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Abstract

Finding all occurrences of a non-rectangular pattern of height m and area a in an
n×n text with no more than k mismatch, insertion, and deletion errors is an important
problem in computer vision. It can be solved using a dynamic programming approach
in time O(an2). We show a O(kn2

√
m log m

√
k log k + k2n2) algorithm which combines

convolutions with dynamic programming. At the heart of the algorithm are the Smaller

Matching Problem and the k-Aligned Ones with Location Problem. Efficient algorithms
to solve both these problems are presented.
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1 Introduction

String matching, and its many generalizations, is a well studied area of computer science
with applications in many fields. In its basic version - exact string matching - the problem is
the following. Input: Text string T = T1T2 · · ·Tn and pattern string P = P1P2 · · ·Pm, where
Ti, Pi ∈ Σ. Output: All locations i in T where TiTi+1 · · ·Ti+m−1 = P1P2 · · ·Pm. Several
techniques have been developed for efficient solutions of string matching problems.

In [FP74], Fischer and Paterson introduced convolutions (general linear products) as a means
for solving string matching problems. The exact string matching problem was solved, for
alphabet Σ in O(log |Σ|n log m) word operations, where the words are of size O(log n). One
of the strengths of the convolutions method is that it allows, with no time degradation,
solving the string matching problem even when a “don’t care” character (that matches every
character) is added to the alphabet. Fischer and Paterson remarked that convolutions are
likely to be useful in various other pattern matching problems. Indeed, it is possible, using
convolutions, to solve the string matching with mismatches problem in time O(|Σ|n log m). In
the string matching with mismatches problem we are interested in the number of mismatches
that results from aligning the pattern against every position in the text. An exact match will
yield zero mismatches. Abrahamson [Abr87] and, independently, Kosaraju [Kos87] used con-
volutions in a divide and conquer approach that solved the string matching with mismatches
problem for infinite alphabets in time O(n

√
m log m).

The automaton method is a very efficient technique for exact string matching. It was used
by [KMP77, BM77] for a O(n) time exact string matching solution. In [AC75] it was ex-
tended to finding text locations where any of a given set of patterns match the text in time
O(n + total length of the patterns + output size). Here output size is the number of times
a pair (location, pattern) is output. As remarked by Aho and Corasick, this may be more
than n, in case several patterns match the same text location. Other techniques for exact
string matching are subword trees [Wei73], periodicity analysis [GS83] and sampling, using
a pattern “signature” [KR87, Vis89]. One drawback of all of these techniques is that they
depend heavily on the exactness of the matching and do not seem immediately suitable for
approximate string matching.

Many approximate string matching problems can be solved in time O(nm) by dynamic
programming [Ukk85]. In [LV86], dynamic programming and suffix trees were combined to
solve the string matching with k-differences problem in time O(nk). In the string matching
with k-differences problem, 3 types of differences are distinguished:

(a) A pattern character is aligned corresponding to a different character is the text
(mismatch).

(b) A text pattern is deleted (deletion).

(c) A pattern character is deleted (insertion).

1



The problem is to find all occurrences of the pattern in the text with at most k differences
of type (a), (b) or (c).

While the different string matching techniques solve various generalizations of string match-
ing problems, there is still an interesting challenge. It seems hard to synthesize different
techniques so that their strengths can be harnessed to efficiently solve composite problems.
For example, convolutions can efficiently solve exact matching with don’t cares, and dynamic
programming with suffix trees efficiently solve matching with k-differences. However, there
is no known efficient algorithm for matching with don’t cares and mismatches, insertions and
deletions. The problem this paper deals with is of a similar flavor, but in two-dimensional
matching.

One of the roles of theoretical computer science is to develop an algorithmic theory for various
application domains. We can go about developing such a theory by abstracting practical
algorithmic problems to “pure” form. (A single practical problem may lead to several pure
problems.) This should be followed by designing algorithms for the specific pure problem(s).
Finally, the knowledge base, consisting of these algorithms, will be used for composing an
algorithm for the original practical problem. This paper is a modest part of such a treatment.
Consider problems of searching aerial photographs. The first phase in an abstraction into
pure problems will be to classify the difficulties that arise into three major subclasses:

• local errors: caused by occlusion and varying levels of detail.

• scaling (or calibration of size): caused by the distance (and to some extent, the angle)
of the camera.

• rotation: caused by the orientation of the camera in relation to the object.

In [KS87] and [AL91], algorithms for some pure local errors problem were given. In [ALV90]
a clean (discrete) version of scaling was solved in sublinear time. In this paper we solve a
limited two-dimensional equivalent of the matching with don’t cares, mismatches insertions
and deletions problem.

The two dimensional exact matching problem is defined as follows: Input: Text matrix
T [1, ..., n; 1, ..., n] and pattern matrix P [1, ..., m; 1, ...m], where T [i, j], P [i, j] ∈ Σ. Output:

All locations [i, j] in T where T [i+k−1, j+l−1] = P [k, l], k, l = 1, ..., m. In [Bir77, Bak78]
this problem was solved in time O(n2).

