
Fk+1,p = xk+1 ∨Fk,p−2k . By distributing xk over each clause of Fk,p−2k we can write Fk+1,p

as a CNF with at most k clauses. If p = 2k then Fk,p = x1. ✷

Stage 3: Setting MB ≈ p. Let FU,p be an r-clause monotone CNF formula over the
U variables in B which has p satisfying assignments. Similar to Stage 1, for each clause
of FU,p, Stage 3 has W negative examples corresponding to that clause, and as in Stage
1 slack variables in C are used to ensure that Winnow makes a false positive prediction
on each such negative example. Thus the examples in Stage 3 cause MB = p + γ2 where
0 < γ2 < 2Uα−W < 1

4 . Since six slack variables in C are used for each negative example
and there are rW ≤ UW negative examples, the slack variables xn+U+6V n2+2, . . . , xm−2 are
sufficient for Stage 3.

Stage 4: Setting MB + MAB ≈ θ − αqK. All that remains is to perform q − c
promotions on examples which have each xi in B set to 1. This will cause MB to equal
(p + γ2)α

q−c. By the inequalities established above, this will give us

D ≤ pαq−c < (p + γ2)α
q−c = MB < D +

1

4
αq + γ2α

q−c < D +
1

2
αq

which is as desired.

In order to guarantee q − c promotions we use two sequences of examples of length
q − ⌈U−n

log α ⌉ and ⌈U−n
log α ⌉ − c respectively. We first show that these are positive numbers. It

follows directly from the definitions U = n + 1 + ⌈(⌈logα 4⌉ + 1) log α⌉ and c = ⌈logα 4⌉
that U−n

log α ≥ c. Since θ > 26n2

(by definition of m and Equation (1)) and α is bounded

by a polynomial in m, we clearly have that log(θ/2n+1) > U − n + log(α). Now since

q = ⌈logα(θ/2n+1)⌉−1 this implies that q > log(θ/2n+1)
log(α) −1 > ⌈U−n

log α ⌉, so that q−⌈U−n
log α ⌉ > 0.

The first q − ⌈U−n
log α ⌉ examples in Stage 4 are all the same positive example which has

each xi in B set to 1 and xm−1 = 1. The first time this example is received, we have
wφ · φ(x) = 2U + p + γ2 < 2U+1. Since θ > 26n2

, by inspection of U we have 2U+1 < θ, so
Winnow performs a promotion. Similarly, after q − ⌈U−n

log α ⌉ occurrences of this example, we
have

wφ · φ(x) = α
q−⌈U−n

log α
⌉
(2U + p + γ2) < α

q−⌈U−n
log α

⌉
2U+1 ≤ αq2n+1 < θ

so promotions are indeed performed at each occurrence, and

MB = α
q−⌈U−n

log α
⌉
(p + γ2).

The remaining examples in Stage 4 are ⌈U−n
log α ⌉ − c repetitions of the positive example x

which has each xi in B set to 1 and xm = 1. If promotions occurred on each repetition of
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this example then we would have wφ ·φ(x) = α
⌈U−n

log α
⌉−c

(2U + α
q−⌈U−n

log α
⌉
(p + γ2)), so we need

only show that this quantity is less than θ. We reexpress this quantity as α
⌈U−n

log α
⌉−c

2U +
αq−c(p + γ2). We have

αq−c(p + γ2) < pαq−c +
1

4
αq−c

≤ θ −
3

4
αq +

1

16
αq (11)

< θ −
1

2
αq

where (11) follows from (7) and the definition of c. Finally, we have that α
⌈U−n

log α
⌉−c

2U ≤
α ·22U−n−c log α < α ·22U−n−2 < 1

2α
θ

2n+1 < 1
2αq, where the last inequality is by Equation (3)

and the previous inequality is by inspection of the values of α, θ and U . Combining the two
bounds above we see that indeed wφ · φ(x) < θ.

Finally, we observe that by construction the example sequence S is monotone consistent.
Since m = poly(n) and S contains poly(n) examples the transformation from M2SAT to
KWP(α, θ) is polynomial-time computable and the theorem is proved. ✷(Theorem 9)

5. Conclusion

Linear threshold functions are a weak representation language for which we have inter-
esting learning algorithms. Therefore, if linear learning algorithms are to learn expressive
functions, it is necessary to expand the feature space over which they are applied. This
work explores the tradeoff between computational efficiency and convergence when using
expanded feature spaces that capture conjunctions of base features.

We have shown that while each iteration of the kernel Perceptron algorithm can be
executed efficiently, the algorithm can provably require exponentially many updates even
when learning a function as simple as f(x) = x1x2 . . . xn. On the other hand, the kernel
Winnow algorithm has a polynomial mistake bound for learning polynomial-size monotone
DNF, but our results show that under a widely accepted computational hardness assumption
it is impossible to efficiently simulate the execution of kernel Winnow. The latter also implies
that there is no general construction that will run Winnow using kernel functions.

Our results indicate that additive and multiplicative update algorithms lie on opposite
extremes of the tradeoff between computational efficiency and convergence; we believe that
this fact could have significant practical implications. By demonstrating the provable lim-
itations of using kernel functions which correspond to high-degree feature expansions, our
results also lend theoretical justification to the common practice of using a small degree in
similar feature expansions such as the well-known polynomial kernel.2

Since the publication of the initial conference version of this work (Khardon, Roth, &
Servedio, 2002), several authors have explored closely related ideas. One can show that our
construction for the negative results for Perceptron does not extend (either in the PAC or

2. Our Boolean kernels are different than standard polynomial kernels in that all the conjunctions are
weighted equally, and also in that we allow negations.
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online setting) to related algorithms such as Support Vector Machines which work by con-
structing a maximum margin hypothesis consistent with the examples. The paper (Khardon
& Servedio, 2003) gives an analysis of the PAC learning performance of maximum margin
algorithms with the monotone monomials kernel, and derives several negative results thus
giving further negative evidence for the monomial kernel. In the paper (Cumby & Roth,
2003) a kernel for expressions in description logic (generalizing the monomials kernel) is
developed and successfully applied for natural language and molecular problems. Taki-
moto and Warmuth (2003) study the use of multiplicative update algorithms other than
Winnow (such as weighted majority) and obtain some positive results by restricting the
type of loss function used to be additive over base features. Chawla et al. (2004) have
studied Monte Carlo estimation approaches to approximately simulate the Winnow algo-
rithm’s performance when run over a space of exponentially many features. The use of
kernel methods for logic learning and developing alternative methods for feature expansion
with multiplicative update algorithms remain interesting and challenging problems to be
investigated.
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