The two-dimensional version of the k-differences problem was defined in [KS87] as follows:
Input: Text matrix T [1, ..., n; 1, ..., n] and pattern matrix P [1, ..., m; 1, ..., m]. Output: All
locations [i, j] in T where P [l, 1] · · ·P [l, m] appears in T [i + l− 1, j] · · ·T [i + l− 1, j + m− 1]
with il differences, for l = 1, ..., m and

∑m
l=1 il ≤ k. In words, find all text locations such

that all rows of the pattern match the corresponding consecutive text rows, where the total
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number of differences allowed in all row matches is at most k. This is a reasonable definition
where images are transmitted row by row and transmission errors may occur.

The problem was solved by [KS87] in time O(kmn2) and improved by [AL91] to O(k2n2).

In both above versions of the two-dimensional matching, the pattern and the text are rect-
angular matrices. In reality, it is sometimes necessary to match non-rectangular shapes.
In [AL91] it was shown that multi-dimensional matching can be reduced to string match-
ing by appropriate padding with don’t care characters. Such a padding allows solving the
exact two-dimensional matching problem, or the k-mismatches problem (only mismatch er-
rors are allowed) for any shape in time O(|Σ|n2 log m). (Or for infinite alphabets in time
O(n2

√
m log m).) The only known way to solve the two-dimensional k-differences problem

(including insertions and deletions within rows) for non-rectangular patterns is the straight-
forward dynamic programming approach which takes, for patterns of area a, O(an2).

In this paper we make the first advance in the direction of efficiently solving the k-difference
matching problem for non-rectangular patterns. We use a novel method that combines the
power of convolutions, dynamic programming and subword trees. Our main contribution

is solving the two-dimensional k-difference matching problem for half-rectangular patterns in
time O(kn2

√
m log m

√
k log k + k2n2), where n2 is the area of the text and m is the height

of the pattern. This complexity assumes a word size of O(log m) as is standard for string
matching algorithms.

Definition: A left half-rectangular pattern is a list of variable-length rows, P1, ..., Pm. The
pattern is represented by stacking each row Pi above row Pi+1 with Pi,1 directly above Pi+1,1.

Intuitively, the leftmost border of the pattern is a vertical line, and every horizontal cut of
the figure is a single segment. One may similarly define a right, top or bottom half-rectangle
depending on whether the right, top or bottom border is a straight edge.

Our algorithm is efficient for any pattern that can be split into a “small” number of half-
rectangular shapes. In this paper we illustrate it with vertical patterns - that can be split
vertically into two half rectangles (see Fig. 1). An example is any convex shape in an
orientation where the longest diameter is vertical. We are searching for all locations where a
vertical pattern matches the text allowing no more than k mismatches, insertions (in rows)
and deletions (in rows) errors.

To achieve the main result we needed some new tools. We provide efficient solutions to two
problems that are interesting in their own right, and may prove useful in other applications
of convolutions. These problems are the smaller matching problem and the k-aligned ones
with location problem.

The smaller matching problem is: Input: Text string T = T0, .., .Tn−1 and pattern string P =
P0, ..., Pm−1 where Ti, Pi ∈ N . Output: All locations i in T where Ti+k−1 ≥ Pkk = 1, ..., m.
In words, every matched element of the pattern is not greater than the corresponding text
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Figure 1: Examples of Figures which Can and Cannot be Cut Properly

element. If the text and pattern are drawn schematically, we are interested in all position
where the pattern lies completely below the text. See Fig. 2.

The smaller matching problem with a forest partial order is defined similarly with the excep-
tion that the order relation is that induced by a given forest. We solve both these problems
in time O(n

√
m log m). As defined here the problem is 1-dimensional. Our solution will be

good for any dimension by a method similar to the one used in [AL91].

The motivation for the k-aligned ones with locations problem stems from the use of convolu-
tions in pattern matching. The power behind all known convolution-based string matching
algorithms is multiplication of polynomials with binary coefficients (0, 1). Polynomial mul-
tiplication can be done efficiently by using Fast Fourier Transform [AHU74]. The result of
such a polynomial multiplication is the number of 1’s in the pattern that are aligned with
1’s in the text at each position. However, all information about the location of these aligned
1’s is lost. We present a method of finding these locations in time O(k3n log m log k).

Specifically, the k-aligned ones with location problem is: Input: Text string T = T0, ..., Tn−1

and pattern string P0, ..., Pm−1 where Ti, Pi ∈ {0, 1}. Output: All locations i in T where

m
∑

l=0

Tl+iPl ≤ k

and for each such i, all indices i1, ..., ik where Pij = Tl+ij = 1.
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Mis-matchMatch

Figure 2: Example of Less-than Match and Mis-match

In other words, when aligning P in position i of T , there are at most k positions where there
is a “1” both in P and T . All these indices of P are output.

Example: T = 1001111011; P = 1101

When aligning P in position 1 of T , two 1’s are aligned with 1’s: their locations are 1 and
4. When aligning P in position 4 of T , three 1’s are aligned at locations 1,2 and 4.

We use efficient root finding techniques in a symmetric polynomial to solve the k-aligned
ones with locations problem in time O(k3n log m log k). We use this algorithm to find error
locations in the smaller matching convolution, but the algorithm can be applied to find error
locations in all convolutions (e.g. k-mismatches problem of [Abr87]).

In section 2 we show the basic outline of the algorithm for the 2-dimensional matching with
k-differences problem. In section 3 we present the smaller matching problem definition and
solution. In section 4 we give algorithms for handling a forest partial order. In section 5 we
present the k-mismatch with error location problem and its solution. In section 6 we complete
the algorithm for 2-dimensional matching of a non-rectangular figure with k differences. We
conclude with open problems and future research.

2 Outline of the 2-dimensional Matching Problem

The idea of the algorithm is to split the pattern along the verticle line into two parts, PL

and PR. Next, find all locations where each of the halves PL and PR match with no more
than k differences. Subsequently choose only the locations in the intersection that total at
most k differences.
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Input: Text matrix T [1, ..., n; 1, ..., n], pattern image P , and a natural number k - the
maximum number of allowed differences. The pattern may be represented as a matrix, with
don’t care characters padding the borders, or row by row, with the location of the vertical
cut indicated at each row.

1. Preprocessing. Split pattern P into PR and PL along the vertical cut, where PR is
the right part and PL is the left part. Construct tables and databases used by the
algorithm. (Details appear in Section 6.)

2. Construct two new n×n matrices, TL and TR. TR contains at each location the number
of the longest row of PR that starts at that location of T . TL contains at each location
the number of the longest row of PL that ends at that location of T . This stage takes
O(n2) time by using a slight modification of the [AC75] algorithm. (Details appear in
Section 6.2).

3. Find all locations [i, j] in T where for all but at most k of the rows PR,l, l ∈ {1, ..., m},
of PR, row PR,l is a prefix of the row represented by TR[i + l − 1, j]. Similarly, find
all locations [i, j] in T where for all but at most k of the rows PL,l, l ∈ {1, ..., m}, of
PL, row PL,l is a suffix of the row represented by TL[i + l − 1, j]. Call the (at most k)
rows where there is no match the error rows. This step is done in time O(n2

√
m log m)

by using the smaller matching algorithm described in sections 3 and 4. Moreover, the
algorithm for the k-aligned ones with locations computes the actual position of each
error row for each location in T in time O(kn2

√
m log m

√
k log k).

By considering the intersection of the locations where PL and PR match in at least
m−k rows, we now have all locations where all rows of P match the text with at most
k error rows. The problem is that we don’t know how many errors really exist in each
error row.

4. For any particular alignment of the pattern with the text with fewer than k error rows,
we process each error row using the one-dimensional algorithm presented in [LV86]. It
was shown in [AL91] that such a dynamic programming algorithm requires processing
time O(e2) for every error row with e errors. We proceed, error row by error row,
until more than k total differences are found (no match) or until the error rows are
exhausted (match). Thus, the use of this algorithm at this stage requires O(k2) per
text location for a total of O(k2n2).

Total Algorithm Time: O(kn2
√

m log m
√

k log k + k2n2).
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Figure 3: Method for Slicing Problem into Smaller Problems

3 Smaller Matching Problem

In a manner similar to the divide and conquer ideas of Abrahamson [Abr87] and Kosaraju
[Kos87] we will present two inefficient algorithms for solving the smaller matching problem,
then show how a careful combination can yield a fast algorithm.

Observation 1: We will be assuming that n ≤ 2m. The reason this does not limit generality
is that if the smaller matching problem can be solved in time f(m) for n ≤ 2m, then it can
be solved in time n

m
f(m) for any n-length text. Simply divide the text into 2 n

2m
overlapping

2m-length segments (see Fig. 3) and solve the matching problem separately for each.

3.1 The Two Algorithms

The following two inefficient algorithms solve the smaller matching problem. Each algorithm
accepts T = T0, . . . , Tn−1; P = P0, . . . , Pm−1 as input and produces output M [−(m − 1) : n]
where for i = 0, ..., n−m, M [i] is the number of locations, j, where Pj > Ti+j .

3.1.1 The Brute Force Approach

Algorithm A

Input T = T0, . . . , Tn−1; P = P0, . . . , Pm−1.

1. Initialize M ← 0

2. for i = 0 to n− 1 do
for j = 0 to min(i, m− 1) do

if Ti < Pj then M [i− j]←M [i− j] + 1

7



end Algorithm A

This algorithms takes each element of the text and compares it with each element of the
pattern to find all the mismatches. Each time it finds one, it updates the vector M appro-
priately. It is clear that M [i] = k iff there are k locations, j, where Pj > Ti+j .

Time: O(mn)

3.1.2 The Convolutions Approach

A preliminary is required for understanding algorithm B. We will be using convolutions for
solving the smaller match problem.

Fischer and Paterson [FP74] observed that string matching is a special case of a generalized
convolution.

Definition: Let X = 〈x0, ..., xm〉 , Y = 〈y0, ..., yn〉 be two given vectors, xi, yi ∈ D. Let ⊗
and ⊕ be two given functions where

⊗ : D ×D → E,

⊕ : E ×E → E, ⊕ associative.

Then the convolution of X and Y with respect to ⊗ and ⊕ is:

X〈⊗,⊕〉Y = 〈z0, ..., zn+m〉

where
zk =

⊕

i+j=k

xi ⊗ yj for k = 0, ..., m + n.

Examples:

Boolean Product: ⊗ is ∧ and ⊕ is ∨.

Polynomial product: ⊗ is × and ⊕ is +.

Exact string matching: ⊗ is = and ⊕ is ∧ but the pattern is transposed.

For all matches of pattern b a a in text b a a b a , do b a a b a〈=,∧〉b a aR.

8



b a a b a
a a b

− − − − − − −
1 0 0 1 0

0 1 1 0 1
0 1 1 0 1
− − − − − − −
0 0 1 0 0 1 0

− − −

Note that (X〈=,∧〉Y )k = 1 iff 〈xk−n, ..., xk〉 = 〈yn, ..., y0〉 for n ≤ k ≤ m. We conclude that
there is a match in position 2, i.e.

b a a b a
− − −

〈 a a b 〉R

Fischer and Patterson achieve such a convolution, using the FFT-based Schönhage-Strassen
integer multiplication method, in time O(log |Σ|n log m). In [AL91] convolutions were used
to find approximate matching for a finite alphabet Σ (the convolution 〈6=, +〉) in time
O(|Σ|n log n). Algorithm B uses a similar technique, but bear in mind that |Σ| = m in
the worst case.

Notation: For σ, x ∈ < let

χσ(x) =

{

1 if x = σ
0 if x 6= σ

χ<σ(x) =

{

1 if x < σ
0 if x ≥ σ

If X = x1, . . . , xn then χσ(X) = χσ(x1), . . . , χσ(xn). Similarly define χ<σ(X).

We would like to know for each element of the pattern, where it is lined up with something less
than it. In other words, for each σ in P , we can achieve this by computing χ<σ(T )⊗χσ(P R)
(where ⊗ is polynomial multiplication), and considering all non-zero locations.

Let Σ = {σ1, σ2, . . . , σk} be the set of all different numbers appearing in P. Let Mi =
χ<σi

(T )⊗ χσi
(P R) (where ⊗ is polynomial multiplication). Then Mi is non-zero at position

t iff there is a σi in the pattern matched with something smaller than σi when the pattern

9



is lined up at t. These cases are exactly when we get a mismatch. If we let M be the sum
of all the Mi’s we get a non-zero if there was a mismatch caused by any σ ∈ Σ. However,
calculating M would take O(m) multiplications.

We assume that the polynomial multiplication result of vectors T0. . . . Tn and
P0, . . . , Pm are returned in a vector M−(m−1), . . . , M0, . . . , Mn.

Algorithm B:

Input T = T0, . . . , Tn−1; P = P0, . . . , Pm−1.

1. Let Σ = the set of all different numbers appearing in P . |Σ| ≤ m.

2. Init M ← 0

3. For all σ ∈ Σ do
M ←M + χ<σ(T )⊗ χσ(P R)

end

end Algorithm B

M [i] = k iff there is a smaller match of P in position i of T with k errors.

Time: O(|Σ|n log m). In the worst case this is O(mn log m).

3.2 A Fast Algorithm

Abrahamson [Abr87] and, independently, Kosaraju [Kos87] noted that approximate match-
ing (convolution 〈6=, +〉) can be done in time O(n

√
m log m) rather than

O(mn log m) for infinite alphabets by using the multiplication technique on a limited al-
phabet of size

√
m and then “fine tuning” by another method. We use the same idea for the

smaller matching problem. The “fine tuning” algorithm is like Algorithm A and the limited
alphabet algorithm is like Algorithm B.

Algorithm C

Input T = T0, . . . , Tn−1; P = P0, . . . , Pm−1.

Remember that n ≤ 2m.

1. Consider L = 〈T0, 0, 0〉, 〈T1, 0, 1〉, . . ., 〈Tn−1, 0, n−1〉, 〈P0, 1, 0〉, 〈P1, 1, 1〉, . . ., 〈Pm−1, 1, m−
1〉. [Every element is considered a triplet 〈s, e, d〉 where s is a number, e is 0 if the
number is in T and 1 if the number is in P , and l is the location of the number in the
array T or P .]

10



2. Sort L lexicographically. [There are at most 3m elements in L.] Call the sorted array
L′.

3. Divide L′ into
√

m blocks, each containing no more than 3
√

m elements.

4. For each block Bi, i = 0, . . . ,
√

m let bi be the smallest (leftmost) element in the block;
call bi the representative of block Bi.

5. Let T ′ and P ′ be T and P such that every Ti and Pi is replaced by the representative
of the block it is in. [Implemented by a sequential scan of L′.]

6. Call Algorithm B for all smallest matches of P ′ in T ′.

[P ′ and T ′ can be considered “flattened out” versions of P an T . When we apply
Algorithm B to P ′ and T ′ we only detect the “large” mismatches, i.e., those between
elements that are so different that they are in different blocks. However, mismatches
between elements of the same block are undetected. At this stage we must “fine tune”
our approximate solution. We can use a minor modification of Algorithm A for this
purpose. The change to Algorithm A is that for every element Ti of T we only compare
it to the (at most

√
m) elements of P that are in Ti’s block.]

7. For i = 0 to n− 1 do (remember that n = 2m)
Let BTi

be the block of L′ that Ti is in,
Let P BTi ← {〈s, 1, d〉|〈s, 1, d〉 ∈ BTi

}
For every element 〈s, 1, d〉 in P BTi (at most 3

√
m elements)

if Ti < s then M [i − d]←M [i− d] + 1
end

end

[The vector M is now correct since the first part of the algorithm included all the errors
between blocks and the last part found all the errors within a block.]

end Algorithm C

Time: O(m log m) for sorting
O(m

√
m log m) for Algorithm B

O(m
√

m) for Algorithm A
Total: O(m

√
m log m)

By Observation 1, the time for a general text T of size n is

O(
n

m
m
√

m log m) = O(n
√

m log m).
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Notice that for large m this can be a great saving over the naive O(mn) algorithm. The
algorithm construction is simple enough that there are no prohibitive constants lurking
around. In fact, the polynomial multiplication can be done even faster using off-the-shelf
FFT hardware.

4 A Forest Partial Order

4.1 A Forest Partial Order

The smaller match problem as defined in section 2 assumes that the elements of T and P
are numbers, i.e. are totally ordered. We can achieve the same results if the symbols are
partially ordered in a forest.

Definition: Let T = T0, . . . , Tn−1; P = P0, . . . , Pm−1, where each Ti, Pj i=0, . . . , n− 1; j =
0, . . . , m−1 appears once in a forest of size O(n) with roots r1, . . . , rl, and the relation a < b
holds if a is an ancestor of b. The smaller matching problem with a forest partial order is
that of finding all locations k, 0 ≤ k ≤ n−m where Pi ≤ Tk+i; i = 0, . . . , m− 1.

Algorithm D

1. For each tree rooted at ri; i = 1, . . . , l assign a pair of numbers 〈f(s), g(s)〉 to every
node s such that

f(a) < f(b) iff a is an ancestor of b or ∃c, c an ancestor of both a and b. a is in a
subtree of c that is to the right of the subtree b is in.

g(a) < g(b) iff b is an ancestor of a or ∃c, c an ancestor of both b and a. a is in a
subtree of c, that is, to the right of the subtree b is in.

Note that in our partial order a ≤ b iff f(a) ≤ f(b) and g(b) ≤ g(a).

2. Let

Tr, Pr be T, P respectively where every element is replaced by the root of the tree it
appears in,

Tf , Pf be T, P respectively where every element s is replaced by f(s),

Tg, Pg be T, P respectively where every element s is replaced by g(s).

3. Use any linear time algorithm to find all exact matches of Pr in Tr. [BM77, KMP77].

4. Use Algorithm C to find the smaller matches of Pf in Tf and a symmetric algorithm
to find the greater matches of Pg in Tg.

12



5. The locations where there is an exact match of Pr in Tr, a smaller match of Pf in Tf

and a greater match of Pg in Tg are exactly those where there is a smaller match with
a forest partial order of T in P .

end Algorithm D

Implementation

1. Do a DFS with priority to the rightmost child. When backing up form node s, assign
g(s) starting from 1 and increasing to size, where size is the size of the tree.

Do a DFS with priority to the leftmost child. When backing up form node s, assign
f(s) starting from size and decreasing to 1.

2. Sort all elements of T, P in some lexicographic order of their (binary) encoding. As an
element is assigned a number in the DFS, assign that number to the sorted list. By
binary search Tf , Pf , Tg, Pg can be constructed.

Time: O(m) for steps 1, 3 and 5
O(m log m) for step 2
O(
√

mm log m) for step 4
Total: O(

√
mm log m)

By Observation 1, the time for a general text T of size n is

O(
n

m
m
√

m log m) = O(n
√

m log m)

5 The k-Aligned Ones with Location Problem

5.1 Definition

Definition: Let T = T0, . . . , Tn−1; P = P0, . . . , Pm−1; Ti, Pj ∈ {0, 1},
i = 0, . . . , n − 1; j = 0, . . . , m − 1. We say there is a 1 − 1 pair at index j of position i
if Pj = Ti+j = 1. The k-aligned ones with location problem is that of finding for each i that
has fewer than k 1− 1 pairs, the set of j for which Pj = Ti+j = 1.

The polynomial multiplication of two sequences P and TR computes the number of 1 − 1
pairs for each alignment of P and T . Replace every 1 in P with some other value; call
the result P ′. The polynomial multiplication P ′ and TR computes the sum of values in P ′

13



that are aligned with a corresponding 1 in T . By carefully selecting the values that get
substituted for the 1’s in P , we can get information about where the 1 − 1 pairs are. We
generate a set of k equations with k unknowns from which the actual locations of the 1− 1
pairs are derived.

5.2 The Convolutions

For a given vector V = 〈v1, v2, . . . , vm〉 ∈ Nm and function f : N → N , extend f to
f : Nm → Nm as follows: f(V ) = 〈f(v1), f(v2), . . . , f(vm)〉. For 1 ≤ i ≤ k, let fi(vj) = vjj

i

and let
Ci = Ci,1Ci,2 . . . Ci,n+m = fi(P )⊗ TR.

In other words, if P1 is lined up with Tj and the 1− 1 pairs occur in locations x1, x2, . . . , xk,
we have:

C1,m+j = x1 + x2 + · · ·+ xk

C2,m+j = x2
1 + x2

2 + · · ·+ x2
k

...
Ck,m+j = xk

1 + xk
2 + · · ·+ xk

k

Since the Ci,j’s can grow to O(kmk), they require O(k log m) bits each, or O(k) words.
Therefore, we cannot do multiplications or additions in constant time. For the sake of
clarity, we will count the number of multiplications required for the computation and we will
multiply this by the time needed to compute each multiplication at the end.

Time: O(kn log m) multiplications.

Given the Ci,l’s, we would like to be able to find the xi’s for all m ≤ l ≤ n.

5.3 Converting the System of Equations into a Polynomial

The above system of equations does not present a obvious solution. However, if we can use
the Ci,l’s to calculate the coefficients of the polynomial:

g(x) = (x + x1)(x + x2) . . . (x + xk) = 0 (1)

then we can find the roots of this polynomial and negate them to solve for the xi’s. Let the
expanded form of (1) be:

g(x) = s0x
k + s1x

k−1 + · · ·+ sk−1x + sk = 0.
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Clearly s0 = 1 and for 1 ≤ i ≤ k,

si =
∑

1≤α1<α2<···<αi≤k

xα1
xα2

. . . xαi

It is easy to see that s1 =
∑

1≤i≤k xi = C1,l. A bit of inspection will also reveal that
s2 =

∑

1≤i<j≤k xixj = (C2
1,l − C2,l)/2 = (s1C1,l − s0C2,l)/2. This suggests the following

general result.

Lemma 1 For 1 ≤ i ≤ k

si =

∑i
j=1(−1)j−1si−jCj,l

i
.

Proof: For d, e ∈ N such that 0 ≤ d− e < k, let

h(d, e) = {(a, B)|1 ≤ a ≤ k, B ⊆ {1, . . . , k}, |B| = d− e, a 6∈ B}

Let
ȟ(d, e) =

∑

(a,B)∈h(d,e)

xe
a

∏

b∈B

xb.

Then clearly si = ȟ(i, 1)/i since every product of i xj’s appears i times in the summation of
ȟ(i, 1) and ȟ(i, i) = Ci,l.

Claim 1 For 1 ≤ i, j < k

siCj,l = ȟ(i + j, j) + ȟ(i + j, j + 1)

Proof: See Appendix.

Claim 2 For 1 ≤ y < x ≤ k,

ȟ(x, y) =
x

∑

j=y

(−1)j−ysx−jCj,l.

Proof: See Appendix.

By claim 2, we get that

ȟ(i, 1) =
i

∑

j=1

(−1)j−1si−jCj,l.
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Since si = ȟ(i, 1)/i,

si =

∑i
j=1(−1)j−1si−jCj,l

i
.2

The time needed to convert from the Ci,l’s to the si’s is clearly O(k2) multiplications. Note
that the si’s can grow as large as O((km)k) and thus can also be represendted with O(k)
words.

5.3.1 Finding the roots of the Polynomial

We now have a polynomial, g(x) of degree k, all of whose roots are distinct integers between
−1 and −m (remember that we had to negate the roots of the polynomial to get the xi’s).
Since g has k real roots, and g′ (the derivative of g) has k− 1 roots, we know that the roots
of g′ come in two varieties: they are either maxima of g above the x-axis, or minima of g
below the x-axis. This follows from the fact that between any two roots of a polynomial
there must be at least one root of its derivative, and since g has k real roots, there is exactly
one extrema between every pair of adjacent roots of g. We show how to find one root of g.
Once such a root (say −xi) is found, repeat the same process to find a root of g(x)/(x + xi).
Repeat the process until all roots are found.

To find a root of a g(x), let us consider two cases.

Case 1: g(x) has odd degree.
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Figure 4: Case (a): g(x+y

2
) < 0; Case (b): g(x+y

2
) > 0

Then g(0)g(−m− 1) < 0, that is, g(x) > 0 for all x < −m and g(x) < 0 for all x > −1 or
vice-versa (See Figure 4). Since we have a positive and a negative point, we know that we
have bounded a root of g. If we evaluate g at the midpoint of this interval, we will either
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Figure 5: Case (a): g′(x+y

2
) < 0 (dotted line) ; Case (b) g′(x+y

2
) > 0 (dashed line)

find a root, or we will have bounded a root in an interval half the size. We can continue with
the binary search for at most O(log m) steps, and each step requires O(k) multiplications to
evaluate the k degree polynomial g. So the total time for finding a root of an odd degree
polynomial is O(k log m) multiplications.

Case 2: g(x) has even degree.

Then g′ has odd degree. Let us assume, without loss of generality, that g(0) > 0 and
g(−m− 1) > 0 . Then g′(0) > 0 and g′(−m− 1) < 0. We have bounded a root of g′ in the
interval [x, y], were initially, x = −m and y = −1. Once again we proceed by binary search,
but we have more work to do this time. If g is 0 at the midpoint, we have found a root.
If it is negative, we can proceed with the binary search as in case 1, since we now have an
interval bounded by a negative and positive point of g. If g is positive at the midpoint, then
we evaluate g′ at the midpoint. If g′ is not 0, then we have the original condition on one
of the two halves (that is, a positive derivative at one end, and a negative derivative at the
other), so we simply proceed with the binary search on the appropriate half (See Figure 5) .

If g′ is 0, then it is a maximal point (See Figure 6). This means there is a root on each side.
We continue with the binary search on either side. Once again, we have O(logm) steps of
the binary search, and each step takes O(k) multiplications (to evaluate g and g′) so the
total time to find a root is O(k log m) multiplications.

The process is repeated k times to find all k roots. To multiply two numbers with O(k)
words each requires O(k log k) time, thus:

Time: O(k3 log m log k).
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Figure 6: g′(x+y

2
) = 0 so the search continues on either (a) or (b)

6 Two-Dimensional Non-rectangular Matching

Recall that the algorithm proceeds in four phases: preprocessing; writing down the longest
row that ends at a particular location; finding, for each alignment of the pattern, P , in the
text T , which rows don’t match; and checking each mismatched row to add up the number
of errors.

6.1 Preprocessing

We will use the Smaller Matching Problem with a Forest Partial Order in our algorithm,
so we must first build the partial order. Aho and Corasick [AC75] solved the following
problem. Given a set of strings, R1, R2, . . . , Ri, and a text, find all occurrences of any of
the strings in the text. They solved this problem by building a DFA-like structure as in
[KMP77]. However, several of the nodes in the DFA correspond to “output nodes” each of
which corresponds to an entry in an “output table”. Each entry in the output table is a set
of pointers to strings rather than a single string because any section of text which matches
a string Rj would also match all the Rk’s that are suffixes of Rj . For example, an entry that
matches “she” would also match “he”. Thus, once we have the output table built, we can
think of each entry as a longest string and all of its suffixes within the set R1, R2, . . . , Ri.
The construction is linear in the sum of the lengths of the patterns. It is easy to see that
the table takes no more storage than the strings themselves. Consider each string. For each
string there will be one entry in the table for which that string is the longest. If the string is
of length x it can have at most x− 1 suffixes and so the entry in the table will be of at most
size x pointers to strings. Thus the table is linear in the size of the strings. We will use the
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output table to construct a forest partial order under the suffix relation for the rows of PL.

Algorithm F

Input the rows of PL PL,1, PL,2, . . . , PL,m

1. Associate with each string a field which contains its length

2. Build an [AC75] pattern matching machine from PL,1, PL,2, . . . , PL,m

3. Bin-sort the output table by size of the set of strings at each entry

4. Let MSET be the size of the largest set in the output table

5. Make each element in the sets of size 1 a root and mark each node

6. For i = 2 to MSET do
For each set s of size i do

Let l be the (unique) unmarked string in s
Let m be the longest marked string in s
Mark l and add l to the forest as a child of m

end
end

end Algorithm F

Clearly there will always be exactly one unmarked string in any given set and that string
will be the longest. Thus we know that we must insert the string as a leaf in the tree as a
child of the longest marked string.

Time: Steps (a)-(c) are linear in the size of the input. In steps (e) and (f), each set in the
output table is scanned only once. Since the total size of the output table is no more than
the size of the input, the total preprocessing time is O(|P |).
A symmetric algorithm constructs the forest of the prefix relation of the rows of PR (suffixes
of the reversed rows).

6.2 Finding the Longest Matching Rows

Once again, we modify the algorithm of Aho and Corasik, [AC75] We will modify the table
so that only the longest string is output at any stage. We will then use the modified table for
the row scan to construct TR and TL as described in the outline. For simplicity of notation
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we assume that the text and pattern are given within square arrays (although clearly the
algorithm can handle rectangles).

Algorithm G

Input T [0 : n− 1; 0 : n− 1], P [0 : m− 1; 0 : m− 1]

1. Split pattern, P into its two parts, PL and PR.

2. Build an [AC75] DFA for PL. Call it DL with output table OL.

3. Modify the output table to only output the longest string from each entry. Call the
new table O′

L.

4. Create TL as follows. Run DL on the rows of T using the output table O′
L. If no string

matches at T [i; j] then TL[i; j] ← $, where $ matches no string. If PL,k is the longest
row that matches at T [i; j] then TL[i; j]← PL,k.

[At every position (i, j) of TL we now have the longest string which ends at T [i; j]]

5. Repeat the process symmetrically for PR.

[At every position (i, j) of TR we have the longest string which starts at T [i; j]]

End Algorithm G

Time: O(n2)

6.3 Finding the Mismatched Rows

Input to this step: TL and TR. Each element of these arrays is a symbol representing the
longest pattern row that matches that text location. We also have precomputed tree order
relations for the “is-a-prefix-of” relation on the rows of PR and the “is-a-suffix-of” relation
on the rows of PL.

Processing: Viewing TL and TR in column major order, solve the smaller matching problem
and choose only the locations where the total number of mismatches in both TR and TL is
not greater than k. Use the k-aligned ones with locations algorithm to find the location of
the error rows resulting from each alphabet letter in the convolution stage. Compute the
location of the mismatches during the brute force stage. This is easily done since every
location is checked.
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Time: The k-aligned ones with location algorithm takes time O(k3n2 log m log k) for every
alphabet symbol. There are O(

√
m) symbols so the total time is O(k3n2

√
m log m log k).

The brute force stage takes time O(n2
√

m).

A better divide-and-conquer scheme:

Recall that the divide-and-conquer of section 3 divided the text into blocks of size
√

m. The
treatment of elements within the blocks was by the brute force method, while the global
treatment was by convolutions with an alphabet (the group representatives) of size O(

√
m).

However, finding the error locations is much harder in the convolution stage than in the
brute force stage, and this leads to the difference between their time complexities. For a
more even distribution of labor, we change the block size.

New block size: k
√

m log m
√

k log k. The alphabet for the convolution stage is now of size
O(

√
m

k
√

log m
√

k log k
).

Time: The k-aligned ones with locations algorithm now contributes
O(k3n2 log m log k

√
m

k
√

log m
√

k log k
) = O(kn2

√
m log m

√
k log k). The brute force stage also

takes time O(kn2
√

m log m
√

k log k).

6.4 Adding up the Number of Errors in the Mismatched Rows

We now have, for every location in the text, the rows of the pattern that have mismatches
on when the pattern is aligned at that location of the text (for all locations where there are
fewer than k errors).

For every text location with fewer than k error rows, we do the following. Starting with
the first error row, find the differences in matching this row with the appropriate pattern
row. If fewer than k differences are found, continue to the next error row. For each text
location, stop processing when k + 1 differences are found or after the last row is checked.
If no more than k differences are found after checking the last column conclude that there
is an occurrence of the pattern in the text. We find the differences between the error rows
and their corresponding pattern rows by the algorithm given in [LV86]. The total time for
this stage is O(k2n2).

6.5 Complexity of the Algorithm

Finding the error rows takes time O(kn2
√

m log m
√

k log k + n2k log k). Finding the k dif-
ferences within the error rows takes time O(k2n2). All other steps run in linear time. The
total is thus O(kn2

√
m log m

√
k log k + k2n2)
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For k ≤ m
1

3 our algorithm is the fastest known.

For m
1

3 < k, the [LV86] algorithm can be modified to solve the problem in time O((m+k2)n2),
without use of convolutions.

For k >
√

a, where a is the area of P , the straightforward dynamic programming approach
takes time O(n2a).

7 Open Problems

In this paper we solved the two dimensional k-differences problem for vertical non-rectangular
figures. It remains open to find efficient algorithms for non-vertical figures. This is related to
the problem of string matching with k-differences and don’t cares. Does an efficient smaller
match algorithm exist for any partial order? We conjecture that convolutions such as 〈≤, +〉,
〈max, min〉 or 〈6=, +〉 can be solved in time O(n log m). There are almost no known lower
bounds in this area. Can the smaller match problem be solved in linear time?
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Appendix

Claim 1: For 1 ≤ i, j < k

siCj,l = ȟ(i + j, j) + ȟ(i + j, j + 1).

Proof: We know that ȟ(i, 1) = isi and ȟ(j, j) = Cj,l. If we can prove that

ȟ(i, 1)

i
ȟ(j, j) = ȟ(i + j, j) + ȟ(i + j, j + 1),

then we are done.
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Let (a, B) ∈ h(i+ j, j). But (a, ∅) ∈ h(j, j) and ∀α ∈ B, (α, B−{α}) ∈ h(i, 1). Similarly, let
(a, B) ∈ h(i + j, j + 1). (a, ∅) ∈ h(j, j) and ∀α ∈ B

⋃{a},
(α, B

⋃{a}−{α}) ∈ h(i, 1). So, for every term in ȟ(i+j, j)+ ȟ(i+j, j +1), there are i terms
with the same value in ȟ(i, 1)ȟ(i, i). Conversely, for every (c, B) ∈ h(i, 1), (d, ∅) ∈ h(j, j) we
have two cases. If d ∈ B

⋃{c} then xj
dxc

∏

b∈B xb = xj+1
d

∏

b∈B
⋃

{c}−{d} xb which is a term in

ȟ(i+j, j+1). If d 6∈ B
⋃{c} then xcx

j
d

∏

b∈B xb = xj
d

∏

b∈B
⋃

{c} xb which is a term in ȟ(i+j, j).

Recall that there are i elements of h(i, i) that contribute to the sum xj
dxc

∏

b∈B xb. Therefore
ȟ(i, 1)ȟ(i, i)/i = h(i + j, j) + ȟ(i + j, j + 1) and siCj,l = ȟ(i + j, j) + ȟ(i + j, j + 1). 2

Claim 2: For 1 ≤ y < x ≤ k,

ȟ(x, y) =
x

∑

j=y

(−1)j−ysx−jCj,l.

Proof: For y = x we have

ȟ(x, x) =
x

∑

j=x

(−1)j−xsx−jCj,l

= s0Cx,l.

Assume claim 2 holds for all y, 1 ≤ y0 < y ≤ x. Then we know that

ȟ(x, y0) = ȟ(x, y0) + ȟ(x, y0 + 1)−∑x
j=y0+1(−1)j−y0+1sx−jCj,l

= sx−y0
Cy0,l −

∑x
j=y0+1(−1)j−y0+1sx−jCj,l

=
∑x

j=y0
(−1)j−y0sx−jCj,l.2
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